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Abstract

We develop a method to simplify the partial differential equations (PDEs) associ-
ated to the potential energy for interconnection and damping assignment passivity
based control (IDA-PBC) of a class of underactuated mechanical systems (UMSs).
Solving the PDEs, also called the matching equations, is the main difficulty in the
construction and application of the IDA-PBC. We propose a simplification to the
potential energy PDEs through a particular parametrization of the closed-loop in-
ertia matrix that appears as a coupling term with the inverse of the original inertia
matrix. The parametrization accounts for kinetic energy shaping, which is then used
to simplify the potential energy PDEs and their solution that is used for the po-
tential energy shaping. This energy shaping procedure results in a closed-loop UMS
with a modified energy function. This approach avoids the cancellation of nonlin-
earities, and extends the application of this method to a larger class of systems,
including separable and non-separable port-controlled Hamiltonian (PCH) systems.
Applications to the inertia wheel pendulum and the rotary inverted pendulum are
presented, and some realistic simulations are presented which validate the proposed
control design method and prove that global stabilization of these systems can be
achieved. Experimental validation of the proposed method is demonstrated using a
laboratory set-up of the rotary pendulum. The robustness of the closed-loop system
with respect to external disturbances is also experimentally verified.
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1 Introduction

Control of underactuated mechanical systems (UMSs) has been a central and
challenging topic that has attracted a lot of interest. UMSs, defined as systems
that have fewer control inputs than the degrees of freedom to be controlled,
can model many interesting applications including robotics, spacecraft, and
satellites as well as a benchmark to study complex nonlinear control systems.
While the absence of actuation in some degrees of freedom imposes a chal-
lenging task to achieve the desired control objectives with a lower number of
actuators, underactuation control has the advantages of reducing the cost and
complexity of the control system, and ensuring the functionality of a system
in the case of actuation failure [22]. However, the fact that UMSs have com-
plex internal dynamics and are not fully feedback linearizable complicates the
control design, because the nonlinear control methods proposed for general
mechanical systems can not be applied directly to this class of systems.

Various nonlinear control techniques have been developed for stabilization of
UMSs (see [19] for a survey and [22] for a discussion). Among the most popu-
lar techniques, Passivity-based control methods such as controlled Lagrangian
[9] and the interconnection and damping assignment passivity based control
(IDA-PBC) [26] have proven to be powerful techniques due to their systematic
and structure preserving approach, and the fact that they capture the essential
physical property of energy conservation (passivity) [7,26]. A constructive sta-
bilization method for a class of UMSs based on a newly developed immersion
and invariance (I&I) technique has been proposed in [30], and a comparison
between the IDA-PBC and I&I methods for UMSs has been presented in [16].

IDA-PBC is a control design method formulated for systems described by
port-controlled Hamiltonian (PCH) models. The main idea of this method is
to assign a new (desired) closed-loop PCH model that have certain features,
utilizing the physically-inspired principles of energy shaping, interconnection
structure and damping assignment (dissipation) [2]. The stabilization of an
UMS via IDA-PBC is usually achieved by shaping the kinetic and potential
energy functions and obtained through a state feedback law. The existence of
such law constitutes the matching conditions of the IDA-PBC method which
are a set of partial differential equations (PDEs) [25].

Solving these PDEs which identify the desired potential and kinetic energy
functions is the main obstacle in the applicability of the IDA-PBC method. A
number of constructive approaches to solve or simplify these PDEs for different
classes of UMSs has been recently proposed in [2,7,14,20,25,38] and references
therein. Also, IDA-PBC has been applied to various underactuated systems,
such as pendulum on a cart [35], inertia wheel and ball and beam systems
[25], Pendubot [29] and Acrobot [20].
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In this paper, we develop a constructive strategy to simplify and solve the
PDEs of IDA-PBC method for a class of UMSs with underactuation degree
one. The key idea is to parametrize the desired inertia matrix that shapes
the kinetic energy, and used it to simplify the potential energy PDEs, and
solve them to shape the potential energy function, thus achieving total energy
shaping. That is, with suitable choice of the desired inertia matrix that must
be positive definite and in spirit of some physical considerations, the potential
energy PDE is simplified and its solution, the energy function must have a
minimum at the desired equilibrium point. Furthermore, asymptotic stability
is achieved by means of damping injection. This strategy expands the class
of UMSs that can be dealt with compared to those in [2]. That is, we have
proposed some design methods to deal with two groups of underactuated PCH
systems, namely, the separable PCH systems (systems with constant inertia
matrix) and non-separable PCH systems (systems with non-constant inertia
matrix). We apply our result to a stabilization, as well as the swing up, of an
inertia wheel pendulum and a rotary inverted pendulum (Furuta pendulum)
systems. The later has relatively more complex dynamics than those of most
other commonly studied benchmark systems [22].

The main contributions of the paper are:

• A constructive method to solve the potential energy PDEs for mechanical
systems with underactuation degree one. The motivation of this is because
most position stabilization problems can be solved by shaping the potential
energy function [2]. For underactuated mechanical systems, kinetic energy
function also needs to be shaped. We have assigned the inertia matrix that
shapes the kinetic energy, and used it to simplify the potential energy PDE,
and solve them to shape the potential energy function, thus reshaping the
total energy function. While most works in literature use either normalized,
linearized, or partial feedback linearized model of the UMS to simplify the
problem, we have employed a full nonlinear model of the system.

• The proof that our proposed controller design method ensures an ”almost”
global asymptotic stabilization for the rotary inverted pendulum in its full
nonlinear dynamics. To the best of our knowledge, this is the first work
that achieves stabilization of this system over the entire domain of attraction
using IDA-PBC. Also, it shows an ”almost” global stabilization of the inertia
wheel pendulum using realistic model parameters.

• A successful implementation of the controller to balance a laboratory ro-
tary inverted pendulum hardware. The application is modified to include a
friction compensator which is excluded throughout the PCH modelling.

• Robustness properties of our simplified IDA-PBC design with respect to
external disturbances are experimentally verified. That is, we prove that
the stability of the rotary inverted pendulum is preserved, for a certain
margin, with respect to external disturbances.
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Definitions and notations. The set of real and natural numbers (including
0) are denoted respectively by R and N. Given an arbitrary matrix G, we
denote the transpose and the pseudo inverse of G by G⊤ and G+, respectively.
G⊥ denotes the full rank left annihilator of G, i.e. G⊥G = 0. We denote
an n × n identity matrix with In. For any continuous function H(i, j), we
define ∇iH(i, j) := ∂H(i, j)/∂i. ei, i ∈ n := {1, · · · , n} is the Euclidean basis
vectors. We use a standard stability and passivity definitions for nonlinear
systems [15]. The arguments of functions are often dropped whenever they
are clear from the context.

