# Stability of intersecting families<sup>\*</sup>

Yang Huang, Yuejian Peng<sup>†</sup>

School of Mathematics, Hunan University Changsha, Hunan, 410082, P.R. China

May 12, 2022

#### Abstract

The celebrated Erdős–Ko–Rado theorem [1] states that the maximum intersecting k-uniform family on [n] is a full star if  $n \ge 2k + 1$ . Furthermore, Hilton-Milner [9] showed that if an intersecting k-uniform family on [n] is not a subfamily of a full star, then its maximum size achieves only on a family isomorphic to  $HM(n,k) := \left\{ G \in {[n] \choose k} : 1 \in G, G \cap [2, k+1] \neq \emptyset \right\} \cup \left\{ [2, k+1] \right\}$ if n > 2k and  $k \ge 4$ , and there is one more possibility in the case of k = 3. Han and Kohayakawa [8] determined the maximum intersecting k-uniform family on [n] which is neither a subfamily of a full star nor a subfamily of the extremal family in Hilton-Milner theorm, and they asked what is the next maximum intersecting k-uniform family on [n]. Kostochka and Mubayi [11] gave the answer for large enough n. In this paper, we are going to get rid of the requirement that n is large enough in the result by Kostochka and Mubayi [11] and answer the question of Han and Kohayakawa [8].

Key words: Intersecting families; Extremal finite sets; Shifting method. 2010 Mathematics Subject Classification. 05D05, 05C65, 05D15.

### 1 Introduction

For a positive interge n, let  $[n] = \{1, 2, ..., n\}$  and  $2^{[n]}$  be the family of all subsets of [n]. An *i*-element subset  $A \subseteq [n]$  is called an *i*-set. For  $0 \leq k \leq n$ , let  $\binom{[n]}{k}$  denote the collection of all *k*-sets of [n]. A family  $\mathcal{F} \subseteq \binom{[n]}{k}$  is called *k*-uniform. For a family  $\mathcal{F} \subseteq 2^{[n]}$ , we say  $\mathcal{F}$  is *intersecting* if for any two distinct sets F and F' in  $\mathcal{F}$  we have  $|F \cap F'| \geq 1$ . In this paper, we always consider a *k*-uniform intersecting family on

<sup>\*</sup>This work is supported by NSFC (Grant No. 11931002). E-mail addresses: 1060393815@qq.com (Yang Huang), ypeng1@hnu.edu.cn (Yuejian Peng, corresponding author).

[n]. The following celebrated theorem of Erdős–Ko–Rado determines the maximum intersecting family.

For  $x \in [n]$  denote  $\mathcal{F}_x := \{F \in {[n] \choose k} : x \in F\}$  by the *full star* centered at x. We say  $\mathcal{F}$  is EKR if  $\mathcal{F}$  is contained in a full star.

**Theorem 1.1** (Erdős–Ko–Rado [1]). Let  $n \ge 2k$  be integer and  $\mathcal{F}$  be a k-uniform intersecting family of subsets of [n]. Then

$$|\mathcal{F}| \le \binom{n-1}{k-1}.$$

Moreover, when n > 2k, equality holds if and only if  $\mathcal{F}$  is a full star.

The theorem of Hilton-Milner determines the maximum size of non-EKR families.

**Theorem 1.2** (Hilton–Milner [9]). Let  $k \ge 2$  and  $n \ge 2k$  be integers and  $\mathcal{F} \subseteq {\binom{[n]}{k}}$  be an intersecting family. If  $\mathcal{F}$  is not EKR, then

$$|\mathcal{F}| \le \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1.$$

Moreover, for n > 2k and  $k \ge 4$ , equality holds if and only if  $\mathcal{F}$  is isomorphic to

$$HM(n,k) := \left\{ G \in \binom{[n]}{k} : 1 \in G, G \cap [2,k+1] \neq \emptyset \right\} \cup \left\{ [2,k+1] \right\}.$$

For the case k = 3, there is one more possibility, namely

$$\mathcal{T}(n,3) := \left\{ F \in \binom{[n]}{3} : |F \cap [3]| \ge 2 \right\}.$$

We say a family  $\mathcal{F}$  is HM if it is isomorphic to a subfamily of HM(n, k). We say that 1 is the *center* of HM(n, k).

Let  $E \subseteq [n]$  be an *i*-set and  $x \in [n]$ . We define

$$\mathcal{G}_i := \left\{ G \in \binom{[n]}{k} : E \subseteq G \right\} \cup \left\{ G \in \binom{[n]}{k} : x \in G \text{ and } G \cap E \neq \emptyset \right\}.$$

We call x the *center*, and E the *core* of  $\mathcal{G}_i$  for  $i \geq 3$ . With a slight tweaking, we call  $\{x\} \cup E$  the *core* of  $\mathcal{G}_2$ . Note that  $\mathcal{G}_k = HM(n, k)$ .

For a (k-1)-set E, a point  $x \in [n] \setminus E$ , and an *i*-set  $J \subset [n] \setminus (E \cup \{x\})$ , we denote

$$\mathcal{J}_{i} := \left\{ G \in \binom{[n]}{k} : E \subseteq G \text{ and } G \cap J \neq \emptyset \right\} \cup \left\{ G \in \binom{[n]}{k} : J \cup \{x\} \subseteq G \right\}$$
$$\cup \left\{ G \in \binom{[n]}{k} : x \in G, G \cap E \neq \emptyset \right\}.$$

We call x the center, E the kernel, and J the set of pages.

For two k-sets  $E_1$  and  $E_2 \subseteq [n]$  with  $|E_1 \cap E_2| = k - 2$ , and  $x \in [n] \setminus (E_1 \cup E_2)$ , we define

$$\mathcal{K}_2 := \{ G \in \binom{[n]}{k} : x \in G, G \cap E_1 \neq \emptyset \text{ and } G \cap E_2 \neq \emptyset \} \cup \{ E_1, E_2 \},\$$

and call x the *center* of  $\mathcal{K}_2$ .

In [8], Han and Kohayakawa obtained the size of a maximum non-EKR, non-HM intersecting family.

**Theorem 1.3** (Han–Kohayakawa [8]). Suppose  $k \geq 3$  and  $n \geq 2k + 1$  and let  $\mathcal{H}$  be an intersecting k-uniform family on [n]. Furthermore, assume that  $\mathcal{H}$  is neither EKR nor HM, if k = 3,  $\mathcal{H} \not\subseteq \mathcal{G}_2$ . Then

$$|\mathcal{H}| \le \binom{n-1}{k-1} - \binom{n-k-1}{k-1} - \binom{n-k-2}{k-2} + 2.$$

For k = 4, equality holds if and only if  $\mathcal{H} = \mathcal{J}_2$ ,  $\mathcal{G}_2$  or  $\mathcal{G}_3$ . For every other k, equality holds if and only if  $\mathcal{H} = \mathcal{J}_2$ .

Han and Kohayakawa [8] proposed the following question.

**Question 1.4.** Let  $n \ge 2k + 1$ . What is the maximum size of an intersecting family  $\mathcal{H}$  that is neither EKR nor HM, and  $\mathcal{H} \not\subseteq \mathcal{J}_2$  (in addition  $\mathcal{H} \not\subseteq \mathcal{G}_2$  and  $\mathcal{H} \not\subseteq \mathcal{G}_3$  if k = 4)?

Regarding this question, Kostochka and Mubayi [11] showed that the answer is  $|\mathcal{J}_3|$  for sufficiently large n. In fact they proved that the maximum size of an intersecting family that is neither EKR, nor HM, nor contained in  $\mathcal{J}_i$  for each  $i, 2 \leq i \leq k-1$  (nor in  $\mathcal{G}_2, \mathcal{G}_3$  for k = 4) is  $|\mathcal{K}_2|$  for all large enough n. In paper [11], they also established the structure of almost all intersecting 3-uniform families. Sometimes, it is relatively easier to get extremal families under the assumption that n is large enough. For example, Erdős matching conjecture [2] states that for a k-uniform family  $\mathcal{F}$  on finite set  $[n], |\mathcal{F}| \leq \max\{\binom{k(s+1)-1}{k}, \binom{n}{k} - \binom{n-s}{k}\}$  if there is no s+1 pairwise disjoint members of  $\mathcal{F}$  and  $n \geq (s+1)k$ , and it was proved to be true for large enough n in [2]. There has been a lot of recent studies for small n. Up to now, the best condition on n was given by Frankl in [5, 6] that  $n \geq k(2s+1) - s$ , for  $(s+1)k \leq n \leq k(2s+1) - s - 1$ .

As mentioned by Han and Kohayakawa in [8], for  $k \ge 4$ , the bound in Theorem 1.3 can be deduced from Theorem 3 in [9] which was established by Hilton and Milner in 1967. However, family  $\mathcal{H}$  in Question 1.4 does not satisfy the hypothesis of Theorem 3 in [9] for  $k \ge 4$ . This makes Question 1.4 more interesting. In this paper, we answer Question 1.4. We are going to get rid of the requirement that n is large enough in the result by Kostochka and Mubayi [11]. As in the proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3, we will apply the shifting method. The main difficulty in our proof is to guarantee that we can get a *stable* family which is not EKR, not HM,  $\not\subseteq \mathcal{J}_2$  (in addition  $\not\subseteq \mathcal{G}_2, \not\subseteq \mathcal{G}_3$  if k = 4) after performing a series of shifts to a family which is not EKR, not HM,  $\not\subseteq \mathcal{J}_2$  (in addition  $\not\subseteq \mathcal{G}_2, \not\subseteq \mathcal{G}_3$  if k = 4). Our main result is as follows.

**Theorem 1.5.** Let  $k \ge 4$  and  $\mathcal{H} \subseteq {\binom{[n]}{k}}$  be an intersecting family which is neither *EKR* nor *HM*. Furthermore,  $\mathcal{H} \not\subseteq \mathcal{J}_2$  (in addition  $\mathcal{H} \not\subseteq \mathcal{G}_2$  and  $\mathcal{H} \not\subseteq \mathcal{G}_3$  if k = 4). (*i*) If  $2k + 1 \le n \le 3k - 3$ , then

$$|\mathcal{H}| \le \binom{n-1}{k-1} - 2\binom{n-k-1}{k-1} + \binom{n-k-3}{k-1} + 2$$

Moreover, the equality holds only for  $\mathcal{H} = \mathcal{K}_2$  if  $k \geq 5$ , and  $\mathcal{H} = \mathcal{K}_2$  or  $\mathcal{J}_3$  if k = 4. (ii) If  $n \geq 3k - 2$ , then

$$|\mathcal{H}| \le \binom{n-1}{k-1} - \binom{n-k-1}{k-1} - \binom{n-k-2}{k-2} - \binom{n-k-3}{k-3} + 3.$$

Moreover, for k = 5, the equality holds only for  $\mathcal{H} = \mathcal{J}_3$  or  $\mathcal{G}_4$ . For every other k, equality holds only for  $\mathcal{H} = \mathcal{J}_3$ .

In Section 2, we will give the proof of Theorem 1.5. The proofs of some crucial lemmas for the proof of Theorem 1.5 are given in Section 3.

## 2 Proof of Theorem 1.5

In this section, we always assume that  $\mathcal{H}$  is a maximum intersecting family which satisfies the conditions of Theorem 1.5, that is,  $\mathcal{H}$  is not EKR, not HM,  $\mathcal{H} \not\subseteq \mathcal{J}_2$  (in addition  $\mathcal{H} \not\subseteq \mathcal{G}_2, \mathcal{H} \not\subseteq \mathcal{G}_3$  if k = 4). By direct calculation, we have the following fact.

**Fact 2.1.** (i) Suppose that there is  $x \in [n]$  such that there are only 2 sets, say,  $E_1$  and  $E_2 \in \mathcal{H}$  missing x. If  $|E_1 \cap E_2| = k - i$  and  $i \geq 2$ , then

$$|\mathcal{H}| \le \binom{n-1}{k-1} - 2\binom{n-k-1}{k-1} + \binom{n-k-i-1}{k-1} + 2$$
$$\le \binom{n-1}{k-1} - 2\binom{n-k-1}{k-1} + \binom{n-k-3}{k-1} + 2.$$
(1)

The equality in (1) holds if and only if  $|E_1 \cap E_2| = k - 2$ , that is  $\mathcal{H} = \mathcal{K}_2$ . (ii) By the definiton of  $\mathcal{J}_i$ , we have

$$|\mathcal{J}_3| = \binom{n-1}{k-1} - \binom{n-k-1}{k-1} - \binom{n-k-2}{k-2} - \binom{n-k-3}{k-3} + 3.$$
(2)

(iii) Comparing the right hand sides of (1) and (2), we can see that if  $2k + 1 \le n \le 3k - 3$ , then  $|\mathcal{K}_2| \ge |\mathcal{J}_3|$ , the equality holds only for k = 4; and if  $n \ge 3k - 2$ , then  $|\mathcal{K}_2| < |\mathcal{J}_3|$ .

By Fact 2.1, we may assume that for any x, at least 3 sets in  $\mathcal{H}$  do not contain x. To show Theorem 1.5, it is sufficient to show the following result.

**Theorem 2.2.** Let  $k \ge 4, n \ge 2k + 1$  and  $\mathcal{H} \subseteq {\binom{[n]}{k}}$  be an intersecting family which is not EKR, not HM and  $\mathcal{H} \not\subseteq \mathcal{J}_2$  (in addition  $\mathcal{H} \not\subseteq \mathcal{G}_2, \mathcal{H} \not\subseteq \mathcal{G}_3$  if k = 4). Moreover, for any  $x \in [n]$ , there are at least 3 sets in  $\mathcal{H}$  not containing x. Then

$$|\mathcal{H}| \le \binom{n-1}{k-1} - \binom{n-k-1}{k-1} - \binom{n-k-2}{k-2} - \binom{n-k-3}{k-3} + 3.$$

Moreover if  $k \neq 5$ , the equality holds only for  $\mathcal{H} = \mathcal{J}_3$ ; if k = 5, the equality holds for  $\mathcal{H} = \mathcal{J}_3$  or  $\mathcal{G}_4$ .

From now on, we always assume that  $\mathcal{H}$  is a maximum intersecting family which satisfies the conditions of Theorem 2.2, that is  $\mathcal{H}$  is not EKR, not HM,  $\mathcal{H} \not\subseteq \mathcal{J}_2$  (in addition  $\mathcal{H} \not\subseteq \mathcal{G}_2, \mathcal{H} \not\subseteq \mathcal{G}_3$  if k = 4) and for any  $x \in [n]$ , there are at least 3 sets in  $\mathcal{H}$ not containing x.

We first give some definition related to the shifting method. For x and  $y \in [n], x < y$ , and  $F \in \mathcal{F}$ , we call the following operation a *shift*:

$$S_{xy}(F) = \begin{cases} (F \setminus \{y\}) \cup \{x\}, & \text{if } x \notin F, y \in F \text{ and } (F \setminus \{y\}) \cup \{x\} \notin \mathcal{F}; \\ F, & \text{otherwise.} \end{cases}$$

We say that F is stable under the shift  $S_{xy}$  if  $S_{xy}(F) = F$ . If  $z \in F$  and  $z \in S_{xy}(F)$ still, we say that F is stable at z after the shift  $S_{xy}$ . For a family  $\mathcal{F}$ , we define

$$S_{xy}(\mathcal{F}) = \{ S_{xy}(F) : F \in \mathcal{F} \}.$$

Clearly,  $|S_{xy}(\mathcal{F})| = |\mathcal{F}|$ . We say that  $\mathcal{F}$  is *stable* if  $S_{xy}(\mathcal{F}) = \mathcal{F}$  for all  $x, y \in [n]$  with x < y.

An important property shown in [4] is that if  $\mathcal{F}$  is intersecting, then  $S_{xy}(\mathcal{F})$  is still intersecting. Let us rewrite is as a remark.

