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1. Introduction

In the last years, we have witnesses a renewed interest in the 
development of distributed and decentralized control and state 
estimation methods [25,3]. This has been motivated by the ever 
increasing need of coordination and integration of a possibly large 
number of different devices. When a plant is composed of several 
interconnected subsystems, centralized control and state estima-
tion architectures are inadequate. In fact, online operations, such 
as the transmission of measurements to a central processing unit 
or the simultaneous estimation of all states, can be prohibitive.

Focusing on state estimation, a large body of research has been 
recently devoted to the development Distributed State Estimators 
(DSEs) where subsystems are equipped with Local State Estimators 
(LSEs) connected through a communication network. While in 
some approaches each LSE has to reconstruct the state of the 
overall system (see, e.g., [2,26] and references therein for theore-
tical contributions and applications to power networks), in other 
methods LSEs are dedicated to the reconstruction of local states 
only [24,38,12,34,35,4,7,17,21]. In this paper we consider the latter

case. In terms of communication requirements, some methods are 
more parsimonious than others, as they do not require all-to-all 
information exchange among LSEs. For instance, some DSEs require 
only a network matching the parent–child topology due to coupling 
among subsystems [12,34,35,4,7,17,21]. Furthermore, there are 
methods that also guarantee the fulfillment of constraints on local 
states [4] or estimation errors [7,17,21].

To the best of our knowledge, the DSE proposed in [21] is the first 
one relying on a fully distributed design procedure. In [21], bounded-
ness and convergence of the global estimation error can be guaranteed 
through numerical tests that are associated with individual LSEs and 
that can be performed in parallel using hardware collocated with 
subsystems. Moreover, each test involves information about a sub-
system and its parents only, hence requiring a communication net-work 
with the same parent–child topology used for real-time operations. 
Reconfiguration of the estimation scheme can be per-formed through 
Plug-and-Play (PnP) design, meaning that (i) when a subsystem is added 
to a plant, the corresponding LSE can be designed using pieces of 
information from parent subsystems only; (ii) in order to preserve the 
key properties of the whole DSE, the plugging in and out of a subsystem 
triggers at most the update of LSEs associated to child subsystems and 
(iii) the design/update of an LSE is automatized, e.g. as in our approach it 
is recast into an optimization problem that can be solved using local 
hardware. We argue that PnP design (firstly introduced in [37] for 
control) can be useful in the context of systems of systems [32] and 
cyber-physical systems [1] where, typically, the number of subsystems 
changes over time.
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In this paper we extend the results presented in [21] to account
for bounded measurement noise. Furthermore, we use the DSE in
combination with the PnP distributed Model Predictive Control
(MPC) schemes described in [30,22] to provide a novel output-
feedback PnP distributed control algorithm. More specifically, we
show how the tube MPC scheme in [14] can be used in PnP design
to guarantee closed-loop nominal convergence and constraint
satisfaction at all times.

Recently, output feedback Distributed MPC (DMPC) schemes
have been proposed based on a cooperative approach (see, e.g.,
[36,10]) or in a non-cooperative setting (see, e.g., [7,31]). However,
in contrast with PnP design, all these methods involve a centra-
lized offline design phase.

This paper is structured as follows. In Section 2 we introduce the
state estimation problem and the main assumptions on the system,
while in Section 3 we describe the PnP DSE. In Section 4 we describe
the PnP output-feedback DMPC strategy embedding the proposed
estimation scheme. In Section 5 two case studies are discussed: the
application of DSE to an array of 16 masses connected by springs and
dampers, and output-feedback frequency control in a power network.
In Section 6 some conclusions are drawn.

Notation: We use a : b for the set of integers fa; aþ1;…; bg. The
column vector with s components v1;…; vs is v¼ ðv1;…; vsÞ. The
symbol � denotes the Minkowski sum, i.e. A¼ B � C if and only if
A¼ fa : a¼ bþc; bAB; cACg. Moreover, � s

i ¼ 1Gi ¼ G1 � ⋯ � Gs.
The Pontryagin difference is denoted by ⊝, i.e. A¼ B⊝C iff
A¼ fa : aþ cAB; 8cACg. The symbol 1α (resp. 0α) denotes a column
vector with αAN elements all equal to 1 (resp. 0). The identity
matrix of size n is In. Given a matrix AARn�n, with entries aij its
entry-wise 1-norm is j jAj j 1 ¼

Pn
i ¼ 1

Pn
j ¼ 1 jaij j and its Frobenius

norm is j jAj j F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1
Pn

j ¼ 1 a
2
ij

q
. The standard Euclidean norm is

denoted with J � J . The pseudo-inverse of a matrix AARm�n is

denoted with A♭. A matrix AARn�n is Schur stable if all its
eigenvalues λ verify jλjo1. Moreover, for δ40,
BδðvÞ ¼ fxARn : Jx�vJoδg.

The set XDRn is Robust Positively Invariant (RPI) for
xðtþ1Þ ¼ f ðxðtÞ;wðtÞÞ, wðtÞAWDRm if xðtÞAX ) f ðxðtÞ;
wðtÞÞAX; 8wðtÞAW.

