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1. Introduction

Over the past decade, the networks paradigm has emerged as a
central theme in the systems and control community. Networks are
now viewed as a research area which includes various applications of
significant interest, such as the rapid spread of financial crises and
epidemics, aggregation of human behavior and the growth of the
Internet, just to name a few topics which are influencing our daily
lives. Other scientific communities such as computer science, physics,
applied mathematics, biology and social sciences have been involved
in the research on “complex networks” since a long time, see e.g. [29].
The tools that are available within systems and control have a
distinguishing feature, which is the key synergy of uncertainty,
dynamics and feedback, which is not available elsewhere. This synergy
provides the ultimate objective of this research: to develop feedback
mechanisms which deal with dynamic models describing uncertain
systems connected through a network with limited communication
capacity. Moving on from the control of a given dynamic system,
possibly nonlinear and uncertain, to the control of a large number of
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systems connected through a network is certainly a major step
forward and leads to networked control systems [5].

More specifically, one of the focal points of the research in recent
years has been the study of consensus and coordination of multi-agent
systems by means of a graph-theoretic setting which represents a
network [16,53]. Significant research has been also performed over the
years to develop tools and algorithms for distributed computation and
optimization [7,58], distributed estimation based on relative measure-
ments [6,23], clock synchronization of wireless sensor networks [35]
and optimal deployment of robotic networks [15].

In this tutorial paper, we study three problems coming from
different areas of control engineering: opinion formation, centrality
computation and estimation problems in power systems, which are
described in Sections 2, 3 and 4, respectively. Our contribution is to
recast these applications under a general framework and show some
strong similarities in the qualitative picture using tools previously
devised in [64]. In particular, in [64] we provide technical results on
ergodic properties of distributed dynamics over networks based on a
combination of randomization and time-averaging techniques (see
also the conference papers [31,65,66]). Moreover, compared to the
former paper, the distributed algorithms developed for power systems
estimation problems are new.

Randomization has proved to be a useful ingredient, comple-
mentary to classical robustness techniques [62], when dealing with
control of uncertain systems [69]. In network dynamics, randomi-
zation is also quite natural and has the objective to improve the
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overall performance of the system, for example when distributed
and asynchronous algorithms should be developed. On the other
hand, time-averaging has been widely employed in optimization
problems, for example to improve convergence speed of stochastic
approximation algorithms [63].

The general framework previously mentioned concentrates on
a class of randomized affine dynamics that do not enjoy an
equilibrium point, but are stable on average. This stability property
guarantees that the dynamics, although affected by persistent
random oscillations, possesses an ergodic behavior that can be
readily exploited in many network-based dynamics where rando-
mization is (apparently) an obstacle to obtain convergence. In
particular, we consider dynamics where nodes interact in ran-
domly chosen pairs, following a so-called gossip protocol [12]. This
protocol is particularly appealing, for example, when dealing with
sensor networks where battery consumption is a significant
concern or with social networks where individuals may discuss
various topics in pairs or in small groups.

As a consequence of these observations, the desired conver-
gence property, which holds in expectation, can be recovered by
each node of the network through a process of time-averaging.
Remarkably, time-averages can be computed locally by each node
and, in some cases, even without access to a common clock to
obtain the global synchronous dynamics.

Many network algorithms can be randomized in such a way
that the dynamics converges (almost surely) to the same limit of
the synchronous dynamics. Nevertheless, examples of randomized
algorithms that do not converge have also recently appeared in the
literature. Such algorithms require an additional “smoothing”
operation in order to converge, and in our framework, this goal
is simply obtained by means of time-averaging.

We now briefly describe the three applications studied in this
paper; additional details are given subsequently in the general
description of these applications.

The first application, see Section 2, arises in social sciences and
it is focused on the mechanisms of opinion formation, which plays
a significant role in many other areas such as economy, finance,
biology and epidemiology. The model we consider is based on the
concept of stubborn agents [38], which leads to a disagreement of
opinions, and it is an alternative to classical models where the
objective is to reach a consensus of opinions between several
individuals. Compared to [64], the contribution is a new model of
communication between agents and, thus, of opinion evolution.
More precisely, we consider symmetric pairwise randomized
dynamics. At each time step, a randomly chosen pair of agents
update its opinion as a convex combination of its own opinion, the
opinion of one of its neighbors, and the so-called prejudice. We
show that, even though the resulting dynamics persistently
oscillates, its average is a stable opinion profile, which is not a
consensus of opinions.

The second application, see Section 3, deals with the computa-
tion of centrality measures. In particular, we discuss various
measures often used in complex networks [29]: degree centrality,
closeness, betweenness and eigenvector centralities, and we
compare them by means of a simple illustrative example. We also
remark that the eigenvector centrality is closely related to the
PageRank algorithm for ranking websites in order of importance
[13]. In particular, for PageRank, we study a distributed rando-
mized algorithm and show its convergence properties. This algo-
rithm is based on link randomization, and it is an alternative to
other algorithms previously proposed in [42], which are based on
node randomization.

The third application, see Section 4, deals with estimation
problems in power systems where the large-scale power grids
are geographically distributed. The topology of the grid is repre-
sented as a network, where each node corresponds to a bus in the

grid and the edges connecting the nodes represent the transmis-
sion lines. Using a linearized model, a (weighted) least squares
approach is generally used to determine the states of the grid
including the voltage magnitudes and phase angles at the buses
[2,57]. However, this computation may not be practical if it is done
centrally for some real-time control and monitoring applications
especially when the grid size becomes larger. Hence, distributed
computation has become an active area of research [40]. Here, we
design new distributed randomized algorithm for estimation
based on partitioning of the grid and establish its convergence
properties. Simulation results showing the performance of the
proposed algorithm are given for the classical IEEE 14-bus test
system [24].
Finally, in Section 5, we provide brief conclusions.