**Remark 2.3.** [4] If  $\mathcal{F}$  is a maximum intersecting family, then  $S_{xy}(\mathcal{F})$  is still a maximum intersecting family.

This property guarantees that performing shifts repeatedly to a maximum intersecting family will yield a stable maximum intersecting family. The main difficulty we need to overcome is to guarantee that we can get a stable maximum intersecting family with further properties: not EKR, not HM,  $\not\subseteq \mathcal{J}_2$  (in addition  $\not\subseteq \mathcal{G}_2, \not\subseteq \mathcal{G}_3$  if k = 4). The following facts and lemmas are for this purpose.

**Fact 2.4.** The following properties hold. (i) If  $S_{xy}(\mathcal{H})$  is EKR (or HM), then x must be the center. (ii) If  $S_{xy}(\mathcal{H}) \subseteq \mathcal{G}_2$ , then the core is  $\{x, x_1, x_2\}$  for some  $x_1, x_2 \in [n] \setminus \{x, y\}$ . (iii) If  $S_{xy}(\mathcal{H}) \subseteq \mathcal{J}_2$ , then x is the center. (iv) If  $S_{xy}(\mathcal{H}) \subseteq \mathcal{G}_3$ , then x is the center or x is in the core. *Proof.* For (i) and (ii), Han and Kohaykawa proved them in [8]. We prove (iii) and (iv) only.

For (iii), suppose that  $S_{xy}(\mathcal{H}) \subseteq \mathcal{J}_2$  at center  $z \in [n] \setminus \{x\}$ . Since  $\mathcal{H} \not\subseteq \mathcal{J}_2$  at z, there are at least three sets  $E_1, E_2$  and  $E_3$  in  $\mathcal{H}$  missing z, after doing the shift  $S_{xy}$ , these 3 sets still miss z, so  $S_{xy}(\mathcal{H})$  is not contained in  $\mathcal{J}_2$  center at z.

For (iv), let  $S_{xy}(\mathcal{H}) \subseteq \mathcal{G}_3$  at center  $x_0$  and core  $E = \{x_1, x_2, x_3\}$ , and let  $B = \{x_0, x_1, x_2, x_3\}$ . Since  $\mathcal{H} \not\subseteq \mathcal{G}_3$ , there is a set  $G \in \mathcal{H}$  that satisfies one of the following two cases: (a)  $\{y, x_0\} \subseteq G, G \cap E = \emptyset$ ; (b)  $y \in G, x_0 \notin G, |G \cap E| \in \{1, 2\}$ . If (a) holds, then  $x \neq x_0$  and x must be in the core,  $y \notin B$ . If (b) holds, then either  $x = x_0$  is the center or x is in the core and  $y \notin B$ .

**Remark 2.5.** By Fact 2.4, if applying  $S_{x'y'}(x' < y')$  repeatedly to  $\mathcal{H}$ , we may reach a family which belong to one of the following cases.

Case 1: a family  $\mathcal{H}_1$  such that  $S_{xy}(\mathcal{H}_1)$  is EKR with center x;

Case 2: a family  $\mathcal{H}_2$  such that  $S_{xy}(\mathcal{H}_2)$  is HM with center x;

Case 3: a family  $\mathcal{H}_3$  such that  $S_{xy}(\mathcal{H}_3) \subseteq \mathcal{J}_2$  with center x;

Case 4: a family  $\mathcal{H}_4$  such that  $S_{xy}(\mathcal{H}_4) \subseteq \mathcal{G}_2$  with core  $\{x, x_1, x_2\}$  for some  $\{x_1, x_2\} \in X \setminus \{x, y\}$  (k = 4 only);

Case 5: a family  $\mathcal{H}_5$  such that  $S_{xy}(\mathcal{H}_5) \subseteq \mathcal{G}_3$  with center x or x being in the core (k = 4 only);

Case 6: a stable family  $\mathcal{H}_6$  satisfies the conditions of Theorem 2.2, that is we will not meet Cases 1-5 after doing all shifts.

By Remark 2.3, we know that for any shift  $S_{xy}$  on [n] we have  $|S_{xy}(\mathcal{H})| = |\mathcal{H}|$  and  $S_{xy}(\mathcal{H})$  is also intersecting. We hope to get a stable family satisfying the conditions of Theorem 2.2 after some shifts, that is neither EKR, nor HM, nor contained in  $\mathcal{J}_2$  (nor in  $\mathcal{G}_2$ ,  $\mathcal{G}_3$  if k = 4). By Fact 2.1, we can assume that a family  $\mathcal{G}$  obtained by performing shifts to  $\mathcal{H}$  has the property that for any x, at least 3 sets in  $\mathcal{G}$  do not contain x. What we are going to do is: If any case of Cases 1-5 happens, we will not perform  $S_{xy}$ . Instead we will adjust the shifts as shown in Lemma 2.6 to guarantee that the terminating family is a stable family satisfying the conditions of Theorem 2.2. We will prove the following two crucial lemmas in Section 3.

**Lemma 2.6.** Let  $i \in [5]$ . If we reach  $\mathcal{H}_i$  in Case i in Remark 2.5, then there is a set  $X_i \subseteq [n]$  with  $|X_i| \leq 5$  (when  $k \geq 5$ ,  $|X_i| \leq 3$  for  $i \in [3]$ ), such that after a series of shifts  $S_{x'y'}(x' < y' \text{ and } x', y' \in [n] \setminus X_i)$  to  $\mathcal{H}_i$ , we can reach a stable family satisfying the conditions of Theorem 2.2. Moreover, for any set G in the final family  $\mathcal{G}$ , we have  $G \cap X_i \neq \emptyset$ .

From now on, let  $X_i$  be the corresponding sets in Lemma 2.6 for  $1 \le i \le 5$  and  $X_6 = \emptyset$ . For  $k \ge 5$  and  $i \in \{1, 2, 3, 6\}$ , let  $Y_i$  be the set of the first  $2k - |X_i|$  elements of  $[n] \setminus X_i$ , and for k = 4 and  $i \in \{1, 2, 3, 4, 5, 6\}$ , let  $Y_i$  be the first  $9 - |X_i|$  elements of  $[n] \setminus X_i$ . Let  $Y = Y_i \cup X_i$ , then  $|Y_i| \ge 2k - 4$  and |Y| = 2k if  $k \ge 5$ . If k = 4 then |Y| = 9. Let

$$\mathcal{A}_i := \{ G \cap Y : G \in \mathcal{G}, |G \cap Y| = i \},\$$

$$\widetilde{\mathcal{A}}_i := \{G : G \in \mathcal{G}, |G \cap Y| = i\}.$$

**Lemma 2.7.** Let  $\mathcal{G}$  be the final stable family guaranteed by Lemma 2.6 satisfying the conditions of Theorem 2.2, and let  $X_i$  be inherit from Lemma 2.6. In other words,  $\mathcal{G}$  is stable;  $\mathcal{G}$  is neither EKR, nor HM, nor contained in  $\mathcal{J}_2$  (nor in  $\mathcal{G}_2$ ,  $\mathcal{G}_3$  if k = 4); for any  $x \in [n]$ , there are at least 3 sets in  $\mathcal{G}$  not containing x; and  $G \cap X_i \neq \emptyset$  for any  $G \in \mathcal{G}$ . Then

(i)  $\mathcal{A}_1 = \emptyset$ .

(ii) For all G and  $G' \in \mathcal{G}$ , we have  $G \cap G' \cap Y \neq \emptyset$ , or equivalently,  $\bigcup_{i=2}^{k} \mathcal{A}_i \cup \mathcal{G}$  is intersecting.

#### 2.1 Quantitative Part of Theorem 2.2

**Lemma 2.8.** For k = 4, we have  $|\mathcal{A}_1| = 0$ ,  $|\mathcal{A}_2| \le 3$ ,  $|\mathcal{A}_3| \le 18$  and  $|\mathcal{A}_4| \le 50$ . For  $k \ge 5$ , we have

$$|\mathcal{A}_{i}| \leq \binom{2k-1}{i-1} - \binom{k-1}{i-1} - \binom{k-2}{i-2} - \binom{k-3}{i-3}, \ 1 \leq i \leq k-1,$$
$$|\mathcal{A}_{k}| \leq \frac{1}{2}\binom{2k}{k} = \binom{2k-1}{k-1} - \binom{k-1}{k-1} - \binom{k-2}{k-2} - \binom{k-3}{k-3} + 3.$$

*Proof.* By Lemma 2.7 (i), we have  $|\mathcal{A}_1| = 0$ .

First consider k = 4. If  $|\mathcal{A}_2| \ge 4$ , since  $\mathcal{A}_2$  is intersecting, it must be a star. Let its center be x. Since  $\mathcal{A}_2 \cup \mathcal{A}_3 \cup \mathcal{A}_4$  is intersecting,  $\mathcal{A}_3$  must be a star with center x and there is at most one set in  $\mathcal{A}_4$  missing x, this implies that  $\mathcal{G}$  is EKR or HM, which contradicts the fact that  $\mathcal{G}$  is neither EKR nor HM.

Suppose that  $|\mathcal{A}_3| \geq 19$ . By Theorem 1.3,  $\mathcal{A}_3$  must be EKR, HM or  $\mathcal{G}_2$ .

If  $\mathcal{A}_3$  is EKR with center x, then since  $\mathcal{G}$  is not EKR and  $\mathcal{A}_1 = \emptyset$ , there must exist  $G \in \mathcal{G}$ , such that either  $x \notin G$  and  $G \cap Y \in \mathcal{A}_2$ , or  $x \notin G$  and  $G \cap Y \in \mathcal{A}_4$ . If the former holds, by the intersecting property of  $\mathcal{A}_2 \cup \mathcal{A}_3$ , every set in  $\mathcal{A}_3$  must contain at least one of the elements in  $G \cap Y$ , so  $|\mathcal{A}_3| \leq 13$ , a contradiction. Otherwise, the latter holds and  $\mathcal{A}_2$  is a star with center x, and all sets of  $\mathcal{G}$  missing x lie in Y completely. Recall that the number of these sets is at leat 3, say  $x \notin G_1, G_2, G_3 \in \mathcal{G}$ . Since  $\mathcal{G}$  is not  $\mathcal{G}_3$ , it's impossible that  $G_1, G_2, G_3$  form a 3-star (each member contains a fixed 3-set). If any two sets in  $G_1, G_2, G_3$  intersect at 3 vertices, then  $G_1, G_2, G_3$  must be a 2-star. Since  $\mathcal{A}_3 \cup \mathcal{A}_4$  is intersecting, calculating directly the number of triples of Y containing x and intersecting with  $G_1, G_2$  and  $G_3$ , we have  $|\mathcal{A}_3| \leq 16$ , a contradiction. Otherwise, there are two members, w.l.o.g., say,  $G_1, G_2$ , such that  $|G_1 \cap G_2| = 2$ . Since  $\mathcal{A}_3 \cup \mathcal{A}_4$  is intersecting, calculating directly the number of triples of Y containing x and intersecting with  $G_1$  and  $G_2$ , we have  $|\mathcal{A}_3| \leq 17$ , also a contradiction.

If  $\mathcal{A}_3$  is HM with center x, let  $\{z_1, z_2, z_3\} \in \mathcal{A}_3$ . By Theorem 1.2, we have  $|\mathcal{A}_3| \leq 19$ , so we may assume  $|\mathcal{A}_3| = 19$  and  $\mathcal{A}_3$  is isomorphic to HM(9,3). Suppose

that there is a set G such that  $x \notin G, G \cap Y \in \mathcal{A}_2$ , w.l.o.g., assume  $z_1 \notin G$ . Since  $|Y \setminus (\{x, z_1, z_2, z_3\} \cup G)| \geq 3$ , there is  $a \in Y \setminus (\{x, z_1, z_2, z_3\} \cup G)$  such that  $\{x, z_1, a\} \cap G = \emptyset$ . By the intersecting property of  $\mathcal{A}_3 \cup \mathcal{A}_4$ , we have  $\{x, z_1, a\} \notin \mathcal{A}_3$ , so  $|\mathcal{A}_3| < 19$ , a contradiction. Now we may assume that  $\mathcal{A}_2$  is a star with center x. Since  $\mathcal{G}$  is neither HM nor contained in  $\mathcal{G}_3$ , there must be a 4-set G in  $\mathcal{A}_4$  such that either  $x \notin G$  and  $1 \leq |G \cap \{z_1, z_2, z_3\}| \leq 2$ , w.l.o.g., assume  $z_1 \notin G$  or  $x \in G$  and  $|G \cap \{z_1, z_2, z_3\}| = 0$ . But since  $\mathcal{A}_3 \cup \mathcal{A}_4$  is intersecting, the latter case will not happen. Assume the former holds. Since  $|Y \setminus (\{x, z_1, z_2, z_3\} \cup G)| \geq 2$ , there is  $a \in Y \setminus (\{x, z_1, z_2, z_3\} \cup G)$  such that  $\{x, z_1, a\} \cap G = \emptyset$ . By the intersecting property of  $\mathcal{A}_3 \cup \mathcal{A}_4$ , we have  $\{x, z_1, a\} \notin \mathcal{A}_3$ , so  $|\mathcal{A}_3| < 19$ .

At last, assume that  $\mathcal{A}_3 \subseteq \mathcal{G}_2$  with core  $\{x_1, x_2, x_3\}$ . Since  $\mathcal{A}_3$  is intersecting, by calculating the number of triples in Y containing at least 2 vertices in core  $\{x_1, x_2, x_3\}$ , we have  $|\mathcal{A}_3| \leq 19$ , so we may assume that  $|\mathcal{A}_3| = 19$ . Since  $\mathcal{G} \not\subseteq \mathcal{G}_2$ , there exists a set  $G \in \mathcal{G}$  such that  $|G \cap \{x_1, x_2, x_3\}| \leq 1$ . w.l.o.g., let  $G \cap \{x_1, x_2\} = \emptyset$ . Since  $|Y \setminus (\{x_1, x_2, x_3\} \cup G)| \geq 2$ , we can pick  $a \in Y \setminus (\{x_1, x_2, x_3\} \cup G)$  such that  $G \cap$  $\{x_1, x_2, a\} = \emptyset$ . By the intersecting property of  $\mathcal{A}_3 \cup \mathcal{G}$ , we have  $\{x_1, x_2, a\} \not\in \mathcal{A}_3$ , hence  $|\mathcal{A}_3| \leq 18$ , as desired.

So we have proved that  $|\mathcal{A}_3| \leq 18$  for k = 4.

Next, we prove  $|\mathcal{A}_4| \leq 50$ . On the contrary, suppose that  $|\mathcal{A}_4| \geq 51$ . By Theorem 1.3,  $\mathcal{A}_4$  must be EKR, HM, or contained in  $\mathcal{J}_2$ ,  $\mathcal{G}_2$  or  $\mathcal{G}_3$ .

Suppose that  $\mathcal{A}_4$  is EKR at x. Since  $\mathcal{G}$  is not EKR and  $\mathcal{A}_1 = \emptyset$ , there must exist  $G \in \mathcal{G}$  such that either  $x \notin G$  and  $G \cap Y \in \mathcal{A}_2$  or  $x \notin G$  and  $G \cap Y \in \mathcal{A}_3$ . If the former holds, since  $\mathcal{A}_2 \cup \mathcal{A}_4$  is intersecting, by calculating the number of 4-sets in Y containing x and intersecting with  $G \cap Y$  directly, we have  $|\mathcal{A}_4| \leq 36$ . If the latter holds, since  $\mathcal{A}_3 \cup \mathcal{A}_4$  is intersecting, by calculating the number of 4-sets in Y containing x and intersecting with  $G \cap Y$  directly, we have  $|\mathcal{A}_4| \leq 46$ .