2 Problem Formulation

We review the general procedure of the IDA-PBC design as has been proposed
for instance in [26,24]. Some existing methods to solve the matching equations
associated with the IDA-PBC are also reviewed, highlighting some limitations
of those methods. Consider a PCH systems whose dynamics can be written as
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where q ∈ R
n, p ∈ R

n are the states and u, y ∈ R
m, m ≤ n, are the control

input and the output, respectively. Ifm = n the system is called fully-actuated,
while if m < n it is called underactuated. The Hamiltonian function, which is
the total energy of the system, is defined as the sum of the kinetic energy and
the potential energy

H(q, p) = K(q, p) + V (q) =
1

2
pTM−1(q)p+ V (q), (2)

where M(q) > 0 is the symmetric inertia matrix and V (q) is the potential
energy function. IDA-PBC consists of two parts, which correspond to its design
steps; the energy shaping and the damping injection, i.e.

u = ues + udi. (3)

Energy shaping
The main objective of IDA-PBC is to stabilize the PCH system by state-
feedback controller. This is achieved by replacing the interconnection matrix
and the energy function (Hamiltonian) of the system with a desired ones
while preserving the PCH form of the total system in closed-loop. This can
be mathematically expressed as
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The desired total energy in closed-loop is assigned to be

Hd(q, p) = Kd(q, p) + Vd(q) =
1

2
pTM−1

d (q)p+ Vd(q), (5)

with Md = MT
d > 0 the desired inertia matrix and Vd(q) the desired potential

energy, such that Hd has an isolated minimum at the desired equilibrium point
qe, i.e.

qe = arg minHd(q) = arg minVd(q). (6)

The following conditions are required so that (6) holds:

Condition 2.1 Necessary extremum assignment: ∇qVd(qe) = 0.

Condition 2.2 Sufficient minimum assignment: ∇2
qVd(qe) > 0, i.e. the Hes-

sian of the function at the equilibrium point is positive.

Equation (4) constitutes the matching conditions of the IDA-PBC method
[26], which is a set of PDEs in the form of

G⊥{∇qH −MdM
−1∇qHd + J2M

−1
d p} = 0, (7)

with J2 = −JT
2 a free parameter. PDEs (7) can be separated into two elements;

kinetic energy PDEs (dependent on p):

G⊥{∇q(p
TM−1p)−MdM

−1∇q(p
TM−1

d p) + 2J2M
−1
d p} = 0 (8)

and potential energy PDEs (independent of p):

G⊥{∇qV −MdM
−1∇qVd} = 0. (9)

If these sets of PDEs (8) and (9) are solved, or in other words Md, Vd and J2
are obtained, then ues is given by

ues = (G⊤G)−1G⊤
(

∇qH −MdM
−1∇qHd + J2M

−1
d p

)

= G+
(

∇qH −MdM
−1∇qHd + J2M

−1
d p

)

. (10)

Damping injection
The next task after finding ues is to find the damping injection (dissipation)
controller, which is

udi = −KvG
T∇pHd, Kv > 0 (11)

to add the damping to the closed-loop system that ensures asymptotic sta-
bilization to the desired equilibrium. udi is applied via a negative feedback
of the passive output to achieve asymptotic stability, provided that the sys-
tem is zero-state detectable. The system (1) is called zero-state observable if
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u(t) = y(t) = 0, ∀ t ≥ 0 =⇒ (q(t), p(t)) = (qe, 0). It is zero-state detectable if
u(t) = y(t) = 0, ∀t ≥ 0 =⇒ limt→∞(q(t), p(t)) = (qe, 0).

Given a PCH system (1), by applying the IDA-PBC design we obtain the
following preserved PCH dynamics
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(12)

where Rd = GKvG
⊤ > 0 is the dissipation matrix.

2.1 Total energy shaping

From the passivity-based control perspective, the natural way to stabilize a
mechanical system is by modifying/shaping its energy function consisting of
the kinetic and the potential functions. The most important step in the de-
sign procedure is to shape its potential energy function. This is due to several
reasons; first, the stability of the system is achieved through the potential
energy shaping [18,36]. That is, the energy of the mechanical system in its
balancing position is represented by the potential energy at the coordinates
qn [32]. Second, the qualitative behavior of the system can be concluded from
the features of the potential energy function. Third, most approaches that
relies on kinetic energy shaping only resulted in unsatisfactory stability and
closed-loop performance of the system. That is, stability is limited to a re-
duced Domain of Attraction (DoA) or phase space. In [8,9] where the method
of controlled Lagrangian restricted to kinetic energy shaping has been used,
only local asymptotic stability has been achieved (for instance in the inverted
pendulum applications, only the upper hemisphere of the DoA).

As for the Hamiltonian framework, where the IDA-PBC is the most popu-
lar methodology used, the focus in most approaches has been on solving the
kinetic energy PDEs, by modifying the interconnection matrix Md and used
it to produce the closed-loop potential energy function Vd. As discussed in
[2] (see Remark 7), the restriction on Md in solving the kinetic energy PDEs
limits achieving global stability. This is evident by the reduced DoA obtained
in the cart pendulum system and Furuta pendulum system applications in [2]
and [38]. While the potential energy shaping is sufficient in most regulation
problems for mechanical systems, for underactuated systems it is necessary
also to shape the kinetic energy function, thus achieving total energy shaping
that enlarges the class of systems that can be stabilized [25].
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2.2 The matching equations

Some constructive techniques have been proposed in literature, for instance
in [2,7,14,38], to solve the matching equations for various subclasses of PCH
systems, imposing particular conditions to satisfy. In [14], a method to reduce
the kinetic energy PDEs (8) to a simpler nonlinear ODEs has been proposed.
This method has been developed for a class of UMSs whose open-loop inertia
matrix M depends only on the non-actuated coordinate. The idea is then to
parametrize the closed-loop inertia matrixMd to follow the structure ofM and
to use the free parameter matrix J2 to force these equations to satisfy certain
mathematical properties and hence reducing these PDEs to several sets of
nonlinear ODEs. This procedure contributes to kinetic energy shaping. The
assignedMd which must be symmetric and positive definite is then substituted
into (9) to solve for Vd, i.e. potential energy shaping.

Another technique to simplify the kinetic energy PDEs has been proposed in
[7]. A notation of λ − Equations originally proposed in [6] to triangulate a
highly nonlinear system of PDEs into a set of linear PDEs has been adopted
to generate one quadratic PDE in λ and subsequently a linear PDE in Md.
This PDE has been solved and the resulting Md is used in (9) to solve for Vd.

In [2], a constructive technique to solve the PDEs has been suggested. In this
method several conditions have been imposed on M , G and V to simplify
these PDEs. First, the system has underactuation degree one and M does
not depend on the unactuated coordinate. This condition eliminates the first
term (also called the forcing term) in (8) which transforms this equation from
inhomogeneous to homogeneous PDEs. If the first condition is not satisfied,
a partial feedback linearization can be used. Then, parametrizing Md and
partially parametrizing J2, in such a way so that the PDEs (8) are transformed
into a set of algebraic equation in the (partially) unknown J2 for a fixed
Md, will solve the kinetic energy shaping problem (see Proposition 3 of [2]).
The potential energy shaping is then achieved by using the fixed Md and by
imposing that Md and Vd are both functions of one and the same actuated
coordinate. Inspired by the work of [2], several IDA-PBC controllers have been
proposed in [35], [29], [20] and [38], for various UMSs.