2. Model of interconnected systems

We consider a discrete-time linear time-invariant system
described by

xþ ¼AxþBuþDd ð1aÞ

y¼ Cxþϱ ð1bÞ
where xARn, uARm, yARp, dARr and ϱARp are the state, the
input, the output, the model disturbance and the output distur-
bance, respectively, at time t and xþ stands for x at time tþ1. Let
M¼ 1 : M be the set of subsystem indexes. We assume that the
state is composed of M state vectors x½i�ARni , iAM such that
x¼ ðx½1�;…; x½M�Þ, and n¼P

iAMni. Similarly, the input, the output,
the model disturbance and the output disturbance are composed
of vectors u½i�ARmi , y½i�ARpi , d½i�ARri , ϱ½i�ARpi , iAM such that
u¼ ðu½1�;…;u½M�Þ, m¼P

iAMmi, y¼ ðy½1�;…; y½M�Þ, p¼P
iAMpi,

d¼ ðd½1�;…; d½M�Þ, r¼P
iAMri and ϱ¼ ðϱ½1�;…;ϱ½M�Þ. We assume

that system (1) is partitioned into M interconnected subsystems
Σ ½i�, iAM, each described by the following dynamical equations:

Σ ½i� : xþ
½i� ¼ Aiix½i� þBiu½i� þ

X
jAN i

Aijx½j� þDid½i� ð2aÞ

y½i� ¼ Cix½i� þϱ½i� ð2bÞ

where AijARni�nj , i, jAM, BiARni�mi , DiARni�ri , CiARpi�ni . Since,
in general, Aija0ni�nj for ja i, the subsystems are coupled through
state variables (i.e., they are dynamically coupled). We say that Σ ½j�
is a parent of Σ ½i� if Aija0ni�nj , and we define with N i ¼ fjAM :

Aija0ni�nj ; ia jg the set of parents of Σ ½i�. From (2b), it is assumed
that y½i� depends on the local state x½i� and the local measurement
noise ϱ½i� only, while, from (2a), the time evolution of x½i� directly
depends only upon the local input u½i� and the local disturbance d½i�.
Generalizations of model (2) are discussed in Remark 3. We also
assume that subsystems Σ ½i�, iAM are subject to the constraints

d½i�ADi; ϱ½i�AOi: ð3Þ
For the overall system (1), this is equivalent to

dAD; ϱAO: ð4Þ
where D¼∏iAMDi and O¼∏iAMOi. We introduce the following
assumptions on subsystem dynamics and disturbances.

Assumption 1. (I) The pair ðAii;CiÞ is detectable, 8 iAM.
(II) Constraints Di �Rri and Oi �Rpi are zonotopes centered at

the origin. Without loss of generality [33], Di can be written as

Di ¼ fd½i�ARri : F iw½i�r1υ i
g

¼ fd½i�ARri : d½i� ¼Δiϝid; j jϝid j j1r1g ð5Þ
where F i ¼ ðf Ti;1;…; f Ti;υ i

ÞARυ i�ri , rankðF iÞ ¼ ri, ΔiARri�r i , ϝdi ARr i .
Furthermore, Oi can be written as

Oi ¼ fϱ½i�ARpi : Giϱ½i�r1ν i
g

¼ fϱ½i�ARpi : ϱ½i� ¼Υ iϝiϱ; j jϝiϱ j j1r1g ð6Þ

where Gi ¼ ðgTi;1;…; gTi;ν i
ÞARν i�pi , rankðGiÞ ¼ pi, Υ iARpi�pi and

ϝϱi ARpi .

Next we introduce assumptions that will be instrumental for
developing DMPC schemes.

Assumption 2. (I) The pair ðAii;BiÞ is stabilizable, 8 iAM.
(II) Subsystems Σ ½i�, iAM are subject to the constraints

x½i�AXi; u½i�AUi ð7Þ
where Xi and Ui are polytopes given by

Xi ¼ fx½i�ARni : cTxi;τx½i�r1; 8τA1 : τxi g ð8aÞ

Ui ¼ fu½i�ARmi : cTui;τ
u½i�r1; 8τA1 : τui g; ð8bÞ

with cxi;τ ARni and cui;τ ARmi .

3. DSE with PnP features

3.1. State estimation scheme

In this section we propose a DSE for system (1) similar to the one
presented in [21], where measurement noise was not accounted for.

For each subsystem Σ ½i�, iAM, the corresponding LSE ~Σ ½i� is
defined as follows

~Σ ½i� : ~xþ
½i� ¼ Aii ~x ½i� þBiu½i� �Liiðy½i� �Ci ~x ½i�Þ

þ
X
jAN i

Aij ~x ½j� �
X
jAN i

δLijLijðy½j� �Cj ~x ½j�Þ ð9Þ

where ~x ½i�ARni is the state estimate, LijARni�pj are gain matrices
and δLijAf0;1g. In view of (9), ~Σ ½i� depends on local variables (i.e.,
~x ½i�, u½i� and y½i�), and on outputs and state estimates of the parent
subsystems (i.e., ~x ½j� and y½j�, jAN i). Variables δijL , jAN i are set to
one if parents’ outputs are used for local estimation purposes, at
the price of slightly increasing the amount of transmitted informa-
tion. Defining

e½i� ¼ x½i� � ~x ½i�; ð10Þ



from (2), (9), and (10), the local error dynamics is

eþ
½i� ¼ Aiie½i� þ ~v ½i� ð11Þ

where

~v ½i� ¼
X
jAN i

Aije½j� þDid½i� þLiiϱ½i� þ
X
jAN i

δLijLijϱ½j� ð12Þ

and Aii ¼ AiiþLiiCi, Aij ¼ AijþδLijLijCj, ia j. Our first goal is to solve
the following problem.