Suppose that  $\mathcal{A}_4$  is HM at x. Since  $\mathcal{G}$  is not HM at x, there exists  $G \in \mathcal{G}$  such that either  $x \notin G$  and  $G \cap Y \in \mathcal{A}_2$  or  $x \notin G$  and  $G \cap Y \in \mathcal{A}_3$ , since  $\mathcal{A}_4$  is HM at x and  $\mathcal{A}_2 \cup \mathcal{A}_4$  (or  $\mathcal{A}_3 \cup \mathcal{A}_4$ ) is intersecting, by calculating the number of 4-subsets containing x and intersecting with  $G \cap Y$ , and adding 1 set not containing x, we have  $|\mathcal{A}_4| \leq 37$  (or  $|\mathcal{A}_4| \leq 47$ ).

Suppose that  $\mathcal{A}_4 \subseteq \mathcal{G}_2$  with core  $\{x_1, x_2, x_3\} = A$ . By calculating the number of 4subsets in Y containing at least 2 of  $\{x_1, x_2, x_3\}$ , we have  $|\mathcal{A}_4| \leq 51$ , so we may assume  $|\mathcal{A}_4| = 51$ . Since  $\mathcal{G} \not\subseteq \mathcal{G}_2$ , there exists a set G in  $\mathcal{G}$  such that  $|G \cap A| \leq 1, G \cap Y \in \mathcal{A}_2$  or  $\mathcal{A}_3$ . w.l.o.g., let  $G \cap \{x_1, x_2\} = \emptyset$ . Since  $|Y \setminus (A \cup G)| \geq 2$ , we can pick  $a, b \in Y \setminus (A \cup G)$ such that  $(G \cap Y) \cap \{x_1, x_2, a, b\} = \emptyset$ . By the intersecting property of  $\mathcal{A}_2 \cup \mathcal{A}_3 \cup \mathcal{A}_4$ , we have  $\{x_1, x_2, a, b\} \notin \mathcal{A}_4$ . Hence  $|\mathcal{A}_4| \leq 50$ , as desired.

Suppose that  $\mathcal{A}_4 \subseteq \mathcal{G}_3$  with core  $\{x_1, x_2, x_3\}$  and center x. By direct calculation,  $|\mathcal{A}_4| \leq 51$ , so we may assume  $|\mathcal{A}_4| = 51$  and  $\mathcal{A}_4 = \mathcal{G}_3$ . Since  $\mathcal{G} \not\subseteq \mathcal{G}_3$ , there must be  $G \in \mathcal{G}$  and  $G \cap Y \in \mathcal{A}_2$  or  $\mathcal{A}_3$ , such that either  $x \notin G$  and  $\{x_1, x_2, x_3\} \not\subseteq G \cap Y$  or  $x \in G$  and  $\{x_1, x_2, x_3\} \cap (G \cap Y) = \emptyset$ . By the intersecting property of  $\mathcal{A}_2 \cup \mathcal{A}_3 \cup \mathcal{A}_4$ , in either case, we have  $\mathcal{A}_4 \neq \mathcal{G}_3$  and  $|\mathcal{A}_4| < 51$ .

At last, suppose that  $\mathcal{A}_4 \subseteq \mathcal{J}_2$  with center x, kernel  $\{x_1, x_2, x_3\}$  and the set of

pages  $\{x_4, x_5\}$ . By Theorem 1.4, we may assume  $|\mathcal{A}_4| = 51$  and  $\mathcal{A}_4 = \mathcal{J}_2$ . Since  $\mathcal{A}_2 \cup \mathcal{A}_3 \cup \mathcal{A}_4$  is intersecting, there is no member in  $\mathcal{A}_2$  or  $\mathcal{A}_3$  avoiding x. And each member in  $\mathcal{A}_2$  must interset with  $\{x_1, x_2, x_3\}$ , each member in  $\mathcal{A}_3$  must interset with  $\{x_1, x_2, x_3\}$  or contain  $\{x_4, x_5\}$ , to satisfy these conditions, G must be contained in  $\mathcal{J}_2$ , a contradiction.

So we have proved that  $\mathcal{A}_4 \leq 50$  for k = 4.

Next consider  $k \ge 5$ . Suppose on the contrary that there exists  $i \in \{2, \ldots, k-1\}$  such that

$$|\mathcal{A}_{i}| > \binom{2k-1}{i-1} - \binom{k-1}{i-1} - \binom{k-2}{i-2} - \binom{k-3}{i-3}.$$
(3)

Note that for i = 2,

$$\binom{2k-1}{i-1} - \binom{k-1}{i-1} - \binom{k-2}{i-2} - \binom{k-3}{i-3} = k-1.$$

If  $|\mathcal{A}_2| \geq k \ (k \geq 5)$ , then  $\mathcal{A}_2$  is EKR, moreover, since  $\mathcal{A}_2 \cup \mathcal{G}$  is intersecting,  $\mathcal{G}$  must be EKR or HM, a contradiction. Hence  $|\mathcal{A}_2| \leq k - 1$ , as desired.

Now consider  $i \geq 3$ . Under the assumption (3), we claim that

$$|\mathcal{A}_i| > \binom{2k-1}{i-1} - \binom{2k-i-1}{i-1} - \binom{2k-i-2}{i-2} + 2.$$
(4)

Let us explain inequality (4). We write

$$\binom{2k-i-2}{i-2} = \binom{2k-i-3}{i-2} + \binom{2k-i-3}{i-3}.$$
(5)

For  $k \ge 5$  and  $3 \le i \le k - 1$ , we have

$$\binom{2k-1-i}{i-1} - \binom{k-1}{i-1} = \binom{k-1}{i-2} + \binom{k}{i-2} + \dots + \binom{2k-2-i}{i-2} \ge 4, \quad (6)$$

$$\binom{2k-i-3}{i-2} - \binom{k-2}{i-2} \ge 0, \quad \binom{2k-i-3}{i-3} - \binom{k-3}{i-3} \ge 0, \tag{7}$$

Combining (3), (5), (6) and (7), we obtain (4). Since  $\mathcal{A}_i$  is intersecting, we may assume, by Theorem 1.3 that  $\mathcal{A}_i$  is EKR or HM or for i = 3,  $\mathcal{A}_i \subseteq \mathcal{G}_2$ .

Case (i):  $\mathcal{A}_i$  is EKR or HM at center x.

In this case  $\mathcal{A}_i$  contains at most 1 *i*-set missing *x*. Recall that there are at least three sets missing *x* in  $\mathcal{G}$ . Pick three sets  $G_1, G_2, G_3 \in \mathcal{G}$  missing *x*. Denote





Clearly,  $t + t_1 + t_4 + t_5 \leq k$ ,  $t + t_2 + t_4 + t_6 \leq k$ ,  $t + t_3 + t_5 + t_6 \leq k$ . By Lemma 2.7  $\mathcal{A}_i \cup \{G_1 \cap Y, G_2 \cap Y, G_3 \cap Y\}$  is intersecting. Applying Inclusion-Exclusion principle, we have

$$\mathcal{A}_{i} \leq \binom{2k-1}{i-1} - \binom{2k-1-t-t_{1}-t_{4}-t_{5}}{i-1} - \binom{2k-1-t-t_{2}-t_{4}-t_{6}}{i-1} \\ -\binom{2k-1-t-t_{3}-t_{5}-t_{6}}{i-1} + \binom{2k-1-t-t_{1}-t_{2}-t_{4}-t_{5}-t_{6}}{i-1} \\ + \binom{2k-1-t-t_{1}-t_{3}-t_{4}-t_{5}-t_{6}}{i-1} + \binom{2k-1-t-t_{2}-t_{3}-t_{4}-t_{5}-t_{6}}{i-1} \\ -\binom{2k-1-t-t_{1}-t_{2}-t_{3}-t_{4}-t_{5}-t_{6}}{i-1} + c, \end{cases}$$
(8)

where c = 0 (if  $\mathcal{A}_i$  is EKR) or 1 (if  $\mathcal{A}_i$  is HM). Denote the right side of equality (8) by f. We rewrite it as

$$f = \binom{2k-1}{i-1} - \binom{2k-2-t-t_1-t_4-t_5}{i-2} - \dots - \binom{2k-1-t-t_1-t_3-t_4-t_5-t_6}{i-2} - \binom{2k-2-t-t_2-t_4-t_6}{i-2} - \dots - \binom{2k-1-t-t_1-t_2-t_4-t_5-t_6}{i-2} - \binom{2k-2-t-t_3-t_5-t_6}{i-2} - \dots - \binom{2k-1-t-t_2-t_3-t_4-t_5-t_6}{i-2} - \binom{2k-1-t-t_2-t_3-t_4-t_5-t_6}{i-2} + c.$$

$$(9)$$

We can see that the right side of (9), consequently (8) does not decrease as  $t+t_1+t_4+t_5, t+t_2+t_4+t_6, t+t_3+t_5+t_6$  increase. Since  $t+t_1+t_4+t_5, t+t_2+t_4+t_6, t+t_3+t_5+t_6 \le k$ , we can substitute  $t+t_1+t_4+t_5 = k, t_2+t_4+t_6 = k-t, t_3+t_5+t_6 = k-t$  into

inequality (8), and this will not decrease f. So we have

$$\begin{aligned} |\mathcal{A}_{i}| &\leq \binom{2k-1}{i-1} - 3\binom{k-1}{i-1} + \binom{t+t_{4}-1}{i-1} + \binom{t+t_{5}-1}{i-1} + \binom{t+t_{6}-1}{i-1} \\ &- \binom{t+t_{5}-t_{2}-1}{i-1} + c \\ &= \binom{2k-1}{i-1} - 3\binom{k-1}{i-1} + \binom{t+t_{4}-1}{i-1} + \binom{t+t_{6}-1}{i-1} + \binom{t+t_{5}-2}{i-2} \quad (10) \\ &+ \dots + \binom{t+t_{5}-t_{2}-1}{i-2} + c \\ &\triangleq g. \end{aligned}$$

Clearly, g does not decrease as  $t+t_4, t+t_5, t+t_6$  increase and  $t+t_4 \le k-1, t+t_5 \le k-1$  $t+t_6 \le k-1$ . If  $t+t_5 - t_2 - 1 \ge k-3$ , then

$$\begin{aligned} |\mathcal{A}_{i}| &\leq \binom{2k-1}{i-1} - 3\binom{k-1}{i-1} + 3\binom{k-2}{i-1} - \binom{k-3}{i-1} + c \\ &= \binom{2k-1}{i-1} - \binom{k-1}{i-1} - \binom{k-2}{i-2} - \binom{k-3}{i-3} + c. \end{aligned}$$

The equality holds only if t = k - 1,  $t_1 = t_2 = t_3 = 1$ ,  $t_4 = t_5 = t_6 = 0$ . If  $t + t_5 - t_2 - 1 \le k - 4$  (\*), then  $t \le k - 2$  since t = k - 1 implies  $t_5 = 0$  and combining with (\*), we have  $t_2 \ge 2$ , so  $t + t_2 \ge k + 1$ , a contradiction. Since  $t + t_4 \le k - 1$ ,  $t + t_5 \le k - 1$  and  $t + t_6 \le k - 1$ , by (9) and (10), taking  $t + t_1 + t_4 + t_5 = k$ ,  $t + t_2 + t_4 + t_6 = k$ ,  $t + t_3 + t_5 + t_6 = k$  and  $t + t_4 = k - 1$ ,  $t + t_5 = k - 1$ ,  $t + t_6 = k - 1$  (this implies that t = k - 2,  $t_4 = t_5 = t_6 = 1$  and  $t_1 = t_2 = t_3 = 0$ ) does not decrease f. So

$$g \leq \binom{2k-1}{i-1} - 3\binom{k-1}{i-1} + 3\binom{k-2}{i-1} - \binom{k-2}{i-1} + c$$
  
=  $\binom{2k-1}{i-1} - \binom{k-1}{i-1} - \binom{k-2}{i-2} - \binom{k-3}{i-3} - \binom{k-3}{i-2} + c$   
 $\leq \binom{2k-1}{i-1} - \binom{k-1}{i-1} - \binom{k-2}{i-2} - \binom{k-3}{i-3} - 2 + c.$ 

 $\operatorname{So}$ 

$$|\mathcal{A}_i| \le \binom{2k-1}{i-1} - \binom{k-1}{i-1} - \binom{k-2}{i-2} - \binom{k-3}{i-3} + c.$$

To reach c = 1, there is a set A in  $\mathcal{A}_i$  not containing x. Let  $G_1$  be such that  $G_1 \cap Y = A$ . So  $|G_1 \cap Y| = i \leq k - 1$ . This implies that  $t + t_1 + t_4 + t_5 \leq k - 1$ . In view of (8) and (9),  $|\mathcal{A}_i|$  strictly decreases as  $t + t_1 + t_4 + t_5$  strictly decreases. So we have

$$|\mathcal{A}_i| \le \binom{2k-1}{i-1} - \binom{k-1}{i-1} - \binom{k-2}{i-2} - \binom{k-3}{i-3},$$

as desired.

Case (ii): For i = 3,  $\mathcal{A}_i \subseteq \mathcal{G}_2$  with core, say  $\{x_1, x_2, x_3\}$ .

By direct calculation, we have  $|\mathcal{A}_3| \leq 3(2k-3) + 1 = 6k - 8$ . When  $k \geq 5$ , we have

$$6k - 8 < \binom{2k-1}{2} - \binom{k-1}{2} - \binom{k-2}{1} - \binom{k-3}{0},$$

as desired.

**Lemma 2.9.** Let  $\mathcal{G}$  be the final stable family as in Lemma 2.7. Then

$$|\mathcal{G}| \le \binom{n-1}{k-1} - \binom{n-k-1}{k-1} - \binom{n-k-2}{k-2} - \binom{n-k-3}{k-3} + 3.$$

*Proof.* Note that for any  $A \in \mathcal{A}_i$ , there are at most  $\binom{n-|Y|}{k-i}$  k-sets in  $\mathcal{G}$  containing A. For k = 4, we have

$$|\mathcal{G}| \leq \sum_{i=1}^{4} |\mathcal{A}_i| {n-9 \choose 4-i}.$$

By Lemma 2.8,

$$\begin{aligned} |\mathcal{G}| &\leq 3 \binom{n-9}{2} + 18 \binom{n-9}{1} + 50 \\ &= \frac{3}{2}n^2 - \frac{21}{2}n + 23 \\ &= \binom{n-1}{3} - \binom{n-5}{3} - \binom{n-6}{2} - \binom{n-7}{1} + 3. \end{aligned}$$
(11)

For  $k \geq 5$ , we have

$$\begin{aligned} |\mathcal{G}| &\leq \sum_{i=1}^{k} |\mathcal{A}_{i}| \binom{n-2k}{k-i} \\ &\leq 3 + \sum_{i=1}^{k} \left( \binom{2k-1}{i-1} - \binom{k-1}{i-1} - \binom{k-2}{i-2} - \binom{k-3}{i-3} \right) \binom{n-2k}{k-i} \\ &= \binom{n-1}{k-1} - \binom{n-k-1}{k-1} - \binom{n-k-2}{k-2} - \binom{n-k-3}{k-3} + 3. \end{aligned}$$
(12)

By Lemma 2.9, we have obtained the quantitative part of Theorem 2.2.

#### 2.2 Uniqueness Part of Theorem 2.2

Let  $\mathcal{G}$  be a k-uniform family such that the equality holds in Lemma 2.9 .We first show the structure of  $\mathcal{G}$ .

**Theorem 2.10.** Let  $\mathcal{G}$  be a family as in Lemma 2.9 such that the equality holds. If k = 5, then  $\mathcal{G} = \mathcal{J}_3$  or  $\mathcal{G}_4$ ; if  $k \neq 5$ , then  $\mathcal{G} = \mathcal{J}_3$ .

