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Abstract

Many conjectures and open problems in graph theory can either be reduced to cubic
graphs or are directly stated for cubic graphs. Furthermore, it is known that for a lot of
problems, a counterexample must be a snark, i.e. a bridgeless cubic graph which is not
3–edge-colourable. In this paper we deal with the fact that the family of potential coun-
terexamples to many interesting conjectures can be narrowed even further to the family
S≥5 of bridgeless cubic graphs whose edge set cannot be covered with four perfect match-
ings. The Cycle Double Cover Conjecture, the Shortest Cycle Cover Conjecture and the
Fan-Raspaud Conjecture are examples of statements for which S≥5 is crucial.

In this paper, we study parameters which have the potential to further refine S≥5 and
thus enlarge the set of cubic graphs for which the mentioned conjectures can be verified.
We show that S≥5 can be naturally decomposed into subsets with increasing complexity,
thereby producing a natural scale for proving these conjectures. More precisely, we con-
sider the following parameters and questions: given a bridgeless cubic graph, (i) how many
perfect matchings need to be added, (ii) how many copies of the same perfect matching
need to be added, and (iii) how many 2–factors need to be added so that the resulting reg-
ular graph is Class I? We present new results for these parameters and we also establish
some strong relations between these problems and some long-standing conjectures.

Keywords: Cubic graph, edge-colouring, perfect matching index, shortest cycle cover, snark.

Math. Subj. Class.: 05C15, 05C70.

E-mail addresses: macajova@dcs.fmph.uniba.sk (Edita Máčajová), giuseppe.mazzuoccolo@univr.it
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1 Motivation
It is well-known that many long standing conjectures in graph theory can be reduced to
the class of cubic graphs. That is, if one can prove such a conjecture for all cubic graphs
then the general statement for arbitrary graphs will immediately follow. The Cycle Dou-
ble Cover Conjecture [32] and the 5–Flow Conjecture [29] fall into this category. Some
other well-known conjectures are formulated directly for cubic graphs such as the Petersen
Colouring Conjecture [18] and the Berge-Fulkerson Conjecture [10].

In all mentioned conjectures, only a very small subset of all cubic graphs is critical
for proving them. A classical result by Vizing [31] naturally divides cubic graphs in two
classes. More precisely, Vizing’s Theorem divides simple graphs in two classes according
to the value of the chromatic index χ′ with respect to the maximum degree ∆. A simple
graphG has χ′(G) either equal to ∆(G) or to ∆(G)+1, and is said to be a Class I or Class
II graph, respectively. In case of multigraphsG, we say thatG is Class I if χ′(G) = ∆(G),
and Class II, otherwise.

The bridgeless cubic graphs having chromatic index 4 will be referred to as snarks,
and we will denote the set of all snarks by S. It can be easily shown that the study of all
previously mentioned conjectures can be restricted to S, since all such conjectures are true
for 3–edge-colourable cubic graphs. We remark that in literature one may find a stronger
and more refined definition of snarks, which refers only to those graphs in S which are
cyclically 4–edge-connected and with girth at least 5. In this paper we shall use the broader
definition of snarks and shall refer to the more specifically defined snarks as non-trivial
snarks.

In addition, the class of snarks relevant for some old and new problems can be further
restricted to a specific subset of S, which we shall denote by S≥5 (see definition below).
More precisely, S≥5 is shown to be critical for several, seemingly unrelated, problems. In
order to define the class S≥5, we need the following parameter:

Definition 1.1. The perfect matching index of a graph G, denoted by χ′e(G), is the mini-
mum number of perfect matchings of G whose union covers the whole set E(G). If such
a number does not exist, χ′e(G) is defined to be infinity. This parameter is also known in
literature as the excessive index of a graph (see [3]).

Since bridges in cubic graphs belong to every perfect matching, the perfect matching
index of a cubic graph having a bridge is infinite. Consequently, in what follows, we shall
only consider bridgeless cubic graphs. Trivially, the chromatic index χ′(G) of a cubic
graph G is 3 if and only if its perfect matching index is 3, and so, the two parameters
coincide for Class I cubic graphs. The same cannot be said for Class II bridgeless cubic
graphs. Indeed, there exist examples of such graphs having perfect matching index 4 and
others having perfect matching index 5, such as the well-known Petersen graph. In what
follows, we denote the set of snarks having perfect matching index equal to 4 by S4 and the
set of snarks having perfect matching index at least 5 by S≥5. Consequently, the following
holds:

S = S4 ∪ S≥5.

The above situation is summarised in Table 1. Clearly, the Berge-Fulkerson Conjecture
implies that all bridgeless cubic graphs have perfect matching index at most 5, and in
turn, the latter statement is equivalent to the conjecture attributed to Berge. These two
conjectures were in fact shown to be equivalent by the second author in [24], and we shall
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Cubic graph G χ′(G) χ′e(G)

CLASS I 3 3

CLASS II (S) 4
4 (S4)

≥ 5 (S≥5)

Table 1: The relation between χ′(G) and χ′e(G)

refer interchangeably to each of them as the Berge-Fulkerson Conjecture. If this conjecture
is shown to be true, it would imply that all snarks in S≥5 have perfect matching index
exactly equal to 5.

The reason why the class S≥5 deserves particular attention not only in relation to the
Berge-Fulkerson Conjecture but also with respect to other problems, is already very present
in literature. Moreover, from among more than sixty million non-trivial snarks of order at
most 36 (see [4]), only two belong to S≥5, and both of them have perfect matching index
equal to 5. This suggests that the subset of snarks that is substantial for many open problems
is negligible compared to its complement. On the other hand, infinite classes of non-trivial
snarks from S≥5 are constructed in [1, 7, 23].

One of the most relevant results that shows the importance of the class S≥5 was proven
independently by Steffen [28] and by Hou et al. [16], and states that each snark in S4 admits
a cycle double cover. Thus, if a cubic graph is a counterexample to the Cycle Double Cover
Conjecture, then it must belong to S≥5.

The Fan-Raspaud Conjecture [8] asserts that every bridgeless cubic graph G admits
three perfect matchings such that no edge of G belongs to all three of them. This conjec-
ture is obviously true for 3–edge-colourable cubic graphs and graphs from S4, making the
family S≥5 critical once again.

Another unexpected relation seems to appear with the 5–flow Conjecture. It is pointed
out in [1] that all known examples of snarks with perfect matching index equal to 5 also
have circular flow number 5 (see [12] for a definition). In other words, it seems that all
snarks having the largest possible perfect matching index according to the Berge-Fulkerson
Conjecture, also have the largest possible circular flow number according to the 5–Flow
conjecture. We remark that the converse of the latter is false: there exists a large number of
non-trivial snarks having circular flow number 5 and perfect matching index 4 (see [13]).

Let us mention a last example: the problem of finding a shortest cycle cover of a bridge-
less graph (not necessarily cubic). A family C of cycles of a graph G is a cycle cover of
G if every edge of G is contained in at least one of the cycles in C. The (total) length of a
cycle cover C is the sum of the lengths of all the circuits making up the cycles in C.

Definition 1.2. Let G be a bridgeless graph. The minimum total length over all possible
cycle covers of G is denoted by scc(G), and a cycle cover having length scc(G) is called a
shortest cycle cover.

The Shortest Cycle Cover Conjecture by Alon and Tarsi [2] asserts that scc(G) ≤
7/5 · |E(G)|. In [28], it is shown that if a graphG belongs to S4, then scc(G) = 4/3 · |E(G)|,
thus leaving, once again, the conjecture open only for graphs from S≥5.
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All previous example give a strong motivation to the study of the class S≥5. In this
paper, we study parameters which have a potential to further refine S≥5 and thus enlarge
the set of cubic graphs for which the Cycle Double Cover Conjecture, the Fan-Raspaud
Conjecture and other related problems can be proven. As a by-product, we also consider
a parameter which identifies graphs in S4 that are, in a sense (explained later), closer to
being 3–edge-colourable. Now we describe these parameters in more detail.

Let G be any graph, and let N ⊆ E(G). We denote by G+N the multigraph obtained
from G after adding a parallel edge to every edge in N . In general, let N1, N2, . . . , Nt ⊆
E(G). We denote by G+N1 + · · ·+Nt, or equivalently by G+

∑t
i=1Ni, the multigraph

obtained by adding to every edge of G a number of parallel edges equal to the number of
times the original edge appears in N1, . . . , Nt. In the special case when we add t times
the same set of edges N , the resulting graph is denoted by G+ tN (examples are given in
Figure 1).