1.1. General notation

We begin our work by fixing some notation and by reviewing
some definitions of graph theory. We denote the sets of real and
nonnegative integer with the symbols R and Z. (, respectively.
The notation | - | is used to indicate either the cardinality of a set
or the absolute value of a real number. We denote column vectors
with small letters, and matrices with capital letters. The symbol e;
is the vector with the ith entry equal to 1 and all the other
elements equal to 0, and we write 1 for the vector with all entries
equal to 1. A matrix A is row-stochastic (column-stochastic) when
its entries are nonnegative and A1=1 (A" 1=1). A matrix A is said
to be Schur stable if the absolute value of all its eigenvalues is
smaller than 1. Given the sequence of real vectors {x(k)};._,, we
denote its time-average, also known as Cesaro average or Polyak
average in some contexts, with

1 k—1
X(ky=p > X(©). M

/=0
A directed graph is a pair G = (V, £), where V is the set of nodes
and £V x V is the set of edges. We say that G=(V,¢) is an
undirected graph if (i,j) e £ implies that (i) is also an edge in €&.
The set of neighbors of i e V is denoted as Ny = {j e V : (i,j) € £}. The
degree of a node ie V is |N;|. A path in a graph is a sequence of
edges which connect a sequence of vertices. In an undirected
graph G the nodes i and j are said connected if there exists a path
from i to j. A graph is said to be connected if every pair of vertices
in the graph is connected. To any matrix P e R”*Y with non-
negative entries, we associate a directed graph Gp=(V,&p) by
putting (i,j) € &p if and only if P; > 0. The matrix P is said to be

adapted to graph G if Gp = G.

2. Opinion formation

The study of opinion formation in social networks has increas-
ingly attracted the attention of the control community in the past
decades [8]. The definition of social network is often associated to
describe the complex networked systems that play a fundamental
role in a number of different fields such as economy, finance,
biology, epidemiology, and sociology. In general terms, a social
system consists of a large number of agents/individuals whose
interactions may induce the emergence of collective behaviors.
The global behavior of the network shows often complexity
features that can be seen as the result of the addition of the many
individual behaviors and the rapid diffusion of information facili-
tated by the topology of the interconnections.

Researchers devoted their attention on various models for the
dynamics of continuous opinions by analytical analysis as well as
via numerical simulation. Pioneering works appeared in the early
1950s [34] in order to give theoretical explanations of complex
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phenomena observed empirically in populations. Most of the
literature focused on models (see [27] and subsequent papers
[22,73]) describing how the group can reach agreement on a
common opinion by pooling their individual beliefs.

The need of modeling the disagreement among individuals in a
society became a central question in [1,38]. We can distinguish
two main lines of research: opinion-dependent limitations in the
network connectivity and linear opinion dynamics with stubborn
agents or antagonistic agents [4,71,44]. The first line of research
has seen a growth of models involving “bounded confidence”
between the agents: if the opinions of two agents are too far apart,
they do not influence each other. These models typically are
nonlinear models and lead to a fragmentation of opinions: the
agents split into clusters, and each group reaches an internal
consensus. Influential models have been defined in [28,41], and
their understanding has been recently deepened in the control
community, which has studied evolutions both in discrete time
[8,17] and in continuous time [9,19], possibly including hetero-
geneous agents [54]| and randomized updates [78,77].

Although interesting and motivated, these “bounded confi-
dence” models do not seem to be sufficient to explain the
persistence of disagreement in real societies. In fact empirical
evidence suggests that the disagreement is not the consequence of
lack of communication but persists over the time in spite of
persistent contacts and interactions between agents. Instead, a
persistent disagreement is more likely a consequence of the agents
being unable, or unwilling, to change their opinions, no matter
what the other agents' opinions are. This observation has been
made by social scientists, as in the models introduced in [38,37].
These models are based on the assumption of synchronous rounds
of interaction: agents can share and update their opinions in a
synchronous fashion. This is not a realistic assumption in many
contexts. It is more plausible to imagine that individuals can meet
at different times and that some random process determines the
possible interactions among the agents (see [56,25,3,76]). These
dynamics can be expressed as linear models and their theoretical
analysis can be carried out by using techniques from stochastic
processes [25,3] and from game theory [21,39].

In this section we consider a pairwise randomized dynamics
such that at each time step a randomly chosen pair of agents
update its opinion to a convex combination of its own opinion, the
opinion of one of its neighbors, and its own initial opinion or
“prejudice”. We show that under suitable conditions the resulting
dynamics persistently oscillates, its average is a stable opinion
profile, which is not a consensus. This means that the expected
beliefs of an agent will not in general achieve, even asymptotically,
an agreement with the other agents in the society. Furthermore,
we show that the oscillations of opinions are ergodic in nature, so
that the averages along sample paths are equivalent to the
ensemble averages. The dynamics considered in this section allows
the agents to have a continuum of degrees of obstinacy, rather
than a dichotomy stubborn/non-stubborn as treated in [3].

2.1. Friedkin and Johnsen's model

Here we recall Friedkin and Johnsen's model [38], which is a
unified framework that includes various models for the dynamics
of continuous opinions. More precisely, it investigates the mechan-
isms in an interacting group that can lead to a consensus or to a
fragmentation of opinions. We consider a set of agents V among
whom some process of opinion formation takes places. In this
process, the agents take typically into account the opinions of the
others in forming its own opinion. The process of forming the
actual opinion can be repeated over the time and can be described
by a discrete time dynamical system.

Mathematically, the potential interactions are encoded by a
directed graph G = (V, £), which we refer to as the social network.
To avoid trivialities, we assume that | V| > 1. We assume that each
agentie V is endowed with a state x;(k) with ke Z . . For instance
if x;(k) e[0,1], 1 may represent extreme positive and 0 negative
belief or opinion, respectively. An edge (i,j) e £ means that agent j
may directly influence the belief of agent i. For each agent i, we
denote its neighborhood with Aj={j e V : (i,j) € £}. Let W € R”*Y be
a nonnegative matrix which defines the strength of the interac-
tions (W = 0if (i, /)¢ £) and A be a diagonal matrix describing how
sensitive each agent is to the opinions of the others, based on
interpersonal influences. We assume that W is row-stochastic, i.e.,
W1=1, and we set A =I-diag(W), where diag(W) collects the
self-weights given by the agents. The dynamics of opinions x(k)
proposed in [38] is

x(k+1)=AWx(k)+(-A)u, )

with x(0) =u and u € R”. The input vector u is the main feature of
this model, and marks its difference with, for instance, the
mentioned models which are based on bounded confidence. In
other terms, this model assumes that each agent in the network is
socially influenced by other agents but adheres to other opinions
with a certain susceptibility and to its own preconceived opinion
with a certain level of obstinacy. The nodes' actions in (2) can be
also interpreted at each time step as myopically optimizing a
quadratic cost function of the form

1 1
Fxi;Xy,) = §(1 - Wii)j;/.wij(xi —x;)? +§Wii(xi —u;)?
and the dynamics in (2) as the best-response strategy in an
underlying game with natural payoffs [39].