Proof. To make the equalities (11) and (12) hold, we must get all the equalities in Lemma 2.8. So  $|\mathcal{A}_2| = k - 1$ . By Lemma 2.7,  $\mathcal{A}_2$  is intersecting, so  $\mathcal{A}_2$  is a star, say with center x and leaves  $\{x_1, x_2, \ldots, x_{k-1}\}$ , or a triangle on  $\{x, y, z\}$  (only for k = 4). First consider k = 4. If  $\mathcal{A}_2$  is a triangle, then  $\mathcal{G} = \mathcal{G}_2$ , a contradiction. Otherwise,  $\mathcal{A}_2$ is a star, this implies that all sets in  $\mathcal{G}$  missing x must contain  $\{x_1, x_2, x_3\}$ , and the number of such sets is at least 3. Then either  $\mathcal{G} = \mathcal{G}_3$  or  $\mathcal{G} = \mathcal{J}_i, 3 \leq i \leq k - 1$ . By the assumption that  $\mathcal{G} \not\subseteq \mathcal{G}_3$ , the former is impossible, and the latter implies  $\mathcal{G} = \mathcal{J}_3$ . Hence, the equality in (21) holds only if  $\mathcal{G} = \mathcal{J}_3$ . For  $k \geq 5$ ,  $\mathcal{A}_2$  must be a star. Similarly, in this condition, we have either  $\mathcal{G} = \mathcal{G}_{k-1}$  or  $\mathcal{G} = \mathcal{J}_i, 3 \leq i \leq k - 1$ . In particular, for k = 5, we can see that the extremal value of  $|\mathcal{G}|$  can be achieved by  $|\mathcal{G}_4|$  and  $|\mathcal{J}_3|$ , and for k > 5, by  $|\mathcal{J}_3|$  only.

We will use some results in [8]. We say two families  $\mathcal{G}$  and  $\mathcal{F}$  are *cross-intersecting* if for any  $G \in \mathcal{G}$  and  $F \in \mathcal{F}$ ,  $G \cap F \neq \emptyset$ . We say that a family  $\mathcal{F}$  is *non-separable* if  $\mathcal{F}$  cannot be partitioned into the union of two cross-intersecting non-empty subfamilies.

**Proposition 2.11.** ([8]) Let  $r \ge 2$ . Let Z be a set of size  $m \ge 2r + 1$  and let  $A \subseteq Z$  such that  $|A| \in \{r - 1, r\}$ . Let  $\mathcal{B}$  be an r-uniform family on Z such that  $\mathcal{B} = \{B \subseteq Z : 0 < |B \cap A| < |A|\}$ . Then  $\mathcal{B}$  is non-separable.

**Lemma 2.12.** ([8]) Let  $\mathcal{F}$  be a k-uniform intersecting family. If  $k \geq 3$  and  $S_{xy}(\mathcal{F}) \in \{\mathcal{J}_2, \mathcal{G}_{k-1}, \mathcal{G}_2\}$ , then  $\mathcal{F}$  is isomorphic to  $S_{xy}(\mathcal{F})$ .

Combining with Theorem 2.10 and Lemma 2.12, the uniqueness part of Theorem 2.2 will be completed by showing the following lemma.

**Lemma 2.13.** Let  $\mathcal{F}$  be a k-uniform intersecting family. If  $k \geq 4$  and  $S_{xy}(\mathcal{F}) = \mathcal{J}_3$ , then  $\mathcal{F}$  is isomorphic to  $\mathcal{J}_3$ .

*Proof.* Assume that  $S_{xy}(\mathcal{F}) = \mathcal{J}_3$  with center  $x_0$ , kernel E and the set of pages  $\{x_1, x_2, x_3\}$ . That is

$$\mathcal{J}_3 = \{G : \{x_0, x_1, x_2, x_3\} \subseteq G\} \cup \{G : x_0 \in G, G \cap E \neq \emptyset\} \cup \{E \cup \{x_1\}, E \cup \{x_2\}, E \cup \{x_3\}\}$$

Define

$$\mathcal{B}_x := \{ G \in \mathcal{J}_3 : x \in G, y \notin G, (G \setminus x) \cup y \notin \mathcal{J}_3 \}, \\ \mathcal{C}_x := \{ G \in \mathcal{B}_x : G \in \mathcal{F} \},$$

$$\mathcal{D}_x := \{ G \in \mathcal{B}_x : G \notin \mathcal{F} \}, \\ \mathcal{B}' := \{ G \setminus \{ x \} : G \in \mathcal{B}_x \}, \\ \mathcal{C}' := \{ G \setminus \{ x \} : G \in \mathcal{C}_x \}, \\ \mathcal{D}' := \{ G \setminus \{ x \} : G \in \mathcal{D}_x \}.$$

Then  $\mathcal{B}_x = \mathcal{C}_x \sqcup \mathcal{D}_x$  and  $\mathcal{B}' = \mathcal{C}' \sqcup \mathcal{D}'$ . The definition of  $\mathcal{D}_x$  implies that for any  $G \in \mathcal{D}_x$ ,  $G \setminus \{x\} \cup \{y\} \in \mathcal{F}$ , and the definition of  $\mathcal{C}_x$  implies that for any  $G \in \mathcal{C}_x$ ,  $G \setminus \{x\} \cup \{y\} \notin \mathcal{F}$ . Clearly, only the sets in  $\mathcal{D}_x$  are in  $S_{xy}(\mathcal{F}) \setminus \mathcal{F}$ . If  $\mathcal{D}_x = \emptyset$ , then  $S_{xy}(\mathcal{F}) = \mathcal{F} = \mathcal{J}_3$ , and if  $\mathcal{C}_x = \emptyset$ , then  $\mathcal{F}$  is still  $\mathcal{J}_3$  with center y. On the other hand, notice that  $\mathcal{C}_x$  and  $\{G \setminus \{x\} \cup \{y\} : G \in \mathcal{D}_x\}$  are cross intersecting, so  $\mathcal{C}'$  and  $\mathcal{D}'$  are cross intersecting. We are going to prove that  $\mathcal{B}'$  is non-separable, this means that  $\mathcal{C}' = \emptyset$  or  $\mathcal{D}' = \emptyset$ , and hence  $\mathcal{C}_x = \emptyset$  or  $\mathcal{D}_x = \emptyset$ , we can conclude the proof. So what remains is to show the following claim.

#### Claim 2.14. $\mathcal{B}'$ is non-separable.

*Proof.* We say the shift  $S_{xy} : \mathcal{F} \to \mathcal{J}_3$  is trivial if  $\mathcal{B}_x = \emptyset$ . Let  $Z := [n] \setminus \{x, y\}$ . If r = k - 1, then  $|Z| \ge 2k + 1 - 2 = 2r + 1$ .

Let  $T_1 := \{x_0\}, T_2 := E, T_3 := \{x_1, x_2, x_3\}, T_4 := [n] \setminus (T_1 \cup T_2 \cup T_3).$ 

Since for  $x, y \in T_i$  or for  $x \in T_i, y \in T_j, i > j$ , the shift is trivial, we only need to consider the following three cases.

Case (i):  $x = x_0$  and  $y \in T_2 \cup T_3 \cup T_4$ .

If  $y \in T_3$ , let A = E, then  $\mathcal{B}' = \{B \subseteq Z : 0 < |B \cap A| < |A|\}$ . By Proposition 2.11,  $\mathcal{B}'$  is non-separable. If  $y \in T_2 \cup T_4$ , let  $A := E \setminus \{y\}$ , then  $|A| \in \{r - 1, r\}$ . Assume that  $\mathcal{B}'$  has a partition  $\mathcal{B}'_1 \cup \mathcal{B}'_2$  such that  $\mathcal{B}'_1$  and  $\mathcal{B}'_2$  are cross-intersecting. We now partition  $\mathcal{B}'$  into three parts  $\mathcal{P}_1 \sqcup \mathcal{P}_2 \sqcup \mathcal{P}_3$ , where

$$\mathcal{P}_1 := \{ B \subseteq Z : 0 < |B \cap A| < |A| \},\$$
$$\mathcal{P}_2 := \{ B \in \mathcal{B}' : B \cap A = \emptyset \} = \{ T_3 \cup F : F \subseteq T_4 \setminus \{y\}, |F| = k - 4 \},\$$

and

$$\mathcal{P}_3 := \{ B \in \mathcal{B}' : A \subseteq B \} = \begin{cases} \{ A \cup \{ z \} : z \in T_4 \}, & y \in T_2; \\ \{ A \}, & y \in T_4. \end{cases}$$

Obviously,  $\mathcal{P}_1 \neq \emptyset$ . By Proposition 2.11,  $\mathcal{P}_1$  is non-separable. For any  $P \in \mathcal{P}_2$ , and any  $a \in A$ , we have  $|Z \setminus \{a\}| \geq 2r$ , then in  $\mathcal{P}_1$  we can always find  $P' \subseteq Z \setminus (\{a\} \cup P)$ such that  $0 < |P' \cap A| < |A|$  and  $P \cap P' = \emptyset$ . This implies that P and P' must be in the same  $\mathcal{B}'_i$  (i = 1 or 2)(recall that we assumed that  $\mathcal{B}'$  has a partition  $\mathcal{B}'_1 \cup \mathcal{B}'_2$  such that  $\mathcal{B}'_1$  and  $\mathcal{B}'_2$  are cross-intersecting), hence  $\mathcal{P}_1$  and  $\mathcal{P}_2$  are in the same  $\mathcal{B}'_i$ . For any  $P \in \mathcal{P}_3$ , we have  $|P \cap T_4| \leq 1$ . Since  $|T_4| \geq k - 2$ , there is a (k - 4)-set  $F \subseteq T_4 \setminus \{y\}$ , such that  $P \cap F = \emptyset$ . Note that  $P' := F \cup T_3 \in \mathcal{P}_2$  and  $P' \cap P = \emptyset$ , so  $\mathcal{P}_2$  and  $\mathcal{P}_3$  are in the same  $\mathcal{B}'_i$ . Hence  $\mathcal{B}' = \mathcal{B}'_1$  or  $\mathcal{B}'_2$ , as desired.

Case (ii):  $x \in T_2$  and  $y \in T_3 \cup T_4$ .

Let  $E_i := (E \cup \{x_i\}) \setminus \{x\}, i = 1, 2, 3.$ If  $y \in T_4$ , then

$$\mathcal{B}' = \{E_1, E_2, E_3\} \cup \left\{ G \in \binom{[n] \setminus \{x\}}{k-1} : x_0 \in G, G \cap E = \emptyset, |G \cap T_3| \le 2, y \notin G \right\}.$$

Since  $|T_4 \setminus \{y\}| \ge k - 3$ , there is  $P \in \mathcal{B}' \setminus \{E_1, E_2\}$ , such that  $P \cap E_1 = P \cap E_2 = \emptyset$ . Hence,  $E_1$  and  $E_2$  belong to the same part  $\mathcal{B}'_i$ . Similarly,  $E_1$  and  $E_3$  belong to the same part. Thus  $E_1, E_2$  and  $E_3$  are in the same  $\mathcal{B}'_i$ . Moreover, for any  $P' \in \mathcal{B}' \setminus \{E_1, E_2, E_3\}$ , because  $|P' \cap \{x_1, x_2, x_3\}| \le 2$ , we have  $P' \cap E_1 = \emptyset$ , or  $P' \cap E_2 = \emptyset$  or  $P' \cap E_3 = \emptyset$ . Hence,  $\mathcal{B}'$  is non-separable, as desired.

If  $y \in T_3$ , w.l.o.g., let  $y = x_1$ . Then

$$\mathcal{B}' = \{E_2, E_3\} \cup \left\{ G \in \binom{[n] \setminus \{x\}}{k-1} : x_0 \in G, G \cap E = \emptyset, |G \cap T_3| \le 1, y \notin G \right\}.$$

Since  $|T_4| \ge k-2$ , there exists  $P \in \mathcal{B}' \setminus \{E_2, E_3\}$  such that  $P \cap T_3 = \emptyset$ , then  $P \cap E_2 = \emptyset$ , and  $P \cap E_3 = \emptyset$ , this implies that  $E_2$  and  $E_3$  are in the same  $\mathcal{B}'_i$ . Because  $|G \cap T_3| \le 1$ and  $G \cap E = \emptyset$ , it's not hard to see that each  $P \in \mathcal{B}' \setminus \{E_2, E_3\}$  is disjoint from one of  $E_2$  and  $E_3$ . Hence  $\mathcal{B}'$  is non-separable.

Case (iii):  $x \in T_3$  and  $y \in T_4$ . w.l.o.g., let  $x = x_1$ . Under this condition,

$$\mathcal{B}' = \{E\} \cup \left\{ G \in \binom{[n] \setminus \{x\}}{k-1} : \{x_0, x_2, x_3\} \subseteq G, G \cap E = \emptyset, y \notin G \right\}.$$

Since E is disjoint from every other set in  $\mathcal{B}' \setminus \{E\}, \mathcal{B}'$  is non-separable.

The proof of Lemma 2.13 is complete.

### 3 Proofs of Lemma 2.6 and Lemma 2.7

#### 3.1 Proof of Lemma 2.6

We first show the following preliminary results. For a family  $\mathcal{F} \subseteq 2^{[n]}$  and  $x_1, x_2, x_3 \in [n]$ , let  $d_{\{x_1,x_2\}}$  be the number of sets containing  $\{x_1, x_2\}$  in  $\mathcal{F}$ , and  $d_{\{x_1,x_2,x_3\}}$  be the number of sets containing  $\{x_1, x_2, x_3\}$  in  $\mathcal{F}$ .

**Claim 3.1.** Let  $\mathcal{F} \subseteq \mathcal{G}_2$  be a 4-uniform family with core A satisfying  $d_{\{x_1,x_2\}} > 2n-7$ . Then  $\{x_1, x_2\} \subseteq A$ .

Proof. If  $\{x_1, x_2\} \subseteq [n] \setminus A$ , then a set in  $\mathcal{F}$  containing  $\{x_1, x_2\}$  must have two elements from A, so  $d_{(x_1, x_2)} \leq 3$ , a contraction. If  $|\{x_1, x_2\} \cap A| = 1$ , then a set in  $\mathcal{F}$  containing  $\{x_1, x_2\}$  must have at least one element from A, so  $d_{(x_1, x_2)} \leq 2n - 7$ , a contraction again. So  $\{x_1, x_2\} \subseteq A$ , as desired.  $\Box$  Claim 3.2. Let  $\mathcal{F} \subseteq \mathcal{G}_3$  be a 4-uniform family with center x and core E and let  $B = \{x\} \cup E$ . (i) If  $d_{\{x_1,x_2\}} \geq 3n - 12$ , then  $x \in \{x_1, x_2\}$ .

(ii) If  $d_{\{x_1,x_2\}} > 3n - 12$ , then  $\{x_1,x_2\} \subseteq B$  and  $x \in \{x_1,x_2\}$ .

Proof. For (i), assume that  $x \notin \{x_1, x_2\}$ . If  $\{x_1, x_2\} \cap B = \emptyset$ , then the sets containing  $\{x_1, x_2\}$  must contain the center x and another vertex from core E, so  $d_{(x_1, x_2)} \leq 3 < 3n - 12$ , a contradiction. So  $\{x_1, x_2\} \subseteq E$  or  $|\{x_1, x_2\} \cap E| = 1$ . If the former holds, then the sets containing  $\{x_1, x_2\}$  must contain the center x or contain the core E, so  $d_{(x_1, x_2)} \leq (n - 3) + (n - 4) = 2n - 7 < 3n - 12$ , a contradiction. If the latter holds, w.l.o.g., let  $\{x_1, x_2\} \cap E = \{x_1\}$ , then the sets containing  $\{x_1, x_2\}$  must contain the center x or just the set  $E \cup \{x_2\}$ , so  $d_{(x_1, x_2)} \leq (n - 3) + 1 < 3n - 12$ , also a contradiction. Hence,  $x \in \{x_1, x_2\}$ , as desired.