2.3 Simplifying the PDEs via change of coordinates

A common practice to simplify the PDEs is to employ a change of coordinates
(see for instance [2], [25], [38] and references therein). In [25], a change of coor-
dinates is used to simplify the description of the dynamics of the inertia wheel
pendulum, which is a separable PCH system. In [38], the kinetic energy PDEs,
which are nonlinear and inhomogeneous, is simplified via a certain change of
coordinates that eliminates the forcing term in this set of PDEs, making them
homogeneous. This change of coordinates involves replacing the momentum
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vector p by its corresponding quasi-velocities. The method is known as quasi-
linearization as it involves elimination of the quadratic terms of the velocity
(resembles the linearization). As a result, the inertia matrix becomes constant
in the energy function i.e. the system is only affected by the potential field [38].
In [11] and [37], some necessary and sufficient conditions (such as, Rieman-
nian curvature, constant inertia matrix, skew-symmetry, and zero Christoffel
symbols) on the inertia matrix M have been given, which need to be verified
for the existence of such transformation. Although these methods simplify the
control problem, the application is limited to the class of systems that admits
quasi-linearization. For example, the method in [38] can not apply directly to
the rotary inverted pendulum.

Inspired by the discussion above, we propose a novel approach to this control
problem, concentrating our attention on simplifying and solving the potential
energy PDEs which implies modifying the inertia matrix (notice that in (9),
Md is the only term that can be modified). By parametrizing Md that shapes
the kinetic energy function, one can use it to solve the potential energy PDEs
rather than focusing on finding the solution for the kinetic energy PDEs itself.

3 Main Results: Simplifying the Potential Energy PDEs

In this section, we propose an alternative approach, focusing on solving (9)
the set of PDEs associated with the potential energy. In [2], it was shown
that the potential energy PDEs can be explicitly solved, provided that the
inertia matrix M and the potential energy V depend only on the actuated
coordinates. This method is applicable only to a subclass of underactuated
mechanical systems that satisfy the following conditions:

Condition 3.1 The inertia matrix M and the potential energy function V do
not depend on the unactuated coordinates.

Condition 3.2 The system has underactuation degree one, i.e. m = n− 1.

Violating Condition 3.1, the forcing term G⊥∇q(p
TM−1p) in (8) will not be

eliminated and hence does not simplify the process of solving the PDEs. In
this work, we propose a new procedure to relax Condition 3.1 (while Condition
3.2 is kept), with the implication to also extend the subset of underactuated
systems that can be treated using this method.

In the sequel, for the sake of the clarity of the constructive presentation, we
will focus our attention to systems with two degrees of freedom (and underac-
tuation degree one), i.e n = 2, m = 1. This is motivated by the fact that the
majority of classical underactuated control problems, such as those examples
mentioned in Section 1 (see also the survey paper [19] for most common ex-
amples of UMSs) share this property. However, extending our results to more
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general class of systems with underactuation degree 1 is possible, although the
formulation will be more complicated. The following condition identifies the
class of PCH systems that we consider in this paper:

Condition 3.3 The inertia matrix M and the potential energy function V
depends only on one coordinate, not necessarily the actuated coordinate.

Condition 3.3 is a relaxation of Condition 3.1, in the sense that this method
can be applied to all cases; either 1) M is constant, 2) M depends only on
one, either actuated or unactuated, coordinate. Without loss of generality, we
assume that the unactuated coordinate is q1 and hence G = e2 (G⊥ = e⊤1 ),
otherwise we may reorder the coordinates to come up with this structure.

Clearly, one source of difficulty in solving (9) arises from the complex struc-
ture and, for many systems, the dependencies on q of the inertia matrix, and
hence its inverse. Recognizing that (9) contains a coupling term (MdM

−1),
we can simplify this PDE by choosing Md with certain structure to allow the
elimination of some terms as follows.

Let the inertia matrix

M(q) =







k1(q1) k2(q1)

k2(q1) k3(q1)


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 . (13)

Denote its determinant as ∆ := det(M) = k1(q1)k3(q1)− k2
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
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which further gives

(m̄1k3 − m̄2k2)∇q1Vd(q) + (−m̄1k2 + m̄2k1)∇q2Vd(q) = ∇q1V (q1). (16)

Notice that with this parametrization ofMd, ∆ is eliminated from the potential
energy PDE, which gives the first step of the simplification.

In general, based on the forms of the inertia matrix, PCH systems, thus in our
case the UMSs, can be classified into two groups [17]: I) separable UMSs, if the
inertia matrix is constant i.e. M is independent of the states (q, p), II) non-
separable UMSs, if otherwise. Now, we will deal with each group separately.
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3.1 Separable UMSs

An example of separable UMSs is the inertia wheel pendulum (IWP) [34]. In
some cases, a non-separable UMS model can be transformed into a separable
one via partial feedback linearization [31] or a change of coordinates [22,37].

Because M is constant, we can choose Md to be also constant. Hence, we can
write (13) and (14) as

M =







k1 k2

k2 k3





 , (17)

Md =







m1 m2

m2 m3





 = ∆







m̄1 m̄2

m̄2 m̄3





 . (18)

Further simplification to (16) is achieved by choosing

m̄2 =
k2
k1

m̄1 + ε, ε > 0 (19)

yielding

(m̄1k3 − m̄2k2)∇q1Vd(q) + εk1∇q2Vd(q) = ∇q1V (q1),
(

m̄1

(

k3 −
k2
2

k1

)

− εk2

)

∇q1Vd(q) + εk1∇q2Vd(q) = ∇q1V (q1). (20)

The general solution of this PDE is of the form

Vd(q) = Vd(q1) + Ψ(q2 + π1q1), (21)

where π1 is constant. The procedure can now be summarized in the following
proposition.