2.1.1. Consensus versus disagreement

We are interested in characterizing the asymptotic behavior of
(2) and investigating whether the dynamics will converge to a
consensus or to a disagreement. Remarkably, the properties of the
asymptotic behavior are determined by the graph structure and by
the stubbornness levels of the agents. The limit behavior of the
opinions is described in the following result.

Proposition 1 (Opinion convergence). The following facts hold true:

1. Iif diag(W) =0 (i.e., A =1I) and the graph is aperiodic and has a
globally reachable node, then the dynamics in (2) leads asympto-
tically to a consensus: for every € > 0 there exists a constant C,
such that

Ix(k+1)—1z2 T ull < Ce(u+e)k,

where 7 is the invariant probability of matrix W (i.e. x "W =xT),
and u is the second largest eigenvalue of the matrix W.

2. If diag(W) # 0 and for any node ¢ € V there exists a path from ¢ to
a node m such that W, > 0, then the opinions converge to

x’::k lim x(k)y=(I—-AW) 1'I-A)u.
— + 00

Moreover, the convergence is geometric with a rate equal to the
largest eigenvalue of AW.

It should be noticed that if G is strongly connected, then the
assumptions in Proposition 1 are satisfied. The case with no
stubborn agents (diag(W)=0) is well studied in the literature
[22] and under suitable requirements on the graph associated to
the matrix W, all agents’ opinion converge to a common value,
which is a convex combination of the initial opinions with weights
given by the invariant probability of W. On the other hand, if each
agent is influenced by at least one stubborn agent (that has
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positive W,,), then for any initial profile the opinion dynamics
leads asymptotically to an equilibrium point that can be computed
from the weights, the obstinacy levels and the initial opinions. Let
Vi=(I—AW)~'(I—A), which is referred to as the total effects matrix
in [38]. Since W is stochastic, we observe that under the assump-
tion of Proposition 1 also V is stochastic: this means that the limit
opinion of each agent is a convex combination of the preconceived
opinions of the group x; = >7;Vju;. As a special case, the asymptotic
opinion profile is a consensus if the initial opinions are at
consensus. Although the above result says that the convergence
to the equilibrium happens exponentially fast, it does not give any
insight on how the limit point depends on the graph properties
and on the stubbornness levels of the agents. It is worth mention-
ing that for specific cases the equilibrium can be characterized in
terms of voltage in electrical networks [39].

2.1.2. Example

Here, we briefly describe the experiment conducted in [38] to
illustrate the above model. We consider a group of four agents and
study how opinions are formed through interactions:

1. The agents are presented with an issue on which opinions can
range, say, from 1 to 100.

2. Each agent has a private initial opinion on the issue
x(0)=1[25 25 75 85] .

3. The agents can communicate with other agents individually to
discuss the issue and update their opinions based on their own
initial opinions and observing the opinions of their neighbors.
The matrix W which determines the influence network for this
group is given by

220 120 .360 .300
147 215 344 294
W= ,
0 0 1 0
.090 .178 446 .286

where the entries represent the distribution of relative inter-
personal influences on the issue. Note that agent 3 in this
example is “totally stubborn”, meaning that it does not change
its opinion at all during the evolution. This matrix is obtained
from the experiment data x(0), x/, and the estimate of the
relative interpersonal influences. We take A =I-diag(W)=
diag(.780, .785, 0, .714); the entries represent the agents’
susceptibilities to interpersonal influence. The off-diagonal
entries of W are the weights of the influence by the others.

4. After a pre-specified period of discussion (e.g., 20 min), they
report on their final opinions that may or may not be in
agreement.

It is easy to verify that the assumptions in Point 2. of Proposition 1
are satisfied. The matrix V is

280 .045 551 .124
.047 278 549 .126
0 0 1 0
.030 .048 .532 .390

This total effects matrix indicates the influence of each agent on
every other agent in the final opinions through the flow of direct
and indirect interactions. For example, V,3=.549 shows that
almost 55% of the final opinion of agent 2 is determined by
agent 3.

The evolution of the opinions is illustrated by the simulations
in Fig. 1. The final opinion profile is x' =[60 60 75 75] .

90 r

80 r

70

—~ 60

50

40

30

20 I I I I I I I I I |

Fig. 1. Evolution of the opinion dynamics (2) in the example of Section (2.1.2). The
opinions x converge to the limit X' (marked by green circles). (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)

2.2. Randomized dynamics for opinion formation

The Friedkin and Johnsen's model is based on the assumption
of synchronous rounds of interaction: agents can share and update
their opinions at the same time. This assumption is clearly not
realistic in many situations. The lack of a more precise model for
the inter-agent interactions is acknowledged in [38] by saying that
“it is obvious that interpersonal influences do not occur in the
simultaneous way that is assumed”. It is more plausible to imagine
that interactions occur at different times for instance in a pairwise
fashion. This motivates us to analyze a different opinion dynamics
where typically some random process determines the possible
interactions among the agents. We now describe a random
dynamics that considers the main feature of Friedkin and John-
sen’'s model and introduces a more realistic model of the commu-
nication process among the agents. In our model agents interact in
pairs in such a way that their opinions become a convex combina-
tion as in the original dynamics (2).