For (ii), we have shown that  $x \in \{x_1, x_2\}$  by (i), w.l.o.g, let  $x_1 = x$  be the center. If  $x_2 \notin E$ , then the sets containing  $\{x_1, x_2\}$  must intersect with E, so  $d_{(x_1, x_2)} \leq {\binom{n-2}{2} - \binom{n-5}{2}} = 3n - 12$ , a contradiction to that  $d_{\{x_1, x_2\}} > 3n - 12$ , so  $x_2 \in E$ , that is  $\{x_1, x_2\} \subseteq B$ , as desired.

**Claim 3.3.** Fix n > 6. Let  $\mathcal{F} \subseteq \mathcal{G}_3$  be a 4-uniform family with center x and core E and let  $B = \{x\} \cup E$ . If  $d_{\{x_1, x_2, x_3\}} \ge n - 3$ , then either  $\{x_1, x_2, x_3\} \subset B$  or  $|\{x_1, x_2, x_3\} \cap B| = 2$  with  $x \in \{x_1, x_2, x_3\}$ .

Proof. Suppose on the contrary that neither  $\{x_1, x_2, x_3\} \subset B$  nor  $|\{x_1, x_2, x_3\} \cap B| = 2$ with  $x \in \{x_1, x_2, x_3\}$ . Since  $\mathcal{F} \subseteq \mathcal{G}_3$ , it's easy to see that if  $\{x_1, x_2, x_3\} \subseteq [n] \setminus B$ , then  $d_{\{x_1, x_2, x_3\}} = 0$ , so  $1 \leq |\{x_1, x_2, x_3\} \cap B| \leq 2$ . First consider that  $|\{x_1, x_2, x_3\} \cap B| = 1$ . If  $\{x_1, x_2, x_3\} \cap B = \{x\}$ , then the sets containing  $\{x_1, x_2, x_3\}$  in  $\mathcal{F}$  must intersect with E, so  $d_{\{x_1, x_2, x_3\}} \leq 3 < n - 3$ , a contradiction. If  $|\{x_1, x_2, x_3\} \cap E| = 1$ , then the set containing  $\{x_1, x_2, x_3\}$  in  $\mathcal{F}$  must contain x, so  $d_{\{x_1, x_2, x_3\}} \leq 1 < n - 3$ , also a contradiction. Hence  $|\{x_1, x_2, x_3\} \cap B| = 2$ . By hypothesis,  $|\{x_1, x_2, x_3\} \cap E| = 2$ , w.l.o.g., let  $\{x_1, x_2, x_3\} \cap E = \{x_1, x_2\}$ , then  $d_{\{x_1, x_2, x_3\}} \leq 2$  since the possible sets in  $\mathcal{F}$  containing  $\{x_1, x_2, x_3\}$  are  $\{x_1, x_2, x_3\} \cup \{x\}$  and  $E \cup \{x_3\}$ , a contradiction.  $\Box$ 

Proof of Lemma 2.6. We first consider that  $k \geq 5$ .

In Case 1, i.e.,  $S_{xy}(\mathcal{H}_1)$  is EKR with center x, we take  $X_1 = \{x, y\}$ . In Case 2, since  $S_{xy}(\mathcal{H}_2)$  is HM at center x, let  $E = \{z_1, z_2, \ldots, z_k\}$  be the only member missing x, and without loss of generality, we assume  $z_1 \neq y$ , and take  $X_2 = \{x, y, z_1\}$ . In Case 3,  $S_{xy}(\mathcal{H}_3) \subseteq \mathcal{J}_2$  with center x, kernal  $\{z_1, z_2, \ldots, z_{k-1}\}$ . Without loss of generality, we assume  $z_1 \neq y$ , and take  $X_3 = \{x, y, z_1\}$ . We can see that for any set  $G \in \mathcal{H}_i$ ,  $G \cap X_i \neq \emptyset$ , for i = 1, 2, 3. After the shifts  $S_{x'y'}$  for all  $x' < y', x', y' \in [n] \setminus X_i$  to  $\mathcal{H}_i$ , the resulting family  $\mathcal{H}'_i$  satisfies that for every set  $G' \in \mathcal{H}'_i$ ,  $G' \cap X_i \neq \emptyset$ . By the maximality of  $|\mathcal{H}|$ , we may assume that all k-sets containing  $X_i$  (i = 1, 2, 3) are in  $\mathcal{H}$ , so is in  $\mathcal{H}_i$ . These sets will keep stable after any shift  $S_{x'y'}$ , so there are at least  $\binom{n-3}{k-2}$  (or  $\binom{n-4}{k-3}$ ) > 2 sets missing x' in  $\mathcal{H}'_i$ . Fact 2.4 (i), (ii) and (iii) implies that  $\mathcal{H}'_i$ is neither EKR nor HM nor contained in  $\mathcal{J}_2$ . We are done for  $k \geq 5$ . We now assume that k = 4. We will complete the proof by showing the following Lemmas corresponding to Cases 1-5 in Remark 2.5

**Lemma 3.4** (*Case 1*). If we each a 4-uniform family  $\mathcal{H}_1$  such that  $S_{xy}(\mathcal{H}_1)$  is EKR at x, then there is a set  $X_1 = \{x, y, y', z, w\}$  such that after a series of shifts  $S_{x'y'}$  (x' < y' and  $x', y' \in [n] \setminus X_1$ ) to  $\mathcal{H}_1$ , we will reach a stable family  $\mathcal{G}$  satisfying the conditions of Theorem 2.2. Moreover,  $\{y, y', z, w\}$  or  $\{x, y', z, w\}$  is in  $\mathcal{G}$ . Furthermore,  $G \cap \{x, y\} \neq \emptyset$  for any  $G \in \mathcal{G}$ .

*Proof.* Since  $S_{xy}(\mathcal{H}_1)$  is EKR, for any  $F \in \mathcal{H}_1$ , we have  $F \cap \{x, y\} \neq \emptyset$ . Any set obtained by performing shifts  $[n] \setminus \{x, y\}$  to a set in  $\mathcal{H}_1$  still contains x or y. We will show Claims 3.5, 3.6 and 3.8 implying Lemma 3.4.

**Claim 3.5.** Performing shifts in  $[n] \setminus \{x, y\}$  to  $\mathcal{H}_1$  repeatedly will not reach Cases 1-3 in Remark 2.5.

*Proof.* Since  $S_{xy}(\mathcal{H}_1)$  is EKR, for any  $G \in \mathcal{H}_1$ , we have  $G \cap \{x, y\} \neq \emptyset$ . By the maximality of  $|\mathcal{H}|$  ( $|\mathcal{H}_1|$  as well), we have

$$\left\{ G \in \binom{[n]}{k} : \{x, y\} \subseteq G \right\} \subseteq \mathcal{H}_1,$$
$$|\{G \in \mathcal{H}_1 : \{x, y\} \subseteq G\}| = \binom{n-2}{2}.$$
(13)

All these sets containing  $\{x, y\}$  are stable after performing  $S_{x'y'}$   $(x' < y', x', y' \notin \{x, y\})$ . So there are still at least  $\binom{n-3}{2} > 2$  sets missing x' after  $S_{x'y'}$ , so we will not reach *Case 1-3*.

**Claim 3.6.** If performing some shifts in  $[n] \setminus \{x, y\}$  repeatedly to  $\mathcal{H}_1$  reaches  $\mathcal{H}_4$  in Case 4( $S_{x'y'}(\mathcal{H}_4) \subseteq \mathcal{G}_2$ ), then there exists  $X_1 = \{x, y, y', z, w\}$  such that performing shifts in  $[n] \setminus X_1$  repeatedly to  $\mathcal{H}_4$  will not reach Cases 1-5 as in Remark 2.5, and  $\{y, y', z, w\}$  or  $\{x, y', z, w\}$  is in the final stable family  $\mathcal{G}$ .

Proof. Assume that after some shifts in  $[n] \setminus \{x, y\}$  to  $\mathcal{H}_1$ , we get  $\mathcal{H}_4$  such that  $S_{x'y'}(\mathcal{H}_4) \subseteq \mathcal{G}_2$  with core A. Since there are  $\binom{n-2}{2}$  sets containing  $\{x, y\}$  in  $\mathcal{H}_1$  and they are stable (so in  $\mathcal{H}_4$ ), and  $\binom{n-2}{2} > 2n-7$   $(n \geq 6)$ , by Fact 2.4 (ii) and Claim 3.1,  $A = \{x', x, y\}$ . Since  $S_{x'y'}(\mathcal{H}_4) \subseteq \mathcal{G}_2$  with core  $\{x', x, y\}$ , there exists  $\{y, y', z_1, w_1\}$  (or  $\{x, y', z_2, w_2\}$ ) in  $\mathcal{H}_4$ . Let  $X_1 := \{x, y, y', z_1, w_1\}$  (or  $X_1 := \{x, y, y', z_2, w_2\}$ ). Clearly, any set containing  $\{x, y\}$  and missing  $x'' \in [n] \setminus X_1$  are stable after performing shifts in  $[n] \setminus X_1$  repeatedly to  $\mathcal{H}_4$ , so performing shifts  $S_{x''y''}, x'', y'' \in [n] \setminus X_1$  to  $\mathcal{H}_4$  will not reach Cases 1-3. If we reach Case 4, that is we get a family  $\mathcal{H}'_4$ , such that  $S_{x''y''}(\mathcal{H}'_4) \subseteq \mathcal{G}_2$  with core A'. By Fact 2.4 and Claim 3.1, we have  $A' = \{x'', x, y\}$ . However,  $\{y, y', z_1, w_1\}$  (or  $\{x, y', z_2, w_2\}$ ) is stable under all the shifts in  $[n] \setminus X_1$ , so it is still in  $S_{x''y''}(\mathcal{H}'_4)$ , contradicting that  $S_{x''y''}(\mathcal{H}'_4) \subseteq \mathcal{G}_2$  with core  $\{x'', x, y\}$ . Thus we can not reach Case 4.

Now assume that after some shifts in  $[n] \setminus X_1$  to  $\mathcal{H}_4$ , we get  $\mathcal{H}_5$  such that  $S_{x''y''}(\mathcal{H}_5) \subseteq \mathcal{G}_3$  with center and core forming a 4-set *B* for some x'' and  $y'' \in [n] \setminus X_1$ . By Fact 2.4 (iv), (13) and Claim 3.2 (ii), we have  $\{x, y, x''\} \subseteq B$ . Since there are  $\binom{n-2}{2}$  sets which contain  $\{x, y\}$  in  $\mathcal{H}_1$  (so in  $S_{x''y''}(\mathcal{H}_5)$ ), we have one of the following cases:

(\*) x is the center, and y is in the core;

(\*\*) y is the center, and x is in the core.

Recall that there exists  $\{y, y', z_1, w_1\}$  or  $\{x, y', z_2, w_2\}$  in  $\mathcal{H}_4$ . We will meet one of the following three cases:

(a) There is no set  $G \in \mathcal{H}_4$  such that  $G \cap \{x, y, x'\} = \{x\}$ . So there exists  $\{y, y', z_1, w_1\} \in \mathcal{H}_4$ , and all sets containing  $\{x', x\}$  in  $S_{x'y'}(\mathcal{H}_4)$  are originally in  $\mathcal{H}_4$ . Take  $X_1 := \{x, y, y', z_1, w_1\}$ . By the maximality of  $|\mathcal{H}|$  (so is  $|\mathcal{H}_4|$ ), there are  $\binom{n-2}{2}$  sets containing  $\{x', x\}$  in  $\mathcal{H}_4$  (so in  $S_{x''y''}(\mathcal{H}_5)$  as well). This implies that  $x' \in E$ , and x is the center. However,  $\{y, y', z_1, w_1\}$  is contained in  $S_{x''y''}(\mathcal{H}_5)$ , a contraction to that  $S_{x''y''}(\mathcal{H}_5) \subseteq \mathcal{G}_3$  with center x and core  $\{y, x', x''\}$ .

(b) There is no set  $G \in \mathcal{H}_4$  such that  $G \cap \{x, y, x'\} = \{y\}$ . So there exists  $\{x, y', z_2, w_2\} \in \mathcal{H}_4$ , and all sets containing  $\{x', y\}$  in  $S_{x'y'}(\mathcal{H}_4)$  are originally in  $\mathcal{H}_4$ . Take  $X_1 := \{x, y, y', z_2, w_2\}$ . By the maximality of  $|\mathcal{H}|$  (so is  $|\mathcal{H}_4|$ ), there are  $\binom{n-2}{2}$  sets containing  $\{x', y\}$  in  $\mathcal{H}_4$ , so in  $S_{x''y''}(\mathcal{H}_5)$ . This implies that  $x' \in E$  and y is the center for  $S_{x''y''}(\mathcal{H}_5)$ . However,  $\{x, y', z_2, w_2\}$  is in  $S_{x''y''}(\mathcal{H}_5)$ , contradicting to that  $S_{x''y''}(\mathcal{H}_5) \subseteq \mathcal{G}_3$  at center y and core  $\{x, x', x''\}$ .

(c) There are both  $\{y, y', z_1, w_1\}$  and  $\{x, y', z_2, w_2\}$  in  $\mathcal{H}_4$ . We choose  $X_1 := \{x, y, y', z_1, w_1\}$  first. Assume that (\*) happens. Since  $\{y, y', z_1, w_1\}$  is still in  $S_{x''y''}(\mathcal{H}_5)$ , this contradicts that  $S_{x''y''}(\mathcal{H}_5) \subseteq \mathcal{G}_3$  with center x and  $\{y, x''\}$  contained in the core. So we assume that (\*\*) happens. Let  $B = \{x, y, x'', u\}$  for some u. If u = x', then the existence of  $\{y, y', z_1, w_1\}$  makes a contradiction again. Now consider  $u \neq x'$ .

Claim 3.7. If  $u \neq x'$ , then u = y'.

Proof. Assume on the contrary that  $u \neq y'$ . We have shown that  $S_{x''y''}(\mathcal{H}_5)$  can not be contained in  $\mathcal{J}_2$  at center y, then there are at least 3 sets containing  $\{x, u, x''\}$ . Although  $\{x, x', x'', u\}$  and  $\{x, y', x'', u\}$  may be two such sets, there must be  $\{x, u, x'', v\} \in$  $S_{x''y''}(\mathcal{H}_5)$  for some  $v \in [n] \setminus \{x, y, u, x', y', x''\}$ . However, every set in  $\mathcal{H}_4$  contains  $\{x, y\}$ , or  $\{x', x\}$ , or  $\{x', y\}$ , or  $\{x, y'\}$ , or  $\{y, y'\}$  by recalling that  $S_{x'y'}(\mathcal{H}_4) \subseteq \mathcal{G}_2$ with core  $\{x, y, x'\}$ , so is every set in  $S_{x''y''}(\mathcal{H}_5)$  since  $x'', y'' \in [n] \setminus \{x, y, y', z_1, w_1\}$ , a contradiction.

