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Abstract

The celebrated Erdős–Ko–Rado theorem [1] states that the maximum in-
tersecting k-uniform family on [n] is a full star if n ≥ 2k + 1. Furthermore,
Hilton-Milner [9] showed that if an intersecting k-uniform family on [n] is not
a subfamily of a full star, then its maximum size achieves only on a family

isomorphic to HM(n, k) :=
{
G ∈

([n]
k

)
: 1 ∈ G,G∩ [2, k+1] 6= ∅

}
∪
{
[2, k+1]

}
if n > 2k and k ≥ 4, and there is one more possibility in the case of k = 3. Han
and Kohayakawa [8] determined the maximum intersecting k-uniform family on
[n] which is neither a subfamily of a full star nor a subfamily of the extremal
family in Hilton-Milner theorm, and they asked what is the next maximum in-
tersecting k-uniform family on [n]. Kostochka and Mubayi [11] gave the answer
for large enough n. In this paper, we are going to get rid of the requirement
that n is large enough in the result by Kostochka and Mubayi [11] and answer
the question of Han and Kohayakawa [8].
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1 Introduction

For a positive interge n, let [n] = {1, 2, . . . , n} and 2[n] be the family of all subsets of
[n]. An i-element subset A ⊆ [n] is called an i-set. For 0 ≤ k ≤ n, let

(
[n]
k

)
denote

the collection of all k-sets of [n]. A family F ⊆
(
[n]
k

)
is called k-uniform. For a family

F ⊆ 2[n], we say F is intersecting if for any two distinct sets F and F ′ in F we have
|F ∩ F ′| ≥ 1. In this paper, we always consider a k-uniform intersecting family on
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(Yang Huang), ypeng1@hnu.edu.cn (Yuejian Peng, corresponding author).
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[n]. The following celebrated theorem of Erdős–Ko–Rado determines the maximum
intersecting family.

For x ∈ [n] denote Fx := {F ∈
(
[n]
k

)
: x ∈ F} by the full star centered at x. We

say F is EKR if F is contained in a full star.

Theorem 1.1 (Erdős–Ko–Rado [1]). Let n ≥ 2k be integer and F be a k-uniform
intersecting family of subsets of [n]. Then

|F| ≤
(
n− 1

k − 1

)
.

Moreover, when n > 2k, equality holds if and only if F is a full star.

The theorem of Hilton-Milner determines the maximum size of non-EKR families.

Theorem 1.2 (Hilton–Milner [9]). Let k ≥ 2 and n ≥ 2k be integers and F ⊆
(
[n]
k

)
be an intersecting family. If F is not EKR, then

|F| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1.

Moreover, for n > 2k and k ≥ 4, equality holds if and only if F is isomorphic to

HM(n, k) :=
{
G ∈

(
[n]
k

)
: 1 ∈ G,G ∩ [2, k + 1] 6= ∅

}
∪
{

[2, k + 1]
}
.

For the case k = 3, there is one more possibility, namely

T (n, 3) :=
{
F ∈

(
[n]
3

)
: |F ∩ [3]| ≥ 2

}
.

We say a family F is HM if it is isomorphic to a subfamily of HM(n, k). We say
that 1 is the center of HM(n, k).

Let E ⊆ [n] be an i-set and x ∈ [n]. We define

Gi :=

{
G ∈

(
[n]

k

)
: E ⊆ G

}
∪
{
G ∈

(
[n]

k

)
: x ∈ G and G ∩ E 6= ∅

}
.

We call x the center, and E the core of Gi for i ≥ 3. With a slight tweaking, we call
{x} ∪ E the core of G2. Note that Gk = HM(n, k).

For a (k−1)-set E, a point x ∈ [n]\E, and an i-set J ⊂ [n]\ (E∪{x}), we denote

Ji :=

{
G ∈

(
[n]

k

)
: E ⊆ G and G ∩ J 6= ∅

}
∪
{
G ∈

(
[n]

k

)
: J ∪ {x} ⊆ G

}
∪
{
G ∈

(
[n]

k

)
: x ∈ G,G ∩ E 6= ∅

}
.

We call x the center, E the kernel, and J the set of pages.
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For two k-sets E1 and E2 ⊆ [n] with |E1 ∩ E2| = k − 2, and x ∈ [n] \ (E1 ∪ E2),
we define

K2 := {G ∈
(

[n]

k

)
: x ∈ G,G ∩ E1 6= ∅ and G ∩ E2 6= ∅} ∪ {E1, E2},

and call x the center of K2.
In [8], Han and Kohayakawa obtained the size of a maximum non-EKR, non-HM

intersecting family.

Theorem 1.3 (Han–Kohayakawa [8]). Suppose k ≥ 3 and n ≥ 2k + 1 and let H be
an intersecting k-uniform family on [n]. Furthermore, assume that H is neither EKR
nor HM, if k = 3, H 6⊆ G2. Then

|H| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
−
(
n− k − 2

k − 2

)
+ 2.

For k = 4, equality holds if and only if H = J2, G2 or G3. For every other k, equality
holds if and only if H = J2.

Han and Kohayakawa [8] proposed the following question.

Question 1.4. Let n ≥ 2k + 1. What is the maximum size of an intersecting family
H that is neither EKR nor HM, and H 6⊆ J2 (in addition H 6⊆ G2 and H 6⊆ G3 if
k = 4)?

Regarding this question, Kostochka and Mubayi [11] showed that the answer is |J3|
for sufficiently large n. In fact they proved that the maximum size of an intersecting
family that is neither EKR, nor HM, nor contained in Ji for each i, 2 ≤ i ≤ k−1 (nor
in G2,G3 for k = 4) is |K2| for all large enough n. In paper [11], they also established
the structure of almost all intersecting 3-uniform families. Sometimes, it is relatively
easier to get extremal families under the assumption that n is large enough. For
example, Erdős matching conjecture [2] states that for a k-uniform family F on finite
set [n], |F| ≤ max{

(
k(s+1)−1

k

)
,
(
n
k

)
−
(
n−s
k

)
} if there is no s+1 pairwise disjoint members

of F and n ≥ (s+ 1)k, and it was proved to be true for large enough n in [2]. There
has been a lot of recent studies for small n (see [5, 7, 10, 12]). However, the conjecture
is not completely verified for small n. Up to now, the best condition on n was given
by Frankl in [5, 6] that n ≥ k(2s+ 1)− s, for (s+ 1)k ≤ n ≤ k(2s+ 1)− s− 1.

As mentioned by Han and Kohayakawa in [8], for k ≥ 4, the bound in Theorem 1.3
can be deduced from Theorem 3 in [9] which was established by Hilton and Milner in
1967. However, family H in Question 1.4 does not satisfy the hypothesis of Theorem
3 in [9] for k ≥ 4. This makes Question 1.4 more interesting. In this paper, we answer
Question 1.4. We are going to get rid of the requirement that n is large enough in the
result by Kostochka and Mubayi [11]. As in the proofs of Theorem 1.1, Theorem 1.2
and Theorem 1.3, we will apply the shifting method. The main difficulty in our proof
is to guarantee that we can get a stable family which is not EKR, not HM, 6⊆ J2 (in
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addition 6⊆ G2, 6⊆ G3 if k = 4) after performing a series of shifts to a family which is
not EKR, not HM, 6⊆ J2 (in addition 6⊆ G2, 6⊆ G3 if k = 4). Our main result is as
follows.

Theorem 1.5. Let k ≥ 4 and H ⊆
(
[n]
k

)
be an intersecting family which is neither

EKR nor HM. Furthermore, H 6⊆ J2 (in addition H 6⊆ G2 and H 6⊆ G3 if k = 4).
(i) If 2k + 1 ≤ n ≤ 3k − 3, then

|H| ≤
(
n− 1

k − 1

)
− 2

(
n− k − 1

k − 1

)
+

(
n− k − 3

k − 1

)
+ 2,

Moreover, the equality holds only for H = K2 if k ≥ 5, and H = K2 or J3 if k = 4.
(ii) If n ≥ 3k − 2, then

|H| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
−
(
n− k − 2

k − 2

)
−
(
n− k − 3

k − 3

)
+ 3.

Moreover, for k = 5, the equality holds only for H = J3 or G4. For every other k,
equality holds only for H = J3.

In Section 2, we will give the proof of Theorem 1.5. The proofs of some crucial
lemmas for the proof of Theorem 1.5 are given in Section 3.

2 Proof of Theorem 1.5

In this section, we always assume that H is a maximum intersecting family which
satisfies the conditions of Theorem 1.5, that is, H is not EKR, not HM, H 6⊆ J2 (in
addition H 6⊆ G2,H 6⊆ G3 if k = 4). By direct calculation, we have the following fact.

Fact 2.1. (i) Suppose that there is x ∈ [n] such that there are only 2 sets, say,
E1 and E2 ∈ H missing x. If |E1 ∩ E2| = k − i and i ≥ 2, then

|H| ≤
(
n− 1

k − 1

)
− 2

(
n− k − 1

k − 1

)
+

(
n− k − i− 1

k − 1

)
+ 2

≤
(
n− 1

k − 1

)
− 2

(
n− k − 1

k − 1

)
+

(
n− k − 3

k − 1

)
+ 2. (1)

The equality in (1) holds if and only if |E1 ∩ E2| = k − 2, that is H = K2.
(ii) By the definiton of Ji, we have

|J3| =
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
−
(
n− k − 2

k − 2

)
−
(
n− k − 3

k − 3

)
+ 3. (2)

(iii) Comparing the right hand sides of (1) and (2), we can see that if 2k + 1 ≤ n ≤
3k − 3, then |K2| ≥ |J3|, the equality holds only for k = 4; and if n ≥ 3k − 2, then
|K2| < |J3|.
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By Fact 2.1, we may assume that for any x, at least 3 sets in H do not contain x.
To show Theorem 1.5, it is sufficient to show the following result.

Theorem 2.2. Let k ≥ 4, n ≥ 2k + 1 and H ⊆
(
[n]
k

)
be an intersecting family which

is not EKR, not HM and H 6⊆ J2 (in addition H 6⊆ G2,H 6⊆ G3 if k = 4). Moreover,
for any x ∈ [n], there are at least 3 sets in H not containing x. Then

|H| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
−
(
n− k − 2

k − 2

)
−
(
n− k − 3

k − 3

)
+ 3.

Moreover if k 6= 5, the equality holds only for H = J3; if k = 5, the equality holds for
H = J3 or G4.

From now on, we always assume that H is a maximum intersecting family which
satisfies the conditions of Theorem 2.2, that is H is not EKR, not HM, H 6⊆ J2 (in
addition H 6⊆ G2,H 6⊆ G3 if k = 4) and for any x ∈ [n], there are at least 3 sets in H
not containing x.

We first give some definition related to the shifting method. For x and y ∈ [n], x <
y, and F ∈ F , we call the following operation a shift :

Sxy(F ) =

{
(F \ {y}) ∪ {x}, if x 6∈ F, y ∈ F and (F \ {y}) ∪ {x} 6∈ F ;

F, otherwise.