Each agent ie V starts with an initial belief x;(0)=u; e R. At
every time instant ke Z-. an edge is randomly activated with
uniform probability over £. The opinions of the other agents
remain unchanged, while nodes i and j exchange their opinions
and produce a new belief according to the following equations:

Xi(k+1) = h; ((1 —yij)xi(l<)+yyxj(l<)) +(1—hyy;
Xj(k‘i‘ 1= hj ((1 —yﬁ)Xj(k)-i-]/j,-X,'(k)) +(1- hj)u]'
Xe(k+ 1) =x.(k) VeV ). 3)

It worth remarking that we assume the edges to be chosen for the
update according to a uniform distribution. This choice is made for
simplicity, but the analysis of the model can easily be extended to
different distributions. The weighting coefficients h; and y;; satisfy
the following assumption.

Assumption 1. Let the diagonal matrix H be defined by H; = h;
and the matrix /" defined by I'; = ;. We assume that (i) h; [0, 1]
for all i e v; (ii) I is row-stochastic, i.e., for all i and j in V it holds
7i =0, >°,7i,=1; and (iii) y; = 0 if j is not a neighbor of i.

As a consequence of this assumption, we observe that at all times
the opinions of the agents are convex combinations of their initial
prejudices. Note that if an edge of the form (i,i) is sampled at time
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k, then
Xi(k+1) = hix;(k)+ (1 — hj)u;,

that is, the opinion of agent i moves back closer to its preconceived
opinion. Also note that if h;=0, then agent i is totally stubborn,
whereas if h;=1, then agent i is totally open-minded: we may say
that 1—h; is proportional to the obstinacy of the agent.

2.2.1. Consensus versus opinion fluctuations

We ask whether a stable opinion profile arises as a result of
such local interactions and if the agents reach an agreement or if a
disagreement persists over the time. We start by looking at the
expected evolution of the random vector by taking expectations on
both sides of (3)

Eix(k+1)] = <I—%(D(I—H)+H(I—F))> [E[x(l<)]+%D(I—H)u, 4)

where the right-hand side holds because the matrices are selected
independently and D is the degree matrix of G, a diagonal matrix
whose diagonal entry is equal to the degree d; = | N/]|.

It is easy to see that if H=I and G has a globally reachable node
then the expected evolution of the opinions vector will follow a
Markov chain and will converge in expectation to z " u where 7 is
the stationary distribution of /. On the other hand, if each agent is
influenced by at least one stubborn, then the opinions will
converge to the value

x*i= lim Efx(k)] = (DA —H)+H(I-1))"'DI-H)u. (5)

Further precise convergence properties can be found in the
following theorem [64].

Theorem 1 (Opinion convergence versus ergodicity). The following
statements are true.

1. IfH=I and G has a globally reachable node, then the dynamics (3)
converges to a consensus almost surely and in the mean-square
sense.

2. If for each node ¢ in V, there exists a path in the graph associated
to I from ¢ to a node m such that hy, # 1, the dynamics (3) is
almost surely and mean-square ergodic, i.e. the sequence of time-
averaged opinions X(k), _, is such that limy_,X(k)=x* almost
surely and in mean square sense. More precisely,

E[ 1700 —x* 13] S)TZ’ (6)

where the constant y > 0 depends on the graph.

2.3. Relating gossip and synchronous dynamics

We analyze now the relationship between the gossip dynamics
and the original dynamics in (2) more carefully. From a purely
mathematical point of view, we observe the following fact.

Proposition 2. If H and I are chosen as

1-(—=A)/d; ifdi#1
h; = 7
! {0 otherwise 7
d;(1 —hi)+h];f(1 — AiiWi) ifizj di1
1
AW izl doz1
Yi=\ "h ifi#), di# ®)
1 lf i=j, di =1
0 if iz, di=1

then I' and H satisfy Assumption (1) and the expected dynamics (4)

can be written as

E[x(k+1)] = <I —% ) Elx(k)] +%(AW[E[X(I<)] +(I=Ayu). 9)

Furthermore, x* =Xx'.

It should be noticed that under the assumption that /" and H
are chosen as in Proposition 2, then the expected dynamics (9) is a
“lazy” (slowed down) version of the Friedkin and Johnsen's
dynamics associated to the matrix W. Hence, Theorem 1 shows
that the average dynamics E[x(k)] converges to the limit opinions
of the original model (2). This relationship between the two
dynamics provides an additional justification and a new perspec-
tive on the model originally proposed by Friedkin and Johnsen.
Furthermore, we observe that Proposition 1 can be immediately
deduced as a corollary of Theorem 1.

From a sociological perspective (7) and (8) postulate a specific
form of interaction for individuals in pairwise meetings, which is
reflected on average by Friedkin and Johnsen's dynamics. Since by
(7) h; > A;;, we observe that individuals display a lower obstinacy
during pairwise interaction.

2.3.1. Example 1 (continued)

In this subsection, we continue with the example of four
agents. Let the weight matrices /" and H in the update (2) be
chosen according to (7) and (8). Then we have
H = diag(.945, .946,.000, .928),

356 .099 297 248

122 349 285 244
=169 0o 10000 o |

.069 .137 343 451
D =diag(4,4,1,4).
Suppose that at time k, as a result of gossiping, the edge between
agents 1 and 2 is chosen. In this case, the dynamics (2) can be
written in the matrix form as follows:

hi(1=y12) hiy;; 0 0
x(k+1) = h2(18721) hzg“ ? gx(k)
0 0 01
1=k, 0 00
Lo 1-h 0 o0f
0 0 00
0 0 00
851 .094 0 0
83 115 0 0
=l o o 1 0]"(")
0 0 01
055 0 0 0
0 054 0 0
o o o ol"
0O 0 00

For other edge choices, similar expressions can be obtained. We
see in simulations (Fig. 2) that the states oscillate, but the time
averages converge, as predicted by our results (Fig. 3).

3. Centrality computation

Discerning the importance of nodes in a network is a crucial
question in network science and has thus attracted a lot of
attention. The question can be formalized by defining a centrality
measure, which is a function of the nodes in the directed graph
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Fig. 2. Evolution of the opinions in the example of Section 2.3.1. The belief process x (left plot) oscillates persistently in a bounded interval. As the belief process is ergodic,
the time averages (right plot) converge, when time goes to infinity, to the limit of Friedkin and Johnsen's dynamics (marked by blue circles). (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 3. Simple example of directed graph.