N1 N2

G+N1+N2 G+2N1

Figure 1: Perfect matchings N1 and N2 in G and the graphs G+N1 +N2 and G+ 2N1

The study of the following problem was firstly proposed to some of the authors by G.
Brinkmann and E. Steffen during the workshop KOLKOM 2017 in Paderborn: given a
bridgeless cubic graph G, when does there exist k perfect matchings M1, ...,Mk of G, for
some integer k ≥ 0 , such that the graph G + M1 + ... + Mk is (k + 3)–edge-colourable
or, equivalently, is Class I?

In the sequel, a (k+ 3)–edge-colouring of the multigraph G+M1 + . . .+Mk shall be
sometimes considered as the proper edge-colouring of G in which every edge e is assigned
ν(e) + 1 colours, where ν(e) is the number of times e appears in the list M1, . . . ,Mk.

For a graph G, we define the following parameter related to this problem:

Definition 1.3. Denote by l(G) the minimum number of perfect matchings needed to be
added to G such that the resulting graph is Class I. If such a number does not exist, then
we set l(G) = +∞.

Obviously, for a cubic graph G, l(G) = 0 if and only if G is 3–edge-colourable. Ob-
serve also that the Berge Conjecture is true for cubic graphs G with l(G) ≤ 2. A slight
variation of the previous definition will also be of interest later on in the paper.

Definition 1.4. Let G be a graph admitting a perfect matching M . Denote by lM (G) the
minimum number of copies ofM which need to be added toG such that the resulting graph
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is Class I. If such a number does not exist for M , we set lM (G) = +∞.

Lewis Carroll has already been a great source of graph theoretical jargon, especially
when dealing with snarks: with words like “boojum” [11, 30] and “bandersnatch” [27]
used to represent snarks or graphs having some particular property. Below, we shall study
what we believe is another “unmistakable” characteristic of snarks so much so to deserve
another Carrollian word which captures this bizarre behaviour. Consequently, we shall say
that a bridgeless cubic graph G is frumious† if lM (G) = +∞ for all perfect matchings
M of G, and we will conjecture that frumious snarks are exactly the snarks in S≥5 (see
Conjecture 4.1 for a slightly stronger statement).

In the following sections we give some results on the three parameters just defined:
l(G), lM (G) and scc(G), and show that the class S≥5 seems to be critical in the study of
all of them. More precisely, in Section 3 we determine which bridgeless cubic graphs G
admit a finite value for l(G), and conclude that in some sense the Petersen graph is the
only obstruction for this parameter to be finite. We also show that this parameter can be
arbitrarily large (see Corollary 3.9). In Section 4 we conjecture that there is no snark G
and a perfect matching M of G for which 1 < lM (G) < +∞. In Theorem 4.4 we also
show that there exist snarks in S4 which are closer to being Class I than other snarks in
S4: we show that lM (G) = 1 for any flower snark G and for any perfect matching M of
G, except the Tietze graph. In Section 5 we show that given a bridgeless cubic graph G,
scc(G) is equal to 4/3 · |E(G)| if and only if there exists a perfect matching M of G for
which lM (G) is finite. In particular, extending a result in [7], we prove that the graphs in an
infinite family of snarks in S5 (treelike snarks) admit a shortest cycle cover whose length
is strictly greater than 4/3 their size.

2 Notation and definitions
The vertex set and edge set of a given graphG will be denoted by V (G) and E(G), respec-
tively. In what follows, graphs may contain parallel edges but no loops. A graph is said
to be simple if it does not contain any parallel edges. A k–factor of G, for some positive
integer k, is a k–regular spanning subgraph ofG, not necessarily connected. In particular, a
perfect matching is the edge-set of a 1–factor. A circuit is a connected 2–regular subgraph,
and a cycle is an even subgraph of the graph. Observe that when the graph is cubic, any
cycle is a collection of vertex-disjoint circuits.

A graph G is said to be k–edge-connected if the cardinality of the smallest edge-cut
of G is at least k. We shall refer to 2–edge-connected graphs as bridgeless. A graph G
is cyclically k–edge-connected if no set of fewer than k edges separates two circuits of G.
The largest integer k for which G is cyclically k–edge-connected is the cyclic connectivity
of G (apart for three small graphs that do not have a cycle-separating edge-cut and for
which the cyclic connectivity is defined as their rank).

Let G be a bridgeless cubic graph having a 2–edge-cut X . A 2–edge-reduction on X is
the graph operation onG which creates two new smaller bridgeless cubic graphs by joining
the degree two vertices in each component ofG−X by an edge. Moreover, for a bridgeless
cubic graph G having a 3–edge-cut X , a 3–edge-reduction on X is the graph operation on
Gwhich creates two new bridgeless cubic graphs by introducing a new vertex to each of the
components ofG−X and joining it to the degree two vertices in the respective component.

†Coined by Lewis Carroll and was first used in his poem Jabberwocky. It is the blend of fuming and furious.
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In the opposite direction, we define the following standard operation on bridgeless cubic
graphs. Let G1 and G2 be two bridgeless cubic graphs, with v1 ∈ V (G1) and v2 ∈ V (G2)
such that the vertices adjacent to v1 are x1, y1, z1, and those adjacent to v2 are x2, y2, z2.
A 3–cut-connection on v1 and v2 is a graph operation that consists of constructing the new
graph [G1 − v1] ∪ [G2 − v2] ∪ {x1x2, y1y2, z1z2}. The 3–edge-cut {x1x2, y1y2, z1z2} is
referred as the principal 3–edge-cut (see for instance [9]). Analogously, we can define the
2–cut-connection of two bridgeless cubic graphs on two of their edges.

Unlike 3–edge-reductions, more than one graph can be obtained by a 3–cut-connection
on v1 and v2. Unless otherwise stated, if it is not important how the adjacencies in the
principal 3–edge-cut look like, we just say that the resulting graph was obtained by a 3–
cut-connection on v1 and v2. It is clear that any resulting graph is also bridgeless and
cubic.

Let U,W ⊆ V (G) such that U ∩W = ∅. The set consisting of all the edges having
exactly one endvertex in U and one endvertex in W is denoted by [U,W ]. When W is
equal to V (G)− U , the set [U,W ] is denoted by ∂GU , or equivalently ∂GW , and when it
is obvious to which graph G we are referring we just write ∂U . A dangling edge is an edge
having exactly one end-vertex. The graph on U whose edge set consists of those edges of
G having both endvertices in U is denoted by G[U ]. The latter is referred to as the induced
subgraph of G on U . The subgraph of G with vertex set U resulting by considering G[U ]
together with ∂U as dangling edges, is said to be a k–pole, with k = |∂U |. A dangling
edge with end-vertex x is said to be joined to a vertex y, if the dangling edge is deleted and
x and y are made adjacent. In a similar way, two dangling edges are joined if they are both
deleted and their end-vertices are made adjacent.

A k–cycle cover is a cycle cover consisting of at most k cycles. A cycle cover C of a
graph G is said to be a cycle double cover if every edge of G is contained in exactly two
cycles of C.

Let S be a finite set of colours containing at least two distinct colours a and b. In an
edge-colouring of E(G), if e is an edge assigned colour a, the (a, b)–Kempe chain of G
containing e is the maximal connected subset of E(G) which contains e and whose edges
are all coloured either a or b.

3 The parameter l(G)

We recall that for a graph G, l(G) denotes the minimum number of perfect matchings
needed to be added to G in order to obtain a Class I graph. This section has two aims: to
derive a sufficient condition for a bridgeless cubic graph G for which l(G) is finite (see
Lemma 3.6) and, in such a case, to show that l(G) can be arbitrarily large (see Proposi-
tion 3.8 and Corollary 3.9). Along the entire section, let G be a bridgeless cubic graph.
As already mentioned, l(G) = 0 if and only if G is 3–edge-colourable. Another easy
observation is the following:

Proposition 3.1. For every bridgeless cubic graph G, l(G) = 1 if and only if χ′e(G) = 4.

Proof. If l(G) = 1, then G admits a perfect matching, say M , such that G + M = F1 +
F2+F3+F4, where each Fi is a perfect matching ofG. Clearly,E(G) = ∪4i=1Fi, implying
that χ′e(G) ≤ 4. Since G is not itself Class I, χ′e(G) = 4. Conversely, assume χ′e(G) = 4.
Consequently, E(G) = ∪4i=1Mi, for some perfect matchings Mi of G. Each edge of G
belongs to exactly one or two of these four perfect matchings. The edges belonging to
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exactly two of these perfect matchings induce a perfect matching which we denote by M .
Since G+M = M1 +M2 +M3 +M4, we have l(G) = 1.