We say that F is stable under the shift Sxy if Sxy(F ) = F . If z ∈ F and z ∈ Sxy(F )
still, we say that F is stable at z after the shift Sxy. For a family F , we define

Sxy(F) = {Sxy(F ) : F ∈ F}.

Clearly, |Sxy(F)| = |F|. We say that F is stable if Sxy(F) = F for all x, y ∈ [n] with
x < y.

An important property shown in [4] is that if F is intersecting, then Sxy(F) is
still intersecting. Let us rewrite is as a remark.

Remark 2.3. [4] If F is a maximum intersecting family, then Sxy(F) is still a
maximum intersecting family.

This property guarantees that performing shifts repeatedly to a maximum inter-
secting family will yield a stable maximum intersecting family. The main difficulty
we need to overcome is to guarantee that we can get a stable maximum intersecting
family with further properties: not EKR, not HM, 6⊆ J2 (in addition 6⊆ G2, 6⊆ G3 if
k = 4). The following facts and lemmas are for this purpose.

Fact 2.4. The following properties hold.
(i) If Sxy(H) is EKR (or HM ), then x must be the center.
(ii) If Sxy(H) ⊆ G2, then the core is {x, x1, x2} for some x1, x2 ∈ [n] \ {x, y}.
(iii) If Sxy(H) ⊆ J2, then x is the center.
(iv) If Sxy(H) ⊆ G3, then x is the center or x is in the core.
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Proof. For (i) and (ii), Han and Kohaykawa proved them in [8]. We prove (iii) and
(iv) only.

For (iii), suppose that Sxy(H) ⊆ J2 at center z ∈ [n] \ {x}. Since H 6⊆ J2 at z,
there are at least three sets E1, E2 and E3 in H missing z, after doing the shift Sxy,
these 3 sets still miss z, so Sxy(H) is not contained in J2 center at z.

For (iv), let Sxy(H) ⊆ G3 at center x0 and core E = {x1, x2, x3}, and let B =
{x0, x1, x2, x3}. Since H 6⊆ G3, there is a set G ∈ H that satisfies one of the following
two cases: (a) {y, x0} ⊆ G,G ∩ E = ∅; (b) y ∈ G, x0 6∈ G, |G ∩ E| ∈ {1, 2}. If (a)
holds, then x 6= x0 and x must be in the core, y 6∈ B. If (b) holds, then either x = x0
is the center or x is in the core and y 6∈ B.

Remark 2.5. By Fact 2.4, if applying Sx′y′(x
′ < y′) repeatedly to H, we may reach

a family which belong to one of the following cases.
Case 1: a family H1 such that Sxy(H1) is EKR with center x;
Case 2: a family H2 such that Sxy(H2) is HM with center x;
Case 3: a family H3 such that Sxy(H3) ⊆ J2 with center x;
Case 4: a family H4 such that Sxy(H4) ⊆ G2 with core {x, x1, x2} for some {x1, x2} ∈
X \ {x, y} (k = 4 only);
Case 5: a family H5 such that Sxy(H5) ⊆ G3 with center x or x being in the core
(k = 4 only);
Case 6: a stable family H6 satisfies the conditions of Theorem 2.2, that is we will not
meet Cases 1-5 after doing all shifts.

By Remark 2.3, we know that for any shift Sxy on [n] we have |Sxy(H)| = |H| and
Sxy(H) is also intersecting. We hope to get a stable family satisfying the conditions
of Theorem 2.2 after some shifts, that is neither EKR, nor HM, nor contained in J2

(nor in G2, G3 if k = 4). By Fact 2.1, we can assume that a family G obtained by
performing shifts to H has the property that for any x, at least 3 sets in G do not
contain x. What we are going to do is: If any case of Cases 1-5 happens, we will not
perform Sxy. Instead we will adjust the shifts as shown in Lemma 2.6 to guarantee
that the terminating family is a stable family satisfying the conditions of Theorem
2.2. We will prove the following two crucial lemmas in Section 3.

Lemma 2.6. Let i ∈ [5]. If we reach Hi in Case i in Remark 2.5, then there is a set
Xi ⊆ [n] with |Xi| ≤ 5 (when k ≥ 5, |Xi| ≤ 3 for i ∈ [3]), such that after a series of
shifts Sx′y′ (x′ < y′ and x′, y′ ∈ [n] \Xi) to Hi, we can reach a stable family satisfying
the conditions of Theorem 2.2. Moreover, for any set G in the final family G, we have
G ∩Xi 6= ∅.

From now on, let Xi be the corresponding sets in Lemma 2.6 for 1 ≤ i ≤ 5 and
X6 = ∅ . For k ≥ 5 and i ∈ {1, 2, 3, 6}, let Yi be the set of the first 2k−|Xi| elements
of [n] \Xi, and for k = 4 and i ∈ {1, 2, 3, 4, 5, 6}, let Yi be the first 9− |Xi| elements
of [n] \Xi. Let Y = Yi ∪Xi, then |Yi| ≥ 2k − 4 and |Y | = 2k if k ≥ 5. If k = 4 then
|Y | = 9. Let

Ai : = {G ∩ Y : G ∈ G, |G ∩ Y | = i},
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Ãi : = {G : G ∈ G, |G ∩ Y | = i}.

Lemma 2.7. Let G be the final stable family guaranteed by Lemma 2.6 satisfying the
conditions of Theorem 2.2, and let Xi be inherit from Lemma 2.6. In other words, G
is stable; G is neither EKR, nor HM, nor contained in J2 (nor in G2, G3 if k = 4);
for any x ∈ [n], there are at least 3 sets in G not containing x; and G ∩Xi 6= ∅ for
any G ∈ G. Then
(i) A1 = ∅.
(ii) For all G and G′ ∈ G, we have G ∩ G′ ∩ Y 6= ∅, or equivalently, ∪ki=2Ai ∪ G is
intersecting.

2.1 Quantitative Part of Theorem 2.2

Lemma 2.8. For k = 4, we have |A1| = 0, |A2| ≤ 3, |A3| ≤ 18 and |A4| ≤ 50. For
k ≥ 5, we have

|Ai| ≤
(

2k − 1

i− 1

)
−
(
k − 1

i− 1

)
−
(
k − 2

i− 2

)
−
(
k − 3

i− 3

)
, 1 ≤ i ≤ k − 1,

|Ak| ≤
1

2

(
2k

k

)
=

(
2k − 1

k − 1

)
−
(
k − 1

k − 1

)
−
(
k − 2

k − 2

)
−
(
k − 3

k − 3

)
+ 3.

Proof. By Lemma 2.7 (i), we have |A1| = 0.
First consider k = 4. If |A2| ≥ 4, since A2 is intersecting, it must be a star. Let

its center be x. Since A2 ∪ A3 ∪ A4 is intersecting, A3 must be a star with center
x and there is at most one set in A4 missing x, this implies that G is EKR or HM,
which contradicts the fact that G is neither EKR nor HM.

Suppose that |A3| ≥ 19. By Theorem 1.3, A3 must be EKR, HM or G2.
If A3 is EKR with center x, then since G is not EKR and A1 = ∅, there must exist

G ∈ G, such that either x 6∈ G and G ∩ Y ∈ A2, or x 6∈ G and G ∩ Y ∈ A4. If the
former holds, by the intersecting property of A2 ∪ A3, every set in A3 must contain
at least one of the elements in G ∩ Y , so |A3| ≤ 13, a contradiction. Otherwise,
the latter holds and A2 is a star with center x, and all sets of G missing x lie in Y
completely. Recall that the number of these sets is at leat 3, say x 6∈ G1, G2, G3 ∈ G.
Since G is not G3, it’s impossible that G1, G2, G3 form a 3-star (each member contains
a fixed 3-set). If any two sets in G1, G2, G3 intersect at 3 vertices, then G1, G2, G3

must be a 2-star. Since A3 ∪ A4 is intersecting, calculating directly the number of
triples of Y containing x and intersecting with G1, G2 and G3, we have |A3| ≤ 16,
a contradiction. Otherwise, there are two members, w.l.o.g., say, G1, G2, such that
|G1 ∩ G2| = 2. Since A3 ∪ A4 is intersecting, calculating directly the number of
triples of Y containing x and intersecting with G1 and G2, we have |A3| ≤ 17, also a
contradiction.

If A3 is HM with center x, let {z1, z2, z3} ∈ A3. By Theorem 1.2, we have
|A3| ≤ 19, so we may assume |A3| = 19 and A3 is isomorphic to HM(9, 3). Suppose
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that there is a set G such that x 6∈ G,G∩Y ∈ A2, w.l.o.g., assume z1 6∈ G. Since |Y \
({x, z1, z2, z3}∪G)| ≥ 3, there is a ∈ Y \({x, z1, z2, z3}∪G) such that {x, z1, a}∩G = ∅.
By the intersecting property of A3 ∪ A4, we have {x, z1, a} 6∈ A3, so |A3| < 19, a
contradiction. Now we may assume that A2 is a star with center x. Since G is neither
HM nor contained in G3, there must be a 4-set G in A4 such that either x 6∈ G and
1 ≤ |G ∩ {z1, z2, z3}| ≤ 2, w.l.o.g., assume z1 6∈ G or x ∈ G and |G ∩ {z1, z2, z3}| = 0.
But since A3∪A4 is intersecting, the latter case will not happen. Assume the former
holds. Since |Y \({x, z1, z2, z3}∪G)| ≥ 2, there is a ∈ Y \({x, z1, z2, z3}∪G) such that
{x, z1, a} ∩G = ∅. By the intersecting property of A3 ∪ A4, we have {x, z1, a} 6∈ A3,
so |A3| < 19.

At last, assume that A3 ⊆ G2 with core {x1, x2, x3}. Since A3 is intersecting, by
calculating the number of triples in Y containing at least 2 vertices in core {x1, x2, x3},
we have |A3| ≤ 19, so we may assume that |A3| = 19. Since G 6⊆ G2, there exists
a set G ∈ G such that |G ∩ {x1, x2, x3}| ≤ 1. w.l.o.g., let G ∩ {x1, x2} = ∅. Since
|Y \ ({x1, x2, x3} ∪ G)| ≥ 2, we can pick a ∈ Y \ ({x1, x2, x3} ∪ G) such that G ∩
{x1, x2, a} = ∅. By the intersecting property of A3 ∪ G, we have {x1, x2, a} 6∈ A3,
hence |A3| ≤ 18, as desired.

So we have proved that |A3| ≤ 18 for k = 4.
Next, we prove |A4| ≤ 50. On the contrary, suppose that |A4| ≥ 51. By Theorem

1.3, A4 must be EKR, HM, or contained in J2, G2 or G3.
Suppose that A4 is EKR at x. Since G is not EKR and A1 = ∅, there must exist

G ∈ G such that either x 6∈ G and G ∩ Y ∈ A2 or x 6∈ G and G ∩ Y ∈ A3. If
the former holds, since A2 ∪ A4 is intersecting, by calculating the number of 4-sets
in Y containing x and intersecting with G ∩ Y directly, we have |A4| ≤ 36. If the
latter holds, since A3 ∪ A4 is intersecting, by calculating the number of 4-sets in Y
containing x and intersecting with G ∩ Y directly, we have |A4| ≤ 46.