G=(,¢&) representing the network. We begin this section by
quickly reviewing some of such measures, before concentrating
on the specific case of PageRank centrality. Afterwards, we will
consider algorithms for their computation.

3.1. Centrality notions and PageRank

Depending on the applications, different notions of importance
may be of interest. The simplest centrality measure is arguably the
degree of the nodes, that is the number of its neighbors. This
degree centrality is a purely local notion, meaning that it only
depends on the neighborhood of the node. Likely, such a limited
perspective would fail in many cases to capture the actual role of
the node in the network. Consequently, more refined definitions
have been proposed: classical examples include closeness,
betweenness, and eigenvector centralities.

According to a closeness centrality, a node is more central if it is
closer to most of the other nodes [33]: closeness is thus defined as
the average distance from all other nodes

-1
Ci= [ S ddj
jev
This definition depends on the chosen distance d(-,-) between
nodes: it can be, for instance, the length of the shortest path or the
resistance distance, as measured on a corresponding electrical
network where all edges are seen as resistors. Sometimes a
normalization constant, depending on the size of the graph
n=|V|, can be used to facilitate comparisons across different
networks: as this is not our goal here, we shall not introduce any
normalization.

Betweenness, instead, evaluates a node higher if it belongs to

many paths between other nodes. More precisely, one can

consider [32,75]

#shortest paths from j to k that contain i
#shortest paths from j to k

Bi=
jkevitk+i

This definition can be extended to include all possible paths between
nodes, instead of just the shortest ones [68,59]. Furthermore, even if
we do not describe edge centralities here, we note that an analogous
definition of edge betweenness can be given [32].

Eigenvector centrality assigns centrality according to the
entries of the leading eigenvector of a suitable weighted adjacency
matrix associated to the graph. Examples in this class have been
proposed by Bonacich [10] and by Friedkin [36], among others.
Also the PageRank algorithm at the core of Google's search engine
is based on this approach. In the specific case of PageRank, we
study a network consisting of web pages [13]. This network is
represented by a graph G=(V,€), where the set of vertices
corresponds to the web pages and edges represent the links
between the pages, i.e., the edge (i,j) € &, if page i has an outgoing
link to page j, or in other words, page j has an incoming link from
page i. The PageRank value of a web page is a real number in [0, 1],
which is defined next. Let us denote N;={heV : (i,h)e &} and
n; = | N;j| for each node i e V, and A the matrix such that

A — 1/nj lfJEN,
v { 0 otherwise.

This matrix describes the behavior of a user that is randomly
surfing the web from one page to another, following the links
between them. When the surfer is at page j, it moves to any of the
n; pages that link to it. Note that a hyper-textual link in page i
pointing to page j is actually travelled across from j to i by the user.
Under the assumption that all pages have outgoing links, we have
the property >";A; =1, that is, A is a column-stochastic matrix. If
we now let me(0,1) and denote n=|V|, we define another
column-stochastic matrix
M=(l—m)A+%11T. (10)
As the matrix A represents a random walk across the web, the
choice of positive m corresponds to introducing a chance of
“teleportation” of the web surfer in the matrix M: in practice,
the value m=.15 is used. The PageRank of the graph ¢ is the vector
Xpgr such that Mxj, =x3, and lTx;gl.:l. This vector has the

pgr pgr
interpretation of the fraction of time spent on each page by the
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random surfer, on average and asymptotically. We refer to [43] for
more discussion and to [14,48] for introductions to the mathema-
tical details behind this claim.

3.1.1. Example

Different centrality measures may give very different answers
regarding the importance of the nodes. This obvious fact is a direct
consequence of their definitions, which are meant to describe
different phenomena: e.g., being quickly reachable or being
instrumental to the communication between the other nodes.
The literature has indeed extensively discussed criteria and meth-
ods to select the relevant centrality measures [32,11,59]. Differ-
ences are apparent even in simple networks. To this goal we
choose a small example of graph that has been used to study
connections between webpages in [43]. On this graph, we com-
pute all the centrality measures defined above. If we compare the
obtained numerical values, reported in Table 1, we see that the
most relevant nodes can be node 6 (according to PageRank), node
4 (according to betweenness), nodes 4 and 6 (according to
closeness), or node 4 (according to degree).

3.2. Algorithms for centrality computation

In contemporary engineering research, we witness a growing
tendency to phrase questions about network systems as defini-
tions of centrality measures. For instance, [49,30] have shown that
closeness measures can describe the ability for a node to optimally
spread information across a network, when information propa-
gates via noisy communications. Hence, effective algorithms to
compute centrality measures are becoming more and more
important.

As we mentioned, the most significant definitions of centrality
are functions of the full network. Consequently, in order to
compute the centrality of a given node, information about other
parts of the network is necessary. How much information must be
gathered? Can this information be elaborated locally by a node or
by an observer with partial information, or instead computations
need to be run by an external agent with full information? The
latter perspective was the standard in the classical works, but
researchers are currently looking for distributed algorithms, which
compute centrality measures when the available information is
partial and limited by privacy concerns or by other restrictions.

Within the systems and control community, interesting results
in this direction have been obtained under the assumption that
the graph is a tree (i.e., has no path from a node to itself). Under
this assumption, both betweenness [74]| and closeness [61] can be
computed distributedly. The same fact is true for more complex
measures of influence defined in opinion dynamics [72]. On the
contrary, the approach to PageRank initiated in [42] and illustrated
below does not make any restrictive assumption on the graph.

Table 1

Values of different centrality measures in the graph of Fig. 3. Note that in the
definition of closeness we choose the distance d(i,j) to be the length of the shortest
path from j to i. Degree values are not reported in this table.