By the above, we have l(G) > 1 if and only if χ′e(G) ≥ 5. In what follows, we analyse
the behaviour of l(G) in the class S≥5. We start with the smallest bridgeless cubic graph
having perfect matching index equal to 5: the Petersen graph P . In some sense, we shall
prove that the Petersen graph is the unique obstruction for a graph G to have a finite value
for l(G).

We start with a simple characterisation of graphs that meet the conditions of the original
problem proposed, in which the notion of the perfect matching lattice is used. A graph G is
matching covered if any edge of G lies in a perfect matching of G. For a perfect matching
M of G, let χM be its characteristic vector, i.e. for any e ∈ E(G):

χM (e) =

{
1 if e ∈M,

0 otherwise.

The perfect matching lattice Lat(G) of a matching covered graph G is defined as the
set of all |E(G)|–dimensional integral vectors over Z that can be represented as a sum or
difference of characteristic vectors of some perfect matchings of G. In other words, for
a vector w ∈ Z|E(G)|, we have w ∈ Lat(G) if and only if G admits perfect matchings
J1, ..., Js and N1, ..., Nt, such that

~w = χJ1 + ...+ χJs − χN1 − ...− χNt .

Let ~1 be the |E(G)|–dimensional vector whose coordinates are all 1.

Proposition 3.2. For a bridgeless cubic graph G, l(G) < +∞ if and only if ~1 ∈ Lat(G).

Proof. Assume that l(G) = k. Hence G + M1 + . . . + Mk is Class I, for some k perfect
matchingsM1, . . . ,Mk ofG. Consequently,G admits k+3 perfect matchings F1, ..., Fk+3

which partition the edge set of G+M1 + ...+Mk. One can easily see that

~1 = χF1 + ...+ χFk+3 − χM1 − ...− χMk ,

as required. Conversely, assume that

~1 = χJ1 + ...+ χJs − χN1 − ...− χNt ,

for some perfect matchings J1, ..., Js andN1, ..., Nt ofG and some integers s, t ≥ 0. Since
G is cubic, smust be equal to t+3. It is not hard to see that the perfect matchings J1, ..., Js
partition the edge set of G+N1 + ...+Nt. Hence l(G) ≤ t.

The above proposition allows us to construct an example of a bridgeless cubic graph G
for which l(G) = +∞. As one can expect, this is the Petersen graph, and the proof follows
from [22] (see also [5, 6]).

Proposition 3.3. If P is the Petersen graph, then ~1 /∈ Lat(P ).
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3.1 Graphs with l(G) infinite

Next we characterise bridgeless cubic graphs G for which l(G) = +∞, according to their
edge-connectivity. We can assume thatG is connected, for ifG is comprised of components
G1, ..., Gt, for some integer t > 1, then ~1 ∈ Lat(G) if and only if ~1 ∈ Lat(Gi), for all
i = 1, ..., t. First we consider graphs having 2–edge-cuts.

Lemma 3.4. Let G be a bridgeless cubic graph having a 2–edge-cut X . Let G1 and G2

be the two bridgeless cubic graphs obtained by applying a 2–edge-reduction on X . Then,
~1 ∈ Lat(G) if and only if ~1 ∈ Lat(G1) and ~1 ∈ Lat(G2).

Proof. Let X = {e1, e2} and let the new edges in G1 and G2 be denoted by f1 and f2,
respectively. First assume that ~1 ∈ Lat(G). Any perfect matching M of G contains either
both or none of the edges of X . In the former case, M gives rise to a perfect matching
of Gi by simply adding fi to M ∩ E(Gi), for i = 1, 2. Otherwise, M ∩ E(Gi) is a
perfect matching of Gi. By using this idea and considering the new perfect matchings of
G1 and G2 obtained from the list of perfect matchings of G whose sum and difference of
their characteristic vectors give ~1 ∈ Z|E(G)|, one can easily show that ~1 ∈ Lat(G1) and
~1 ∈ Lat(G2), as required.

Conversely, assume that ~1 ∈ Lat(G1) and ~1 ∈ Lat(G2). Then, G1 admits two
sets of perfect matchings J1 = {J (1)

1 , ..., J
(1)
s+3} and N1 = {N (1)

1 , ..., N
(1)
s } such that,

~1 ∈ Z|E(G1)| can be represented as
∑

J∈J1
χJ −

∑
N∈N1

χN , for some integer s ≥ 0.

Similarly, G2 admits two sets of perfect matchings J2 = {J (2)
1 , ..., J

(2)
t+3} and N2 =

{N (2)
1 , ..., N

(2)
t } such that, ~1 ∈ Z|E(G2)| can be represented as

∑
J∈J2

χJ −
∑

N∈N2
χN ,

for some integer t ≥ 0. The number of perfect matchings in J1 ∪ N1 which contain f1 is
odd, and is denoted by 2s′ + 1, for some integer s′ ≥ 0. Moreover, the number of perfect
matchings containing f1 in J1 is one more than the number of such perfect matchings in
N1. The same applies for G2, and, in this case, we denote the total number of perfect
matchings in J2 ∪N2 which contain f2 by 2t′ + 1, for some integer t′ ≥ 0.

We can further assume that 2s′ + 1 = 2t′ + 1, for, suppose that s′ < t′, without loss
of generality. By taking any perfect matching F of G1 containing f1 (the existence is
guaranteed by [26]), it is easy to see that

∑
J∈J1

χJ +

t′−s′∑
i=1

χF −
∑

N∈N1

χN −
t′−s′∑
i=1

χF = ~1 ∈ Z|E(G1)|.

Consequently, a new list of perfect matchings of G1 whose characteristic vectors give ~1 ∈
Z|E(G1)| is obtained. Moreover, exactly 2t′+ 1 perfect matchings from this list contain the
edge f1, as required, and so we can assume that s′ = t′. By a similar reasoning we can
assume that s = t.

Without loss of generality, let the first s′ + 1 perfect matchings in J1 (J2) and the first
s′ perfect matchings in N1 (N2) contain f1 (f2). Let J = {J1, . . . , Js+3}, where

Ji =

{
(J

(1)
i − f1) ∪ (J

(2)
i − f2) ∪ {e1, e2} if i = 1, . . . , s′ + 1,

J
(1)
i ∪ J (2)

i otherwise.
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Similarly, let N = {N1, . . . , Ns}, where

Ni =

{
(N

(1)
i − f1) ∪ (N

(2)
i − f2) ∪ {e1, e2} if i = 1, . . . , s′,

N
(1)
i ∪N (2)

i otherwise.

One can see that J and N are two sets consisting of perfect matchings of G, such that∑
J∈J χ

J −
∑

N∈N χ
N = ~1 ∈ ZE(G), as required.

The proved statement suggests that l(G) = +∞ if and only if l(G1) = +∞ or l(G2) =
+∞. Thus, in trying to characterise the bridgeless cubic graphs G with l(G) = +∞, one
can focus on 3–edge-connected graphs having 3–edge-cuts. Following [22], we say that an
edge-cut in G is tight if any perfect matching of G intersects it in exactly one edge (not
necessarily the same).

Lemma 3.5. Let G be a 3–edge-connected cubic graph and let X be a non-trivial tight 3–
edge-cut in G. Consider the two bridgeless cubic graphs G1 and G2 obtained by applying
a 3–edge-reduction to X . Then, ~1 ∈ Lat(G) if and only if ~1 ∈ Lat(G1) and ~1 ∈ Lat(G2).

This statement can be derived from the results of [22]. Moreover, its proof follows an
argument similar to the one used in the proof of Lemma 3.4. For these reasons we omit the
proof here.

Before we proceed to prove the next result regarding 3–edge-connected cubic graphs
which do not contain non-trivial tight 3–edge-cuts we give the definition of a brick. A brick
is a 3–connected graph such that for any two distinct vertices u and v ofG,G−u−v admits
a perfect matching. It is easy to see that no brick can be bipartite.

Lemma 3.6. Let G be a 3–edge-connected cubic graph without non-trivial tight 3–edge-
cuts. Then, ~1 ∈ Lat(G) if and only if G is not the Petersen graph.