Suppose that A4 is HM at x. Since G is not HM at x, there exists G ∈ G such
that either x 6∈ G and G ∩ Y ∈ A2 or x 6∈ G and G ∩ Y ∈ A3, since A4 is HM at
x and A2 ∪ A4 (or A3 ∪ A4) is intersecting, by calculating the number of 4-subsets
containing x and intersecting with G∩Y , and adding 1 set not containing x, we have
|A4| ≤ 37 (or |A4| ≤ 47).

Suppose that A4 ⊆ G2 with core {x1, x2, x3} = A. By calculating the number of 4-
subsets in Y containing at least 2 of {x1, x2, x3}, we have |A4| ≤ 51, so we may assume
|A4| = 51. Since G 6⊆ G2, there exists a set G in G such that |G∩A| ≤ 1, G∩Y ∈ A2 or
A3. w.l.o.g., let G∩{x1, x2} = ∅. Since |Y \(A∪G)| ≥ 2, we can pick a, b ∈ Y \(A∪G)
such that (G ∩ Y ) ∩ {x1, x2, a, b} = ∅. By the intersecting property of A2 ∪A3 ∪A4,
we have {x1, x2, a, b} 6∈ A4. Hence |A4| ≤ 50, as desired.

Suppose that A4 ⊆ G3 with core {x1, x2, x3} and center x. By direct calculation,
|A4| ≤ 51, so we may assume |A4| = 51 and A4 = G3. Since G 6⊆ G3, there must be
G ∈ G and G ∩ Y ∈ A2 or A3, such that either x 6∈ G and {x1, x2, x3} 6⊆ G ∩ Y or
x ∈ G and {x1, x2, x3} ∩ (G ∩ Y ) = ∅. By the intersecting property of A2 ∪A3 ∪A4,
in either case, we have A4 6= G3 and |A4| < 51.

At last, suppose that A4 ⊆ J2 with center x, kernel {x1, x2, x3} and the set of
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pages {x4, x5}. By Theorem 1.4, we may assume |A4| = 51 and A4 = J2. Since
A2 ∪ A3 ∪ A4 is intersecting, there is no member in A2 or A3 avoiding x. And each
member in A2 must interset with {x1, x2, x3}, each member in A3 must interset with
{x1, x2, x3} or contain {x4, x5}, to satisfy these conditions, G must be contained in
J2, a contradiction.

So we have proved that A4 ≤ 50 for k = 4.
Next consider k ≥ 5. Suppose on the contrary that there exists i ∈ {2, . . . , k− 1}

such that

|Ai| >
(

2k − 1

i− 1

)
−
(
k − 1

i− 1

)
−
(
k − 2

i− 2

)
−
(
k − 3

i− 3

)
. (3)

Note that for i = 2,(
2k − 1

i− 1

)
−
(
k − 1

i− 1

)
−
(
k − 2

i− 2

)
−
(
k − 3

i− 3

)
= k − 1.

If |A2| ≥ k ( k ≥ 5 ), then A2 is EKR, moreover, since A2 ∪ G is intersecting, G must
be EKR or HM, a contradiction. Hence |A2| ≤ k − 1, as desired.

Now consider i ≥ 3. Under the assumption (3), we claim that

|Ai| >
(

2k − 1

i− 1

)
−
(

2k − i− 1

i− 1

)
−
(

2k − i− 2

i− 2

)
+ 2. (4)

Let us explain inequality (4). We write(
2k − i− 2

i− 2

)
=

(
2k − i− 3

i− 2

)
+

(
2k − i− 3

i− 3

)
. (5)

For k ≥ 5 and 3 ≤ i ≤ k − 1, we have(
2k − 1− i
i− 1

)
−
(
k − 1

i− 1

)
=

(
k − 1

i− 2

)
+

(
k

i− 2

)
+ · · ·+

(
2k − 2− i
i− 2

)
≥ 4, (6)

(
2k − i− 3

i− 2

)
−
(
k − 2

i− 2

)
≥ 0,

(
2k − i− 3

i− 3

)
−
(
k − 3

i− 3

)
≥ 0, (7)

Combining (3), (5), (6) and (7), we obtain (4). Since Ai is intersecting, we may
assume, by Theorem 1.3 that Ai is EKR or HM or for i = 3, Ai ⊆ G2.

Case (i): Ai is EKR or HM at center x.
In this case Ai contains at most 1 i-set missing x. Recall that there are at least

three sets missing x in G. Pick three sets G1, G2, G3 ∈ G missing x. Denote
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T = G1 ∩G2 ∩G3 ∩ Y, t = |T |,
T1 = (G1 ∩ Y ) \ (G2 ∪G3), t1 = |T1|,
T2 = (G2 ∩ Y ) \ (G1 ∪G3), t2 = |T2|,
T3 = (G3 ∩ Y ) \ (G1 ∪G2), t3 = |T3|,
T4 = (G1 ∩G2 ∩ Y ) \G3, t4 = |T4|,
T5 = (G1 ∩G3 ∩ Y ) \G2, t5 = |T5|,
T6 = (G2 ∩G3 ∩ Y ) \G1, t6 = |T6|.
Clearly, t+ t1 + t4 + t5 ≤ k, t+ t2 + t4 + t6 ≤ k, t+ t3 + t5 + t6 ≤ k. By Lemma 2.7

Ai ∪{G1 ∩Y,G2 ∩Y,G3 ∩Y } is intersecting. Applying Inclusion-Exclusion principle,
we have

Ai ≤
(

2k − 1

i− 1

)
−
(

2k − 1− t− t1 − t4 − t5
i− 1

)
−
(

2k − 1− t− t2 − t4 − t6
i− 1

)
−
(

2k − 1− t− t3 − t5 − t6
i− 1

)
+

(
2k − 1− t− t1 − t2 − t4 − t5 − t6

i− 1

)
+

(
2k − 1− t− t1 − t3 − t4 − t5 − t6

i− 1

)
+

(
2k − 1− t− t2 − t3 − t4 − t5 − t6

i− 1

)
−
(

2k − 1− t− t1 − t2 − t3 − t4 − t5 − t6
i− 1

)
+ c,

(8)

where c = 0 (if Ai is EKR) or 1 (if Ai is HM). Denote the right side of equality (8)
by f . We rewrite it as

f =

(
2k − 1

i− 1

)
−
(

2k − 2− t− t1 − t4 − t5
i− 2

)
− · · · −

(
2k − 1− t− t1 − t3 − t4 − t5 − t6

i− 2

)
−
(

2k − 2− t− t2 − t4 − t6
i− 2

)
− · · · −

(
2k − 1− t− t1 − t2 − t4 − t5 − t6

i− 2

)
−
(

2k − 2− t− t3 − t5 − t6
i− 2

)
− · · · −

(
2k − 1− t− t2 − t3 − t4 − t5 − t6

i− 2

)
−
(

2k − 1− t− t1 − t2 − t3 − t4 − t5 − t6
i− 1

)
+ c.

(9)

We can see that the right side of (9), consequently (8) does not decrease as t+t1+t4+
t5, t+t2+t4+t6, t+t3+t5+t6 increase. Since t+t1+t4+t5, t+t2+t4+t6, t+t3+t5+t6 ≤ k,
we can substitute t + t1 + t4 + t5 = k, t2 + t4 + t6 = k − t, t3 + t5 + t6 = k − t into
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inequality (8), and this will not decrease f . So we have

|Ai| ≤
(

2k − 1

i− 1

)
− 3

(
k − 1

i− 1

)
+

(
t+ t4 − 1

i− 1

)
+

(
t+ t5 − 1

i− 1

)
+

(
t+ t6 − 1

i− 1

)
−
(
t+ t5 − t2 − 1

i− 1

)
+ c

=

(
2k − 1

i− 1

)
− 3

(
k − 1

i− 1

)
+

(
t+ t4 − 1

i− 1

)
+

(
t+ t6 − 1

i− 1

)
+

(
t+ t5 − 2

i− 2

)
+ · · ·+

(
t+ t5 − t2 − 1

i− 2

)
+ c

, g.

(10)

Clearly, g does not decrease as t+t4, t+t5, t+t6 increase and t+t4 ≤ k−1, t+t5 ≤ k−1
t+ t6 ≤ k − 1. If t+ t5 − t2 − 1 ≥ k − 3, then

|Ai| ≤
(

2k − 1

i− 1

)
− 3

(
k − 1

i− 1

)
+ 3

(
k − 2

i− 1

)
−
(
k − 3

i− 1

)
+ c

=

(
2k − 1

i− 1

)
−
(
k − 1

i− 1

)
−
(
k − 2

i− 2

)
−
(
k − 3

i− 3

)
+ c.

The equality holds only if t = k − 1, t1 = t2 = t3 = 1, t4 = t5 = t6 = 0. If
t + t5 − t2 − 1 ≤ k − 4 (∗), then t ≤ k − 2 since t = k − 1 implies t5 = 0 and
combining with (∗), we have t2 ≥ 2, so t + t2 ≥ k + 1, a contradiction. Since
t+ t4 ≤ k−1, t+ t5 ≤ k−1 and t+ t6 ≤ k−1, by (9) and (10), taking t+ t1 + t4 + t5 =
k, t+ t2 + t4 + t6 = k, t+ t3 + t5 + t6 = k and t+ t4 = k−1, t+ t5 = k−1, t+ t6 = k−1
(this implies that t = k − 2, t4 = t5 = t6 = 1 and t1 = t2 = t3 = 0) does not decrease
f . So

g ≤
(

2k − 1

i− 1

)
− 3

(
k − 1

i− 1

)
+ 3

(
k − 2

i− 1

)
−
(
k − 2

i− 1

)
+ c

=

(
2k − 1

i− 1

)
−
(
k − 1

i− 1

)
−
(
k − 2

i− 2

)
−
(
k − 3

i− 3

)
−
(
k − 3

i− 2

)
+ c

≤
(

2k − 1

i− 1

)
−
(
k − 1

i− 1

)
−
(
k − 2

i− 2

)
−
(
k − 3

i− 3

)
− 2 + c.

So

|Ai| ≤
(

2k − 1

i− 1

)
−
(
k − 1

i− 1

)
−
(
k − 2

i− 2

)
−
(
k − 3

i− 3

)
+ c.

To reach c = 1, there is a set A in Ai not containing x. Let G1 be such that
G1 ∩ Y = A. So |G1 ∩ Y | = i ≤ k − 1. This implies that t + t1 + t4 + t5 ≤ k − 1. In
view of (8) and (9), |Ai| strictly decreases as t+ t1 + t4 + t5 strictly decreases. So we
have

|Ai| ≤
(

2k − 1

i− 1

)
−
(
k − 1

i− 1

)
−
(
k − 2

i− 2

)
−
(
k − 3

i− 3

)
,
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as desired.
Case (ii): For i = 3, Ai ⊆ G2 with core, say {x1, x2, x3}.
By direct calculation, we have |A3| ≤ 3(2k − 3) + 1 = 6k − 8. When k ≥ 5, we

have

6k − 8 <

(
2k − 1

2

)
−
(
k − 1

2

)
−
(
k − 2

1

)
−
(
k − 3

0

)
,

as desired.