Node Closeness Betweenness PageRank
1 .066 833 .061
2 .09 5 .085
3 A1 2.166 122
4 142 3.666 214
5 A11 0 214
6 142 5 302

Let us first recall that the PageRank vector can be computed
through the recursion

x(k+1) = Mx(k) = (1 —m)Ax(I<)+%1, 1

provided the initial condition satisfies 1" x(0)= 1. Indeed, the
reader may easily check that teleportation guarantees the Schur
stability of (1—-m)A and thus implies that the sequence in (11)
converges to

. _m
Xpgr = (1= (1 —m)(A) 1F1'

However, this method requires a large number of synchronous
operations at each time step. With the goal of reducing these
requirements, randomized methods for PageRank computation
have been studied in several recent papers and a survey on this
topic has recently appeared [43]. In the remainder of this section,
we describe an example of an “edge-based” randomized algo-
rithm, originally presented in [64]. As only one edge is activated at
each time, the algorithm is asynchronous and its communication
requirements are minimal.

With this discussion in mind, we are ready to describe the
algorithm from [64]. Each node i eV holds a pair of states (x;,X;).
For every time step k an edge 6(k) is sampled from a uniform
distribution over £ (note that sampling is independent at each
time k). Then, the states are updated as follows:

Xi(k+1)=(1—71) (1 *nl,»)x"(k”% (12a)
xi(k+1)=(1-r) (xj(k)+nlix,-(k)> o (12b)
xh(k+1):(1—r)xh(k)+£ if hij (120)
and

@(k+l)=% Veey 13)

where r € (0, 1) is a design parameter that will be precised later. In
fact, x is just the time-averaged state as defined in (1).

The update in (12) can also be formally rewritten in a vector
form as

X(k+1) = P(k)x(k)+u(k),
where

P(k)=(1-nAk), u(k)= %1.

Here A(k) and P(k) are random matrices which are determined by
the choice of O(k) = (i,j)

A(k)=1 ju%(eje,-T —eiei’).
1

More precisely, A(k) is uniformly distributed over the set of
matrices {I +nll(ejeiT —eie;") 1 (i,j) € &). This compact rewriting is
convenient in proving the convergence of the algorithm. Indeed,

1 1
E[AK)] =g > <1 +E(eje,7 —ee] ))
(et !

1 1
=(1-—)I1+—A
(1)
The expectation of the states evolves through

Efx(k+1)] = (1 — 1) E[AGR)]Ex(K)] +%1

1 1 r
=(1 —r)((l —m>1+mA> [E[x(k)]—i-ﬁl.
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Similar to what we argued before, the update matrix is stable and
thus the dynamics converges

. 1 r 1-r )\ 'r
l}LrEOE[x(k)]_ (1 (1 r H +|8|)I B A> nl.
This limit vector is equal to x5, if r satisfies (™ =;";|€|. The
stability and the consistency of the expected dynamics are
essential to complete the proof of the following result, which
establishes the convergence of x(k) to E[x(k)]: we refer the reader
to [64] for the remaining details about this ergodicity property.

Theorem 2 (Ergodic PageRank convergence). Let us consider the
dynamics (12) and (13) with
m

r=——>"
m—|&lm+|£&|

where x(0) is a stochastic vector. Then, the time-averaged sequence
(X} _, is such that limy_, . X(k) = X}, almost surely and in mean
square sense. More precisely,

C

k

where the constant C > 0 depends on the graph and on m.

E[IR() — X3 13] <

(14)

The estimate (14) highlights a drawback of using time-averaging in
connection with randomization. Indeed, convergence of time-averages
is not exponential, as for the synchronous dynamics (11), but poly-
nomial: the distance from the limit value is proportional to 1/k. This
drawback stimulates research towards exponentially fast algorithms.
Likely, effective algorithms can be constructed by endowing the nodes
with some memory capabilities, taking advantage of the so-called
asynchronous iteration method from numerical analysis [7, Section
6.2]; see also [42, Section VII] for a more extended discussion and [18]
for recent results.

4. Power systems state estimation

In this section, we turn our attention to applying the distrib-
uted randomized algorithms approach to a more engineering
setting of power systems. Such systems have gained significant
attention in the recent years from various systems areas including
power, control, communications, and computer sciences. This rise
has been strongly motivated by the fast growing number of
renewable generation sources and the introduction of competitive
electricity markets. These factors will continue to make power
systems more complex in the future grids, which is often referred
to as the smart grid. For stable operation and lowering the cost,
real-time diagnostic and monitoring are highly desirable.

The large-scale power grids physically have network structures
due to the transmission lines and are distributed geographically.
These aspects provide an interesting platform for applying net-
worked control techniques. In this section, we focus on the so-
called power systems state estimation problem, which is a static
estimation problem at the transmission systems level where the
power generated at power plants is sent to distant substations at
high voltage [2,57].

The problem can be expressed as a least squares estimation one
and is classic in the power systems literature, studied in the last
few decades. The current changes in the grid operation however
provide new incentives to carry out its computation in a more
distributed manner. The grids are becoming larger in their size, as
companies who in the past operated their grids independently
started to connect them, so that they can cooperate in the
presence of fluctuations in the power generated by renewables.
Therefore, the size of the states to be estimated has grown and it is
not feasible and unnecessary to communicate all measurements
among the different companies as not all state information is

needed by individual operators. That is, it is realistic in a very
large-scale system to compute only part of the states at each
estimator. It is also added that power systems estimation has been
considered from the viewpoint of cyber security in, e.g.,
[50,67,55,20] where false data injections to sensor measurements
are found to affect the estimations based on least squares methods
in a stealthy manner.

Over the years, there have been many efforts in developing
distributed algorithms for state estimation; for a review on this
subject, see [40] and the references therein. It is common that the
overall estimator requires a global coordinator which collects the
estimation data from others to obtain the final result (see, e.g.,
[45,47]). Algorithms that do not employ such a coordinator have
been proposed in, for example, [26,46] in the power systems
literature, but other recent distributed estimation techniques are
applicable as well [51]. In the control literature, the work of [60]
presents a projection-based algorithm motivated by the multi-agent
consensus literature, which is guaranteed to converge in finite time,
but is used for computation of the entire state at every node. The
work [70] takes account of errors in clock synchronization among
the sensors and extends the distributed optimization techniques of
[46]. More recently, in [52], the iterative computation of the least
squares type was reconsidered from the distributed computation
viewpoint. In particular, the convergence performance is shown to
be improved by finding optimal parameters in the algorithm which
can also be computed in a distributed fashion.