Problem 1. Design in a distributed fashion LSEs ~Σ ½i�, for all iAM,
that

(a) are nominally convergent, i.e. when Di ¼ f0ri g and
Oi ¼ f0pi g it holds
e½i�ðtÞ-0ni as t-1 ð13Þ

(b) guarantee, for suitable initial conditions, that

e½i�ðtÞAEi; 8 tZ0 ð14Þ

where EiDRni are zonotopes centered at the origin
defined by

Ei ¼ fe½i�ARni : Hie½i�r1τ i
g

¼ fe½i�ARni : e½i� ¼Ξiϝie; j jϝie j j1r1g: ð15Þ

In (15), Hi ¼ ðhTi;1;…;hTi;τ i
ÞARτ i�ni , rankðHiÞ ¼ ni,

ΞiARni�ni and ϝei ARni .

Sets Ei in (15) are design parameters fixed by the user. In many
applications, sets Ei are given a priori, on the basis of constraints,
nonlinearities and requirements on the prescribed accuracy of the
estimation. In alternative, if subsystem states x½i� are confined in a
known polyhedron Xi including the origin, then, in the absence of any
prior information concerning the initial states, one can set Ei as a
zonotope including Xi and initialize the LSE state as ~x ½i� ¼ 0ni .

Defining the variable e¼ ðe½1�;…; e½M�ÞARn, from (11) one
obtains the collective dynamics of the estimation error

eþ ¼AeþDdþLϱ ð16Þ

The matrix A is composed by blocks Aij and matrix L is composed
by blocks Lii, and by blocks δLijLij for ja i. We equip system (16)
with constraints eAE¼∏iAMEi and (4).

From (16), if L is such that A is Schur stable, then (13) holds.
Moreover, if there exists an RPI set SDE for (16) with respect to
the bounded disturbances Dd and Lϱ, then eð0ÞAS guarantees
property (14). In this paper we require a stronger condition: there
exists a “rectangular” invariant set S, i.e., S¼∏iAMSi, such that

(a) SiDEi for all iAM
(b) if e½i�ð0ÞASi for all iAM, then

e½i�ðtÞASi; tZ0: ð17Þ

3.2. Distributed design of LSEs

In the following we solve Problem 1 by designing matrices Lij
i; jAM such that system (16) is nominally asymptotically stable and by
guaranteeing the existence of an RPI set SiDEi for each local error
dynamics. Recalling (12) and assuming that eþ

½j� AEj for all jAN i, we
obtain that

~v ½i�A ~V i ¼ �
jAN i

AijEj

� �
� DiDi � LiiOi � �

jAN i

δLijLijOj

� �
: ð18Þ

~From Assumption 1-(II) and (15), one has that Vi is a zonotope and
therefore it can be written as ~V i ¼ f ~v ½i�ARni : ~v ½i� ¼Ψ i ~ϝ i; j j ~ϝ i j j1
r1g where Ψ iARni�n̂ i , rankðΨ iÞ ¼ ni and ~ϝ iARn̂ i . The following
proposition provides the key conditions enabling distributed design of
the DSE.

Proposition 1. Let Assumption 1 holds. If, for given matrices Lij and
parameters δijL , iAM, jAN i the following conditions are fulfilled
simultaneously:

Aii is Schur stable; 8 iAM ð19aÞ

βi ¼
X
jAN i

X1
k ¼ 0

j jHiA
k
iiAijH♭

j j j1o1; 8 iAM ð19bÞ

γi ¼
X1
k ¼ 0

j jHiA
k
iiΨ i j j1o1; 8 iAM ð19cÞ

then

(I) A is Schur stable;
(II) for all iAM there exists an RPI set SiDEi for (11), such that

S¼∏iAMSi is an RPI set for system (16).

Proof. The proof is given in Appendix 8.7 of [23].□

We highlight that, for a given iAM, the quantity βi in (19b)
depends only upon local fixed parameters fAii;Ci;Hi;Ψ ig, parents’
fixed parameters fAij;Cj;Hj;Ψ igjAN i

(Ψi depends also on fixed
parameters of parent subsystems) and local tunable parameters
fLii; fLij; δLijgjAN i

g but not on parents’ tunable parameters. This
implies that the choice of fLii; fLij; δLijgjAN i

g does not influence the
choice of fLjj; fLjk; δLjkgkAN j

g, for ia j. Then, the design of LSEs can be
distributed, because Problem 1 can be decomposed into the
following independent design problems P i, iAM.

Problem 2 (Problem Pi). Check if there exist Lii and fLijgjAN i
such

that Aii is Schur stable, βio1 and γio1.