Lemma 2.9. Let G be the final stable family as in Lemma 2.7. Then

|G| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
−
(
n− k − 2

k − 2

)
−
(
n− k − 3

k − 3

)
+ 3.

Proof. Note that for any A ∈ Ai, there are at most
(
n−|Y |
k−i

)
k-sets in G containing A.

For k = 4, we have

|G| ≤
4∑

i=1

|Ai|
(
n− 9

4− i

)
.

By Lemma 2.8,

|G| ≤ 3

(
n− 9

2

)
+ 18

(
n− 9

1

)
+ 50

=
3

2
n2 − 21

2
n+ 23

=

(
n− 1

3

)
−
(
n− 5

3

)
−
(
n− 6

2

)
−
(
n− 7

1

)
+ 3. (11)

For k ≥ 5, we have

|G| ≤
k∑

i=1

|Ai|
(
n− 2k

k − i

)
Lemma 2.8

≤ 3 +
k∑

i=1

((
2k − 1

i− 1

)
−
(
k − 1

i− 1

)
−
(
k − 2

i− 2

)
−
(
k − 3

i− 3

))(
n− 2k

k − i

)
=

(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
−
(
n− k − 2

k − 2

)
−
(
n− k − 3

k − 3

)
+ 3. (12)

By Lemma 2.9, we have obtained the quantitative part of Theorem 2.2.
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2.2 Uniqueness Part of Theorem 2.2

Let G be a k-uniform family such that the equality holds in Lemma 2.9 .We first show
the structure of G.

Theorem 2.10. Let G be a family as in Lemma 2.9 such that the equality holds. If
k = 5, then G = J3 or G4; if k 6= 5, then G = J3.

Proof. To make the equalities (11) and (12) hold, we must get all the equalities in
Lemma 2.8. So |A2| = k − 1. By Lemma 2.7, A2 is intersecting, so A2 is a star, say
with center x and leaves {x1, x2, . . . , xk−1}, or a triangle on {x, y, z} (only for k = 4).
First consider k = 4. If A2 is a triangle, then G = G2, a contradiction. Otherwise, A2

is a star, this implies that all sets in G missing x must contain {x1, x2, x3}, and the
number of such sets is at least 3. Then either G = G3 or G = Ji, 3 ≤ i ≤ k − 1. By
the assumption that G 6⊆ G3, the former is impossible, and the latter implies G = J3.
Hence, the equality in (21) holds only if G = J3. For k ≥ 5, A2 must be a star.
Similarly, in this condition, we have either G = Gk−1 or G = Ji, 3 ≤ i ≤ k − 1. In
particular, for k = 5, we can see that the extremal value of |G| can be achieved by
|G4| and |J3|, and for k > 5, by |J3| only.

We will use some results in [8]. We say two families G and F are cross-intersecting
if for any G ∈ G and F ∈ F , G∩F 6= ∅. We say that a family F is non-separable if F
cannot be partitioned into the union of two cross-intersecting non-empty subfamilies.

Proposition 2.11. ([8]) Let r ≥ 2. Let Z be a set of size m ≥ 2r + 1 and let
A ⊆ Z such that |A| ∈ {r − 1, r}. Let B be an r-uniform family on Z such that
B = {B ⊆ Z : 0 < |B ∩ A| < |A|}. Then B is non-separable.

Lemma 2.12. ([8]) Let F be a k-uniform intersecting family. If k ≥ 3 and Sxy(F) ∈
{J2,Gk−1,G2}, then F is isomorphic to Sxy(F).

Combining with Theorem 2.10 and Lemma 2.12, the uniqueness part of Theorem
2.2 will be completed by showing the following lemma.

Lemma 2.13. Let F be a k-uniform intersecting family. If k ≥ 4 and Sxy(F) = J3,
then F is isomorphic to J3.

Proof. Assume that Sxy(F) = J3 with center x0, kernel E and the set of pages
{x1, x2, x3}. That is

J3 = {G : {x0, x1, x2, x3} ⊆ G}∪{G : x0 ∈ G,G∩E 6= ∅}∪{E∪{x1}, E∪{x2}, E∪{x3}}.

Define

Bx := {G ∈ J3 : x ∈ G, y 6∈ G, (G \ x) ∪ y 6∈ J3},
Cx := {G ∈ Bx : G ∈ F},
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Dx := {G ∈ Bx : G 6∈ F},
B′ := {G \ {x} : G ∈ Bx},
C ′ := {G \ {x} : G ∈ Cx},
D′ := {G \ {x} : G ∈ Dx}.

Then Bx = Cx t Dx and B′ = C ′ t D′. The definition of Dx implies that for any
G ∈ Dx, G \ {x} ∪ {y} ∈ F , and the definition of Cx implies that for any G ∈ Cx,
G \ {x} ∪ {y} 6∈ F . Clearly, only the sets in Dx are in Sxy(F) \ F . If Dx = ∅, then
Sxy(F) = F = J3, and if Cx = ∅, then F is still J3 with center y. On the other hand,
notice that Cx and {G \ {x} ∪ {y} : G ∈ Dx} are cross intersecting, so C ′ and D′ are
cross intersecting. We are going to prove that B′ is non-separable, this means that
C ′ = ∅ or D′ = ∅, and hence Cx = ∅ or Dx = ∅, we can conclude the proof. So what
remains is to show the following claim.

Claim 2.14. B′ is non-separable.

Proof. We say the shift Sxy : F → J3 is trivial if Bx = ∅. Let Z := [n] \ {x, y}. If
r = k − 1, then |Z| ≥ 2k + 1− 2 = 2r + 1.

Let T1 := {x0}, T2 := E, T3 := {x1, x2, x3}, T4 := [n] \ (T1 ∪ T2 ∪ T3).
Since for x, y ∈ Ti or for x ∈ Ti, y ∈ Tj, i > j, the shift is trivial, we only need to

consider the following three cases.
Case (i): x = x0 and y ∈ T2 ∪ T3 ∪ T4.
If y ∈ T3, let A = E, then B′ = {B ⊆ Z : 0 < |B ∩ A| < |A|}. By Proposition

2.11, B′ is non-separable. If y ∈ T2 ∪ T4, let A := E \ {y}, then |A| ∈ {r − 1, r}.
Assume that B′ has a partition B′1 ∪B′2 such that B′1 and B′2 are cross-intersecting.
We now partition B′ into three parts P1 t P2 t P3, where

P1 := {B ⊆ Z : 0 < |B ∩ A| < |A|},
P2 := {B ∈ B′ : B ∩ A = ∅} = {T3 ∪ F : F ⊆ T4 \ {y}, |F | = k − 4},

and

P3 := {B ∈ B′ : A ⊆ B} =

{
{A ∪ {z} : z ∈ T4}, y ∈ T2;
{A}, y ∈ T4.

Obviously, P1 6= ∅. By Proposition 2.11, P1 is non-separable. For any P ∈ P2, and
any a ∈ A, we have |Z \ {a}| ≥ 2r, then in P1 we can always find P ′ ⊆ Z \ ({a} ∪P )
such that 0 < |P ′ ∩A| < |A| and P ∩ P ′ = ∅. This implies that P and P ′ must be in
the same B′i (i = 1 or 2)(recall that we assumed that B′ has a partition B′1∪B′2 such
that B′1 and B′2 are cross-intersecting), hence P1 and P2 are in the same B′i. For any
P ∈ P3, we have |P ∩ T4| ≤ 1. Since |T4| ≥ k− 2, there is a (k− 4)-set F ⊆ T4 \ {y},
such that P ∩F = ∅. Note that P ′ := F ∪ T3 ∈ P2 and P ′ ∩P = ∅, so P2 and P3 are
in the same B′i. Hence B′ = B′1 or B′2, as desired.

Case (ii): x ∈ T2 and y ∈ T3 ∪ T4.
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Let Ei := (E ∪ {xi}) \ {x}, i = 1, 2, 3.
If y ∈ T4, then

B′ = {E1, E2, E3} ∪
{
G ∈

(
[n] \ {x}
k − 1

)
: x0 ∈ G,G ∩ E = ∅, |G ∩ T3| ≤ 2, y 6∈ G

}
.

Since |T4 \ {y}| ≥ k − 3, there is P ∈ B′ \ {E1, E2}, such that P ∩ E1 = P ∩ E2 = ∅.
Hence, E1 and E2 belong to the same part B′i. Similarly, E1 and E3 belong to the same
part. Thus E1, E2 and E3 are in the same B′i. Moreover, for any P ′ ∈ B′\{E1, E2, E3},
because |P ′ ∩ {x1, x2, x3}| ≤ 2, we have P ′ ∩ E1 = ∅, or P ′ ∩ E2 = ∅ or P ′ ∩ E3 = ∅.
Hence, B′ is non-separable, as desired.

If y ∈ T3, w.l.o.g., let y = x1. Then

B′ = {E2, E3} ∪
{
G ∈

(
[n] \ {x}
k − 1

)
: x0 ∈ G,G ∩ E = ∅, |G ∩ T3| ≤ 1, y 6∈ G

}
.

Since |T4| ≥ k−2, there exists P ∈ B′\{E2, E3} such that P∩T3 = ∅, then P∩E2 = ∅,
and P ∩E3 = ∅, this implies that E2 and E3 are in the same B′i. Because |G∩T3| ≤ 1
and G ∩ E = ∅, it’s not hard to see that each P ∈ B′ \ {E2, E3} is disjoint from one
of E2 and E3. Hence B′ is non-separable.

Case (iii): x ∈ T3 and y ∈ T4. w.l.o.g., let x = x1.
Under this condition,

B′ = {E} ∪
{
G ∈

(
[n] \ {x}
k − 1

)
: {x0, x2, x3} ⊆ G,G ∩ E = ∅, y 6∈ G

}
.

Since E is disjoint from every other set in B′ \ {E}, B′ is non-separable.

The proof of Lemma 2.13 is complete.

3 Proofs of Lemma 2.6 and Lemma 2.7

3.1 Proof of Lemma 2.6

We first show the following preliminary results. For a family F ⊆ 2[n] and x1, x2, x3 ∈
[n], let d{x1,x2} be the number of sets containing {x1, x2} in F , and d{x1,x2,x3} be the
number of sets containing {x1, x2, x3} in F .

Claim 3.1. Let F ⊆ G2 be a 4-uniform family with core A satisfying d{x1,x2} > 2n−7.
Then {x1, x2} ⊆ A.

Proof. If {x1, x2} ⊆ [n]\A, then a set in F containing {x1, x2}must have two elements
from A, so d(x1,x2) ≤ 3, a contraction. If |{x1, x2}∩A| = 1, then a set in F containing
{x1, x2} must have at least one element from A, so d(x1,x2) ≤ 2n − 7, a contraction
again. So {x1, x2} ⊆ A, as desired.
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Claim 3.2. Let F ⊆ G3 be a 4-uniform family with center x and core E and let
B = {x} ∪ E.
(i) If d{x1,x2} ≥ 3n− 12, then x ∈ {x1, x2}.
(ii) If d{x1,x2} > 3n− 12, then {x1, x2} ⊆ B and x ∈ {x1, x2}.