Proof. If G is the Petersen graph, then by Proposition 3.3, ~1 /∈ Lat(G). So assume that G
is not the Petersen graph. Since G is cubic, by [21] we have that all tight edge-cuts of G
are 3–edge-cuts. Thus, by our assumptions, G contains no tight edge-cuts. Hence, by [22],
G is either bipartite or a brick. Now, if G is bipartite, then it is 3–edge-colourable and so
~1 ∈ Lat(G). Hence, we can assume that G is a brick. The main result of [22] implies that
the only cubic brick for which ~1 /∈ Lat(G) is the Petersen graph, proving our result.

Corollary 3.7. Let G be a cyclically 4–edge-connected cubic graph different from the
Petersen graph. Then, l(G) is finite.

3.2 Construction of cubic graphs with l(G) finite but arbitrarily large

We have already seen that l(G) ≤ 1 if and only if χ′e(G) ≤ 4. The results obtained above
suggest an algorithm to check whether l(G) = +∞ for a given bridgeless cubic graph G.
The next question that we would like to address is to see whether there exist graphs in S≥5
with 1 < l(G) < ∞. In Corollary 3.9, we show that there exist bridgeless cubic graphs G
with l(G) finite but arbitrarily large.

Let G be a bipartite graph with bipartition U and W . Let u ∈ U . We say that G is
coverable with respect to u if for every w ∈W there exists a parity subgraph ofG in which
the vertices u and w are of degree 3 and all the other vertices are of degree 1. We remark
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that a parity subgraph of G is a spanning subgraph of G with the degrees of all the vertices
having the same parity in both the subgraph and in G.

Let G be a bipartite cubic graph of order 2n having bipartition U and W . Assume
W = {w1, w2, . . . , wn} and let u ∈ U . Let v be a vertex of the Petersen graph P , and let
P1, . . . , Pn be n copies of the Petersen graph, with the vertex corresponding to v in each
copy denoted by v1, . . . , vn, respectively. Apply a 3–cut-connection on vi and wi, for each
i ∈ {1, . . . , n} and expand u to a triangle. The resulting graph will be called an extension
of G with respect to u.

Proposition 3.8. Let G be a bipartite cubic graph of order 2n and let H be an extension
of G with respect to u, for some u ∈ V (G). If G is coverable with respect to u, then
l(H) = n.

Proof. We claim that l(H) ≥ n. Suppose that l(H) = k < n, for contradiction. Then, H
admits k perfect matchings M1, ...,Mk, such that H+M1 + ...+Mk is Class I. Since G is
bipartite, if a perfect matchingM ofH intersects all the three edges of ∂(Pi−vi) inH , for
some i ∈ {1, . . . , n}, then, |M ∩ ∂(Pj − vj)| = 1, for all j ∈ {1, . . . , i− 1, i+ 1, . . . , n}.
In this case, M must also intersect the three edges incident with the triangle in H . Since
k ≤ n − 1, there exists some s ∈ {1, . . . , n} such that ∂(Ps − vs) is not contained in
any perfect matching in M1, ...,Mk. Thus, these perfect matchings intersect exactly one
edge from the 3–edge-cut ∂(Ps − vs). Hence, M1, . . . ,Mk induce k perfect matchings
of the Petersen graph (Ps), say M ′1, . . . ,M

′
k. Let F1, . . . , Fk+3 be the k + 3 colours of

H + M1 + . . . + Mk. By a simple counting argument, |Fi ∩ ∂(Ps − vs)| = 1, for each
i ∈ {1, . . . , k+3}. Therefore, the Fis induce k+3 perfect matchings of the Petersen graph
(Ps), say F ′1, . . . , F

′
k+3. However, this implies that Ps+M ′1+. . .+M ′k = F ′1+. . .+F ′k+3,

a contradiction to Proposition 3.3.

b

b b

b b

b

b b

b

b

b b

b b

b

b b

b

Figure 2: The way Ni and Ji intersect Pi

Now, we show that l(H) is actually equal to n. For each i ∈ {1, . . . , n}, let Ni be a
perfect matching of H containing ∂(Pi − vi) and intersecting Pi − vi as depicted on the
left in Figure 2. Since G is coverable with respect to u, such a perfect matching exists. We
claim that H + N1 + . . . + Nn is Class I. For each i ∈ {1, . . . , n}, let Ji be the perfect
matching of H equal to Ni, apart from the way it intersects the edges in Pi − vi. One can
see the differences in Figure 2.

Consider the graph H +
∑n

i=1(Ni − Ji). This will have the same structure as H ,
however, every Pi − vi is now transformed into P ′i , as shown in Figure 3. Since a bipartite
graph is Class I and the 3–pole P ′i can be 3–edge-coloured in such a way that its three
dangling edges each have a different colour, then, a 3-edge-colouring of G can be easily
extended to a 3–edge-colouring ofH+

∑n
i=1Ni−Ji. Let these three colours (also perfect

matchings of H) be denoted by Jn+1, Jn+2, Jn+3. Consequently, H +N1 + . . .+Nn =
J1 + . . .+ Jn+3, implying that l(H) = n, as required.
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b
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b b

b

b b

b

Figure 3: P ′i in H +
∑n

i=1(Ni − Ji)

We remark that the above result holds also for bipartite cubic graphs G admitting par-
allel edges. Moreover, by using Proposition 3.8 we have the following consequence:

Corollary 3.9. For each positive integer n there exists a cubic graph H with l(H) = n.

Proof. Every snark having perfect matching index 4 is an example for n = 1. Moreover,
we directly checked that the value of l for the (treelike) snark on 34 vertices, also known
as windmill (see [1, 7]), is 2. For n > 2, it can be observed that if G is the circular ladder
graph on 2n vertices (if n is even) or the Möbius ladder graph on 2n vertices (if n is odd),
then for any vertex u ∈ V (G), G is coverable with respect to u. Thus, the result follows
from Proposition 3.8.

Finally, the following natural question arises:

Problem 3.10. Does there exist a cyclically 4–edge-connected cubic graph with arbitrarily
large l?

We recall that l is always finite in the class of cyclically 4–edge-connected cubic graphs
excluding the Petersen graph, as the latter is the only cyclically 4–edge-connected cubic
graph for which l is infinite by Corollary 3.7.

4 The parameter lM(G)

Proposition 3.1 states that ifG belongs to S4, then it admits a perfect matching which when
added to G the resulting graph is Class I. What happens if G belongs to S≥5? For sure,
for any perfect matching M of G, G+M is not Class I. However, what can we say about
G+ tM , for t being a positive integer strictly greater than 1?

We recall that the parameter lM (G), for a given bridgeless cubic graph G and a given
perfect matching M of G, is defined as the minimum t, if such an integer exists, for which
G + tM is Class I. Clearly, lM (G) ≥ l(G) for every perfect matching M of G, and thus,
if l(G) = +∞ then lM (G) = +∞ for every perfect matching M of G. Up till now, we
are not able to find any pair (G,M) such that 1 < lM (G) < +∞, and we are inclined to
believe that such an example does not exist at all.

Conjecture 4.1. If G+M is Class II for a given perfect matching M of G, then G+ tM
is Class II for all positive integers t.

Trivially, G is Class I if and only if lM (G) = 0 for every perfect matching M of G.
Moreover, G ∈ S4 if and only if l(G) = 1. Last assertion and Conjecture 4.1 would imply
that if G ∈ S≥5, then G is frumious, whilst if G ∈ S4, then lM (G) is equal to 1 or +∞
according to the selected perfect matching M .
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The class S4 can be considered as the class of bridgeless cubic graphs closest to the
class of 3–edge-colourable cubic graphs. Previous considerations suggest that there could
be graphs inside S4 which are closer to being 3–edge-colourable than others: these are
Class II bridgeless cubic graphs G for which G+M is Class I for any one of their perfect
matchings M , i.e. lM (G) = 1 for every M . We cannot give a complete characterisation of
the graphs which have this property. However, we are able to show that an infinite family
of snarks, with perfect matching index four (shown in [9]), have this distinctive property.

4.1 Examples of cubic graphs G such that lM (G) = 1 for every M

Definition 4.2. The 6–pole on four vertices shown in Figure 4 will be called a Single-
Flower 6–pole, for short an SF 6–pole, whilst its vertical edge will be referred to as a
spoke.

b

b

b b
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1

r
i
2

r
i
3

l
i
1

l
i
2

l
i
3

b

Figure 4: The SF 6–pole Fi

Let n ≥ 3 be an odd integer, and let F1, F2, . . . , Fn be n SF 6–poles. Let li1, l
i
2, l

i
3 and

ri1, r
i
2, r

i
3 be the left and right dangling edges of Fi, respectively, as shown in Figure 4. The

graph obtained by joining the dangling edges rij and li+1
j , for every i ∈ {1, . . . , n} and for

every j ∈ {1, 2, 3}, is called a flower snark and is denoted by Fn (see [17]). We remark
that all operations in the upper indexing set are taken modulo n. The new edge obtained
after joining two dangling edges, say rij and li+1

j , will be referred to interchangeably by
the same two names. To simplify the way we depict flower snarks, we shall look at Fn as
a 6–pole with the left and right dangling edges being l11, l

1
2, l

1
3, and rn1 , r

n
2 , r

n
3 , respectively.