We extend our framework of distributed randomized approach
to the least squares estimation for power systems. In particular,
our algorithm can be viewed as a randomized version of [52]
which is based on deterministic and synchronous communication
among the nodes. An important advantage of the setting in this
subsection is that the nodes can communicate in a fully asynchro-
nous fashion. More concretely, in computing the time averages of
the states, each node may do so by using its own counting of the
number of updates made so far (and not global clock). It turns out
that such asynchrony cannot be exploited in some other problems.
We would also like to highlight that due to the generality of the
least squares estimation problem, the results of this section can be
extended to similar problems that appear in other networked
control applications including sensor localization [6] and clock
synchronization [35] for sensor networks.

4.1. State estimation problem

In this section, we give a brief introduction on the modeling of
power systems and discuss the state estimation problem.

In Fig. 4, the simple transmission grid model known as the IEEE
14-bus test system is shown [24]. Each bus denoted by a horizontal
bar represents a power plant with generators, a substation, or a
load. The buses are connected by multiple transmission lines,
forming a power network. The objective of the power systems
state estimation is to compute the estimates of the unmeasured
states of the buses based on the relations among the power
injections, voltage magnitudes, and phase angles. The estimation
results provide important information to be used for, e.g., control
and fault detection of the power system, and prediction of power
consumption. In state estimation, measurements of the power
flow among the buses as well as power generated or consumed
comprise the main inputs. For the buses employing phasor
measurement units (PMUs), the voltage magnitude and the phase
information can be directly obtained. PMUs share synchronized
clocks through the use of GPSs, and moreover measurements can
be made at fast sampling rates with high precision.

Consider a power grid model consisting of n buses [2,57,55].
We express the topology of the grid as the undirected graph
G =(V, ). Each node in the graph corresponds to a bus in the grid,
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Fig. 4. IEEE 14-bus test system.

and the edges connecting the nodes represent the trans-
mission lines.

For each bus i, denote the total active power injection by P; and
the total reactive power injection by Q; Let V; be its voltage
magnitude and let &; be its phase angle. For the phase, bus n will
be considered the reference bus, and hence we assume 6, =0.
Then, at bus k, the total complex currents injected is written as

= YyVi, (15)
keN;

where A denotes the set of bus indices neighboring bus i, Yy is

the admittance of the transmission line connecting bus i and k.

Based on this expression, the complex power injected at bus i, that

is, the difference between the power generated and consumed,

becomes

P;+jQ; = VI Iz, (16)

where 3 indicates the complex conjugate. Now, observe that by
substituting (15) into (16), this grid model is fully described by the
voltage magnitude and the phase angles. Hence, as the state
vector, we introduce X =[V; - V,; 01 - 0,_1]T e R?"~1,

Let Z be the m—dimensional measurement vector with
m > 2n—1. The output equation can be written as

Z=h(X)+V, 17)

where h(-) is a nonlinear vectorial function and veR™ is a
Gaussian noise whose entries are independent with mean 0 and
covariance matrix R > 0.

In the state estimation problem, we find the state x from the
relation in (17). This problem can in general be solved via the
weighted least squares method. Estimation based on least squares
is commonly accepted since it can be efficiently computed even for
large-scale systems by, for example, the Newton-Gauss method. In
practice, however, this can still take time and may not be as fast as
required for some real-time control and monitoring purposes.

So, while the full state estimation above is carried out, an
approximated version of the state is computed through linearization.
In particular, the so-called DC model is employed under the
assumption that the voltage magnitudes are at the reference (unit)

value, V;=1 for all i. This linearization is based on the Jacobian
matrix H e R™ =D of h(.) (consisting of only the relevant entries).
Then the phase angle vector x =[0; --- 6,_1]" € R"~! is modeled by

zZ=Hx+v,

where ze R™ is the measurement with m>n and ve R™ is the
Gaussian noise with 0 mean and covariance matrix R. Clearly, we
must assume observability in the form that the Jacobian matrix H has
column full rank. It should be noted that due to the power network
structure, this matrix typically is sparse with a limited number of
nonzero entries.

Under the DC model, the state estimation problem in the least
squares setting can be formulated by

X* =arg rr}(in(z—Hx)TR”(z—Hx). (18)

This problem has a closed-form solution given by
x*=L"'u, (19)

where L=H"R™'H and u=H "R~ 'z Due to the assumption on H,
the matrix L is nonsingular.

One way to compute this solution x* is through the gradient-
based iterative algorithm (e.g., [7]) given by

X(k+1) = (I—-7L)x(k)+7u, (20)

where x(k) e R"~1 is the estimated state at time ke Z. ¢ and the
parameter 7 is selected from the interval (0,21LI ~'); such a 7
guarantees the matrix I—zL to be Schur stable.

4.2. Distributed algorithm based on grouping

We now consider the distributed computation of the state
estimates. We start with grouping of the nodes by partitioning V
into N groups V;cV for ie V={1,2,...,N}, that is, V; N V; =@ if
i#jand V; # for all i. With a slight abuse of notation, we reorder
the entries in the vectors x, z, and u and then partition them
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accordingly as
X1 Z1 uq

Xx=\|:|, z=|1%1], u=\|1%/, 21
XN ZN Uun

where x; e R" with n; = |V;|, z;e R™, and u; e R" consist of the
states, the measurements, and the input vector (from (20)) of
nodes j e V; for each group i. Similarly, we partition the Jacobian
matrix H appearing in (18) into submatrices H; whose sizes are
m; X 1.

The notion of neighbors must be introduced based on the
structure of the matrix H in a slightly more general fashion than
that for the original undirected graph G. Denote by G the graph
induced by the partitioned matrix H whose node set is V; its edge
set & is determined via (i,j)e & if and only if Hy # 0. Since the
partitioned matrix H does not in general reflect the original
graph G, the induced graph ¢ is directed. For each group ieV,
the set of neighboring groups with outgoing edges is given by
Ni={jeV: Hj; # 0}; such groups are called the out-neighbors. On
the other hand, the set of its neighbors with incoming edges,
ie, its in-neighbors, is denoted by M;={jeV :H;+#0}. We
assume that group i has the knowledge of both N'; and M.