Proof. For (i), assume that x 6∈ {x1, x2}. If {x1, x2}∩B = ∅, then the sets containing
{x1, x2} must contain the center x and another vertex from core E, so d(x1,x2) ≤ 3 <
3n− 12, a contradiction. So {x1, x2} ⊆ E or |{x1, x2} ∩ E| = 1. If the former holds,
then the sets containing {x1, x2} must contain the center x or contain the core E,
so d(x1,x2) ≤ (n − 3) + (n − 4) = 2n − 7 < 3n − 12, a contradiction. If the latter
holds, w.l.o.g., let {x1, x2}∩E = {x1}, then the sets containing {x1, x2} must contain
the center x or just the set E ∪ {x2}, so d(x1,x2) ≤ (n − 3) + 1 < 3n − 12, also a
contradiction. Hence, x ∈ {x1, x2}, as desired.

For (ii), we have shown that x ∈ {x1, x2} by (i), w.l.o.g, let x1 = x be the center.
If x2 6∈ E, then the sets containing {x1, x2} must intersect with E, so d(x1,x2) ≤(
n−2
2

)
−
(
n−5
2

)
= 3n − 12, a contradiction to that d{x1,x2} > 3n − 12, so x2 ∈ E, that

is {x1, x2} ⊆ B, as desired.

Claim 3.3. Fix n > 6. Let F ⊆ G3 be a 4-uniform family with center x and core
E and let B = {x} ∪ E. If d{x1,x2,x3} ≥ n − 3, then either {x1, x2, x3} ⊂ B or
|{x1, x2, x3} ∩B| = 2 with x ∈ {x1, x2, x3}.

Proof. Suppose on the contrary that neither {x1, x2, x3} ⊂ B nor |{x1, x2, x3}∩B| = 2
with x ∈ {x1, x2, x3}. Since F ⊆ G3, it’s easy to see that if {x1, x2, x3} ⊆ [n]\B, then
d{x1,x2,x3} = 0, so 1 ≤ |{x1, x2, x3}∩B| ≤ 2. First consider that |{x1, x2, x3}∩B| = 1.
If {x1, x2, x3} ∩ B = {x}, then the sets containing {x1, x2, x3} in F must intersect
with E, so d{x1,x2,x3} ≤ 3 < n − 3, a contradiction. If |{x1, x2, x3} ∩ E| = 1, then
the set containing {x1, x2, x3} in F must contain x, so d{x1,x2,x3} ≤ 1 < n − 3, also
a contradiction. Hence |{x1, x2, x3} ∩ B| = 2. By hypothesis, |{x1, x2, x3} ∩ E| = 2,
w.l.o.g., let {x1, x2, x3} ∩ E = {x1, x2}, then d{x1,x2,x3} ≤ 2 since the possible sets in
F containing {x1, x2, x3} are {x1, x2, x3} ∪ {x} and E ∪ {x3}, a contradiction.

Proof of Lemma 2.6. We first consider that k ≥ 5.
In Case 1, i.e., Sxy(H1) is EKR with center x, we take X1 = {x, y}. In Case 2,

since Sxy(H2) is HM at center x, let E = {z1, z2, . . . , zk} be the only member missing
x, and without loss of generality, we assume z1 6= y, and take X2 = {x, y, z1}. In Case
3, Sxy(H3) ⊆ J2 with center x, kernal {z1, z2, . . . , zk−1}. Without loss of generality,
we assume z1 6= y, and take X3 = {x, y, z1}. We can see that for any set G ∈ Hi,
G ∩ Xi 6= ∅, for i = 1, 2, 3. After the shifts Sx′y′ for all x′ < y′, x′, y′ ∈ [n] \ Xi to
Hi, the resulting family H′i satisfies that for every set G′ ∈ H′i, G′ ∩Xi 6= ∅. By the
maximality of |H|, we may assume that all k-sets containing Xi (i = 1, 2, 3) are in
H, so is in Hi. These sets will keep stable after any shift Sx′y′ , so there are at least(
n−3
k−2

)
(or

(
n−4
k−3

)
) > 2 sets missing x′ in H′i. Fact 2.4 (i), (ii) and (iii) implies that H′i

is neither EKR nor HM nor contained in J2. We are done for k ≥ 5.
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We now assume that k = 4. We will complete the proof by showing the following
Lemmas corresponding to Cases 1-5 in Remark 2.5

Lemma 3.4 (Case 1). If we each a 4-uniform family H1 such that Sxy(H1) is EKR at
x, then there is a set X1 = {x, y, y′, z, w} such that after a series of shifts Sx′y′ (x′ < y′

and x′, y′ ∈ [n]\X1) to H1, we will reach a stable family G satisfying the conditions of
Theorem 2.2. Moreover, {y, y′, z, w} or {x, y′, z, w} is in G. Furthermore, G∩{x, y} 6=
∅ for any G ∈ G.

Proof. Since Sxy(H1) is EKR, for any F ∈ H1, we have F ∩ {x, y} 6= ∅. Any set
obtained by performing shifts [n] \ {x, y} to a set in H1 still contains x or y. We will
show Claims 3.5, 3.6 and 3.8 implying Lemma 3.4.

Claim 3.5. Performing shifts in [n]\{x, y} to H1 repeatedly will not reach Cases 1-3
in Remark 2.5.

Proof. Since Sxy(H1) is EKR, for any G ∈ H1, we have G ∩ {x, y} 6= ∅. By the
maximality of |H| (|H1| as well), we have{

G ∈
(

[n]

k

)
: {x, y} ⊆ G

}
⊆ H1,

| {G ∈ H1 : {x, y} ⊆ G} | =
(
n− 2

2

)
. (13)

All these sets containing {x, y} are stable after performing Sx′y′ (x′ < y′, x′, y′ 6∈
{x, y}). So there are still at least

(
n−3
2

)
> 2 sets missing x′ after Sx′y′ , so we will not

reach Case 1-3.

Claim 3.6. If performing some shifts in [n] \ {x, y} repeatedly to H1 reaches H4 in
Case 4( Sx′y′(H4) ⊆ G2), then there exists X1 = {x, y, y′, z, w} such that performing
shifts in [n] \ X1 repeatedly to H4 will not reach Cases 1-5 as in Remark 2.5, and
{y, y′, z, w} or {x, y′, z, w} is in the final stable family G.

Proof. Assume that after some shifts in [n] \ {x, y} to H1, we get H4 such that
Sx′y′(H4) ⊆ G2 with core A. Since there are

(
n−2
2

)
sets containing {x, y} in H1 and

they are stable (so in H4), and
(
n−2
2

)
> 2n−7 (n ≥ 6), by Fact 2.4 (ii) and Claim 3.1,

A = {x′, x, y}. Since Sx′y′(H4) ⊆ G2 with core {x′, x, y}, there exists {y, y′, z1, w1} (or
{x, y′, z2, w2}) in H4. Let X1 := {x, y, y′, z1, w1} (or X1 := {x, y, y′, z2, w2}). Clearly,
any set containing {x, y} and missing x′′ ∈ [n] \X1 are stable after performing shifts
in [n] \ X1 repeatedly to H4, so performing shifts Sx′′y′′ , x

′′, y′′ ∈ [n] \ X1 to H4 will
not reach Cases 1-3. If we reach Case 4, that is we get a family H′4, such that
Sx′′y′′(H′4) ⊆ G2 with core A′. By Fact 2.4 and Claim 3.1, we have A′ = {x′′, x, y}.
However, {y, y′, z1, w1} (or {x, y′, z2, w2}) is stable under all the shifts in [n] \X1, so
it is still in Sx′′y′′(H′4), contradicting that Sx′′y′′(H′4) ⊆ G2 with core {x′′, x, y}. Thus
we can not reach Case 4.
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Now assume that after some shifts in [n] \ X1 to H4, we get H5 such that
Sx′′y′′(H5) ⊆ G3 with center and core forming a 4-set B for some x′′ and y′′ ∈ [n]\X1.
By Fact 2.4 (iv), (13) and Claim 3.2 (ii), we have {x, y, x′′} ⊆ B. Since there are(
n−2
2

)
sets which contain {x, y} in H1 (so in Sx′′y′′(H5)), we have one of the following

cases:
(∗) x is the center, and y is in the core;
(∗∗) y is the center, and x is in the core.
Recall that there exists {y, y′, z1, w1} or {x, y′, z2, w2} in H4. We will meet one of

the following three cases:
(a) There is no set G ∈ H4 such that G ∩ {x, y, x′} = {x}. So there exists

{y, y′, z1, w1} ∈ H4, and all sets containing {x′, x} in Sx′y′(H4) are originally in H4.
Take X1 := {x, y, y′, z1, w1}. By the maximality of |H| (so is |H4|), there are

(
n−2
2

)
sets containing {x′, x} in H4 (so in Sx′′y′′(H5) as well). This implies that x′ ∈ E, and
x is the center. However, {y, y′, z1, w1} is contained in Sx′′y′′(H5), a contraction to
that Sx′′y′′(H5) ⊆ G3 with center x and core {y, x′, x′′}.

(b) There is no set G ∈ H4 such that G ∩ {x, y, x′} = {y}. So there exists
{x, y′, z2, w2} ∈ H4, and all sets containing {x′, y} in Sx′y′(H4) are originally in H4.
Take X1 := {x, y, y′, z2, w2}. By the maximality of |H| (so is |H4|), there are

(
n−2
2

)
sets containing {x′, y} in H4, so in Sx′′y′′(H5). This implies that x′ ∈ E and y is the
center for Sx′′y′′(H5). However, {x, y′, z2, w2} is in Sx′′y′′(H5), contradicting to that
Sx′′y′′(H5) ⊆ G3 at center y and core {x, x′, x′′}.

(c) There are both {y, y′, z1, w1} and {x, y′, z2, w2} in H4. We choose X1 :=
{x, y, y′, z1, w1} first. Assume that (∗) happens. Since {y, y′, z1, w1} is still in Sx′′y′′(H5),
this contradicts that Sx′′y′′(H5) ⊆ G3 with center x and {y, x′′} contained in the core.
So we assume that (∗∗) happens. Let B = {x, y, x′′, u} for some u. If u = x′, then
the existence of {y, y′, z1, w1} makes a contradiction again. Now consider u 6= x′.

Claim 3.7. If u 6= x′, then u = y′.

Proof. Assume on the contrary that u 6= y′. We have shown that Sx′′y′′(H5) can not
be contained in J2 at center y, then there are at least 3 sets containing {x, u, x′′}. Al-
though {x, x′, x′′, u} and {x, y′, x′′, u}may be two such sets, there must be {x, u, x′′, v} ∈
Sx′′y′′(H5) for some v ∈ [n] \ {x, y, u, x′, y′, x′′}. However, every set in H4 contains
{x, y}, or {x′, x}, or {x′, y}, or {x, y′}, or {y, y′} by recalling that Sx′y′(H4) ⊆ G2
with core {x, y, x′}, so is every set in Sx′′y′′(H5) since x′′, y′′ ∈ [n] \ {x, y, y′, z1, w1}, a
contradiction.