Proposition 3.1 Consider the separable underactuated PCH system (1) sat-
isfying Conditions 3.2 and 3.3. Let the inertia matrixM > 0 and the parametrized
desired inertia matrix Md > 0 take the form (17) and (18), respectively. Then
the potential energy PDE (9) can be written in its simplified form (20) by
choosing m̄2 =

k2
k1
m̄1 + ε, with a constant ε > 0. Furthermore, the solution of

the potential energy PDE is given by (21). �

Remark 3.1 The choice of m̄2 = k2
k1
m̄1 + ε in the separable case is critical

to make the potential energy PDE as simple as possible. The fact that M is
constant gives more freedom in parametrizing the matrix Md to assign m̄i,
i = 1, 2, 3, where again the parametrization is such that Md > 0 is symmetric
and Vd admits a minimum at the desired equilibrium point qe. Furthermore,
since M and Md are constant, we can choose J2 = 0.
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3.2 Non-separable UMSs

Non-separable UMSs are more complex. This class of systems contains the
majority of UMSs that frequently appear in applications. We proceed with
our simplification by choosing

m̄2(q) =
k2(q1)

k1(q1)
m̄1(q), (22)

which simplifies (16) into

(m̄1(q)k3(q1)− m̄2(q)k2(q1))∇q1Vd(q) = ∇q1V (q1)

m̄1(q)

(

k3(q1)−
k2
2(q1)

k1(q1)

)

∇q1Vd(q) = ∇q1V (q1),
(23)

which is then rewritten as

∇q1Vd(q) =
∇q1V (q1)

m̄1(q)π(q1)
, π(q1) =

(

k3 −
k2
2

k1

)

. (24)

The obvious next step is to find m̄1(q) (notice that ∇q1V (q1) and π(q1) are
known) in (24) such that the solution of this potential energy PDE guarantees
that Vd has an isolated minimum. As M is a function of q1 only, we can simply
take Md as also a function of q1 only. Then, (24) can be solved as either ODE
or PDE. However, we have solved it as PDE for two reasons; first, to satisfy
Conditions 2.1 and 2.2, and second, to keep track on the coordinate q2. The
solution of (24) is given by

Vd(q) =
∫ q1

0

∇xV (x)

m̄1(x)π(x)
dx+Ψ(q2), (25)

with Ψ(·) an arbitrary differentiable function that must be chosen to satisfy
(6). This whole procedure can now be summarized in the following proposition.

Proposition 3.2 Consider the non-separable underactuated PCH system (1)
satisfying Conditions 3.2 and 3.3. Let the inertia matrix M(q) > 0 and the
parametrized desired inertia matrix Md(q) > 0 take the form (13) and (14),
respectively. The potential energy PDE (9) can then be written in its simplified
form (24) by choosing m̄2 =

k2
k1
m̄1. Furthermore, the solution of the potential

energy PDE is given by (25). �

Remark 3.2 Using Propositions 3.1 and 3.2, PDEs (8) and (9) are simpli-
fied and their general solutions depend on the dynamics of the underactuated
mechanical system. Clearly, the inclusion of the determinant ∆ is essential in
the parametrization of Md. It simplifies the PDEs by canceling out the term
∆ from the denominator of each element of M−1.

11



Remark 3.3 The elimination of the second term on the left hand side of
(16) by using (22) is critical to make the potential energy PDE as simple as
possible. The parametrization of Md to assign m̄i, i = 1, 2, 3 depends mainly
on the dynamics of the system. However, the choice of m̄1 and subsequently
m̄2 and m̄3 is not free; first, it should guarantee that Md is symmetric and

positive definite (i.e. m̄1 > 0, and m̄3 >
m̄2

2

m̄1

). Then among the set of possible
mi, they should be chosen such that Vd satisfies Conditions 2.1 and 2.2. Once
all are satisfied, J2(q, p) is brought into play.

Now, by Proposition 3.2, we have established the existence of a solution for
the potential energy PDE. It remains to verify the existence of solution(s) to
the kinetic energy PDEs (8), which is essential to complete the kinetic energy
shaping, and to find J2 that contributes to the last term on the right hand
side of (10). As Md has now been fixed, the kinetic energy PDEs (8) is no
longer a nonlinear and inhomogeneous PDE, but is an algebraic equation

G⊥{2J2M
−1
d p} = G⊥{MdM

−1∇qHd −∇qH}, (26)

that can be solved to obtain J2.

Remark 3.4 The application of the result in [2] to a pendulum on a cart,
which is a non-separable system, requires partial feedback linearization to sat-
isfy Condition 3.1. Using Proposition 3.2, we can provide a solution directly
without linearization. Furthermore, our proposed method is the first that guar-
antees an ”almost” global asymptotic stability of the cart pendulum system
using IDA-PBC. In Section 5 we will show as an application example a rotary
inverted pendulum that has a similar but more complex dynamics than a pendu-
lum on a cart. Note that for these type of systems, a global stabilization cannot
be achieved as the systems evolve on manifolds which are not diffeomorphic to
the euclidean space [3]

Equations (20) and (24) represent a simplified PDEs which are applicable to
a wide range of UMSs such as an inertia wheel pendulum, a pendulum on a
cart, and a rotary pendulum. Case studies are presented in Sections 4 and 5.

4 Separable Hamiltonian Systems: the Inertia Wheel Pendulum
Example

In this section we apply the proposed design method to stabilize at the upright
position, an inertia wheel pendulum (IWP), also known as a reaction wheel
pendulum. IWP was first introduced in [34], where a control design based
on a partial feedback linearization was proposed. Another approach based on
global change of coordinates to transform the dynamics of the system into
strict feedback form and then applying backstepping procedure was presented

12



in [22]. Energy-based approach was used in [12]. IDA-PBC of IWP has been
recently reported in [25], where a change of coordinates and scaling have been
used. Here, our design method is applied without any change of coordinates
or scaling, simulating a practical set-up using parameters from a real system.

4.1 IWP model

We use the model of the Quanser IWP module [10], whose simplified free body
diagram of the mechanical part is shown in Figure 1. The system comprises
an unactuated planar inverted pendulum with actuated symmetric wheel at-
tached to the end of the pendulum and is free to rotate about an axis parallel to
the axis of rotation of the pendulum. The system has two degrees-of-freedom;
the angular position of the pendulum q1 and the angular position of the wheel
q2. As only the wheel is actuated, the system is underactuated.

2qu

x

y

l

1cl ,p pm I

,w wm I

1q

Fig. 1. The inertia wheel pendulum.

The Euler-Lagrange’s equations of motion for the IWP are [25]:







a1 + a2 a2

a2 a2













q̈1

q̈2





+







−a3 sin(q1)

0





 =







0

1





 τ, (27)

where a1 = mpl
2
c1
+ mwl

2 + Ip + Iw, a2 = Iw, a3 = g(mplc1 + mwl) and the
control input u = τ is the motor torque. The remaining parameters are listed
in Table 1. The dynamic model of the IWP can be written in PCH form (1)

with n = 2, m = 1, G = e2 =
[

0 1

]⊤

and

M =







a1 + a2 a2

a2 a2





 , V (q1) = a3(cos(q1) + 1).
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Table 1
The parameters of the inertia wheel pendulum

Symb Description Value Unit

mp Mass of the pendulum 0.2164 kg

l Total length of the pendulum 0.2346 m

lc1 length to the pendulum center of mass 0.1173 m

Ip Moment of inertia of the pendulum 2.233× 10−4 kg.m2

mw Mass of the wheel 0.0850 kg

Iw Moment of inertia of the wheel 2.495× 10−5 kg.m2

g Gravitational acceleration 9.81 m/s2

4.2 Controller design

We apply Proposition 3.1 to design a controller for the IWP, to swing up
the pendulum by spinning the wheel and to asymptotically stabilize it at its
upward position qe = (0, q2) for any q2 ∈ [0, 2π]. First the energy shaping
controller ues is designed, and then some damping is added to the closed-loop
system by designing the damping injection controller udi.