The 6–pole obtained by joining the right dangling edges of an SF 6–pole with the left
dangling edges of another SF 6–pole in the same way as in the construction of flower snarks
is called a Double-Flower 6–pole, for short a DF 6–pole (see Figure 5).
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Figure 5: DF 6–poles in Fn with two consecutive spokes belonging to a perfect matching

Definition 4.3. LetX be a DF 6–pole inFn, with left and right dangling edges li1, l
i
2, l

i
3 and

ri+1
1 , ri+1

2 , ri+1
3 , respectively, for some i ∈ {1, . . . , n}, and let M be a perfect matching of

Fn. The DF 6–pole X is said to be good with respect M , if there exists j ∈ {1, 2, 3} such
that ∂X ∩M = {lij , r

i+1
j }.

In the sequel, we prove that given a perfect matching M of Fn, Fn +M is Class I, ex-
cept when n = 3 and M intersects exactly one spoke of F3. The latter case arises because
the graph F3 is the Petersen graph P with one vertex expanded to a triangle (also known as
the Tietze graph), and if F3 +M is Class I for such a perfect matching M , then this would
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imply that l(P ) = 1, a contradiction (see Proposition 3.2 and Proposition 3.3).

Easy direct checks show that the following remarks hold:

R.1 LetM be a perfect matching of F3 intersecting all three of its spokes. Then, F3 +M
is Class I.

R.2 Let M be a perfect matching of F5 intersecting exactly one spoke, say the spoke
of F3. Then, M contains one of the two matchings depicted in Figure 6. One can
clearly see that, in any case, the colouring depicted Figure 6 can always be extended
to a 4–edge-colouring of F5 +M using the colours a, b, c, d.
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Figure 6: M intersecting exactly one spoke in F5

R.3 As n is odd, any perfect matching of Fn intersects exactly one left (similarly right)
dangling edge of some SF 6–pole Fi, for i ∈ {1, . . . , n}.
Note that R.3 follows because every perfect matching of Fn cannot intersect all the
three left (similarly right) dangling edges of Fi. Moreover, if a perfect matching
intersects exactly two left dangling edges of Fi, then the right dangling edges of this
6–pole are not intersected by the perfect matching, and vice-versa. Since n is odd,
this is impossible to occur.

R.4 If the two spokes of a DF 6–pole are contained in a perfect matching, then it is a
good DF 6–pole with respect to that perfect matching (see Figure 5).

R.5 If a perfect matching M of Fn intersects the first and third out of three consecu-
tive spokes, then, the second spoke must be contained in M , as well. Consequently,
if a perfect matching of F5 intersects exactly three spokes, then they must be con-
secutive. Moreover, in this case, the two SF 6–poles of F5 whose spokes are not
contained in the perfect matching form a good DF 6–pole.

R.6 As n is odd, if the spokes of three consecutive SF 6–poles, say F1, F2, F3, do not
belong to a perfect matching, then either F1 and F2, or, F2 and F3 form a good DF
6–pole with respect to that perfect matching.

Indeed, note that either l11 and r21 , or, l21 and r31 belong to the perfect matching, and
so R.6 follows by R.3.

In the next proof we will make use of the following procedure: we delete a good DF
6–pole X with respect to a perfect matching M of Fn (shown as the dotted part in Figure
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Figure 7: Inductive step in the proof of Theorem 4.4

7) and join the remaining dangling edges accordingly together as in Figure 7. In this way
we obtain a copy of the flower snark Fn−2.

In the sequel, with a slight abuse of terminology, we shall refer to the three edges
obtained after joining the above dangling edges as the new edges of Fn−2. Moreover,
since X is good, M naturally induces a perfect matching of Fn−2. We will denote by MX

such a perfect matching in the copy of Fn−2, obtained by removing X from Fn. Note that
MX contains exactly one of the three new edges.

Theorem 4.4. Let n ≥ 5 be an odd integer and let M be a perfect matching of Fn. Then,
Fn +M is Class I.

Proof. The crucial steps of the proof of this theorem lie in the following two claims.

Claim I: Let n ≥ 5 be an odd integer and let X be a good DF 6–pole with respect to a
perfect matching M of Fn. If Fn−2 +MX is Class I, then Fn +M is Class I.

Proof of Claim I. Let MX be the perfect matching induced by M in Fn−2. By assump-
tion, Fn−2 + MX admits a 4–edge-colouring with colours denoted by a, b, c, d. Without
loss of generality, we can assume that the unique edge of Fn−2 + MX parallel to a new
edge of Fn−2 has colour d in the given 4–edge-colouring. Since every colour class cor-
responds to a perfect matching of Fn−2, it follows by R.3 that each of the colours a, b, c
intersects exactly one of the three new edges of Fn−2. A 4–edge-colouring of Fn + M is
constructed in the following way: if an edge does not have an end-vertex in X , then it is
assigned the same colour of its corresponding edge in Fn−2 + MX ; all edges of Fn with
an end-vertex in X are assigned the colours a, b, c as illustrated in Figure 8; and finally, all
edges of M with an end-vertex in X are assigned the colour d. Since this gives rise to a
4–edge-colouring of Fn +M , the claim follows.
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Figure 8: Extending the colour classes of Fn−2 to Fn

Claim II: Let n ≥ 3 be an odd integer and let M be a perfect matching of Fn. The
graph Fn admits a good DF 6–pole with respect to M .
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Proof of Claim II. Suppose that there is no good DF 6–pole with respect to M , for
contradiction. From R.4 it follows that M cannot contain two consecutive spokes. At the
same time, since n is odd, R.5 and R.6 imply that every sequence of consecutive spokes
not in M has length exactly two. Hence, for every three consecutive spokes, one of them
belongs to M and the other two do not. Consider three consecutive SF 6–poles in Fn, and
without loss of generality assume that M intersects only the first spoke. Since there is no
good DF 6–pole with respect to M , a direct easy check shows that M can intersect these
three consecutive SF 6–poles only in two possible ways, as shown in Figure 9.
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Figure 9: How M can intersect three consecutive SF 6–poles

The two ways M can intersect three consecutive SF 6–poles must alternate in Fn.
Hence, n is three times an even number, a contradiction, since n is assumed to be odd.

Now we are in a position to complete the proof of the theorem. We prove the result by
induction on n. Consider first F5. As the spokes form an odd edge-cut, M intersects an
odd number of them. By R.2 we can assume that M intersects at least three consecutive
spokes of F5, say the spokes of F1, F2, F3. Consequently, by R.4 or R.5, F4 and F5 form a
good DF 6–pole with respect to M . Let this DF 6–pole be X . We have that MX intersects
all the three spokes of F3. By R.1, F3 +MX is Class I and the base case n = 5 follows by
Claim I.

Now, assume the result holds up to n ≥ 5, i.e. Fn + M is Class I for every perfect
matching M of Fn. Consider Fn+2 and let M be one of its perfect matchings. By Claim
II, Fn+2 admits a good DF 6–pole X with respect to M . By induction, Fn +MX is Class
I and the assertion follows by Claim I.

The flower snark F5 has cyclic connectivity 5, and for every odd n ≥ 7, Fn has cyclic
connectivity 6. Because of Theorem 4.4, one may think that for every perfect matching
M of a cyclically 5–edge-connected cubic graph G with perfect matching index four, G+
M is Class I. However, this is not true. By Theorem 1.1 in [14], there exists an infinite
family of cyclically 5–edge-connected cubic graphs G having perfect matching index 4,
which do not satisfy this assertion. This is true because these graphs admit a 2–factor
which is not contained in any one of their cycle double covers. For, let G be such a graph,
and let N be the complement of such a 2–factor C. Suppose that G + N is Class I, for
contradiction. Then, G + N =

∑4
i=1 Ji for some perfect matchings Ji of G. Hence,

{N4J1, . . . , N4J4, C} is a cycle double cover of G containing C. This contradicts our
choice of G.