In what follows, we outline the distributed randomized algo-
rithm for the computation of the least square estimate in (19).
Each group i e ¥ keeps a triple of states (x;, k;, X;). Their roles can be
explained as follows: x;(k) is the basic estimate of the partial state
xr for the nodes in group i at time k; «;(k) keeps the number of
updates made by the group so far by time k; and X;(k) is the
smoothed version of the estimate obtained by time averaging. For
the randomization, let 7(k) € V be the random variable specifying
the group initiating the update by sending its own state to its
neighbors at time k.

As the initialization stage, the following steps are performed at
each group i: the initial states are set as (x;,k;,X;) = (0,0,0). The
input vector u; is computed by collecting the measurements z,
from its out-neighbors # in N; as
u=H "R 2= > H}R;'z.

t’e/\j",v
Then, at time k e Z - g, one groupj € V is chosen to initiate updates;
this is specified by #(k)=j, where j is randomly chosen with a
uniform probability distribution.

This group j sends its current estimate x;(k) to its out-neighbors
¢ e Nj. Then, group # computes the vector y:=H/;R; "H,x;(k).
This is further sent to its in-neighbors ie M, whose states are
updated by

Xi(k+1)=x;k)—7 Z y‘}‘”-ﬁ-wb ieM,, fe./\~/'j. (22)

e NinN;
For other nodes, their states remain unchanged as
xi(k+1)=xi(k), i¢M;, ¢eN;. (23)

The local time is updated via

A xio+1 ifie My N,
Kitk+1) = { K;i(k) otherwise. 24
The time averages of the states are computed as
¥(K'(k))_('(k)+x(k+1)
Ki(k+1)" ! !
Xi(k+1)= (25)

ifie Mg, fe/\?},
X;(k) otherwise.

As we see above, this algorithm is fully asynchronous in the
sense that the groups need not maintain their clocks to be
synchronized due to the local counter «;(k) employed here for

computing the state time average X(k). This aspect is in contrast
with those introduced in the previous two sections, where the
time average requires the global time k.

For this asynchronous distributed algorithm, we can establish
an ergodicity property based on [64] as stated in the following
theorem. Analysis of the average dynamics of this algorithm can be
performed similarly to that carried out in the previous section.

Theorem 3 (Least squares convergence). Let us consider the
dynamics Egs. (22)-(25). Then, the time-average sequence
Xi(k)}c 7., of each group i e V is such that limy_, . X;(k) = X} almost
surely and in mean square sense.

As we described in the introduction of this section, in the
context of the power systems state estimation problem, it is
reasonable and common to partition the original grid graph G
into groups and then place local estimators at the group level. This
setting brings three differences in the algorithm compared to
those in the previous sections. First, though the original graph g is
undirected, the underlying graph ¢ among the group nodes is
directed. This is due to the structure in the matrix H representing
the relation from the states to the measurements. Second, the
matrix H has the consequence that even though only one group
initiates an update, multiple nodes are affected via the two-hop
communication involving intermediate nodes as can be seen in
(22). This aspect is somewhat hidden if we only look at the update
scheme in (20) based on the matrix L. To see this point more
clearly, from the centralized scheme we can easily write out the
iteration for the state corresponding to group i. Let Lj e R"*" be
the (i) block of the matrix L when partitioned in accordance with
the state vector x;s in (21). Then, the centralized update scheme
(20) is expressed as

Xi(k+1)=x;(k)— TLinj(k)—FTU,‘

N
=xi(k)—7 > H}R; THyxi(k)+u;
F=1
=xik)—7 Z H;;R;leij(k)+Tui.

e NinN;

In comparison, observe that in the distributed scheme (22),
randomization is made to select only one group j, which will then
trigger the updates. Finally, as already mentioned, the local clock
ki(k)y may be used in this problem for the time averaging. This
scheme has the advantage that not only the clocks need not be
synchronized, but also the updates at each group can take place at
random times without any fixed sampling period.

4.3. Simulation

We illustrate the proposed distributed randomized algorithm
through a numerical example using the IEEE 14-bus system in
Fig. 4.

First, the grid is partitioned into four groups as shown in Fig. 5.
The buses are grouped as V; =({1,2,5}, V, =(3,4,7,8}, V3 ={6,11,
12,13}, and V4 ={9, 10, 14}. There are in total 27 measurements.
Among the sensors, there are three PMUs located at buses 1, 4, and
12, indicated by the gray nodes in Fig. 5. Each group has between
5 and 8 measurements, and these include the power flows over
internal lines within the group, the power injections at the buses
(except for bus 5 in group 1), and the PMUs. The graph induced by
the partitioned matrix H is shown in Fig. 6, which is a directed
graph for this case. For measurements obtained from PMUs,
Gaussian noises are added with zero means and standard devia-
tions of .02. For other measurements, the standard deviations of
the Gaussian noises are set as .66 of the absolute value of the
measured value plus a fixed bias of 1.6 x 10~ as considered in the
commonly used toolbox Matpower [79] for Matlab.
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Fig. 6. The induced graph G representing the relation among groups through the
partitioned matrix H.

4
k x 10

Fig. 7. Time responses of the time-average states (in solid lines) and the least-
squares values (in dash-dot horizontal lines) for 14 buses. The colored lines indicate
the groups to which the buses belong. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)

The time responses of the average states X; are shown in Fig. 7
as the solid lines. There, four colors, red, blue, green, and black are
used to indicate the phase angles of buses in the four groups. The
dash-dot horizontal lines indicate the least-squares solution x7. It
is clear that the time average asymptotically reaches the desired
values.

5. Conclusion

In this paper, we have studied a general framework which has
the objective to construct algorithms, based on the interplay of
randomization and time-averaging, for distributed computation
over a network. Several open problems will be the objective of
future research, including in particular the development of similar
algorithms for other systems and control applications, such as
sensor localization and clock-synchronization, and the derivation
of fully-distributed algorithms for the computation of centrality
measures in complex networks.
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