By Claim 3.7, we have that Sx′′y′′(H5) ⊆ G3 at center y and core {x, x′′, y′}.
This time, we change X1 to X ′1 := {x, y, y′, z2, w2}. Similar to the lines in the first
paragraph of the proof of Claim 3.6, we will not reach Cases 1-4 after performing
shifts Sx′y′ in [n] \ X ′1. If we reach Case 5, that is, after some shifts in [n] \ X ′1 to
H4, we get H′5 such that Sx′′′y′′′(H′5) ⊆ G3 with center and core forming a 4-set B′

for some x′′′, y′′′ ∈ [n] \X ′1. By the previous analysis, B′ = {x, y, x′′′, y′}, and we only
need to consider the case that x is the center (If y is the center, since {y, y′, z2, w2}
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is still in Sx′′′y′′′(H′5), this contradicts that Sx′′′y′′′(H′5) ⊆ G3 with center y and core
{x, y′, x′′′}). We have shown that Sx′′y′′(H5) can not be contained in G2 with core
{x, y, y′}, so there is G ∈ Sx′′y′′(H5) such that G ∩ {x, y} = ∅ or G ∩ {x, y′} = ∅
or G ∩ {y, y′} = ∅. Since Sx′′y′′(H5) ⊆ G3 with core {x, x′′, y′} and center y, G
must contain x or y. If G ∩ {y, y′} = ∅, it contradicts that Sx′′y′′(H5) ⊆ G3 with
core {x, x′′, y′} and center y. So there is G ∈ Sx′′y′′(H5) such that G ∩ {x, y′} = ∅.
After shifts in [n] \X ′1 to G, we get G′ missing x and y′ still. This contradicts that
Sx′′′y′′′(H′5) ⊆ G3 with core {y, x′′′, y′} and center x. Hence, we will not reach Case 5.

In summary, we have shown that there exists X1 in the form of {x, y, y′, z, w}
such that performing shifts in [n] \X1 repeatedly to H4 will not reach Cases 1-5 as
in Remark 2.5. Moreover, {y, y′, z, w} or {x, y′, z, w} is in the final stable family G.
This completes the proof of Claim 3.6.

Claim 3.8. If performing some shifts in [n] \ {x, y} repeatedly to H1 does not reach
Cases1-4, but reaches H5 in Case 5 (Sx′y′(H5) ⊆ G3), then there exists X1 in the
form of {x, y, y′, z, w} such that performing shifts in [n]\X1 repeatedly to H4 will not
reach Cases 1-5 as in Remark 2.5. Moreover, {y, y′, z, w} or {x, y′, z, w} is in the
final stable family G.

Proof. Suppose that we get some H5 such that Sx′y′(H5) ⊆ G3 with center and core
forming a 4-set B. By (13) and Claim 3.2, the center must be x or y, and {x, y} ⊂ B.
By Fact 2.4 (iv), X ′ ∈ B and y′ 6∈ B. Let B = {x, y, x′, z}. We consider the case that
x is the center, the proof for y being the center is similar.

Since Sx′y′(H5) ⊆ G3, and recall that we are under Case 1, every set inH5 intersects
{x, y}, there exists {y, y′, z, w} (or {x, y′, z1, z2}) ∈ H5. And by the maximality of
|H| (so is |H5|), we may assume that all the sets containing {x, z} in Sx′y′(H5) are
originally in H5. Let X1 := {x, y, y′, z, w} (or {x, y, y′, z1, z2}). Similar to the analysis
in the first paragraph of the proof of Claim 3.6, for any shifts Sx′′y′′ toH5 in [n]\X1, we
won’t reach Cases 1-4. If we reach Case 5 again, then the resulting family Sx′′y′′(H′5)
(x′′ and y′′ ∈ [n] \ X1) must be contained in G3 with core {y, x′′, z} and center x.
However {y, y′, z, w} (or {x, y′, z1, z2}) is still in Sx′′y′′(H′5), and misses x′′ and x (or
{x′′, z, y} ∩ {x, y′, z1, z2} = ∅), contradicting that the family Sx′′y′′(H′5) ⊆ G3 with
core {y, x′′, z} and center x. So we will not achieve Case 5, as desired.

By Claims 3.5, 3.6 and 3.8, we have shown that if we reach a 4-uniform family H1

such that H1 is EKR, then there exists a set X1 with |X1| ≤ 5 and {x, y} ⊆ X1 such
that performing shifts Sx′y′ in [n] \X1 repeatedly to H1 will result in a stable family
satisfying the conditions of Lemma 3.4. This completes the proof of Lemma 3.4.

Lemma 3.9 (Case 2). If we each a 4-uniform family H2 such that Sxy(H2) is HM at
x, then there is a set X2 = {x, y, z1, z2, z3} such that after a series of shifts Sx′y′ (x′ <
y′ and x′, y′ ∈ [n]\X2) to H2, we will reach a stable family G satisfying the conditions
of Theorem 2.2. Moreover, {z1, z2, z3, y} or {z1, z2, z3, z′4} ∈ G. Furthermore, if
{z1, z2, z3, y} ∈ G, then every member in G contains x or y. If {z1, z2, z3, z′4} ∈ G,
then every other member in G contains x or y.
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Proof. Note that Sxy(H2) contains exactly one set, say, G0 = {z1, z2, z3, z4}, that
misses x. W.l.o.g., let z1, z2, z3 6= y. Let X2 := {x, y, z1, z2, z3}. By the maximality
of |H2|, we may assume{

G ∈
(
X

4

)
: {x, y} ⊆ G,G ∩G0 6= ∅

}
⊆ H2.

If y ∈ G0, that is, y = z4, then

|{G ∈ H2 : {x, y}}| =
(
n− 2

2

)
, (14)

Otherwise, y 6∈ G0. We have

|{G ∈ H2 : {x, y}}| = 4n− 18. (15)

In particular, {x, y, z1, z2}, {x, y, z1, z3} and {x, y, z2, z3} are in H2. Assume that
applying shifts in [n] \ X2 to H2, we get H′, such that Sx′y′(H′) is EKR or HM or
contained in J2 at center x′. However, the three sets {x, y, z1, z2}, {x, y, z1, z3} and
{x, y, z2, z3} are still in Sx′y′(H′) and they miss x′, a contradiction. Thus we will not
reach Cases 1-3.

Assume we reach Case 4 as in Remark 2.5, i.e., Sx′y′(H′) ⊆ G2 with core A. By
(14), (15), Claim 3.1 and Fact 2.4 (ii), we have A = {x, y, x′}. However {z1, z2, z3} ∩
{x, y, x′, y′} = ∅, after a series of shifts of [n] \X2 to G0 = {z1, z2, z3, z4}, we get the
resulting set G′0 ∈ H′ satisfying that |G′0 ∩ | ≤ {x, y, x′, y′}1, a contradiction to that
Sx′y′(H′) ⊆ G2 with core {x, y, x′}. Thus we will not reach Case 4.

At last, assume Sx′y′(H′) ⊆ G3 as in Remark 2.5 (Case 5) with center and core
forming a 4-set B. By Fact 2.4 (iv), x′ ∈ B. By Claim 3.2 (ii) and (14), (15), there are
at least 4n− 18 > 3n− 12 ( n > 6 ) sets containing {x, y}, so {x, y, x′} ⊂ B. And if
{x, y} ⊂ E, then the number of sets containing {x, y} in H′ is at most 2n−7, which is
smaller than 4n−18, this contradicts to (15). Thus the resulting family can only have
center x or center y. First assume y ∈ G0, that is y = z4 and G0 = {y, z1, z2, z3}.
This implies that {x, z1, z2, z3} ∈ H2. Both {x, z1, z2, z3} and G0 = {z1, z2, z3, z4}
are stable under shifts Sx′y′ (x′ < y′ and x′, y′ ∈ [n] \ X2), so both of them are in
Sx′y′(H′). Since x, x′ 6∈ G0 and Sx′y′(H′) ⊆ G3 with B ⊃ {x, y, x′}, x can not be the
center. But if y is the center, since x′, y 6∈ {x, z1, z2, z3}, also a contradiction. Next
assume y 6∈ G0. Notice that {z1, z2, z3} ∩ {x, y, x′, y′} = ∅, after a series of shifts of
[n] \ X2 to G0, the resulting set G′0 ∈ Sx′y′(H′) satisfies that G′0 ∩ {x, y} = ∅, also
contradicts that Sx′y′(H′) ⊆ G3 with B ⊃ {x, y, x′}, hence we will not reach Case 5.

Notice that if y ∈ G0, we have {x, z1, z2, z3} ∈ H2 and G0 = {y, z1, z2, z3} ∈ H2.
Note that {z1, z2, z3, y} is stable under shifts Sx′y′ (x′ < y′ and x′, y′ ∈ [n] \ X2), so
G0 = {z1, z2, z3, y} ∈ G. In this case, every member in H2 contains x or y, Since every
member in H2 is stable at x and y, every member in G contains x or y. If y 6∈ G0,
then G′0 = {z1, z2, z3, z′4} ∈ G for some z′4 6= y, and this is the only set in G that
disjoint from set {x, y}.
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Lemma 3.10 (Case 3). If we each a 4-uniform H3 such that Sxy(H3) ⊆ J2 at center
x, kernel E and the set of pages J , then there is a set X3 = {x, y, z1, z2, z3} such that
after a series of shifts Sx′y′ (x′ < y′ and x′, y′ ∈ [n] \X3) to H3, we will reach a stable
family G satisfying the conditions of Theorem 2.2 and G ∩ X3 6= ∅ for any G ∈ G.
Moreover, either |G ∩X3| ≥ 2 for any G ∈ G, or |G ∩ G′| ≥ 2 if G ∩X3 = {x} and
G′ ∩X3 = {y}.

Proof. We will meet one of the following three cases. Case (a): y ∈ E. In this
case, let E = {y, z1, z2}, J = {z3, z4} and X3 := {x, y, z1, z2, z3}. Case (b): y ∈ J .
In this case, let E = {z1, z2, z3}, J = {y, z4} and X3 := {x, y, z1, z2, z3}. Case (c):
y ∈ [n] \ (E ∪ J ∪ {x}). In this case, let E = {z1, z2, z3}, J = {z4, z5} and X3 :=
{x, y, z1, z2, z3}.

In each of the above three cases, by the maximality of |H| (|H3| as well), {x, y, z1, z2},
{x, y, z1, z3}, {x, y, z2, z3} are in H3, and they are stable after a series of shifts in
[n] \ X3, so we will not reach Cases 1-3 after performing shifts in [n] \ X3. Assume
that applying shifts in [n] \ X3 to H3, we get H′′, such that H′ := Sx′y′(H′′) ⊆ G2
with core A. Similarly, by the maximality of |H3| and direct computation, we have
the following claim:

Claim 3.11. There are at least
(
n−2
2

)
, 4n− 18, 3n− 11 members that contain {x, y}

in Cases (a), (b), (c) respectively.

Notice that
(
n−2
2

)
, 4n − 18, 3n − 11 > 2n − 7. By Claim 3.1, Claim 3.11 and

Fact 2.4 (ii), A = {x, y, x′}. In Case (a) or (b), we can see that {y, z1, z2, z3} ∈
H′, |{y, z1, z2, z3} ∩A| = 1, a contradiction. In Case (c), we have {z1, z2, z3, z4} ∈ H3,
after some shifts in [n] \ X3, it becomes F in H′, and |F ∩ A| ≤ 1, a contradiction
to that H′ ⊆ G2 with core {x, y, x′}. Thus we will not reach Case 4 after performing
shifts in [n] \X3 repeatedly.