Reshaping the total energy
Following the procedures in Proposition 3.1, we fix Md in the form of

Md = ∆







m1
m1a2
a1+a2

+ ε

m1a2
a1+a2

+ ε m3





 (28)

where ∆ = a1a2. With this choice of Md, and having G⊥ = [1 0], the PDE (9)
becomes

[

1 0

]

















−a3 sin(q1)

0





−∆







m1
m1a2
a1+a2

+ ε

m1a2
a1+a2

+ ε m3













a2
∆

−a2
∆

−a2
∆

a1+a2
∆













∇q1Vd

∇q2Vd

















= 0,

which further gives

(

m1a2 −
m1a

2
2

a1 + a2
− εa2

)

∇q1Vd + ε(a1 + a2)∇q2Vd = −a3 sin(q1).

Solving this PDE produces the desired potential energy

Vd(q) = −a3γ1 cos(q1) + Ψ(x(q)), (29)

x(q) = q2 + γ1ε(a1 + a2)q1, (30)
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with γ1 =
a1+a2

a2(ε(a1+a2)−a1m1)
> 0. The function Ψ(·) in (29) is an arbitrary differ-

entiable function that must be chosen to satisfy condition (6). This condition,
along with the conditions m1 > 0 and m1m3 > m2

2 are satisfied by choosing
Ψ(q) = 1

2
Kp(x(q))

2, where Kp > 0 is the gain of the energy shaping controller.
Substituting all the terms into (10), we obtain the energy shaping controller

ues = γ2 sin(q1) +Kpγ3(q2 + γ1ε(a1 + a2)q1), (31)

with γ2 = −m0γ1a2(m2 −m3) and γ3 = m2a2(γ1 − 1)+m3(a1 + a2)(1− γ1a2).

Damping assignment
The damping injection controller follows the construction (11). Given Md that
has been obtained when reshaping the total energy, we have

∇pHd = M−1
d p =

∆

∆d







m3 − m1a2
a1+a2

− ε

− m1a2
a1+a2

− ε m1













p1

p2







=
∆

∆d







m3p1 −
(

m1a2
a1+a2

+ ε
)

p2

−
(

m1a2
a1+a2

+ ε
)

p1 +m1p2







(32)

with ∆d = det(Md) = ∆2(m1m3−m2
2). Substituting (32) into (11), the damp-

ing injection controller is then

udi = −Kv

∆

∆d

(

−
(

m1a2
a1 + a2

+ ε
)

p1 +m1p2

)

. (33)

We can conclude the IDA-PBC design for the IWP by the following corollary.

Corollary 4.1 The state feedback controller (31), (33) with Kp > 0, Kv > 0

and m3 >
m2

2

m1

, is an asymptotically stabilizing controller for the IWP (27) at
its unstable equilibrium point q = (0, q2) for any q2 ∈ [0, 2π]. �

Proof of Corollary 4.1: The proof can be established by verifying that Vd

satisfies Conditions 2.1 and 2.2, and Md = M⊤

d is positive definite. Thus,
Hd qualifies as a Lyapunov function. Moreover, asymptotic stability is proved
invoking LaSalle’s invariance principle (see the proof of Corollary 5.1). �

4.3 Simulation results

Some simulation results are obtained by applying the controller (31), (33) to
the inertia wheel pendulum model. In all simulations, the initial condition
[q0, p0] = [π, 0, 0, 0.05], i.e. the pendulum vertical downward position, is used.
The parameters and gains for the stabilizing IDA-PBC controller arem1 = 0.7,
m3 = 3.48 and ǫ = 1.
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Figure 2 shows the response for different values of Kp, with Kv = 2 × 10−5.
Their corresponding control inputs are shown in Figure 3. As shown, the pen-
dulum asymptotically converges toward its upward position, from its down-
ward position, i.e. almost global stabilization. Observe that the states converge
faster for small Kp, while high-gain controller causes more oscillations.
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Fig. 2. Trajectories of the IWP for different values of Kp.
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Fig. 3. Control torque of the IWP for different values of Kp.

Figures 4 and 5 illustrate the effect of varying the damping gain Kv for a con-
stant Kp = 0.3. As expected, increasing this damping gain leads to achieving
faster convergence with less oscillations.

5 Non-Separable Hamiltonian Systems: the Rotary Inverted Pen-
dulum Example

In this section, we illustrate the effectiveness of our proposed method applied
to a more complex structure of UMSs, the non-separable systems, using a
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Fig. 5. Control torque of the IWP for different values of Kv.

rotary inverted pendulum. We show that this technique reduces the design
complexity, while at the same time preserves the effectiveness of the IDA-
PBC to asymptotically stabilize the pendulum at its upright position.

The control of a rotary inverted pendulum has been classically approached
via switching between two controllers. The first controller swings the pendu-
lum up close to its upright position from its downward position, and usually
designed using energy based techniques [5]. At this point, the second, a bal-
ancing controller -often a linear controller- is applied to stabilize the pendulum
at the desired upright position. Some energy based methods to control this
system have been proposed in literature such as a swing-up control law for
general pendulum-like systems [5], energy-based controller involving passivity
to enforce the system to converge to its homoclinic orbit [13], and a strategy
based on controlled Lagrangian framework [21], to mention a few.
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Two works have been reported for the control of this system within the PCH
structure; in [4], a method which incorporates shaping the ‘normalized’ Hamil-
tonian function of the system and energy damping/pumping has been devel-
oped. In [38], the IDA-PBC method is adopted, and the simplification of the
kinetic energy PDEs has been achieved using quasi-linearization. In this ex-
ample, we apply Proposition 3.2, exploiting the full nonlinear dynamics of the
rotary inverted pendulum.

5.1 Rotary inverted pendulum model

We use the Quanser QUBE-Servo inverted pendulum module, as shown in
Figure 6 together with the simplified free body diagram of its mechanical
part. This system consists of an inverted pendulum which is attached at the
end of a motor-driven horizontally-rotating arm. The pendulum is also free to
rotate in a vertical plane. Thus, the system has 2-DOF: the angular position
of the arm (α) and the angular position of the pendulum (θ). This system is
underactuated because only the arm is subjected to an input torque (applied
by a DC motor). The parameters along with their physical values are listed
in Table 2. The equations of motion of the system can be derived from the
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Fig. 6. Quanser QUBE-Servo inverted pendulum system [27].

standard Euler-Lagrange method as [27]:

−
1

2
mpLpLr cos(α)θ̈ +

(

Jp +
1

4
mpL

2
p

)

α̈−
1

2
mpLpg sin(α)

−
1

4
mpL

2
p cos(α) sin(α)θ̇

2 = −Bpα̇ (34)
(

Jr +mpL
2
r +

1

4
mrL

2
r + (Jp +

1

4
mpL

2
p) sin

2(α)
)

θ̈ −
1

2
mpLpLr cos(α)α̈

+
1

2
mpLpLr sin(α)α̇

2 +
1

2
mpL

2
p cos(α) sin(α)θ̇α̇ = τ −Brθ̇. (35)
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To apply the IDA-PBC design, we need to obtain the PCH representation of
the system. We define the generalized coordinate q to be q = [q1 q2]

⊤ = [α θ]⊤

and introduce the shorten notations for the parameters

γ = Jp+
1

4
mpL

2
p, ρ = Jr +mpL

2
r +

1

4
mrL

2
r, σ =

1

2
mpLpLr, κ =

1

2
mpgLp.