5 A relation between lM(G) and scc(G)

The main conjecture in the area of short cycle covers of bridgeless graphs is the so-called
7/5–Conjecture (or the Shortest Cycle Cover Conjecture). It states that for any bridgeless
graph G (not necessarily cubic), we have scc(G) ≤ 7/5 · |E(G)|. This conjecture is one of
the many consequences of the Petersen Colouring Conjecture [25]. On the other hand, it
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implies the Cycle Double Cover Conjecture, see [19]. In [20] it is shown that any bridgeless
cubic graph G has a cycle cover of length at most 34/21 · |E(G)|, and any bridgeless graph
G of minimum degree three has a cycle cover of length at most 44/27 · |E(G)|.

A k–cycle cover is a cycle cover consisting of at most k cycles. The following conjec-
ture can be found as Conjecture 8.11.5 in [32]:

Conjecture 5.1. Every bridgeless graph has a shortest 4–cycle cover.

Here, we propose the following conjecture and we show that it is implied by Conjecture
5.1.

Conjecture 5.2. For every bridgeless cubic graph G, scc(G) = 4/3 · |E(G)| if and only if
χ′e(G) ≤ 4.

Proposition 5.3. Conjecture 5.1 implies Conjecture 5.2.

Proof. If χ′e(G) ≤ 4, then by [28], scc(G) = 4/3 · |E(G)|. So assume scc(G) = 4/3 ·
|E(G)|, and let C = {C1, . . . , Ck} be a cycle cover of G with length 4/3 · |E(G)|. Since
we are assuming Conjecture 5.1 to be true, we can assume k ≤ 4. Since G is cubic and
the length of C is 4/3 · |E(G)|, every edge of G is either covered once or twice in C and the
edges covered twice form a perfect matching of G, say M . Let Fi = Ci4M , for every
i = 1, . . . , k. Since C is a cycle cover, the perfect matchings F1, . . . , Fk cover the edge set
of G, implying that χ′e(G) ≤ 4, as required.

A relation between scc(G) and lM (G) is clearly established by the following theorem.

Theorem 5.4. For every bridgeless cubic graph G, scc(G) > 4/3 · |E(G)| if and only if G
is frumious, otherwise scc(G) = 4/3 · |E(G)|.

Proof. Assume that G is not frumious, i.e. G + tM is Class I for a perfect matching M
of G and for some non-negative integer t. Let F1, . . . , Ft+3 be the colour classes of a
(t + 3)–edge-colouring of G + tM . For every i = 1, . . . , t + 3, let Ci = M4Fi, and
let C = {C1, . . . , Ct+3}. The latter is a cycle cover of G. Moreover, if e ∈ M , then e is
covered exactly twice by the cycles in C. Otherwise, if e 6∈ M , then e is covered exactly
once by some cycle in C. Since for any cubic graph G and any cycle cover C of G, C has
length 4/3 · |E(G)| if and only if the set of edges covered twice by C is a perfect matching
of G, the result follows. Conversely, let C = {C1, . . . , Ct+3} be a shortest cycle cover of
G of length 4/3 · |E(G)|, for some integer t. Let M be the set of edges covered exactly
twice by C, and let Fi be equal to M4Ci. By an argument similar to the first implication,
one can see that G+ tM = F1 + . . .+ Ft+3.

Hence, the main consequence of Conjecture 5.2 is that bridgeless cubic graphs having
perfect matching index at least 5 would have a shortest cycle cover strictly greater than 4/3
their size. The problem seems to be very hard to solve. However, in the next section, we
show that an infinite family of snarksG with perfect matching index 5 have a shortest cycle
cover strictly greater than 4/3 · |E(G)|.

5.1 Treelike Snarks

We recall that a bridgeless cubic graph G is frumious if lM (G) = +∞ for all perfect
matchings M of G. As already remarked, the Petersen graph is such a graph and above we



17

conjectured (see Conjecture 4.1) that a bridgeless cubic graph is frumious if and only if its
perfect matching index is at least 5 ‡. In order to support such a conjecture we consider an
infinite family of snarks, called treelike snarks, having perfect matching index 5 and prove
that they are frumious snarks. The family of treelike snarks was first introduced in [1], but
here we also refer to the more general definition of treelike snarks given in [23] and prove
our main result (Theorem 5.6) in this general setting.

In order to present such a class of snarks we need some preliminary definitions.

Definition 5.5. Let A be an arbitrary 4–pole. Partition its four dangling edges in ordered
pairs, say (l1, l2), referred to as the first and second left dangling edges, and (r1, r2), re-
ferred to as the first and second right dangling edges. Let the end-vertices of the four
dangling edges l1, l2, r1, r2 be u1, u2, v1, v2, respectively. The 4–pole A is said to be
frumious with respect to such a partition if the graph obtained by removing the four dan-
gling edges and adding two new vertices u and v such that u is adjacent to v, u1, u2 and v
is adjacent to u, v1, v2, is a frumious snark. We will refer to the latter graph as the frumious
snark obtained from the 4–pole A.

Note that a 4–pole could be frumious with respect to a given partition whilst it is not
with respect to another one. On the other hand, a change in the order of the left dangling
edges or the right dangling edges of a frumious 4–pole produces another (possibly differ-
ent) frumious 4–pole. However, although this last change may produce a different frumious
4–pole, the two frumious snarks obtained from the two 4–poles are the same. An example
of a frumious 4–pole is the one obtained by removing two adjacent vertices of the Petersen
graph, say u and v, with the left dangling edges corresponding to the edges originally inci-
dent with u and not v, and the right dangling edges corresponding to the edges originally
incident with v and not u. In this case, the order of the dangling edges in each set of the
partition is not relevant due to the symmetry of the Petersen graph.

A Halin graph is a plane graph consisting of a planar representation of a tree without
degree 2 vertices, and a circuit on the set of its leaves (see [15]).

Let H be a cubic Halin graph consisting of the tree T and the circuit K. A treelike
snark G is any cubic graph that can be obtained by the following procedure:

• for every leaf x of T , we add two new vertices, say x1 and x2, and the edges xx1 and
xx2; and

• for every edge xy of K, with x being the predecessor of y with respect to the clock-
wise orientation of K, the edge xy is replaced with a frumious 4–pole, and the first
and second left dangling edges of this 4–pole are joined to x1 and x2, respectively,
whilst the first and second right dangling edges are joined to y1 and y2, respectively.

Let G be a treelike snark as defined above, and let the tree and the circuit defining G be
T and K, respectively. Let A be a frumious 4–pole of G replacing an edge of K. We say
that A is of Type ij with respect to a perfect matching M of G if M intersects the left and
right dangling edges of A exactly i and j times, respectively, for some i, j ∈ {0, 1, 2} with
i+ j ≡ 0 (mod 2). We shall denote this by Type(AM ) = ij.

In what follows we shall refer to the first and second left dangling edges of the 4–pole
A as −A and −A, respectively. The first and the second right dangling edges are similarly
denoted by A− and A−, respectively (see Figure 10).

‡“I have said it thrice: What I tell you three times is true.” – LEWIS CARROLL, The Hunting of the Snark
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Two leaves x and y of T are called consecutive if they are adjacent in the circuit K,
and we shall say that the frumious 4–pole of G replacing the edge xy of K is in between
the two leaves x and y. Moreover, two consecutive leaves are said to be near if they have
distance two in T , i.e. they have a common neighbour in T (see Figure 11). We remark
that T always has two near leaves. Similarly, two 4–poles A and B are called consecutive
if there exist three consecutive leaves x, y, z (i.e. x and y are consecutive and y and z are
consecutive) such that A is in between x and y, and B is in between y and z (see Figure
10). Again, we say that the leaf y is in between the 4–poles A and B.
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Figure 10: Consecutive leaves and 4–poles

Theorem 5.6. Every treelike snark is frumious.

Proof. Let G be a treelike snark. We need to prove that lM (G) = +∞ for every perfect
matching M of G. Suppose, for contradiction, that G is a counterexample having the tree
T defining G of minimum order. This means that G + tM is Class I, for some perfect
matching M of G and some positive integer t. Let the t + 3 colours of G + tM be the
perfect matchings F1, . . . , Ft+3. It is already proved in [7] that scc(G) > 4/3 · |E(G)| if T
has exactly one vertex of degree 3, and so, lM (G) = +∞ by Theorem 5.4. Therefore, we
can assume that T has at least two vertices having degree 3.

Claim I: If a 4–pole ofG is of Type 00 with respect toM , then there must exist exactly
one perfect matching from the list of colours F1, . . . , Ft+3 which intersects both the left
(similarly right) dangling edges.