Remark 1. As shown in [13], a necessary condition for the
existence of RPI sets Si for (11) is that

~V iDEi; 8 iAM ð20Þ
where ~V i depend upon sets Ej, jAN i, see (18). In our approach,
sets Ei are assigned a priori and we implicitly assume conditions
(20) are verified. However, if subsystems are added sequentially to
an existing plant and LSEs are designed with the PnP procedure
described in Section 3.3, conditions (20) are automatically checked
and, if violated, they prevent from plugging-in subsystem Σ ½i�.
When sets Ei can be arbitrarily chosen, the problem of assigning
them so as to fulfill (20) arises. In the presence of loop inter-
connections among subsystems, this issue is not trivial and
requires centralized algorithms as those proposed in [7].

The procedure for solving problems Pi, iAM is summarized in
Algorithm 1, which can be executed in parallel by each subsystem
using local hardware. Its main steps are described next.

Algorithm 1. Design of the LSE ~Σ ½i� for subsystem Σ ½i�.

Input: Aii, Di, Oi, Ei, N i, fAijgjAN i
, fδLijgjAN i

.

Output: set Si and state estimator ~Σ ½i�.
(I) Receive from parent subsystems jAN i sets Ej and setsOj if

δLij ¼ 1.
(II) if δLij ¼ 1, compute the matrix Lij, 8 jAN i solving

min
Lij

j jHiAijH♭
j j j p (21)

where p is a generic norm.



(III) compute a matrix Lii such that βio1 and γio1. If it does

not exist stop (the state estimator ~Σ ½i� cannot be
designed);

(IV) compute an RPI set SiDEi for system (16).

In Step (II), if δLij ¼ 1, the computation of matrices Lij, jAN i is
required. Since the choice of Lij affects the coupling term
Aij ¼ AijþδLijLijCj, and hence the possibility of verifying inequalities
(19), we propose to reduce the magnitude of coupling by mini-
mizing the magnitude of Aij in (21), where Hi and H♭

j allow us to
take into account the sizes of sets Ei and Ej, respectively. More
precisely, it can be shown that the greater j jHiAijH♭

j j j p, the more
difficult is to fulfill the constraint e½i�AEi (see Appendix 8.7.3 in
[23]). We highlight that the minimization of JHiAijH♭

j J1 in (21)
amounts to a Linear Programming (LP) problem and the mini-
mization of JHiAijH♭

j JF can be recast into a QP problem. In Step
(III), for the computation of matrix Lii we solve the following
nonlinear optimization problem:

min
Lii

μi ð22aÞ

ρðAiiþLiiCiÞo1 ð22bÞ

βio1 ð22cÞ

γio1 ð22dÞ
where μi ¼maxðβi; γi;ρðAiiþLiiCiÞÞ, ρð:Þ denotes the spectral radius
and constraint (22d) is needed only if Diaf0ri g or Oiaf0pi g. Since
(22) is a nonlinear optimization problem, a suitable initialization
of Lii is needed, e.g. start with Lii satisfying at least (22b). Note that
the series in (22c) and (22d) involve only positive terms and can
be easily truncated if either (22c) or (22d) is violated or summands
fall below the machine precision (see also [23,29] for similar
optimization problem in the case of PnP control design). The
feasibility of problem (22) guarantees that the estimator ~Σ ½i� can
be successfully designed. In Step (IV) of Algorithm 1 we need to
compute a nonempty RPI set SiDEi that, in view of Proposition 1,
exists if the optimization problem (22) is feasible. To this purpose,
several algorithms can be used. For instance, [27] discusses the
computation of ϵ-outer approximation of the minimal RPI set. The
maximal RPI set can be obtained using methods in [9]. More
recently, efficient procedures have been also proposed for com-
puting polytopic [28] or zonotopic [15] RPI sets.

3.3. PnP operations

Distributed and parallel design of LSEs described in the
previous section imply the DSE can be automatically updated in
case subsystems are added or removed, while preserving the
fundamental properties (13) and (14). This can be done by
updating a limited number of existing LSEs.

3.3.1. Plugging-in operation
We start considering the addition of subsystem Σ ½Mþ1�, char-

acterized by parameters AMþ1;Mþ1, CMþ1, EMþ1, DMþ1, OMþ1,
NMþ1 and coupling terms fAMþ1;jgjANM þ 1

, where NMþ1 identifies
parents of Σ ½Mþ1�. Subsystems that will be influenced by Σ ½Mþ1�
are given by SMþ1 where

Si ¼ fj : iAN jg

is the set of children of subsystem Σ ½i�. For designing the LSE ~Σ ½Mþ1�
we execute Algorithm 1 that needs information only from subsys-
tems Σ ½j�, jANMþ1. If Algorithm 1 stops before the last step, we
declare that Σ ½Mþ1� cannot be plugged in. Since sets N j, jASMþ1

have now one more element, previously obtained matrices Ljj,
jASMþ1 might give βjZ1 or γjZ1. Indeed, from (19b) and (19c),
scalars βj and γj can only increase. Furthermore, the size of the set ~V j

increases and therefore an RPI set SjDEj must be recomputed. This
means that for each jASMþ1 the LSE ~Σ ½j� must be redesigned by
running Algorithm 1. Again, if Algorithm 1 stops before completion
for some jASMþ1, we declare that Σ ½Mþ1� cannot be plugged in.