At last, we assume that H′ := Sx′y′(H′′) ⊆ G3 with center and core forming a
4-set B. By Claim 3.2, Claim 3.11 and Fact 2.4 (iv), we have {x, y, x′} ⊆ B, and the
center of H′ must be x or y. In Cases (a) and (b), we have {y, z1, z2, z3} ∈ H3, so in
H′. Since x, x′ 6∈ {y, z1, z2, z3}, H′ can not be contained in G3 with B ⊃ {x, y, x′} and
center x. Since {x, z1, z2, z3} ∈ H3, so in H′ as well. Notice that y, x′ 6∈ {x, z1, z2, z3},
H′ can not be contained in G3 with B ⊃ {x, y, x′} and center y. A contradiction. Now
consider Case (c). In this case, {z1, z2, z3, z4} ∈ H3. Because it is stable at {z1, z2, z3}
under any shift in [n] \ X3, the resulting set {z1, z2, z3, z′4} does not contain x or y.
This contradicts that H′ ⊆ G3 with B ⊃ {x, y, x′} and center x or y.

If Case (a) or (b) happens, then any 4-set G ∈ G satisfies |G ∩ X3| ≥ 2. If
Case (c) happens, since {z1, z2, z3, z4} and {z1, z2, z3, z5} are the only two sets disjoint
from {x, y} in Sxy(H3), then every set in H3 (so in G) missing x and y must contain
{z1, z2, z3}. If x ∈ G, y ∈ G′ and G ∩ {z1, z2, z3, y} = G′ ∩ {z1, z2, z3, x} = ∅, let
F, F ′ ∈ H3 such that G and G′ become their resulting sets in G after a series of
shifts in [n] \X3. By the reason that Sxy(H3) ⊆ J2 with center x, kernel {z1, z2, z3}
and the set of pages {z4, z5}, for any set H ∈ H3 satisfying that |H ∩ {x, y}| = 1
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and H ∩ {z1, z2, z3} = ∅, we have {z4, z5} ⊆ H. So {z4, z5} ⊆ F ∩ F ′, consequently,
|G ∩G′| ≥ 2.

Lemma 3.12 (Case 4). If we reach a 4-uniform H4 such that Sxy(H4) ⊆ G2 with core
{x, x1, x2}, then there is a set X4 = {x, y, x1, x2, x3} such that after a series of shifts
Sx′y′ (x′ < y′ and x′, y′ ∈ [n] \ X4) to H4, we will reach a stable family G satisfying
the conditions of Theorem 2.2. Moreover, {x, y, x1, x3} ∈ G and G ∩X4 6= ∅ for any
G ∈ G.

Proof. Since Sxy(H4) ⊆ G2 with core A, by Fact 2.4 (ii), we have that x ∈ A and
y 6∈ A. Let A = {x, x1, x2}. By the maximality of |H4|, we may assume{

G ∈
(
X

4

)
: {x1, x2} ⊆ G

}
⊆ H4,{

G ∈
(
X

4

)
: {x, y} ⊆ G,G ∩ {x1, x2} 6= ∅

}
⊆ H4.

So

| {G ∈ H4 : {x1, x2} ⊆ G} | =
(
n− 2

2

)
, (16)

| {G ∈ H4 : {x, y} ⊆ G,G ∩ {x1, x2} 6= ∅} | = 2n− 7. (17)

Choose a set G = {x, y, x1, x3} ∈ H4 and let X4 := {x, y, x1, x2, x3}. Since
Sxy(H4) ⊆ G2 with core {x, x1, x2}, every member in H4 intersects X4. Every member
in H4 is stable at every element in X4 under shifts Sx′y′ (x′ < y′ and x′, y′ ∈ [n] \X4).
So {x, y, x1, x3} is in the final stable family G and G ∩X4 6= ∅ for any G ∈ G. What
remains is to show that performing shifts Sx′y′ (x′ < y′ and x′, y′ ∈ [n] \ X4) to H4

will not reach Cases 1-5 in Remark 2.5.
By (16), for any x′ ∈ [n] \X4, there are at least

(
n−3
2

)
members in H4 missing x′,

so we can not reach Cases 1-3.
Assume H′ := Sx′y′(H′′) ⊆ G2 with core A′. By (16), Fact 2.4 (ii) and Claim 3.1,

A′ = {x′, x1, x2}. Since G ∈ H′, and |H∩A′| = 1, we get a contradiction, hence we will
not reach Case 4. At last, assume H′ := Sx′y′(H′′) ⊆ G3 with center and core forming
a 4-set B. By Fact 2.4 (iv), x′ ∈ B. By Claim 3.2 (ii) and (16), {x1, x2} ⊆ B and the
center must be x1 or x2. That is {x1, x2, x′} ⊂ B. Since |B| = 4, |{x, y} ∩ B| = 0 or
1. If |{x, y} ∩ B| = 0, then the sets containing {x, y} in H′ must contain center and
one point of core A′, so d{x,y} ≤ 3. If |{x, y}∩B| = 1, then the sets containing {x, y}
in H′ either contain center or contain core A′, so d{x,y} ≤ n − 3 + 1 = n − 2. These
members containing {x, y} in H4 are also in H′, by (17), there are at least 2n− 7, a
contradiction. Hence we can not reach Case 5.

Lemma 3.13 (Case 5). If we reach a 4-uniform H5 such that Sxy(H5) ⊆ G3 with
center and core E forming a 4-set B, then there is a set X5 = {x, y, x1, x2, x3} such
that after a series of shifts Sx′y′ (x′ < y′ and x′, y′ ∈ [n] \X5) to H5, we will reach a
stable family G satisfying the conditions of Theorem 2.2. Furthermore, |G ∩X5| ≥ 2
for each G ∈ G.

22



Proof. For Sxy(H5), we will meet one of the following three cases. Case (a): x is the
center, y ∈ E, and E = {y, x1, x2}. In this case, we may assume that {y, x1, x2, x3} ∈
Sxy(H5) for some x3 ∈ [n] \ B. Let X5 := {x, y, x1, x2, x3}. Case (b): x is the
center, y 6∈ E, and E = {x1, x2, x3}. In this case, let X5 := {x, y, x1, x2, x3}. Case
(c): x1 is the center, x ∈ E, and E = {x, x2, x3}, y ∈ [n] \ B. In this case, let
X5 := {x, y, x1, x2, x3}. We first observe that |G ∩X5| ≥ 2 for each G ∈ H5 in each
case.

First we consider Case (a). In this case, a member in H5 must contain x or y. By
the maximality of |H5|, we may assume{

G ∈
(
X

4

)
: {x, y} ⊆ G

}
⊆ H5.

So

| {G ∈ H5 : {x, y} ⊆ G} | =
(
n− 2

2

)
. (18)

Performing Sx′y′ in [n] \X5 to H5 will not reach Cases 1-3 since there are at least(
n−3
2

)
members that containing {x, y} and missing x′ in H5 and these sets are stable

after Sx′y′ in [n] \X5 (by (18)).
Assume that H′ := Sx′y′(H′′) ⊆ G2 with core A. By (18), Fact 2.4 (ii) and

Claim 3.1, A = {x′, x, y}. Since Sxy(H5) is not EKR, {y, x1, x2, x3} ∈ Sxy(H5),
{x, x1, x2, x3} ∈ H5, so inH′. However, |{x, x1, x2, x3}∩A| = 1, this is a contradiction,
hence we will not reach Case 4. Assume that H′ := Sx′y′(H′′) ⊆ G3 with center and
core forming a 4-set B′. By (18), Fact 2.4 (iv) and Claim 3.2 (ii), {x, y, x′} ⊆ B′,
and the center is either x or y. In either case, the existence of {x, x1, x2, x3} and
{y, x1, x2, x3} will lead to a contradiction. Hence we will not reach Case 5.

Next we consider Case (b). By the maximality of |H5|, we may assume that{
G ∈

(
X

4

)
: {x, y} ⊆ G and G ∩ E 6= ∅

}
⊆ H5

and {
G ∈

(
X

4

)
: {x1, x2, x3} ⊆ G

}
⊆ H5.

In particular, {x, x1, x2, x3} ∈ H5 and {y, x1, x2, x3} ∈ H5. Computing directly, we
have

| {G ∈ H5 : {x, y} ⊆ G,G ∩ E 6= ∅} | = 3n− 12 (19)

and
| {G ∈ H5 : {x1, x2, x3} ⊆ G} | = n− 3. (20)

Since {x, y, x1, x2}, {x, y, x1, x3}, {x, y, x2, x3} ∈ H5 and these sets miss x′ and are
stable after shifts Sx′y′ (x′ < y′ and x′, y′ ∈ [n] \X5), we will not reach Cases 1-3.
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Assume H′ := Sx′y′(H′′) ⊆ G2 with core A, where x′ < y′ and x′, y′ ∈ [n] \X5. By
(19), Fact 2.4 (ii) and Claim 3.1, we have A = {x′, x, y}. However {x, x1, x2, x3} ∈ H′
and |{x, x1, x2, x3} ∩ A| = 1, a contradiction, so we will not reach Case 4.

Assume that H′ := Sx′y′(H′′) ⊆ G3 with center and core forming a 4-set B′. By
Fact 2.4 (iv), x′ ∈ B′. Equation (19) and Claim 3.2 (i) imply that the center must be
x or y.

By Claim 3.3 and (20), either {x1, x2, x3} ⊂ B′ or |{x1, x2, x3} ∩ B′| = 2 and
one of {x1, x2, x3} is the center. But it’s impossible to satisfy both conditions in the
previous paragraph and this paragraph, hence we will not reach Case 5.

At last we consider Case (c). By the maximality of |H5|, we may assume{
G ∈

(
X

4

)
: {x1, x2} ⊆ G

}
⊆ H5 and

{
G ∈

(
X

4

)
: {x1, x3} ⊆ G

}
⊆ H5.

By direct computation,

| {G ∈ H5 : {x1, x2} ⊆ G} | =
(
n− 2

2

)
, (21)

| {G ∈ H5 : {x1, x3} ⊆ G} | =
(
n− 2

2

)
. (22)

Since there are
(
n−3
2

)
sets containing {x1, x2} but missing x′, after performing Sx′y′ in

[n] \X5 to H5, we will not reach Case 1-3.
If we reach Cases 4, that is, after performing shifts in [n] \X5 to H5 repeatedly,

Sx′y′(H′) ⊆ G2 with core A. By (21), (22), Fact 2.4 (ii) and Claim 3.1, x′, x1, x2, x3 ∈
A, but |A| = 3, a contradiction. If we reach Case 5, that is Sx′y′(H′) ⊆ G3 with the
center and the core forming a 4-set B′. By (21), (22), Fact 2.4 (iv) and Claim 3.1,
B′ = {x1, x2, x3, x′}, and x1 is the center. Recall that {x, y, x2, x3} ∈ H5, also in
Sx′y′(H′), but {x, y, x2, x3} ∩ {x1, x′, y′} = ∅, a contradiction, hence we cannot reach
Case 5.