Proof of Claim I. Since the 4–pole of G is of Type 00 with respect to M , every dan-
gling edge is contained in exactly one of the colours from the above list. Moreover, since
the 4–pole is frumious, exactly one of these colours must intersect both left dangling edges
and exactly one of these colours must intersect both right dangling edges (such a colour
could be the same for the left and right dangling edges), otherwise one could construct a
(t+3)–edge-colouring of the frumious snark obtained from the 4–pole (see Definition 5.5),
a contradiction. In this case, all the other colours from the list (t + 1 or t + 2 of them) do
not intersect the four dangling edges.

Claim II: If a 4–pole ofG is of Type 11 with respect toM , then, there must be t perfect
matchings from the list of colours F1, . . . , Ft+3, such that each of them intersects exactly
one left dangling edge and exactly one right dangling edge simultaneously. Moreover, there
must also exist exactly one perfect matching from the same list which intersects both the
left (similarly right) dangling edges of the 4–pole.

Proof of Claim II. Since the 4–pole is frumious, at least one colour, say Fi, must in-
tersect both the left (right) dangling edges of the 4–pole, by the same argument used in
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the proof of Claim I, and once again, such colour could be the same for the left and right
dangling edges. Since one of the left (right) dangling edges does not belong to M and
belongs to Fi, every other colour cannot intersect this left (right) dangling edge. Hence,
every perfect matching from the list of colours F1, . . . , Ft+3 different from Fi intersects
the other left (right) dangling edge at most once. More precisely, t of the colours different
from Fi intersect the left and right dangling edges belonging to M exactly once.

Claim III: G cannot contain two consecutive 4–poles which are respectively of Type
00 and Type 11 with respect to M .

Proof of Claim III. If two consecutive 4–poles of G are respectively of Type 00 and 11
with respect to M , then, the edge of T , say e, incident to the leaf in between these two 4–
poles does not belong to M . On the other hand, by Claim I, there exists a colour Fi which
contains both the right (left) dangling edges of the 4-pole of Type 00, and so it contains the
edge e, as well. By Claim II, there exists a colour Fj which contains both the left (right)
dangling edges of the 4–pole of Type 11, and so it contains the edge e too. We note that
j 6= i, otherwise, Fi contains two pairs of incident edges. Consequently, the edge e belongs
to two different colours and so it must belong to M , a contradiction.

Claim IV: If the unique edge of T incident to a leaf x is not in M , then x is in between
a 4–pole of Type 11 and a 4–pole of Type 02 or, by symmetry, a 4–pole of Type 20 and a
4–pole of Type 11, with respect to M .

Proof of Claim IV. If the unique edge of T incident to a leaf x is not in M , then one of
the other two edges incident to x belongs to M . Hence, x is in between two 4–poles, one
of Type 11 and the other one either of Type 00 or of Type 02 (by symmetry Type 20), with
respect toM . The first possibility is already excluded by Claim III and so the claim follows.

Claim V: If two consecutive leaves are incident with edges in M not belonging to T ,
then the 4–pole in between them is of Type 11 with respect to M .

Proof of Claim V. Let x and y be the two consecutive leaves and let A,B,C be the
three consecutive 4–poles such that x is in between A and B and y is in between B and
C. By Claim IV, either A is of Type 20 and B of Type 11 or A is of Type 11 and B of
Type 02, with respect to M . The latter case is excluded by considering the pair B and C of
consecutive 4–poles and Claim IV again. The claim follows.

Claim VI: G cannot have three consecutive leaves which are incident with edges in M
not belonging to T .

Proof of Claim VI. Assume there exist such three consecutive leaves, say x, y, z. By
Claim V, the two 4–poles in between x and y and in betweeen y and z are both of Type 11
with respect to M . This implies that the edge of T incident with y is in M , a contradiction.

Next, consider two near leaves of T , say x and y, as in Figure 11. Let e and f be the two
edges of T incident with x and y, respectively. Moreover, let g be the edge of T adjacent
to e and f . The perfect matching M can intersect e, f, g in two different ways:

Case 1: the edge g does not belong to M and exactly one of e and f belongs to M , say
e without loss of generality, or

Case 2: the edge g belongs to M .
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Figure 11: Near leaves x and y in Case 1 and Case 2 of Theorem 5.6

Consider the three consecutive 4–poles A,B,C such that x is in between A and B,
and y is in between B and C, as in Figure 12. The list of proven claims give some strong
restrictions and information on the possible types of these 4–poles with respect to M . We
briefly discuss them according to Type (BM ), ending with a summary in Table 2:

• Type (BM ) cannot be equal to 22 or 02, since f /∈M both in Case 1 and Case 2;

• If Type (BM ) = 00, then Type (CM ) = 11 since f /∈ M , a contradiction by Claim
III;

• If Type (BM ) = 11, then Type (CM ) = 02 since f /∈M and by Claim III. Moreover,
if e ∈ M , then Type (AM ) = 11 (Case 1b)), otherwise, if g ∈ M , then Type
(AM ) = 20 (Case 2));

• If Type (BM ) = 20, then Type (CM ) = 11 since f /∈ M , and Type (AM ) can be
either 00 (Case 1a)) or 20 (Case 1c)).

Case Type(AM ) Type(BM ) Type(CM )

1a) 00 20 11
1b) 11 11 02
1c) 20 20 11
2) 20 11 02

Table 2

We prove a further last claim.
Claim VII: Let D and D′ be two consecutive 4–poles of G which are respectively of

Type 20 and 11 (or by symmetry 11 and 02) with respect to M . There cannot exist a colour
Fj such that Type(DFj ) = Type(D′Fj

) = 11, and there cannot exist a colour Fl such that
Type(DFl

) = 02 or 22 (or by symmetry 20 or 22).
Proof of Claim VII. Consider two consecutive 4–polesD andD′ which are respectively

of Type 20 and 11 (or 11 and 02) with respect to M . Clearly, the edge h belonging to
T and incident with the leaf in between them is not in M . Since we are assuming that
G + tM is Class I, by Claim II there must exist a colour, say Fi, such that Type(D′Fi

), or
from now on simply Type(D′i), is equal to 20 or 22. Clearly, h ∈ Fi. This means that there
cannot exist a colour Fj such that Type(Dj) = Type(D′j) = 11, as otherwise, h would be
covered more than it should be. For the same reasons, there cannot exist a colour Fl such
that Type(Dl) = 02 or 22 (by symmetry 20 or 22).
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Now, we shall use all previous claims to show that in all the four remaining cases we
obtain a contradiction.

Case 1a): Type(AM ) = 00, Type(BM ) = 20, Type(CM ) = 11.
Since A is frumious, by Claim I there exists a colour from F1, . . . , Ft+3, say F1, such
that Type(A1) = α2, where α is either equal to 0 or 2. As the edges e and f are ad-
jacent, the 4–poles B and C must be intersected by F1 as in Table 3. In order to cover
the right dangling edges of B, there must also exist two colours, say F2 and F3, such that
Type(B2) = Type(B3) = 11, since by Claim VII, Type(Bi) cannot be equal to 02, for any
i ∈ {1, . . . , t+3}. Hence, by Claim VII, F2 and F3 intersect the 4–polesA,B,C as shown
in Table 3, where β, γ, δ, ε ∈ {0, 2}. In any case, this means that the edge g of T is covered
twice by F2 and F3 in ∪t+3

i=1Fi, a contradiction, since g 6∈M .

i Type(Ai) Type(Bi) Type(Ci)

1 α2 00 11
2 β0 11 0δ

3 γ0 11 0ε

Table 3: Case 1a)

Case 1b): Type(AM ) = 11, Type(BM ) = 11, Type(CM ) = 02.
There must be a colour from F1, . . . , Ft+3, here denoted by a, intersecting both the right
dangling edges of A. In what follows, if Z is a set of colours, we denote by Z the set of all
colours not in Z. Without loss of generality, assume A− ∈ M . Let b and c be the colours
of the two edges of G adjacent to A−. Thus, the colours of A− are {b, c}, for simplicity
denoted by bc. Without loss of generality, let the colour of −B be c. This implies that c
also intersects −B, since by Claim II there must be one colour which intersects both the
left dangling edges of B, and consequently the colours of −B are ad, for some d ∈ abc.
Moreover, the edge e has colours bd, as can be seen in Figure 12.
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Figure 12: Case 1b)