Applying Newton’s Second Law for rotational motion while ignoring the effect
of friction, from (34)-(35) we extract the inertia matrix

M(q) =







γ −σ cos(q1)

−σ cos(q1) ρ+ γ sin2(q1)





 , (36)

and also the potential energy of the system

V (q1) = κ (1 + cos(q1)) . (37)

The Hamiltonian function of the system can then be obtained using (2). More-
over, the PCH model of the rotary pendulum can be described by (1) with

u = τ , and the input matrix G = e2 =
[

0 1

]⊤

.

Table 2
The parameters of the Quanser QUBE-Servo inverted pendulum

Symbol Description Value Unit

mp Mass of pendulum 0.024 kg

Lp Total length of pendulum 0.129 m

Jp Moment of inertia of pendulum 3.33× 10−5 kg.m2

mr Mass of arm 0.095 kg

Lr Total length of arm 0.085 m

Jr Moment of inertia of arm 5.72× 10−5 kg.m2

v Output Voltage range ±10 volt

5.2 Controller design

We apply the procedure given in Section 3, in particular Proposition 3.2, to
design the controller for the system. The main objective is to asymptotically
stabilize the rotary inverted pendulum at its unstable equilibrium point qe =
(0, q2) for any q2 ∈ [0, 2π]. First we design the energy shaping controller ues and
then adding the damping to the closed-loop system by designing the damping
injection controller udi.
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Reshaping the total energy
We start with parametrizing the inertia matrix Md, then solve the PDE of the
potential energy. From (36), we obtain the inverse inertia matrix

M−1(q) =
1

∆







ρ+ γ sin2(q1) σ cos(q1)

σ cos(q1) γ





 , (38)

where ∆ = det(M) = γρ+γ2 sin2(q1)−σ2 cos2(q1). Because M depends on q1,
it is clear that M−1 is a complicated matrix. Solving directly the PDEs (8)-(9)
will require also tedious computations, that will lead to an unreasonable form
of the controller.

Applying Proposition 3.2, with G⊥ = [1 0], the potential energy PDE (9)

[

1 0

]

















−κ sin(q1)

0





−∆







m1(q1) m2(q1)

m2(q1) m3(q1)







×
1

∆







ρ+ γ sin2(q1) σ cos(q1)

σ cos(q1) γ













∇q1Vd

∇q2Vd

















= 0,

can be written in its simplest form

∇q1Vd = −
γκ sin(q1)

m1∆
, (39)

by choosing m2 = k2
k1
m1, and including ∆ = det(M) = γρ + γ2 sin2(q1) −

σ2 cos2(q1) in the expression of Md. The solution for the PDE (39) is given by

Vd(q) = −γκ
∫ q1

0

sin(x)

m1(x)∆(x)
dx+Ψ(q2), (40)

where, the function Ψ(·) is an arbitrary differentiable function that must be
chosen to satisfy (6). The second step is to fix m1 in (39) such that the solution
of this PDE satisfies Conditions 2.1 and 2.2. Notice that M is a function of
q1 only, hence, we can simply take Md as a function of q1 too. Among the
possible choices, we have fixed the desired inertia matrix as

Md(q) = ∆







(cos(q1) + ǫ) −σ cos(q1)(cos(q1)+ǫ)
γ

−σ cos(q1)(cos(q1)+ǫ)
γ

m3





 , (41)

choosing ǫ > max | cos(q1)|=1 to guarantee m1 > 0, and hence Md > 0 ∀ q1 ∈
[0, 2π]. Then, the desired potential energy function Vd is computed (using
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Maple software) as

Vd(q) = λ1

(

− λ2 tanh
−1
(

λ2 cos(q1)
)

+ ln
(

cos(q1) + ǫ
)

)

+Ψ(q2), (42)

with

λ1 =
κγ

γρ+ γ2 − σ2ǫ2 − γ2ǫ2
> 0, λ2 =

√

√

√

√

γ2 + σ2

γ(ρ+ γ)
, (0 < λ2 < 1).

The function Ψ(·) is an arbitrary differentiable function that must be chosen
to satisfy condition (6). This condition, along with the conditions m1 > 0 and
m1m3 > m2

2 are satisfied by choosing Ψ(q2) = 1
2
Kpq

2
2, where Kp > 0 is the

gain of energy shaping controller.

Remark 5.1 For this particular design, we have fixed m1 = cos(q1) + ǫ. The
term cos(q1) ensures that Vd is minimum at qe, and ǫ is added to guarantee
the positive definiteness of Md in the whole DoA.

Now, using (26) we compute J2, which after lengthy but straightforward cal-
culations is obtained as

J2 =







0 j2

−j2 0





 , (43)

where,

j2 =
Kjγ∆d

2∆

(

(ϕB1 −A1)p
2
1 + 2(ϕB2 −A2)p1p2 + (ϕB3 −A3)p

2
2

)

(cos(q1) + ǫ) (σ cos(q1)p1 + γp2)
(44)

with Kj > 0, and

A1 =
sin(2q1)

∆2

(

γ∆−
(

ρ+ γ sin2(q1)
)

(γ2 + σ2)
)

,

A2 = −
σ sin(q1)

∆2

(

∆+ 2 cos2(q1)(γ
2 + σ2)

)

,

A3 = −
γ(γ2 + σ2) sin(2q1)

∆2
,

B1=
m3 sin(q1)

(γ∆d)2

(

− 2γ2∆d cos(q1)(γ
2+σ2)+∆3

(

m3γ
2−ǫσ2 cos2(q1)−σ2 cos3(q1)

)

− σ2∆3 cos(q1)
(

ǫ+ cos(q1)
)(

2ǫ+ 3 cos(q1)
)

)

,

B2 = −
σ sin(q1)

(

ǫ+ cos(q1)
)

γ∆d

(

m3γ2 − ǫσ2 cos2(q1)− σ2 cos3(q1)
)

(

σ2∆cos2(q1)
(

2ǫ+ 3 cos(q1)
)

+
(

2 cos2(q1)(γ
2 + σ2) + ∆

)(

m3γ
2 − ǫσ2 cos2(q1)− σ2 cos3(q1)

)

)

,
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B3 = −
sin(q1) cos(q1)

(

ǫ+ cos(q1)
)

∆d

(

m3γ2 − ǫσ2 cos2(q1)− σ2 cos3(q1)
)×

(

2(γ2 + σ2)
(

m3γ
2 − ǫσ2 cos2(q1)− σ2 cos3(q1)

)

+ σ2∆
(

2ǫ+ 3 cos(q1)
)

)