By Claim 3.7, we have that  $S_{x''y''}(\mathcal{H}_5) \subseteq \mathcal{G}_3$  at center y and core  $\{x, x'', y'\}$ . This time, we change  $X_1$  to  $X'_1 := \{x, y, y', z_2, w_2\}$ . Similar to the lines in the first paragraph of the proof of Claim 3.6, we will not reach *Cases 1-4* after performing shifts  $S_{x'y'}$  in  $[n] \setminus X'_1$ . If we reach *Case 5*, that is, after some shifts in  $[n] \setminus X'_1$  to  $\mathcal{H}_4$ , we get  $\mathcal{H}'_5$  such that  $S_{x''y''}(\mathcal{H}'_5) \subseteq \mathcal{G}_3$  with center and core forming a 4-set B'for some  $x''', y''' \in [n] \setminus X'_1$ . By the previous analysis,  $B' = \{x, y, x''', y'\}$ , and we only need to consider the case that x is the center (If y is the center, since  $\{y, y', z_2, w_2\}$  is still in  $S_{x'''y''}(\mathcal{H}'_5)$ , this contradicts that  $S_{x''y''}(\mathcal{H}'_5) \subseteq \mathcal{G}_3$  with center y and core  $\{x, y', x'''\}$ . We have shown that  $S_{x'y'}(\mathcal{H}_5)$  can not be contained in  $\mathcal{G}_2$  with core  $\{x, y, y'\}$ , so there is  $G \in S_{x''y''}(\mathcal{H}_5)$  such that  $G \cap \{x, y\} = \emptyset$  or  $G \cap \{x, y'\} = \emptyset$ or  $G \cap \{y, y'\} = \emptyset$ . Since  $S_{x''y''}(\mathcal{H}_5) \subseteq \mathcal{G}_3$  with core  $\{x, x'', y'\}$  and center y, Gmust contain x or y. If  $G \cap \{y, y'\} = \emptyset$ , it contradicts that  $S_{x''y''}(\mathcal{H}_5) \subseteq \mathcal{G}_3$  with core  $\{x, x'', y'\}$  and center y. So there is  $G \in S_{x''y''}(\mathcal{H}_5)$  such that  $G \cap \{x, y'\} = \emptyset$ . After shifts in  $[n] \setminus X'_1$  to G, we get G' missing x and y' still. This contradicts that  $S_{x'''y'''}(\mathcal{H}'_5) \subseteq \mathcal{G}_3$  with core  $\{y, x''', y'\}$  and center x. Hence, we will not reach Case 5.

In summary, we have shown that there exists  $X_1$  in the form of  $\{x, y, y', z, w\}$  such that performing shifts in  $[n] \setminus X_1$  repeatedly to  $\mathcal{H}_4$  will not reach *Cases 1-5* as in Remark 2.5. Moreover,  $\{y, y', z, w\}$  or  $\{x, y', z, w\}$  is in the final stable family  $\mathcal{G}$ . This completes the proof of Claim 3.6.

**Claim 3.8.** If performing some shifts in  $[n] \setminus \{x, y\}$  repeatedly to  $\mathcal{H}_1$  does not reach Cases1-4, but reaches  $\mathcal{H}_5$  in Case 5 ( $S_{x'y'}(\mathcal{H}_5) \subseteq \mathcal{G}_3$ ), then there exists  $X_1$  in the form of  $\{x, y, y', z, w\}$  such that performing shifts in  $[n] \setminus X_1$  repeatedly to  $\mathcal{H}_4$  will not reach Cases 1-5 as in Remark 2.5. Moreover,  $\{y, y', z, w\}$  or  $\{x, y', z, w\}$  is in the final stable family  $\mathcal{G}$ .

*Proof.* Suppose that we get some  $\mathcal{H}_5$  such that  $S_{x'y'}(\mathcal{H}_5) \subseteq \mathcal{G}_3$  with center and core forming a 4-set B. By (13) and Claim 3.2, the center must be x or y, and  $\{x, y\} \subset B$ . By Fact 2.4 (iv),  $X' \in B$  and  $y' \notin B$ . Let  $B = \{x, y, x', z\}$ . We consider the case that x is the center, the proof for y being the center is similar.

Since  $S_{x'y'}(\mathcal{H}_5) \subseteq \mathcal{G}_3$ , and recall that we are under Case 1, every set in  $\mathcal{H}_5$  intersects  $\{x, y\}$ , there exists  $\{y, y', z, w\}$  (or  $\{x, y', z_1, z_2\}$ )  $\in \mathcal{H}_5$ . And by the maximality of  $|\mathcal{H}|$  (so is  $|\mathcal{H}_5|$ ), we may assume that all the sets containing  $\{x, z\}$  in  $S_{x'y'}(\mathcal{H}_5)$  are originally in  $\mathcal{H}_5$ . Let  $X_1 := \{x, y, y', z, w\}$  (or  $\{x, y, y', z_1, z_2\}$ ). Similar to the analysis in the first paragraph of the proof of Claim 3.6, for any shifts  $S_{x''y''}$  to  $\mathcal{H}_5$  in  $[n] \setminus X_1$ , we won't reach *Cases 1-4*. If we reach *Case 5* again, then the resulting family  $S_{x''y''}(\mathcal{H}'_5)$  (x'' and  $y'' \in [n] \setminus X_1$ ) must be contained in  $\mathcal{G}_3$  with core  $\{y, x'', z\}$  and center x. However  $\{y, y', z, w\}$  (or  $\{x, y', z_1, z_2\}$ ) is still in  $S_{x''y''}(\mathcal{H}'_5)$ , and misses x'' and x (or  $\{x'', z, y\} \cap \{x, y', z_1, z_2\} = \emptyset$ ), contradicting that the family  $S_{x''y''}(\mathcal{H}'_5) \subseteq \mathcal{G}_3$  with core  $\{y, x'', z\}$  and center x. So we will not achieve *Case 5*, as desired.

By Claims 3.5, 3.6 and 3.8, we have shown that if we reach a 4-uniform family  $\mathcal{H}_1$  such that  $\mathcal{H}_1$  is EKR, then there exists a set  $X_1$  with  $|X_1| \leq 5$  and  $\{x, y\} \subseteq X_1$  such that performing shifts  $S_{x'y'}$  in  $[n] \setminus X_1$  repeatedly to  $\mathcal{H}_1$  will result in a stable family satisfying the conditions of Lemma 3.4. This completes the proof of Lemma 3.4.  $\Box$ 

**Lemma 3.9** (Case 2). If we each a 4-uniform family  $\mathcal{H}_2$  such that  $S_{xy}(\mathcal{H}_2)$  is HM at x, then there is a set  $X_2 = \{x, y, z_1, z_2, z_3\}$  such that after a series of shifts  $S_{x'y'}$  (x' < y' and  $x', y' \in [n] \setminus X_2$ ) to  $\mathcal{H}_2$ , we will reach a stable family  $\mathcal{G}$  satisfying the conditions of Theorem 2.2. Moreover,  $\{z_1, z_2, z_3, y\}$  or  $\{z_1, z_2, z_3, z_4'\} \in \mathcal{G}$ . Furthermore, if  $\{z_1, z_2, z_3, y\} \in \mathcal{G}$ , then every member in  $\mathcal{G}$  contains x or y. If  $\{z_1, z_2, z_3, z_4'\} \in \mathcal{G}$ , then every other member in  $\mathcal{G}$  contains x or y.

*Proof.* Note that  $S_{xy}(\mathcal{H}_2)$  contains exactly one set, say,  $G_0 = \{z_1, z_2, z_3, z_4\}$ , that misses x. W.l.o.g., let  $z_1, z_2, z_3 \neq y$ . Let  $X_2 := \{x, y, z_1, z_2, z_3\}$ . By the maximality of  $|\mathcal{H}_2|$ , we may assume

$$\left\{G \in \binom{X}{4} : \{x, y\} \subseteq G, G \cap G_0 \neq \emptyset\right\} \subseteq \mathcal{H}_2.$$

If  $y \in G_0$ , that is,  $y = z_4$ , then

$$|\{G \in \mathcal{H}_2 : \{x, y\}\}| = \binom{n-2}{2},\tag{14}$$

Otherwise,  $y \notin G_0$ . We have

$$|\{G \in \mathcal{H}_2 : \{x, y\}\}| = 4n - 18.$$
(15)

In particular,  $\{x, y, z_1, z_2\}$ ,  $\{x, y, z_1, z_3\}$  and  $\{x, y, z_2, z_3\}$  are in  $\mathcal{H}_2$ . Assume that applying shifts in  $[n] \setminus X_2$  to  $\mathcal{H}_2$ , we get  $\mathcal{H}'$ , such that  $S_{x'y'}(\mathcal{H}')$  is EKR or HM or contained in  $\mathcal{J}_2$  at center x'. However, the three sets  $\{x, y, z_1, z_2\}$ ,  $\{x, y, z_1, z_3\}$  and  $\{x, y, z_2, z_3\}$  are still in  $S_{x'y'}(\mathcal{H}')$  and they miss x', a contradiction. Thus we will not reach *Cases 1-3*.

Assume we reach *Case* 4 as in Remark 2.5, i.e.,  $S_{x'y'}(\mathcal{H}') \subseteq \mathcal{G}_2$  with core A. By (14), (15), Claim 3.1 and Fact 2.4 (ii), we have  $A = \{x, y, x'\}$ . However  $\{z_1, z_2, z_3\} \cap \{x, y, x', y'\} = \emptyset$ , after a series of shifts of  $[n] \setminus X_2$  to  $G_0 = \{z_1, z_2, z_3, z_4\}$ , we get the resulting set  $G'_0 \in \mathcal{H}'$  satisfying that  $|G'_0 \cap| \leq \{x, y, x', y'\}$ 1, a contradiction to that  $S_{x'y'}(\mathcal{H}') \subseteq \mathcal{G}_2$  with core  $\{x, y, x'\}$ . Thus we will not reach *Case* 4.

At last, assume  $S_{x'y'}(\mathcal{H}') \subseteq \mathcal{G}_3$  as in Remark 2.5 (*Case 5*) with center and core forming a 4-set *B*. By Fact 2.4 (iv),  $x' \in B$ . By Claim 3.2 (ii) and (14), (15), there are at least 4n - 18 > 3n - 12 (n > 6) sets containing  $\{x, y\}$ , so  $\{x, y, x'\} \subset B$ . And if  $\{x, y\} \subset E$ , then the number of sets containing  $\{x, y\}$  in  $\mathcal{H}'$  is at most 2n - 7, which is smaller than 4n - 18, this contradicts to (15). Thus the resulting family can only have center x or center y. First assume  $y \in G_0$ , that is  $y = z_4$  and  $G_0 = \{y, z_1, z_2, z_3\}$ . This implies that  $\{x, z_1, z_2, z_3\} \in \mathcal{H}_2$ . Both  $\{x, z_1, z_2, z_3\}$  and  $G_0 = \{z_1, z_2, z_3, z_4\}$ are stable under shifts  $S_{x'y'}(x' < y' \text{ and } x', y' \in [n] \setminus X_2$ ), so both of them are in  $S_{x'y'}(\mathcal{H}')$ . Since  $x, x' \notin G_0$  and  $S_{x'y'}(\mathcal{H}') \subseteq \mathcal{G}_3$  with  $B \supset \{x, y, x'\}$ , x can not be the center. But if y is the center, since  $x', y \notin \{x, z_1, z_2, z_3\}$ , also a contradiction. Next assume  $y \notin G_0$ . Notice that  $\{z_1, z_2, z_3\} \cap \{x, y, x', y'\} = \emptyset$ , after a series of shifts of  $[n] \setminus X_2$  to  $G_0$ , the resulting set  $G'_0 \in S_{x'y'}(\mathcal{H}')$  satisfies that  $G'_0 \cap \{x, y\} = \emptyset$ , also contradicts that  $S_{x'y'}(\mathcal{H}') \subseteq \mathcal{G}_3$  with  $B \supset \{x, y, x'\}$ , hence we will not reach *Case 5*.

Notice that if  $y \in G_0$ , we have  $\{x, z_1, z_2, z_3\} \in \mathcal{H}_2$  and  $G_0 = \{y, z_1, z_2, z_3\} \in \mathcal{H}_2$ . Note that  $\{z_1, z_2, z_3, y\}$  is stable under shifts  $S_{x'y'}$   $(x' < y' \text{ and } x', y' \in [n] \setminus X_2)$ , so  $G_0 = \{z_1, z_2, z_3, y\} \in \mathcal{G}$ . In this case, every member in  $\mathcal{H}_2$  contains x or y, Since every member in  $\mathcal{H}_2$  is stable at x and y, every member in  $\mathcal{G}$  contains x or y. If  $y \notin G_0$ , then  $G'_0 = \{z_1, z_2, z_3, z'_4\} \in \mathcal{G}$  for some  $z'_4 \neq y$ , and this is the only set in  $\mathcal{G}$  that disjoint from set  $\{x, y\}$ . **Lemma 3.10** (*Case 3*). If we each a 4-uniform  $\mathcal{H}_3$  such that  $S_{xy}(\mathcal{H}_3) \subseteq \mathcal{J}_2$  at center x, kernel E and the set of pages J, then there is a set  $X_3 = \{x, y, z_1, z_2, z_3\}$  such that after a series of shifts  $S_{x'y'}$  (x' < y' and  $x', y' \in [n] \setminus X_3$ ) to  $\mathcal{H}_3$ , we will reach a stable family  $\mathcal{G}$  satisfying the conditions of Theorem 2.2 and  $G \cap X_3 \neq \emptyset$  for any  $G \in \mathcal{G}$ . Moreover, either  $|G \cap X_3| \geq 2$  for any  $G \in \mathcal{G}$ , or  $|G \cap G'| \geq 2$  if  $G \cap X_3 = \{x\}$  and  $G' \cap X_3 = \{y\}$ .

*Proof.* We will meet one of the following three cases. Case (a):  $y \in E$ . In this case, let  $E = \{y, z_1, z_2\}, J = \{z_3, z_4\}$  and  $X_3 := \{x, y, z_1, z_2, z_3\}$ . Case (b):  $y \in J$ . In this case, let  $E = \{z_1, z_2, z_3\}, J = \{y, z_4\}$  and  $X_3 := \{x, y, z_1, z_2, z_3\}$ . Case (c):  $y \in [n] \setminus (E \cup J \cup \{x\})$ . In this case, let  $E = \{z_1, z_2, z_3\}, J = \{z_4, z_5\}$  and  $X_3 := \{x, y, z_1, z_2, z_3\}$ .

In each of the above three cases, by the maximality of  $|\mathcal{H}|$  ( $|\mathcal{H}_3|$  as well),  $\{x, y, z_1, z_2\}$ ,  $\{x, y, z_1, z_3\}$ ,  $\{x, y, z_2, z_3\}$  are in  $\mathcal{H}_3$ , and they are stable after a series of shifts in  $[n] \setminus X_3$ , so we will not reach *Cases 1-3* after performing shifts in  $[n] \setminus X_3$ . Assume that applying shifts in  $[n] \setminus X_3$  to  $\mathcal{H}_3$ , we get  $\mathcal{H}''$ , such that  $\mathcal{H}' := S_{x'y'}(\mathcal{H}'') \subseteq \mathcal{G}_2$  with core A. Similarly, by the maximality of  $|\mathcal{H}_3|$  and direct computation, we have the following claim:

**Claim 3.11.** There are at least  $\binom{n-2}{2}$ , 4n - 18, 3n - 11 members that contain  $\{x, y\}$  in Cases (a), (b), (c) respectively.

Notice that  $\binom{n-2}{2}$ , 4n - 18, 3n - 11 > 2n - 7. By Claim 3.1, Claim 3.11 and Fact 2.4 (ii),  $A = \{x, y, x'\}$ . In Case (a) or (b), we can see that  $\{y, z_1, z_2, z_3\} \in \mathcal{H}'$ ,  $|\{y, z_1, z_2, z_3\} \cap A| = 1$ , a contradiction. In Case (c), we have  $\{z_1, z_2, z_3, z_4\} \in \mathcal{H}_3$ , after some shifts in  $[n] \setminus X_3$ , it becomes F in  $\mathcal{H}'$ , and  $|F \cap A| \leq 1$ , a contradiction to that  $\mathcal{H}' \subseteq \mathcal{G}_2$  with core  $\{x, y, x'\}$ . Thus we will not reach *Case 4* after performing shifts in  $[n] \setminus X_3$  repeatedly.