Note that LSE redesign does not propagate further in the
network. Indeed, as highlighted by the input arguments of Algo-
rithm 1, the LSE design for a subsystem depends on parent
subsystems only and not on their LSEs. The addition of Σ ½Mþ1�
does not change the parents of subsystems Σ ½i�, i=2fMþ1g⋃SMþ1.
Therefore, conditions (19) are still verified for i=2fMþ1g⋃SMþ1

and, even without changing the corresponding LSEs, properties
(13) and (14) are guaranteed for the new estimation scheme.

3.3.2. Unplugging operation
We consider removal of subsystem Σ ½k�, kAM. Since for each

iASk the set N i contains one element less, one has that βi in (19)
and γi in (19c) cannot increase. Furthermore, the set Si, chosen
before the removal of system Σ ½k�, still verifies Si+ ~V i and there-
fore previously obtained optimizers for (21) can still be used. This
means that for each iASk the LSE ~Σ ½i� does not have to be
redesigned. Moreover, since for each system Σ ½j�, j=2fkg⋃Sk, the

mi

mj1

mj2

mj3

mj4

ki, j1 hi, j1
ki, j2

hi, j2
ki, j3 hi, j3

ki, j4

hi, j4

... ...

...
...

Fig. 1. Array of masses. (a) Position of the 16 masses on the plane. Dashed lines define subsystems Σ ½i� , iAM¼ 1 : 4. (b) Details of the interconnections.



set N j does not change, the redesign of the LSE ~Σ ½j� is not required.
In conclusion, the unplugging of a subsystem does not trigger the
redesign of any LSE.

The previous discussion assumes that plugging-in/out affects
only the coupling terms in (2). If however entries of matrices Aii, Bi,
Ci and Di change when a child subsystem Σ ½k� is removed, then the
LSE ~Σ ½i� must be obviously redesigned [22].

Remark 2. The plugging-in and unplugging operations described
above guarantee the observer dynamics that is still asymptotically

stable after the addition or removal of subsystems. This property is
guaranteed even if the operation is performed online. However, if
plugging-in/out of subsystems never stops, stability problems
might arise. Indeed, as it is well known in the hybrid system
literature [11], frequent and persistent switching between differ-
ent modes of operation could compromise asymptotic stability of
the whole plant. A remedy could be assuming a minimal dwell-
time between consecutive plugging-in/out [11], which is reason-
able if physical components are added or removed from the plant.

4. Output-feedback PnP DMPC

In this section we propose an output-feedback distributed
control scheme by jointly using the DSE in Section 3 and the
control scheme discussed in [30,22]. The main idea is to use the
robust local regulators in [30,22] to control the state estimates ~x½i�
rather than the states x½i�. This method for generalizing state-
feedback MPC to the output-feedback case has been firstly
proposed in [14] for centralized control.

Each subsystem Σ ½i� is equipped with the controller

~C ½i� : u½i� ¼ v½i� þκ ið ~x ½i� �x ½i�Þþ
X
jAN i

δijKij ~x ½j� ð23Þ

where κ ið�Þ : Rni-Rmi is a state-feedback control law, KijARmi�nj

and δijAf0;1g, i; jAM. Note that, if δij ¼ 0, 8 iAM, 8 jAN i, the
control scheme is completely decentralized, since each input u½i�
depends upon state estimates of subsystem Σ ½i� only. Furthermore,
following [16], in (23) we set

v½i�ðtÞ ¼ v½i�ð0j tÞ; x ½i�ðtÞ ¼ x̂ ½i�ð0j tÞ ð24Þ

where v½i�ð0j tÞ and x̂ ½i�ð0j tÞ are optimal values of the variables v½i�ð0Þ
and x̂ ½i�ð0Þ, respectively, appearing in the MPC-i problem

PN
i ð ~x ½i�ðtÞÞ : min

x̂ ½i� ð0Þ
v½i� ð0:Ni � 1Þ

XNi �1

k ¼ 0

ℓiðx̂ ½i�ðkÞ; v½i�ðkÞÞþVf i ðx̂ ½i�ðNiÞÞ ð25aÞ
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Fig. 2. State estimation results for LSE designed setting δLij ¼ 0, jAN i (left panels) and δLij ¼ 1, jAN i (right panels). (a) State (dashed lines) and state estimation (continuous
line) of the upper left mass in Fig. 1a at time instants t ¼ 0 : 6 s. The same color has been used for a state and its estimate: cyan and green lines denote velocities while blue
and red lines denote positions. (b) Estimation errors for all states at times t ¼ 0 : 20 s. (For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Fig. 3. PNS of Scenario 1 in [20]. Arrows represent tie-lines connecting
generation areas.

Fig. 4. PNS of Scenario 2 in [20]. The generation area Σ ½5� has been added to the PNS
in Fig. 3.