,

ϕ =
(

cos(q1) + ǫ
)

(

ρ+ γ sin2(q1)−
σ2 cos2(q1)

γ

)

,

and ∆d = det(Md) =
∆2

γ2

(

cos(q1) + ǫ
)

(

m3γ
2 − σ2cos2(q1)

(

cos(q1) + ǫ
)

)

. Sub-

stituting all terms into (10), the energy shaping controller is obtained as

ues=−
σ cos(q1)

γ

(

γm3−
(

ρ+γ sin2(q1)
)(

ǫ+cos(q1)
)

)

(

B1

2
p21+B2p1p2+

B3

2
p22

+
ǫλ1λ

2
2 sin(q1)

1− λ2
2 cos

2(q1)
−

λ1 sin(q1)

ǫ+ cos(q1)

)

−
(

γm3−
σ2 cos2(q1)(cos(q1) + ǫ)

γ

)

Kpq2

− j2
∆

γ∆d

(

γm3p1 + σ cos(q1)
(

cos(q1) + ǫ
)

p2

)

. (45)

Damping assignment
The damping injection controller follows the construction (11). Given Md that
has been obtained when reshaping the total energy, we have

∇pHd = M−1
d p =

∆

∆d







m3
σ cos(q1)(cos(q1)+ǫ)

γ

σ cos(q1)(cos(q1)+ǫ)
γ

ǫ+ cos(q1)













p1

p2







=
∆

∆d







m3p1 +
σ cos(q1)(cos(q1)+ǫ)

γ
p2

σ cos(q1)(cos(q1)+ǫ)
γ

p1 + (cos(q1) + ǫ)p2





 . (46)

Substituting (46) into (11), the damping injection controller is obtained as

udi = −
Kv∆

(

cos(q1) + ǫ
)

γ∆d

(

σ cos(q1)p1 + γp2
)

. (47)

Now, we can conclude the IDA-PBC controller design for our rotary inverted
pendulum by stating the following corollary.

Corollary 5.1 The state feedback controller (45), (47), with m3 > (cos(q1)+

ǫ)σ
2 cos2(q1)

γ2 , ǫ > 1 and Kp, Kv, Kj > 0 is an asymptotically stabilizing controller

for the rotary pendulum system (34)-(35) at its unstable equilibrium point
q = (0, q2) for any q2 ∈ [0, 2π]. �

Proof of Corollary 5.1: The proof of Corollary 5.1 is discussed next in
Subsection 5.3. �
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5.3 Stability analysis

As mentioned earlier (see also Proposition 1 in [2]), one important property of
the IDA-PBC method is that the closed-loop energy function Hd(q, p) qualifies
as a Lyapunov function candidate W (q, p), thus has a stable equilibrium point
at (qe, 0). For this to apply, Hd(q, p) itself must satisfy two conditions: 1) Md

is positive definite and symmetric, and 2) the closed-loop potential energy
function Vd must have an isolated minimum at this equilibrium. Moreover,
this equilibrium is asymptotically stable provided that the closed-loop system
satisfies the detectability condition from the output yd = G⊤∇pHd.

As explained through the design procedures, a sufficient condition to guarantee
the positive definiteness of Md in (41) is that m1 > 0 and m1m3 > m2

2. The
earlier is achieved by assigning m1 = (cos(q1) + ǫ) with ǫ > |cos(q1)|. By

choosing m3 such that it satisfies the condition m3 >
(

ǫ + cos(q1)
)

σ2 cos2(q1)
γ2 ,

for instance m3 := (cos(q1) + ǫ)σ
2 cos2(q1)

γ2 + µ with a constant µ > 0, the latter
condition is also achieved. Finally, it is clear that Md is symmetric since the
elements m12 = m21 := m2.

To prove the assignment of the minimum of the potential energy

qe = arg minHd(q) = arg minVd(q),

we will show that Conditions 2.1 and 2.2 are satisfied. The gradient of Vd is

∇qVd = λ1 sin(q1)







ǫ(σ2+γ2)
γ(ρ+γ)−(σ2+γ2) cos2(q1)

− 1
(ǫ+cos(q1))

Kpq2





 .

Solving at qe = (0, 0) yields ∇qVd|qe = [0 0]⊤. Hence, Condition 2.1 is satisfied.
To verify that the Hessian of Vd is positive definite, we evaluate

∇2
qVd = diag

[

(∇2
qVd)11, Kp

]

, (48)

where

(∇2
qVd)11 =





λ1 cos(q1)ǫ(σ
2 + γ2)

γ(ρ+ γ)− (σ2 + γ2) cos2(q1)
−

λ1 cos(q1)
(

ǫ+ cos(q1)
)





−







2ǫ cos(q1)(σ
2 + γ2)2λ1 sin

2(q1)
(

γ(ρ+ γ)− (σ2 + γ2) cos2(q1)
)2 +

λ1 sin
2(q1)

(

ǫ+ cos(q1)
)2





 ,

at qe, thus we obtain

∇2
qVd|qe = diag



λ1





ǫ(σ2 + γ2)

γρ− σ2
−

1
(

ǫ+ 1
)



 , Kp



 , (49)

23



which is positive definite for Kp, λ1 > 0 and ǫ > 1.

Notice that ǫ > 1 in (49) guarantees that ǫ(σ2+γ2)
γρ−σ2 > 1

(

ǫ+1

) . Hence Condition

2.2 also holds. Since all conditions are satisfied, we can conclude that Hd

qualifies as a Lyapunov function, i.e.

Hd(q, p) = W (q, p) =
1

2
p⊤M−1

d (q)p+ Vd(q), (50)

and so that the rotary inverted pendulum system (34)-(35) is stabilized at its
unstable equilibrium point q = (0, q2) by the proposed IDA-PBC design. To
prove that the system is asymptotically stable, either detectability condition
should be guaranteed, or, since the closed-loop energy function of the system
qualifies as a Lyapunov function candidate, we can invoke LaSalle’s invariance
principle as follows.

The derivative of (50) along the trajectories of the closed-loop system is

Ẇ (q, p) = (∇qHd)
⊤q̇ + (∇pHd)

⊤ṗ

= −p⊤M−1
d GKvG

⊤M−1
d p

= −Kv(G
⊤∇pHd)

2 ≤ 0,

(51)

where Kv > 0. Thus, Ẇ is negative semidefinite. Using LaSalle’s invariance
principle [15], we define the set Ω as

Ω = {(q, p) : Ẇ (q, p) = G⊤∇pHd = G⊤M−1
d (q)p = 0}. (52)

Using

M−1
d =

∆

∆d







m3
σ cos(q1)(cos(q1)+ǫ)

γ

σ cos(q1)(cos(q1)+ǫ)
γ

ǫ+ cos(q1)





 , (53)

we obtain

G⊤M−1
d (q)p =

[

0 1

]







∆

∆d







m3
σ cos(q1)(cos(q1)+ǫ)

γ

σ cos(q1)(cos(q1)+ǫ)
γ

ǫ+ cos(q1)



















p1

p2





 = 0

=
∆
(

cos(q1) + ǫ
)

γ∆d

(

σ cos(q1)p1 + γp2
)

= 0,

(54)

which implies

σ cos(q1)p1 + γp2 = 0, (55)

as the term
∆

(

cos(q1)+ǫ

)

γ∆d

> 0 due to ǫ > 1. From (55), there are two cases to

satisfy Ḣd = 0:

24



Case 1: cos(q1) =
kπ
2

with k odd and p2 = 0, or
Case 2: p1 = p2 = 0.