At last, we assume that  $\mathcal{H}' := S_{x'y'}(\mathcal{H}'') \subseteq \mathcal{G}_3$  with center and core forming a 4-set *B*. By Claim 3.2, Claim 3.11 and Fact 2.4 (iv), we have  $\{x, y, x'\} \subseteq B$ , and the center of  $\mathcal{H}'$  must be *x* or *y*. In Cases (a) and (b), we have  $\{y, z_1, z_2, z_3\} \in \mathcal{H}_3$ , so in  $\mathcal{H}'$ . Since  $x, x' \notin \{y, z_1, z_2, z_3\}$ ,  $\mathcal{H}'$  can not be contained in  $\mathcal{G}_3$  with  $B \supset \{x, y, x'\}$  and center *x*. Since  $\{x, z_1, z_2, z_3\} \in \mathcal{H}_3$ , so in  $\mathcal{H}'$  as well. Notice that  $y, x' \notin \{x, z_1, z_2, z_3\}$ ,  $\mathcal{H}'$  can not be contained in  $\mathcal{G}_3$  with  $B \supset \{x, y, x'\}$  and center *y*. A contradiction. Now consider Case (c). In this case,  $\{z_1, z_2, z_3, z_4\} \in \mathcal{H}_3$ . Because it is stable at  $\{z_1, z_2, z_3\}$ under any shift in  $[n] \setminus X_3$ , the resulting set  $\{z_1, z_2, z_3, z'_4\}$  does not contain *x* or *y*. This contradicts that  $\mathcal{H}' \subseteq \mathcal{G}_3$  with  $B \supset \{x, y, x'\}$  and center *x* or *y*.

If Case (a) or (b) happens, then any 4-set  $G \in \mathcal{G}$  satisfies  $|G \cap X_3| \geq 2$ . If Case (c) happens, since  $\{z_1, z_2, z_3, z_4\}$  and  $\{z_1, z_2, z_3, z_5\}$  are the only two sets disjoint from  $\{x, y\}$  in  $S_{xy}(\mathcal{H}_3)$ , then every set in  $\mathcal{H}_3$  (so in  $\mathcal{G}$ ) missing x and y must contain  $\{z_1, z_2, z_3\}$ . If  $x \in G$ ,  $y \in G'$  and  $G \cap \{z_1, z_2, z_3, y\} = G' \cap \{z_1, z_2, z_3, x\} = \emptyset$ , let  $F, F' \in \mathcal{H}_3$  such that G and G' become their resulting sets in  $\mathcal{G}$  after a series of shifts in  $[n] \setminus X_3$ . By the reason that  $S_{xy}(\mathcal{H}_3) \subseteq \mathcal{J}_2$  with center x, kernel  $\{z_1, z_2, z_3\}$ and the set of pages  $\{z_4, z_5\}$ , for any set  $H \in \mathcal{H}_3$  satisfying that  $|H \cap \{x, y\}| = 1$  and  $H \cap \{z_1, z_2, z_3\} = \emptyset$ , we have  $\{z_4, z_5\} \subseteq H$ . So  $\{z_4, z_5\} \subseteq F \cap F'$ , consequently,  $|G \cap G'| \ge 2$ .

**Lemma 3.12** (*Case 4*). If we reach a 4-uniform  $\mathcal{H}_4$  such that  $S_{xy}(\mathcal{H}_4) \subseteq \mathcal{G}_2$  with core  $\{x, x_1, x_2\}$ , then there is a set  $X_4 = \{x, y, x_1, x_2, x_3\}$  such that after a series of shifts  $S_{x'y'}$  (x' < y' and  $x', y' \in [n] \setminus X_4$ ) to  $\mathcal{H}_4$ , we will reach a stable family  $\mathcal{G}$  satisfying the conditions of Theorem 2.2. Moreover,  $\{x, y, x_1, x_3\} \in \mathcal{G}$  and  $G \cap X_4 \neq \emptyset$  for any  $G \in \mathcal{G}$ .

*Proof.* Since  $S_{xy}(\mathcal{H}_4) \subseteq \mathcal{G}_2$  with core A, by Fact 2.4 (ii), we have that  $x \in A$  and  $y \notin A$ . Let  $A = \{x, x_1, x_2\}$ . By the maximality of  $|\mathcal{H}_4|$ , we may assume

$$\left\{ G \in \begin{pmatrix} X \\ 4 \end{pmatrix} : \{x_1, x_2\} \subseteq G \right\} \subseteq \mathcal{H}_4,$$
$$\left\{ G \in \begin{pmatrix} X \\ 4 \end{pmatrix} : \{x, y\} \subseteq G, G \cap \{x_1, x_2\} \neq \emptyset \right\} \subseteq \mathcal{H}_4$$

So

$$|\{G \in \mathcal{H}_4 : \{x_1, x_2\} \subseteq G\}| = \binom{n-2}{2}, \tag{16}$$

$$|\{G \in \mathcal{H}_4 : \{x, y\} \subseteq G, G \cap \{x_1, x_2\} \neq \emptyset\}| = 2n - 7.$$
(17)

Choose a set  $G = \{x, y, x_1, x_3\} \in \mathcal{H}_4$  and let  $X_4 := \{x, y, x_1, x_2, x_3\}$ . Since  $S_{xy}(\mathcal{H}_4) \subseteq \mathcal{G}_2$  with core  $\{x, x_1, x_2\}$ , every member in  $\mathcal{H}_4$  intersects  $X_4$ . Every member in  $\mathcal{H}_4$  is stable at every element in  $X_4$  under shifts  $S_{x'y'}$  (x' < y' and  $x', y' \in [n] \setminus X_4$ ). So  $\{x, y, x_1, x_3\}$  is in the final stable family  $\mathcal{G}$  and  $G \cap X_4 \neq \emptyset$  for any  $G \in \mathcal{G}$ . What remains is to show that performing shifts  $S_{x'y'}$  (x' < y' and  $x', y' \in [n] \setminus X_4$ ) to  $\mathcal{H}_4$  will not reach *Cases 1-5* in Remark 2.5.

By (16), for any  $x' \in [n] \setminus X_4$ , there are at least  $\binom{n-3}{2}$  members in  $\mathcal{H}_4$  missing x', so we can not reach *Cases 1-3*.

Assume  $\mathcal{H}' := S_{x'y'}(\mathcal{H}'') \subseteq \mathcal{G}_2$  with core A'. By (16), Fact 2.4 (ii) and Claim 3.1,  $A' = \{x', x_1, x_2\}$ . Since  $G \in \mathcal{H}'$ , and  $|H \cap A'| = 1$ , we get a contradiction, hence we will not reach *Case 4*. At last, assume  $\mathcal{H}' := S_{x'y'}(\mathcal{H}'') \subseteq \mathcal{G}_3$  with center and core forming a 4-set B. By Fact 2.4 (iv),  $x' \in B$ . By Claim 3.2 (ii) and (16),  $\{x_1, x_2\} \subseteq B$  and the center must be  $x_1$  or  $x_2$ . That is  $\{x_1, x_2, x'\} \subset B$ . Since |B| = 4,  $|\{x, y\} \cap B| = 0$  or 1. If  $|\{x, y\} \cap B| = 0$ , then the sets containing  $\{x, y\}$  in  $\mathcal{H}'$  must contain center and one point of core A', so  $d_{\{x,y\}} \leq 3$ . If  $|\{x, y\} \cap B| = 1$ , then the sets containing  $\{x, y\}$ in  $\mathcal{H}'$  either contain center or contain core A', so  $d_{\{x,y\}} \leq n - 3 + 1 = n - 2$ . These members containing  $\{x, y\}$  in  $\mathcal{H}_4$  are also in  $\mathcal{H}'$ , by (17), there are at least 2n - 7, a contradiction. Hence we can not reach *Case 5*.

**Lemma 3.13** (Case 5). If we reach a 4-uniform  $\mathcal{H}_5$  such that  $S_{xy}(\mathcal{H}_5) \subseteq \mathcal{G}_3$  with center and core E forming a 4-set B, then there is a set  $X_5 = \{x, y, x_1, x_2, x_3\}$  such that after a series of shifts  $S_{x'y'}$  (x' < y' and  $x', y' \in [n] \setminus X_5$ ) to  $\mathcal{H}_5$ , we will reach a stable family  $\mathcal{G}$  satisfying the conditions of Theorem 2.2. Furthermore,  $|G \cap X_5| \ge 2$ for each  $G \in \mathcal{G}$ . Proof. For  $S_{xy}(\mathcal{H}_5)$ , we will meet one of the following three cases. Case (a): x is the center,  $y \in E$ , and  $E = \{y, x_1, x_2\}$ . In this case, we may assume that  $\{y, x_1, x_2, x_3\} \in S_{xy}(\mathcal{H}_5)$  for some  $x_3 \in [n] \setminus B$ . Let  $X_5 := \{x, y, x_1, x_2, x_3\}$ . Case (b): x is the center,  $y \notin E$ , and  $E = \{x_1, x_2, x_3\}$ . In this case, let  $X_5 := \{x, y, x_1, x_2, x_3\}$ . Case (c):  $x_1$  is the center,  $x \in E$ , and  $E = \{x, x_2, x_3\}, y \in [n] \setminus B$ . In this case, let  $X_5 := \{x, y, x_1, x_2, x_3\}$ . We first observe that  $|G \cap X_5| \ge 2$  for each  $G \in \mathcal{H}_5$  in each case.

First we consider Case (a). In this case, a member in  $\mathcal{H}_5$  must contain x or y. By the maximality of  $|\mathcal{H}_5|$ , we may assume

$$\left\{G \in \binom{X}{4} : \{x, y\} \subseteq G\right\} \subseteq \mathcal{H}_5$$

So

$$|\{G \in \mathcal{H}_5 : \{x, y\} \subseteq G\}| = \binom{n-2}{2}.$$
(18)

Performing  $S_{x'y'}$  in  $[n] \setminus X_5$  to  $\mathcal{H}_5$  will not reach *Cases 1-3* since there are at least  $\binom{n-3}{2}$  members that containing  $\{x, y\}$  and missing x' in  $\mathcal{H}_5$  and these sets are stable after  $S_{x'y'}$  in  $[n] \setminus X_5$  (by (18)).

Assume that  $\mathcal{H}' := S_{x'y'}(\mathcal{H}'') \subseteq \mathcal{G}_2$  with core A. By (18), Fact 2.4 (ii) and Claim 3.1,  $A = \{x', x, y\}$ . Since  $S_{xy}(\mathcal{H}_5)$  is not EKR,  $\{y, x_1, x_2, x_3\} \in S_{xy}(\mathcal{H}_5)$ ,  $\{x, x_1, x_2, x_3\} \in \mathcal{H}_5$ , so in  $\mathcal{H}'$ . However,  $|\{x, x_1, x_2, x_3\} \cap A| = 1$ , this is a contradiction, hence we will not reach *Case 4*. Assume that  $\mathcal{H}' := S_{x'y'}(\mathcal{H}'') \subseteq \mathcal{G}_3$  with center and core forming a 4-set B'. By (18), Fact 2.4 (iv) and Claim 3.2 (ii),  $\{x, y, x'\} \subseteq B'$ , and the center is either x or y. In either case, the existence of  $\{x, x_1, x_2, x_3\}$  and  $\{y, x_1, x_2, x_3\}$  will lead to a contradiction. Hence we will not reach *Case 5*.

Next we consider Case (b). By the maximality of  $|\mathcal{H}_5|$ , we may assume that

$$\left\{G \in \binom{X}{4} : \{x, y\} \subseteq G \text{ and } G \cap E \neq \emptyset\right\} \subseteq \mathcal{H}_5$$

and

$$\left\{G \in \binom{X}{4} : \{x_1, x_2, x_3\} \subseteq G\right\} \subseteq \mathcal{H}_5.$$

In particular,  $\{x, x_1, x_2, x_3\} \in \mathcal{H}_5$  and  $\{y, x_1, x_2, x_3\} \in \mathcal{H}_5$ . Computing directly, we have

$$|\{G \in \mathcal{H}_5 : \{x, y\} \subseteq G, G \cap E \neq \emptyset\}| = 3n - 12$$
(19)

and

$$|\{G \in \mathcal{H}_5 : \{x_1, x_2, x_3\} \subseteq G\}| = n - 3.$$
(20)

Since  $\{x, y, x_1, x_2\}, \{x, y, x_1, x_3\}, \{x, y, x_2, x_3\} \in \mathcal{H}_5$  and these sets miss x' and are stable after shifts  $S_{x'y'}$   $(x' < y' \text{ and } x', y' \in [n] \setminus X_5)$ , we will not reach *Cases 1-3*.

Assume  $\mathcal{H}' := S_{x'y'}(\mathcal{H}'') \subseteq \mathcal{G}_2$  with core A, where x' < y' and  $x', y' \in [n] \setminus X_5$ . By (19), Fact 2.4 (ii) and Claim 3.1, we have  $A = \{x', x, y\}$ . However  $\{x, x_1, x_2, x_3\} \in \mathcal{H}'$  and  $|\{x, x_1, x_2, x_3\} \cap A| = 1$ , a contradiction, so we will not reach *Case 4*.

Assume that  $\mathcal{H}' := S_{x'y'}(\mathcal{H}'') \subseteq \mathcal{G}_3$  with center and core forming a 4-set B'. By Fact 2.4 (iv),  $x' \in B'$ . Equation (19) and Claim 3.2 (i) imply that the center must be x or y.

By Claim 3.3 and (20), either  $\{x_1, x_2, x_3\} \subset B'$  or  $|\{x_1, x_2, x_3\} \cap B'| = 2$  and one of  $\{x_1, x_2, x_3\}$  is the center. But it's impossible to satisfy both conditions in the previous paragraph and this paragraph, hence we will not reach *Case 5*.

At last we consider Case (c). By the maximality of  $|\mathcal{H}_5|$ , we may assume

$$\left\{G \in \binom{X}{4} : \{x_1, x_2\} \subseteq G\right\} \subseteq \mathcal{H}_5 \text{ and } \left\{G \in \binom{X}{4} : \{x_1, x_3\} \subseteq G\right\} \subseteq \mathcal{H}_5.$$

By direct computation,

$$|\{G \in \mathcal{H}_5 : \{x_1, x_2\} \subseteq G\}| = \binom{n-2}{2},$$
 (21)

$$|\{G \in \mathcal{H}_5 : \{x_1, x_3\} \subseteq G\}| = \binom{n-2}{2}.$$
 (22)

Since there are  $\binom{n-3}{2}$  sets containing  $\{x_1, x_2\}$  but missing x', after performing  $S_{x'y'}$  in  $[n] \setminus X_5$  to  $\mathcal{H}_5$ , we will not reach *Case 1-3*.

If we reach *Cases 4*, that is, after performing shifts in  $[n] \setminus X_5$  to  $\mathcal{H}_5$  repeatedly,  $S_{x'y'}(\mathcal{H}') \subseteq \mathcal{G}_2$  with core *A*. By (21), (22), Fact 2.4 (ii) and Claim 3.1,  $x', x_1, x_2, x_3 \in A$ , but |A| = 3, a contradiction. If we reach *Case 5*, that is  $S_{x'y'}(\mathcal{H}') \subseteq \mathcal{G}_3$  with the center and the core forming a 4-set *B'*. By (21), (22), Fact 2.4 (iv) and Claim 3.1,  $B' = \{x_1, x_2, x_3, x'\}$ , and  $x_1$  is the center. Recall that  $\{x, y, x_2, x_3\} \in \mathcal{H}_5$ , also in  $S_{x'y'}(\mathcal{H}')$ , but  $\{x, y, x_2, x_3\} \cap \{x_1, x', y'\} = \emptyset$ , a contradiction, hence we cannot reach *Case 5*.

As remarked earlier,  $|G \cap X_5| \ge 2$  for each  $G \in \mathcal{H}_5$ . Note that performing shifts in  $[n] \setminus X_5$  to  $\mathcal{H}_5$  keeps this property, so  $|G \cap X_5| \ge 2$  for each  $G \in \mathcal{G}$ .  $\Box$ 

By Lemmas 3.4 to 3.13, we have shown that if one of *Case 1-5* happens, then there exists a set  $X_i$  with  $|X_i| \leq 5$  and  $\{x, y\} \subseteq X_i$  such that performing shifts in  $[n] \setminus X_i$  to  $\mathcal{H}_i$  will not result in any case of *Case 1-5*, so the final family is a stable family satisfying the conditions in Theorem 2.2. Furthermore,  $G \cap X_i \neq \emptyset$  for any set G in the final family. So we complete the proof of Lemma 2.6.