~x ½i�ðtÞ� x̂ ½i�ð0ÞAZi ð25bÞ

x̂ ½i�ðkþ1Þ ¼ Aiix̂ ½i�ðkÞþBiv½i�ðkÞ; kA0 : Ni�1 ð25cÞ

x̂ ½i�ðkÞAX̂ i; v½i�ðkÞAVi; kA0 : Ni�1 ð25dÞ

x̂ ½i�ðNiÞAX̂f i : ð25eÞ

In (25), Ni40 is the control horizon and ℓi : R
ni�mi-R0þ is the

stage cost, Vf i : R
ni-R0þ is the final cost and X̂f i is the terminal

set. Matrices Kij, function κ ið�Þ in (23), sets Zi, X̂ i, Vi, X̂f i and
functions ℓið�; �Þ and Vf i ð�Þ are obtained through Algorithm 2 which
is discussed next.

As for the communication requirements, from Steps (I) and (IV)
of Algorithm 2 pieces of information must be transmitted to
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Fig. 5. Simulation Scenario 1: frequency deviation in each area controlled by the proposed output-feedback PnP DMPC.

0 50 100
−0.1

0

0.1

0.2
Area 1

t [s]

Δ 
P re

f 1

0 50 100
−0.2

−0.1

0

0.1

0.2
Area 2

t [s]

2

0 50 100
−0.2

−0.1

0

0.1

0.2
Area 3

t [s]

3

0 50 100
−0.2

0

0.2

0.4

0.6
Area 4

t [s]

4

Δ 
P re

f

Δ 
P re

f
Δ 

P re
f

Fig. 6. Simulation Scenario 1: load reference set-point in each area controlled by the proposed output-feedback PnP DMPC.



subsystem Σ ½i� only from its parents. Hence the design procedure is
distributed and, similarly to the operations described in Section
3.3, plugging-in and unplugging of subsystems involve only the
update of a limited number of controllers (details are given in
Section IV of [29] and in Section 6.4 of [23]).

Algorithm 2. Design of an output-feedback controller for sub-
system Σ ½i�.

Input: Aii, Bi, Xi, Ui, Di, Oi, Ei, N i, fAijgjAN i
, fηijgjAN i

, fδijgjAN i,

fδLijgjAN i

Output: output-feedback controller composed by state

estimator ~Σ ½i� and state-feedback controller ~C ½i�
(I) Receive from parent subsystems jAN i sets Ej and sets Oj

if δLij ¼ 1.
(II) Execute Steps (II)–(IV) of Algorithm 1.
(III) Compute set ~X i ¼Xi⊝Si ¼ f ~x ½i�ARni : ~Lxi ~x ½i�r1 ~τ xi

g.
(IV) Receive from parent subsystems jAN i sets ~X j and sets Sj

if δLij ¼ 1.
(V) For all jAN i, if δij ¼ 1, compute the matrix Kij solving

min
Kij

j j ~Lxi ðAijþδijBiKijÞ ~L♭

xj j j p (26a)

j jKij
~L♭

xj j j prηij (26b)

where p is a generic norm and scalars ηij40 are given.
(VI) Compute the set U i ¼Ui⊝� jAN i

δijKij
~X j. If U i is empty,

stop (the controller ~C ½i� cannot be designed).
(VII) Compute the set

~W i ¼ �
jAN i

ðAijþδijBiKijÞ ~X j

� �
� ð�LiiCiSiÞ

� �
jAN i

δLijð�LijCjSjÞ
� �

� ð�LiiOiÞ � �
jAN i

δLijð�LijOjÞ
� �

and choose the set Z0
i such that ~X i+Z

0
i + ~W i � Bωi ð0Þ

for a sufficiently small ωi40. If Z0
i does not exist, stop

(the controller ~C ½i� cannot be designed).
(VIII) Check the LP feasibility condition in Step (II) of Algorithm

6.1 in [23]. If it is not verified, stop (the controller ~C ½i�
cannot be designed).

(IX) Execute Steps (III) and (IV) of Algorithm 6.1 in [23]. They
provide all quantities defining the MPC-i problem (25)
and the function κ ið�Þ defined through the LP problem
(6.15) in [23].

In Step (V) of Algorithm 2, the choice of terms Kij results from a
trade-off: on one hand, the magnitude of the coupling terms
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Fig. 7. Simulation Scenario 2: frequency deviation in each area controlled by the proposed output-feedback PnP DMPC.



AijþBiKij must be reduced as much as possible, so as to reduce the
size of set ~W i; on the other hand, the existence of sets U i in Step
(VI) must be guaranteed. For this reason we minimize (26) but, at
the same time, we bound the size of the set Kij

~X j with the scalar ηij
in (26b). We highlight that the minimization of j j ~Lxi ðAijþ
BiKijÞ ~L♭

xj
j j 1 in (26) is an LP problem and the minimization of

j j ~Lxi ðAijþBiKijÞ ~L♭

xj j j F can be recast into a QP problem.
The second task accomplished by Algorithm 2 through Steps

(VII)–(IX) is the design of the MPC-i controller (25). The procedure
is similar to the synthesis of local MPC controllers in [30,22] and
therefore details are omitted (they can be found in [23]). Here, we
just highlight that

� Steps (VIII) and (IX), which provide constraints in (25), are the
most computationally expensive ones because they involve
Minkowski sums and differences of polytopic sets. The inter-
ested reader is referred to Sections 6.3.1–6.3.3 in [23], where we
show how to avoid burdensome computations exploiting results
from [28] and how to compute a suitable function κ i through LP.