As remarked earlier, |G ∩X5| ≥ 2 for each G ∈ H5. Note that performing shifts
in [n] \X5 to H5 keeps this property, so |G ∩X5| ≥ 2 for each G ∈ G.

By Lemmas 3.4 to 3.13, we have shown that if one of Case 1-5 happens, then
there exists a set Xi with |Xi| ≤ 5 and {x, y} ⊆ Xi such that performing shifts in
[n] \ Xi to Hi will not result in any case of Case 1-5, so the final family is a stable
family satisfying the conditions in Theorem 2.2. Furthermore, G∩Xi 6= ∅ for any set
G in the final family. So we complete the proof of Lemma 2.6.

3.2 Proof of Lemma 2.7

Proof. We first consider k ≥ 5. In this case, we have |Xi| ≤ 3 and |Yi| ≥ 2k − 3.
We first prove (ii). Assume on the contrary that there are G and G′ ∈ G such

that G ∩ G′ ∩ Y = ∅ and let |G ∩ G′| be the minimum among all pairs of sets in G
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not intersecting in Y . Clearly |G ∩ G′ ∩ ([n] \ Y )| ≥ 1. Note that |(G ∪ G′) ∩ Yi| ≤
|G∩Yi|+|G′∩Yi| ≤ 2k−4 (since |G∩([n]\Y )| ≥ 1 and |G∩Xi| ≥ 1, so |G∩Yi| ≤ k−2,
same for G′). But |Yi| ≥ 2k − 3, so there exists a point a ∈ Yi \ (G ∪ G′). Pick any
point b ∈ G ∩ G′ ∩ ([n] \ Y ), we have a < b. Notice that G is stable on [n] \ Xi,
so G′′ := (G′ \ {b}) ∪ {a} ∈ G. Then G ∩ G′′ ∩ Y = ∅ and |G ∩ G′′| < |G ∩ G′|,
contradicting the minimality of |G ∩G′|.

For (i), assume on the contrary, that A1 6= ∅. Let {x} ∈ A1, then there is a
set G ∈ G such that G ∩ Y = {x}. By (ii), for any another set G′ ∈ G we have
G ∩G′ ∩ Y 6= ∅, so x ∈ G′. This implies that G is EKR, a contradiction, so A1 = ∅.

Next consider for k = 4. In this case, for 1 ≤ i ≤ 5, |Xi| = 5 and |Yi| = 9− 5 = 4,
and for i = 6, |Xi| = 0 and |Yi| = 9.

Claim 3.14. If G and G′ in G satisfies that |Yi \ (G ∪ G′)| ≥ |G ∩ G′ ∩ ([n] \ Y )|,
then G ∩G′ ∩ Y 6= ∅.

Proof. If G ∩ G′ ∩ Y = ∅, then D := G ∩ G′ ∩ ([n] \ Y ) 6= ∅. Since |Yi \ (G ∪ G′)| ≥
|G ∩G′ ∩ ([n] \ Y )|, there is a subset D′ ⊆ Yi \ (G ∪G′) with size |D′| = |D|. By the
definition of Yi, all numbers in D′ are smaller than D. Since G is stable on [n] \Xi,
F := (G′ \ D) ∪ D′ ∈ G. However G ∩ F = ∅, a contradiction to the intersecting
property of G. So G ∩G′ ∩ Y 6= ∅.

Claim 3.15. |A1| ≤ 1; A2 and A4 are intersecting.

Proof. Obviously, A4 is intersecting. Assume that |A1| ≥ 2 and {x1}, {x2} ∈ A1.

Then there are G and G′ in Ã1 such that G ∩ Y = {x1} and G′ ∩ Y = {x2}. Since
any set in G intersects with Xi (for i ∈ [5]), x1, x2 ∈ Xi. So 1 ≤ |G∩G′ ∩ ([n] \Y )| ≤
3 < 4 = |Yi \ (G ∩ G′)|. By Claim 3.14, G ∩ G′ ∩ Y 6= ∅, a contradiction. Hence,

|A1| ≤ 1. Let G and G′ be in Ã2. Then |G ∩G′ ∩ ([n] \ Y )| ≤ 2. Since |G ∩Xi| ≥ 1
and |G′∩Xi| ≥ 1 (for i ∈ [5]), then |Yi \(G∪G′)| ≥ 2. By Claim 3.14, G∩G′∩Y 6= ∅,
that is A2 is intersecting, as desired.

Claim 3.16. A1 = ∅.

Proof. By Claim 3.15, |A1| ≤ 1. We may assume on the contrary that A1 = {{x}}
for some x ∈ Xi. For any G ∈ Ã1 and G′ ∈ Ãj (for j = 2, 3, 4), G and G′ satisfy the
condiction of Claim 3.14, so G ∩G′ ∩ Y 6= ∅, this implies that x ∈ G′ and hence G is
EKR, a contradiction.

Claim 3.17. A2 and A3 are cross-intersecting.

Proof. Let G ∈ Ã2 and G′ ∈ Ã3. Then |G ∩ G′ ∩ ([n] \ Y )| ≤ 1. Since any set in G
intersects with Xi (for i ∈ [5]), |Yi \ (G ∪ G′)| ≥ 1. By Claim 3.14, G ∩ G′ ∩ Y 6= ∅,
that is A2 and A3 are cross-intersecting, as desired.

Claim 3.18. A3 is intersecting.
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Proof. Assume on the contrary, that there exist A, A′ ∈ A3 and G, G′ ∈ Ã3 such
that G ∩ Y = A, G′ ∩ Y = A′ and A ∩ A′ = ∅, in other words, G ∩ G′ ∩ Y = ∅ and
|G ∩ G′ ∩ ([n] \ Y )| = 1. If |(G ∪ G′) ∩ Yi| ≤ 3, by Claim 3.14, G ∩ G′ ∩ Y 6= ∅,
a contradiction. Hence we only need to consider the following case : |A ∩ Xi| =
1, |A ∩ Yi| = 2, |A′ ∩Xi| = 1 and |A′ ∩ Yi| = 2. Now we show the conclusion for each
case of Lemma 2.6. All sets below are inherited from the proof of Lemma 2.6 for each
cooresponding case.

If we meet Cases 1 in Lemma 2.6, then by Lemma 3.4, we have that X1 =
{x, y, y′, z1, w1} or X1 = {x, y, y′, z2, w2}, and we may assume that G∩Xi = {x} and
G′ ∩ Xi = {y}. Respectively, {y, y′, z1, w1} or {x, y′, z2, w2} ∈ G, which is disjoint
from G or G′. A contradiction to the intersecting property of G.

If we meet Cases 2 in Lemma 2.6, then by Lemma 3.9, we have that X2 =
{x, y, z1, z2, z3}, and either {z1, z2, z3, y} ∈ G or {z1, z2, z3, z′4} ∈ G for some y 6= z′4.
Furthermore, if {z1, z2, z3, y} ∈ G, then every member in G contains x or y. So we
may assume that G ∩ Xi = {x} and G′ ∩ Xi = {y}. Then {z1, z2, z3, y} ∩ G = ∅, a
contradiction. If {z1, z2, z3, z′4} ∈ G, then every other member in G contains x or y,
we may assume that G ∩ Xi = {x} and G′ ∩ Xi = {y}. Since G is stable, we may
assume that z′4 ∈ Yi. Recall that |G ∩ Yi| = |G′ ∩ Yi| = 2, hence {z1, z2, z3, z′4} must
be disjoint from G or G′, a contradiction.

If we meet Cases 3 in Lemma 2.6, then by Lemma 3.10, |G ∩ G′| ≥ 2, a contra-
diction.

If we meet Cases 4 in Lemma 2.6, then by Lemma 3.12, we have that X4 =
{x, y, x1, x2, x3}, {x, y, x1, x3} ∈ G and Sxy(H4) ⊆ G2 with core {x, x1, x2}. So for
every set F in H4, either |F ∩ {x, x1, x2}| ≥ 2, or F ∩ {x, x1, x2} = {x1} and y ∈ F ,
or F ∩ {x, x1, x2} = {x2} and y ∈ F . In all cases, |F ∩ X4| ≥ 2. Performing
shifts in [n] \ X4 will not change these properties, hence every set in G also has
the same properties, in particular, G and G′ do. This makes a contradiction to
|G ∩X4| = |G′ ∩X4| = 1.

Assume that we meet Case 5 in Lemma 2.6, then by Lemma 3.13, we have that
|G∩X5| ≥ 2 for each G ∈ G. This makes a contradiction to |G∩X5| = |G′∩X5| = 1.

At last, assume that we will not meet any of Cases 1-5 in Lemma 2.6 if we perform
shifts repeatedly to G. In this case, Y = [2k]. Assume on the contrary, and let G
and G′ ∈ G such that G ∩ G′ ∩ Y = ∅ and |G ∩ G′| is the minimum among all pairs
of sets in G not intersecting in Y . Then |G ∩ G′ ∩ (X \ Y )| ≥ 1. Consequently,
|(G∪G′)∩Y | ≤ |G∩Y |+ |G′∩Y | ≤ 2k−2 since |G∩Y | ≤ k−1 and |G′∩Y | ≤ k−1.
So there exists a point a ∈ Y \ (G ∪G′). Pick any point b ∈ G ∩G′ ∩ (X \ Y ). Note
that a < b, then G′′ := (G′ \ {b}) ∪ {a} ∈ G since G is stable. It is easy to see that
G∩G′′∩Y = ∅ and |G∩G′′| < |G∩G′|, contradicting the minimality of |G∩G′|.

Since G is intersecting, A2 and A4 are cross-intersecting, and A3 and A4 are cross-
intersecting. Combining with Claims 3.15, 3.17 and 3.18, we have completed the proof
of (ii).
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4 Concluding remarks

It is natural to ask what is the maximum size of a k-uniform intersecting family F
with τ(F) ≥ 3. About this problem, Frankl [3] gave an upper bound for sufficient
large n. To introduce the result, we need the following construction.

Construction 4.1. Let x ∈ [n], Y ⊆ [n] with |Y | = k, and Z ⊆ [n] with |Z| = k− 1,
x 6∈ Y ∪ Z, Z ∩ Y = ∅ and Y0 = {y1, y2} ⊆ Y . Define

G = {A ⊆ [n] : x ∈ A,A ∩ Y 6= ∅ and A ∩ Z 6= ∅} ∪ {Y, Z ∪ {y1}, Z ∪ {y2}, {x, y1, y2}},
FP (n, k) = {F ⊆ [n] : |F | = k,∃G ∈ G s.t., G ⊆ F}.

It is easy to see that FP (n, k) is intersecting and τ(FP (n, k)) = 3.

Theorem 4.2 (Frankl [3]). Let k ≥ 3 and n be sufficiently large integers. Let H be
an n-vertex k-uniform family with τ(H) ≥ 3. Then |H| ≤ |FP (n, k)|. Moreover, for
k ≥ 4, the equality holds only for H = FP (n, k).˙

It is interesting to consider what is the maximum k-uniform intersecting families
with covering number s ≥ 4.
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