#### 3.2 Proof of Lemma 2.7

*Proof.* We first consider  $k \ge 5$ . In this case, we have  $|X_i| \le 3$  and  $|Y_i| \ge 2k - 3$ .

We first prove (ii). Assume on the contrary that there are G and  $G' \in \mathcal{G}$  such that  $G \cap G' \cap Y = \emptyset$  and let  $|G \cap G'|$  be the minimum among all pairs of sets in  $\mathcal{G}$ 

not intersecting in Y. Clearly  $|G \cap G' \cap ([n] \setminus Y)| \ge 1$ . Note that  $|(G \cup G') \cap Y_i| \le |G \cap Y_i| + |G' \cap Y_i| \le 2k - 4$  (since  $|G \cap ([n] \setminus Y)| \ge 1$  and  $|G \cap X_i| \ge 1$ , so  $|G \cap Y_i| \le k - 2$ , same for G'). But  $|Y_i| \ge 2k - 3$ , so there exists a point  $a \in Y_i \setminus (G \cup G')$ . Pick any point  $b \in G \cap G' \cap ([n] \setminus Y)$ , we have a < b. Notice that  $\mathcal{G}$  is stable on  $[n] \setminus X_i$ , so  $G'' := (G' \setminus \{b\}) \cup \{a\} \in \mathcal{G}$ . Then  $G \cap G'' \cap Y = \emptyset$  and  $|G \cap G''| < |G \cap G'|$ , contradicting the minimality of  $|G \cap G'|$ .

For (i), assume on the contrary, that  $\mathcal{A}_1 \neq \emptyset$ . Let  $\{x\} \in \mathcal{A}_1$ , then there is a set  $G \in \mathcal{G}$  such that  $G \cap Y = \{x\}$ . By (ii), for any another set  $G' \in \mathcal{G}$  we have  $G \cap G' \cap Y \neq \emptyset$ , so  $x \in G'$ . This implies that  $\mathcal{G}$  is EKR, a contradiction, so  $\mathcal{A}_1 = \emptyset$ .

Next consider for k = 4. In this case, for  $1 \le i \le 5$ ,  $|X_i| = 5$  and  $|Y_i| = 9 - 5 = 4$ , and for i = 6,  $|X_i| = 0$  and  $|Y_i| = 9$ .

**Claim 3.14.** If G and G' in  $\mathcal{G}$  satisfies that  $|Y_i \setminus (G \cup G')| \ge |G \cap G' \cap ([n] \setminus Y)|$ , then  $G \cap G' \cap Y \neq \emptyset$ .

Proof. If  $G \cap G' \cap Y = \emptyset$ , then  $D := G \cap G' \cap ([n] \setminus Y) \neq \emptyset$ . Since  $|Y_i \setminus (G \cup G')| \ge |G \cap G' \cap ([n] \setminus Y)|$ , there is a subset  $D' \subseteq Y_i \setminus (G \cup G')$  with size |D'| = |D|. By the definition of  $Y_i$ , all numbers in D' are smaller than D. Since  $\mathcal{G}$  is stable on  $[n] \setminus X_i$ ,  $F := (G' \setminus D) \cup D' \in \mathcal{G}$ . However  $G \cap F = \emptyset$ , a contradiction to the intersecting property of  $\mathcal{G}$ . So  $G \cap G' \cap Y \neq \emptyset$ .

Claim 3.15.  $|\mathcal{A}_1| \leq 1$ ;  $\mathcal{A}_2$  and  $\mathcal{A}_4$  are intersecting.

Proof. Obviously,  $\mathcal{A}_4$  is intersecting. Assume that  $|\mathcal{A}_1| \geq 2$  and  $\{x_1\}, \{x_2\} \in \mathcal{A}_1$ . Then there are G and G' in  $\widetilde{\mathcal{A}}_1$  such that  $G \cap Y = \{x_1\}$  and  $G' \cap Y = \{x_2\}$ . Since any set in  $\mathcal{G}$  intersects with  $X_i$  (for  $i \in [5]$ ),  $x_1, x_2 \in X_i$ . So  $1 \leq |G \cap G' \cap ([n] \setminus Y)| \leq$  $3 < 4 = |Y_i \setminus (G \cap G')|$ . By Claim 3.14,  $G \cap G' \cap Y \neq \emptyset$ , a contradiction. Hence,  $|\mathcal{A}_1| \leq 1$ . Let G and G' be in  $\widetilde{\mathcal{A}}_2$ . Then  $|G \cap G' \cap ([n] \setminus Y)| \leq 2$ . Since  $|G \cap X_i| \geq 1$ and  $|G' \cap X_i| \geq 1$  (for  $i \in [5]$ ), then  $|Y_i \setminus (G \cup G')| \geq 2$ . By Claim 3.14,  $G \cap G' \cap Y \neq \emptyset$ , that is  $\mathcal{A}_2$  is intersecting, as desired.

Claim 3.16.  $A_1 = \emptyset$ .

*Proof.* By Claim 3.15,  $|\mathcal{A}_1| \leq 1$ . We may assume on the contrary that  $\mathcal{A}_1 = \{\{x\}\}$  for some  $x \in X_i$ . For any  $G \in \widetilde{\mathcal{A}}_1$  and  $G' \in \widetilde{\mathcal{A}}_j$  (for j = 2, 3, 4), G and G' satisfy the condiction of Claim 3.14, so  $G \cap G' \cap Y \neq \emptyset$ , this implies that  $x \in G'$  and hence  $\mathcal{G}$  is EKR, a contradiction.

Claim 3.17.  $A_2$  and  $A_3$  are cross-intersecting.

*Proof.* Let  $G \in \widetilde{\mathcal{A}}_2$  and  $G' \in \widetilde{\mathcal{A}}_3$ . Then  $|G \cap G' \cap ([n] \setminus Y)| \leq 1$ . Since any set in  $\mathcal{G}$  intersects with  $X_i$  (for  $i \in [5]$ ),  $|Y_i \setminus (G \cup G')| \geq 1$ . By Claim 3.14,  $G \cap G' \cap Y \neq \emptyset$ , that is  $\mathcal{A}_2$  and  $\mathcal{A}_3$  are cross-intersecting, as desired.

Claim 3.18.  $A_3$  is intersecting.

Proof. Assume on the contrary, that there exist  $A, A' \in \mathcal{A}_3$  and  $G, G' \in \mathcal{A}_3$  such that  $G \cap Y = A, G' \cap Y = A'$  and  $A \cap A' = \emptyset$ , in other words,  $G \cap G' \cap Y = \emptyset$  and  $|G \cap G' \cap ([n] \setminus Y)| = 1$ . If  $|(G \cup G') \cap Y_i| \leq 3$ , by Claim 3.14,  $G \cap G' \cap Y \neq \emptyset$ , a contradiction. Hence we only need to consider the following case :  $|A \cap X_i| = 1, |A \cap Y_i| = 2, |A' \cap X_i| = 1$  and  $|A' \cap Y_i| = 2$ . Now we show the conclusion for each case of Lemma 2.6. All sets below are inherited from the proof of Lemma 2.6 for each cooresponding case.

If we meet *Cases 1* in Lemma 2.6, then by Lemma 3.4, we have that  $X_1 = \{x, y, y', z_1, w_1\}$  or  $X_1 = \{x, y, y', z_2, w_2\}$ , and we may assume that  $G \cap X_i = \{x\}$  and  $G' \cap X_i = \{y\}$ . Respectively,  $\{y, y', z_1, w_1\}$  or  $\{x, y', z_2, w_2\} \in \mathcal{G}$ , which is disjoint from G or G'. A contradiction to the intersecting property of  $\mathcal{G}$ .

If we meet *Cases* 2 in Lemma 2.6, then by Lemma 3.9, we have that  $X_2 = \{x, y, z_1, z_2, z_3\}$ , and either  $\{z_1, z_2, z_3, y\} \in \mathcal{G}$  or  $\{z_1, z_2, z_3, z_4'\} \in \mathcal{G}$  for some  $y \neq z_4'$ . Furthermore, if  $\{z_1, z_2, z_3, y\} \in \mathcal{G}$ , then every member in  $\mathcal{G}$  contains x or y. So we may assume that  $G \cap X_i = \{x\}$  and  $G' \cap X_i = \{y\}$ . Then  $\{z_1, z_2, z_3, y\} \cap G = \emptyset$ , a contradiction. If  $\{z_1, z_2, z_3, z_4'\} \in \mathcal{G}$ , then every other member in  $\mathcal{G}$  contains x or y, we may assume that  $G \cap X_i = \{x\}$  and  $G' \cap X_i = \{y\}$ . Since  $\mathcal{G}$  is stable, we may assume that  $z_4' \in Y_i$ . Recall that  $|G \cap Y_i| = |G' \cap Y_i| = 2$ , hence  $\{z_1, z_2, z_3, z_4'\}$  must be disjoint from G or G', a contradiction.

If we meet Cases 3 in Lemma 2.6, then by Lemma 3.10,  $|G \cap G'| \ge 2$ , a contradiction.

If we meet *Cases 4* in Lemma 2.6, then by Lemma 3.12, we have that  $X_4 = \{x, y, x_1, x_2, x_3\}$ ,  $\{x, y, x_1, x_3\} \in \mathcal{G}$  and  $S_{xy}(\mathcal{H}_4) \subseteq \mathcal{G}_2$  with core  $\{x, x_1, x_2\}$ . So for every set F in  $\mathcal{H}_4$ , either  $|F \cap \{x, x_1, x_2\}| \ge 2$ , or  $F \cap \{x, x_1, x_2\} = \{x_1\}$  and  $y \in F$ , or  $F \cap \{x, x_1, x_2\} = \{x_2\}$  and  $y \in F$ . In all cases,  $|F \cap X_4| \ge 2$ . Performing shifts in  $[n] \setminus X_4$  will not change these properties, hence every set in  $\mathcal{G}$  also has the same properties, in particular, G and G' do. This makes a contradiction to  $|G \cap X_4| = |G' \cap X_4| = 1$ .

Assume that we meet *Case 5* in Lemma 2.6, then by Lemma 3.13, we have that  $|G \cap X_5| \ge 2$  for each  $G \in \mathcal{G}$ . This makes a contradiction to  $|G \cap X_5| = |G' \cap X_5| = 1$ .

At last, assume that we will not meet any of Cases 1-5 in Lemma 2.6 if we perform shifts repeatedly to  $\mathcal{G}$ . In this case, Y = [2k]. Assume on the contrary, and let Gand  $G' \in \mathcal{G}$  such that  $G \cap G' \cap Y = \emptyset$  and  $|G \cap G'|$  is the minimum among all pairs of sets in  $\mathcal{G}$  not intersecting in Y. Then  $|G \cap G' \cap (X \setminus Y)| \ge 1$ . Consequently,  $|(G \cup G') \cap Y| \le |G \cap Y| + |G' \cap Y| \le 2k - 2$  since  $|G \cap Y| \le k - 1$  and  $|G' \cap Y| \le k - 1$ . So there exists a point  $a \in Y \setminus (G \cup G')$ . Pick any point  $b \in G \cap G' \cap (X \setminus Y)$ . Note that a < b, then  $G'' := (G' \setminus \{b\}) \cup \{a\} \in \mathcal{G}$  since  $\mathcal{G}$  is stable. It is easy to see that  $G \cap G'' \cap Y = \emptyset$  and  $|G \cap G''| < |G \cap G'|$ , contradicting the minimality of  $|G \cap G'|$ .  $\Box$ 

Since  $\mathcal{G}$  is intersecting,  $\mathcal{A}_2$  and  $\mathcal{A}_4$  are cross-intersecting, and  $\mathcal{A}_3$  and  $\mathcal{A}_4$  are cross-intersecting. Combining with Claims 3.15, 3.17 and 3.18, we have completed the proof of (ii).

### 4 Concluding remarks

It is natural to ask what is the maximum size of a k-uniform intersecting family  $\mathcal{F}$  with  $\tau(\mathcal{F}) \geq 3$ . About this problem, Frankl [3] gave an upper bound for sufficient large n. To introduce the result, we need the following construction.

**Construction 4.1.** Let  $x \in [n]$ ,  $Y \subseteq [n]$  with |Y| = k, and  $Z \subseteq [n]$  with |Z| = k - 1,  $x \notin Y \cup Z$ ,  $Z \cap Y = \emptyset$  and  $Y_0 = \{y_1, y_2\} \subseteq Y$ . Define

$$\mathcal{G} = \{A \subseteq [n] : x \in A, A \cap Y \neq \emptyset \text{ and } A \cap Z \neq \emptyset\} \cup \{Y, Z \cup \{y_1\}, Z \cup \{y_2\}, \{x, y_1, y_2\}\} \in FP(n, k) = \{F \subseteq [n] : |F| = k, \exists G \in \mathcal{G} \text{ s.t.}, G \subseteq F\}.$$

It is easy to see that FP(n,k) is intersecting and  $\tau(FP(n,k)) = 3$ .

**Theorem 4.2** (Frankl [3]). Let  $k \geq 3$  and n be sufficiently large integers. Let  $\mathcal{H}$  be an n-vertex k-uniform family with  $\tau(\mathcal{H}) \geq 3$ . Then  $|\mathcal{H}| \leq |FP(n,k)|$ . Moreover, for  $k \geq 4$ , the equality holds only for  $\mathcal{H} = FP(n,k)$ .

It is interesting to consider what is the maximum k-uniform intersecting families with covering number  $s \ge 4$ .

### 5 Acknowledgements

This research is supported by National natural science foundation of China (Grant No. 11931002).

### References

- P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxf. 2(12) (1961) 313–320.
- [2] P. Erdős, A problem on independent r-tuples, Ann.Univ. Sci. Budapest. Eötvös Sect. Math. 8 (1965), 93-95.
- [3] Péter Frankl, On intersecting families of finite sets, Bull. Austral. Math. Soc. 21 (1980), no. 3, 363–372.
- [4] P. Frankl, The shifting techniques in extremal set theory, in: C. Whitehead (Ed.), Surveys in Combinatorics, LMS Lecture Note Series, vol.123, Cambridge Univ. Press, 1987, pp. 81–110.
- [5] P. Frankl, Improved bounds for Erdős' matching conjecture, J. Combin. Theory Ser. A. 120 (2013), 1068-1072.

- [6] P. Frankl, N. Tokushige, Extremal Problem for Finite Sets, Student Mathematical Library 86, Amer. Math. Soc., Providence, RI, 2018.
- [7] P. Frankl, On the maximum number of edges in a hypergraph with given matching number, arXiv:1205.6847.
- [8] J. Han, Y. Kohayakawa, The maximum size of a non-trivial intersecting uniform family that is not a subfamily of the Hilton–Milner family, Proc. Amer. Math. Soc. 145 (1) (2017) 73–87.
- [9] A.J.W. Hilton, E.C. Milner, Some intersection theorems for systems of finite sets, Q. J. Math. 18 (1967) 369–384.
- [10] H. Huang, P. Loh, B. Sudakov, The size of a hypergraph and its matching number, Combin. Probab. Comput. 21 (2012) 442–450.
- [11] Alexandr Kostochka, Dhruv Mubayi, The structure of large intersecting families, Proc. Amer. Math. Soc. 145 (2017) 2311–2321.
- [12] Tomasz Luczak and Katarzyna Mieczkowska, On Erd"os' extremal problem on matchings in hypergraphs, J. Combin. Theory Ser. A 124 (2014), 178–194, DOI 10.1016/j.jcta.2014.01.003. MR3176196