� the execution of Step (IV) requires sets computed by parent
subsystems during the synthesis of LSEs. Therefore, we can
design local controllers ~C ½i� only after all parents of subsystem
Σ ½i� have terminated the execution of Algorithm 1.

The main properties of the overall closed-loop system are
described in the next theorem.

Definition 1. The feasibility region for the MPC-i problem is

~X
N
i ¼ fs½i�A ~X i : ð25Þ is feasible for ~x ½i�ðtÞ ¼ s½i�g:

Theorem 1. Let Assumptions 1 and 2 hold. Assume that the output-
feedback controllers are computed using Algorithm 2 and define
Ξi ¼ ðZi � SiÞ � Zi , Ξ ¼∏iAMΞi. Then, the set Ξ is robustly attrac-
tive for the closed-loop system with state ξ¼ ðξ½1�;…; ξ½M�Þ,
ξ½i� ¼ ðx½i�; ~x ½i�Þ, iAM. Furthermore, a region of attraction for Ξ is
∏iAMð ~XN

i � SiÞ � ð ~XN
i Þ. Finally, if d½i� ¼ 0ri and ϱ½i� ¼ 0pi , then

~x ½i�ð0ÞA ~X
N
i and x½i�ð0Þ� ~x ½i�ð0ÞASi imply that x½i�ðtÞ-0ni as t-1.

Proof. Consider the nominal case, i.e. d½i� ¼ 0ri and ϱ½i� ¼ 0pi . Using
the results in Proposition 1, the LSEs are asymptotically stable,
hence e½i�ðtÞ-0ni . Similarly to the proof of Theorem 6.1 in [23], one
can show that ~x½i�ðtÞ-0ni . Since x½i� ¼ ~x ½i� þe½i�, we can conclude that
x½i�ðtÞ-0ni . If d½i�a0ri and ϱ½i�a0pi we use the results in Proposition
1 and in Step 1 of the proof of Theorem 6.1 in [23]. Since e½i�ðtÞASi,
tZ0 and the distance between ~x ½i�ðtÞ and the set Zi goes to zero as
t-þ1, they allow us to conclude that the set Zi � Si is robustly
attractive, i.e. the distance between x½i�ðtÞ and Zi � Si vanishes.□
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Remark 3. For the sake of simplicity, in (2) we did not consider
subsystems coupled through inputs and disturbances. Here we
briefly describe a generalization to this case, where (2) is replaced
by

xþ
½i� ¼ Aiix½i� þBiu½i� þ

X
jAN i

ðAijx½j� þBiju½j� þDijd½j�ÞþDid½i�

y½i� ¼ Cix½i� þϱ½i�:

To account for input coupled subsystems is sufficient that each LSE
~Σ ½i� receives the inputs from parent subsystems Σ ½j�, jAN i and
therefore (9) can be rewritten as

~xþ
½i� ¼ Aii ~x ½i� þBiu½i� �Liiðy½i� �Ci ~x ½i�Þ

þ
X
jAN i

ðAij ~x ½j� þBiju½j�Þ�
X
jAN i

δLijLijðy½j� �Cj ~x ½j�Þ:

In order to design a DSE for an overall system where matrix D is
not block-diagonal, we have to enlarge the set ~V i in (18). In
particular one has to define

~v½i�A ~V i ¼ �
jAN i

ðAijEj � DijDjÞ
� �

� DiDi � LiiOi � �
jAN i

δLijLijOj

� �
:

As regards the output-feedback control architecture, since the
subsystems are input coupled, we can treat terms BijUj as
disturbances and enlarge set ~W i in Step (VII) of Algorithm 2 by
adding � jAN i

ðBijUjÞ. This is idea has been proposed also in [6,18].

5. Examples

In this section we present two numerical examples. In Section
5.1 we consider an array of 16 masses and discuss the performance
of the DSE only. In Section 5.2, we use a Power Network System
(PNS). Modeling, design of LSEs and PnP DMPC regulators as well
as simulations have been performed using the PnPMPC-toolbox for
MatLab [19].

5.1. State estimation for an array of masses

We consider a system composed by 16 masses coupled as in
Fig. 1a where the four edges connected to a point correspond to
springs and dampers arranged as in Fig. 1b. Each mass f A1 : 16 is
an LTI system with state variables x½f � ¼ ðx½f ;1�; x½f ;2�; x½f ;3�; x½f ;4�Þ and
input u½f � ¼ ðu½f ;1�;u½f ;2�Þ, where x½f ;1� and x½f ;3� are the displacements
of mass f with respect to a given equilibrium position in the plane
(equilibria lie on a regular grid), x½f ;2� and x½f ;4� are the horizontal
and the vertical velocity of the mass f, respectively, and 100u½f ;1�
(respectively 100u½f ;2�) is the force applied to mass f in the
horizontal (respectively, vertical) direction. The values of mf have
been extracted randomly in the interval ½5;10� while spring
constants and damping coefficients are identical and equal to
0.5. Each mass is equipped with local state estimation error
constraints j je½f ;j� j j1r1, jA{1, 3} and j je½f ;l� j j1r1:5, lA{2, 4}.