Once again, by Claim II, there is a colour which intersects both the right dangling
edges of B. Clearly, this cannot belong to bd, for otherwise, f would be coloured by a
colour already used for e. Since b intersects exactly one left dangling edge of B, the right
dangling edges of B must be intersected by d. Without loss of generality, we can assume
that B− ∈ M , and so by the above reasoning, the set of colours of B− is ac (see Figure
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12). At this point, we have two possible cases of how we can colour −C and −C: we either
have −C and −C intersected by a and c, respectively, or the other way round, as can be
seen in the two figures in Figure 13:
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Figure 13: The possible colours of −C and −C in Case 1b)

Next, we reduce G to a smaller treelike snark following the procedure presented in
Figure 14. Since T has at least two vertices of degree 3, the resulting graph G′ is indeed a
treelike snark. Let T ′ be the tree defining G′.

b b

b

b

b

b

b

A B C

e f

g

g

A C

b

b

b

b

Figure 14: Constructing a smaller treelike snark in Case 1b)

LetM ′ be the perfect matching ofG′ induced byM . Without loss of generality, assume
that the colours of −C and −C in G are a and c, respectively, and assign to the edges of G′

(which correspond to edges of G) the same colours they had originally. We note that this
procedure does not colour all the edges of G′. In fact, the two edges not belonging to T ′

which are incident to the leaf between the two 4–polesA and C inG′, do not correspond to
any edges ofG, and so they are left uncoloured. Moreover, the edges ofG′ are not properly
coloured, as depicted in Figure 15.
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Figure 15: Applying a Kempe chain argument in Case 1b)

We claim that the (a, b)–Kempe chain in the 4–pole A starting at A− must end at A−.
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For, suppose it does not contain the latter dangling edge. Let MA be the perfect matching
induced by M in the 4–pole A. Switching the colours a and b along this chain shall result
in a (t + 3)–edge-colouring of the pole A + tMA in which no colour intersects the two
right dangling edges ofA simultaneously, contradicting Claim II. Consequently, the (a, b)–
Kempe chain in G′ starting from A− must end at A−. By switching the colours a and b
along this chain and extending the colouring to a (t+ 3)–edge-colouring of G′+ tM ′ as in
Figure 15, we obtain a contradiction due to the minimality of T .

Case 1c): Type(AM ) = 20, Type(BM ) = 20, Type(CM ) = 11.
This case is solved in a similar way as in Case 1b), and so this case cannot occur as well.
Figure 16 shows the four different ways how a (t + 3)–edge-colouring of G + tM looks
like in this part of G.
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Figure 16: Case 1c)

Case 2: Type(AM ) = 20, Type(BM ) = 11, Type(CM ) = 02.
Since all other cases are not possible, all pairs of near leaves of G are in between three
4–poles of these types (with respect to M ). We show that in such a case, there exist three
consecutive leaves all incident with edges in M not belonging to T , a contradiction by
Claim VI. In fact, if T has only two vertices of degree 3, it has exactly two pairs of near
leaves, with all the four edges incident with the leaves not belonging to M . Thus, we have
three consecutive leaves with the required property, contradicting Claim VI.

Therefore, T must have more than two vertices of degree 3. Remove all pairs of near
leaves from T , and let the resulting tree, which still has all vertices of degree 1 and 3, be
T ′. In general, if x is a leaf of T ′ which was not a leaf in T , then the edge in T ′ incident to
x belongs to M . Consider a pair of near leaves of T ′. At least one of them was not a leaf
in T , as otherwise the pair would have been deleted in the process of obtaining T ′. If these
two near leaves were not originally leaves in T , then the edges in T ′ incident with them
both belong to M , a contradiction. Hence, one leaf of the pair must also be a leaf in T ,
whilst the other leaf of the pair was a common neighbour to a pair of removed near leaves
of T . Consequently, G contains three consecutive leaves such that the edges of T incident
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with them do not belong to M , contradicting Claim VI once again. Hence, lM (G) = +∞
for every perfect matching M of G.

We complete this section with the following corollary which simply follows by Theo-
rem 5.6 and Theorem 5.4.

Corollary 5.7. For every treelike snark G, scc(G) > 4/3 · |E(G)|.

6 Final remarks and related problems
In the following table, we summarise all the parameters discussed along the paper and we
recall two of the main conjectures proposed above. In particular, the table highlights the
special role of the class S≥5 with regards to all the considered problems.

χ′(G) χ′e(G) scc(G) l(G) lM (G)

3 3 4/3 · |E(G)| 0 (∀M) 0

4

4 4/3 · |E(G)| 1 (∃M) 1

≥ 5 > 4/3 · |E(G)| > 1 (∀M) > 1

( Conj.5.2 ) ( Conj.4.1: (∀M) = +∞ )

Let us remark that the problem of establishing the existence of a perfect matching M
for which lM (G) is finite is equivalent to establishing the existence of a 2–factor (indeed
the complement of M in G) which can be extendend to a cycle double cover of G. This
problem was already considered for some classes of snarks (see for instance [14]). We
remark that Conjecture 5.2 can be equivalently stated in such terms as follows:

Conjecture 6.1. For every bridgeless cubic graph G, χ′e(G) > 4 if and only if every cycle
double cover of G does not contain a 2–factor of G.

The other main conjecture in this paper is Conjecture 4.1: we were not able to find an
example of a snarkG for which lM (G) is finite but larger than 1, for every perfect matching
M of G. Moreover, in Section 5 we showed that the conjecture holds for a large family
of snarks having perfect matching index 5. A first natural step in an attempt to understand
better Conjecture 4.1 is trying to solve the following problem:

Problem 6.2. Characterise the class of bridgeless cubic graphs G for which there exists a
perfect matching M , such that G+ 2M is Class I.

Clearly, if Conjecture 4.1 holds we would have a complete answer to the previous
problem, and the graphs G answering Problem 6.2 would be those bridgeless cubic graphs
having perfect matching index at most 4.

Finally, as one can notice, along the paper we mainly focus our attention on 1–factors
of G. A very similar problem for 2–factors of a snark G was communicated personally to
us by Eckhard Steffen.
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Problem 6.3 (Steffen, personal communication). Let G be a bridgeless cubic graph. What
is the smallest number of 2–factors that need to be added toG, such that the resulting graph
is Class I?

The classical Berge-Fulkerson Conjecture is equivalent to saying that the answer for
Problem 6.3 is at most 1, with the answer being 0 if G is already a Class I graph. Here, we
would like to propose a possible approach for the study of this problem.

For a bridgeless cubic graph G, let sp2(G) be the set of all non-negative integers t
such that G contains t 2–factors whose addition to G results into a Class I graph, and let
sp(G) be the set of all non-negative integers t such that tG is Class I, where tG represents
G+ (t− 1)E(G). These two parameters are related in the following way:

Proposition 6.4. For any bridgeless cubic graph G and any integer t ≥ 0, t ∈ sp2(G) if
and only if (t+ 1) ∈ sp(G).

Proof. Assume that t ∈ sp2(G). Then, there are t 2–factors F1, ..., Ft of G such that
G+F1 + ...+Ft is Class I, i.e. (2t+ 3)–edge-colourable. Hence, there are 2t+ 3 perfect
matchings J1, ..., J2t+3 that partition the edge set of the graph G + F1 + ... + Ft, and
consequently

~1 = χJ1 + ...+ χJ2t+3 − χF1 − ...− χFt .

Let Fi be the perfect matching E(G) − Fi, for every i ∈ {1, . . . , t}. By noting that for
every i, ~1 = χFi + χFi , we have

~1 = χJ1 + ...+ χJ2t+3 − (~1− χF1)− ...− (~1− χFt),

which implies that

(t+ 1)~1 = χJ1 + ...+ χJ2t+3 + χF1 + ...+ χFt .

The latter means (t + 1)G is Class I, i.e. (3t + 3)–edge-colourable. The converse can be
similarly proved using the same arguments.
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[15] R. Halin, Über simpliziale Zerfällungen beliebiger (endlicher oder unendlicher) Graphen,
Math. Ann. 156 (1964), 216–225.

[16] X. Hou, H.J. Lai and C.Q. Zhang, On Perfect Matching Coverings and Even Subgraph Cover-
ings, J. Graph Theory 81 (2016), 83–91.

[17] R. Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, Amer.
Math. Monthly 82 (1975), 221–239.

[18] F. Jaeger, Nowhere-zero flow problems, in: L.W. Beineke and R.J. Wilson (eds.), Selected
Topics in Graph Theory 3, San Diego, CA, 1988, 71–95.

[19] U. Jamshy and M. Tarsi, Short cycle covers and the cycle double cover conjecture, J. Combin.
Theory Ser. B 56 (1992), 197–204.
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