A subsystem Σ ½i�, iAM¼ 1 : 4 is a group of four masses as in
Fig. 1a. Therefore each subsystem has order 16 and two parents.
For each subsystem Σ ½i� we have 8 outputs that are the displace-
ments of two masses and the velocities of the other two masses.

We obtain models Σ ½i� by discretizing the continuous-time
models with 0:2 s sampling time, using the mE-ZOH method
proposed in [5], i.e., using zero-order hold discretization for the
local dynamics and treating x½j�; jAN i as exogenous signals. We
design an LSE ~Σ ½i�, iAM using Algorithm 1 and initializing Lii in
the nonlinear optimization problem (22) as the dual LQR gain
associated to matrices ~Q i ¼ 0:01I16 and Ri ¼ 100I8. In Fig. 2 we
show a simulation where each state of subsystem Σ ½i�, iA1 : 4 is
affected by a disturbance d½i� sampled from the uniform distribu-
tion in the set Di ¼ fd½i�AR : jd½i� jr0:015g. This has been obtained

setting Di ¼ 116. Outputs of each subsystem are also corrupted by a
disturbance ϱ½i� drawn uniformly in the set Oi ¼ fϱ½i�ARpi : j
ϱ½i� jr0:02g.

The left panels of Figs. 2a and b show results produced by LSE
designed with δLij ¼ 0, jAN i while the right panels of Figs. 2a and b
show the results obtained for δLij ¼ 1, jAN i and choosing norm
p¼F. Moreover, when using coupling attenuation terms Lij, we
want to show that some LSEs can be initialized so as to have larger
initial error e½i�ð0Þ. This can be noticed by comparing estimation
errors at time t¼0 in the left and right panels of Fig. 2b. In both
cases, although using different initial states ~x ½i�ð0Þ, the errors fulfill
the prescribed bounds but do not converge to zero because of the
persistent disturbances d½i� and ϱ½i�, iA1 : 4.

5.2. Output-feedback control of a PNS

In this section, we apply the proposed output-feedback PnP
DMPC scheme to the design of the AGC control layer for a PNS. As
described in [20], the goal is to control each generation area
composing the PNS so as to steer to zero the deviations from the
nominal network frequency. In the following, we first design the
AGC layer for the PNS of Scenario 1 in [20], composed of
4 generation areas connected as in Fig. 3. Then we show how to
perform the plugging-in of an area (Scenario 2 in [20] correspond-
ing to Fig. 4).

For a comparison with different decentralized, distributed and
centralized control architectures based on state-feedback and on
d¼ 0r , we defer the reader to [22,20].

Each generation area is a fourth-order system. We assume to
measure only two states: the angular deviation Δθ½i� and the speed
deviation Δω½i� of each area. Moreover we add bounded distur-
bances on all states setting Di ¼ I4 and

Di ¼ fd½i�AR4 : j jd½i� j j1r5 � 10�4g
We require to keep the state estimation error of each area in the
following set:

Ei ¼ fe½i�AR4 : j je½i� j j1r0:01g:

5.2.1. Scenario 1
For each system Σ ½i� we synthesize the controller ~C ½i�, iAM¼ 1 :

4 using Algorithm 2. For the design of local estimators, we set
δLij ¼ 1, iAM, jAN i. This allows us to compute matrices Lij such
that Aij ¼ 0ni�nj . For the design of local controllers we set δij ¼ 0,
therefore we do not use the state of parent subsystems in order to
reduce the coupling terms.

In Figs. 5 and 6 we show performance of output-feedback PnP
DMPC. Step-like control signals in Fig. 6 are caused by load steps
specified in Table 3 in [20]. In spite of these changes, deviations
from the network frequency are promptly driven close to zero, as
shown in Fig. 5. However, they cannot be completely rejected
because, differently from the simulations conducted in [29], each
area is affected by persistent disturbances.

5.2.2. Scenario 2
We consider the PNS proposed in Scenario 1 and add a fifth

area connected as in Fig. 4. Therefore, the set of children of Σ ½5� is
~S5 ¼ f2;4g. For the design of the LSE Σ̂ ½5�, and the update of Σ̂ ½2�
and Σ̂ ½4� we set δLij ¼ 1, iAf2;4;5g, jAN i. This allows us to compute
matrices Lij such that Aij ¼ 0ni�nj . For the design of local controllers
we set δij ¼ 0.

In Figs. 7 and 8 we show closed-loop simulations. As for
Scenario 1, the overall performance is satisfactory as the frequency
deviations are confined in a small interval around zero.



6. Conclusions

In this paper we have proposed a DSE for linear discrete-time
systems for which offline design and online implementation are
distributed and scalable. In particular, LSEs for subsystems that get
added or removed can be designed in a PnP fashion. The DSE has been
used in combination with a PnP DMPC scheme to provide a novel
output-feedback PnP controller. Future work includes the extension of
the proposed control scheme for tracking output reference signals and
the embedding of target optimization [8] in distributed PnP control-
lers. Generalizations of the cooperative PnP scheme in [39] to the
output-feedback case and extensions of PnP state estimation to
account for noise samples with unbounded support (e.g. drawn form
a Gaussian distribution) will be also considered.
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