We will now show that Case 1 is not feasible. Note that p2 = 0 =⇒ ṗ2 = 0,
and from the system dynamics (1) with (36) and (37), ṗ2 is the control input
(45), (47). That is

ṗ2 = −
σ cos(q1)

γ

(

γm3 −
(

ρ+ γ sin2(q1)
)(

ǫ+ cos(q1)
)

)

(

B1

2
p21 + B2p1p2 +

B3

2
p22

+
ǫλ1λ

2
2 sin(q1)

1− λ2
2 cos

2(q1)
−

λ1 sin(q1)

ǫ+ cos(q1)

)

−
(

γm3 −
σ2 cos2(q1)(cos(q1) + ǫ)

γ

)

Kpq2

− j2
∆

γ∆d

(

γm3p1 + σ cos(q1)
(

cos(q1) + ǫ
)

p2

)

−
Kv∆

(

cos(q1) + ǫ
)

γ∆d

(

σ cos(q1)p1 + γp2
)

= 0.

Substituting cos(q1) =
kπ
2

(with k odd) and p2 = 0 yields

j2
∆

γ∆d

γm3p1 = 0, (56)

which implies that p1 = 0 =⇒ ṗ1 = 0. Now, from the system dynamics,

ṗ1 =
1

2∆2

[(

ρ+ γ sin2(q1)
)

p21 + γp22 + 2σ cos(q1)p1p2
] (

(γ2 + σ2) sin(2q1)
)

+
1

2∆

[

2σ sin(q1)p1p2 − γ sin(2q1)p
2
1

]

+ κ sin(q1) = 0. (57)

Note that because of the last term (κ sin(q1)) in (57), ṗ1 = 0 is only satisfied if
q1 6=

kπ
2
with k odd. It is indeed satisfied if q1 = 0. Thus, Case 1 cannot happen,

and only Case 2 is true. Hence, the system can maintain the Ḣd = 0 condition
only at the equilibrium point (qe, 0), which proves that this equilibrium is
‘almost’ globally asymptotically stable.

Figure 7 depicts the energy evolution for the rotary pendulum for two initial
pendulum angles, 45◦ and 180◦. It shows that the system converges to its stable
manifold corresponding to its isolated minimum energy. It also illustrates the
fact that for the closed-loop system, the total energy function Hd and the
potential energy function Vd satisfy the relation Vd(t) < Hd(t) < Hd(0), ∀t.

5.4 Simulation results

We present some simulation results obtained for the model of Quanser QUBE-
Servo rotary pendulum shown in Figure 6 with the IDA-PBC controller (45),
(47). The closed-loop performance is evaluated with two sets of simulations. In
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Fig. 7. The total energy of the rotary inverted pendulum. Left: q10 = 45◦. Right:
q10 = 180◦.

the first set, the pendulum starts at (q10 = π
4
) and the controller parameters

Kp = 0.01, Kv = 1.7×10−5, Kj = 2×10−5, m3 = 50, ǫ = 1.1. This q10 is more
than twice the initial angular position of the pendulum that is recommended
for the balancing experiment of this rotary pendulum hardware using a linear
state feedback controller obtained via a pole placement design [27]. The results
are depicted in Figures 8 and 9. As can be observed, the pendulum can easily
be stabilized at its upright position using the proposed controller with very
little effort as shown by the low value of the control effort.
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Fig. 8. Transient responses with [q0, p0] = [π4 , 0.8,−0.7× 10−3,−0.5× 10−3].

To show the global behaviour of the closed-loop system, simulations have been
carried out with the pendulum swings up from the hanging position (q10 = π),
and having the parameters Kp = 6, Kv = 2.1×10−4, Kj = 1×10−5, m3 = 54,
ǫ = 1.3. It is apparent from the Figure 10 that the proposed controller yields
global asymptotic stabilization of the rotary inverted pendulum pendulum.
However, It can be observed from Figure 11 that the control effort is signifi-
cantly increased with the increased initial angular position of the pendulum.
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Fig. 9. Control input with [q0, p0] = [π4 , 0.8,−0.7× 10−3,−0.5× 10−3].

More simulations on a different rotary inverted pendulum pendulum hardware
can be found in [28].
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Fig. 10. Transient responses with [q0, p0] = [π, 0.6,−1.5× 10−3,−0.5× 10−3].
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Fig. 11. Control input with [q0, p0] = [π, 0.6,−1.5× 10−3,−0.5× 10−3].
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6 Hardware Experiments with the Rotary Inverted Pendulum

6.1 Experimental setup

The experiments are also performed with the Quanser QUBE-Servo rotary
pendulum. The hardware comprises an 18V brushed DC motor contained in
a solid aluminium frame and attached to the arm using magnets. Two single-
ended optical shaft encoders are used to measure the angular positions of the
pendulum, q1, and arm, q2. The hardware is connected to a PC through the
QUBE-Servo USB interface. This interface has its own built-in PWM voltage-
controlled power amplifier and data acquisition device. The output voltage
range to the load is between ±10V. The interaction between the PC and the
hardware is driven by the QUARC real-time control software integrated with
Matlab/Simulink to actuate the DC motor and read the angular positions q1
and q2. The sampling time of the control is 0.002 second.

6.2 Friction compensation

Note that the PCH modelling framework neglects some components of the
dynamics to comply with the underlying concept of energy conservation in this
modelling approach. For the rotary pendulum, the PCH model used in Section
5.1 does not consider non-conservative forces (e.g. friction) [1]. Thus, applying
the controller (45)-(47) alone is not enough to stabilize the pendulum in the
hardware implementation, due to the effects of friction which are not taken into
account in the controller design. Friction is present in any mechanical systems
and is a crucial aspect of many control systems. It can be highly nonlinear
and may lead to steady-state errors, tracking errors, limit cycles and other
undesirable behaviour [23]. Friction compensation is a common approach to
deal with such effects and to achieve improved performance.

In this experiment, we have taken into account the Coulomb + viscous friction
model, which has been widely used for friction compensation in many control
systems applications (see [33,30]). The friction compensation term

uf = b(q̇2 − q̇1) + kfsign(q̇2 − q̇1), (58)

with kf the friction coefficient and b the viscous damping coefficient of the link,
is added to the IDA-PBC controller (45), (47) in order to overcome/compensate
friction and hence enhance the performance of the closed-loop system. Con-
sidering the friction in the joints and taking into account the unmodelled
dynamics introduced by the encoder cable as shown in Figure 6, the best fric-
tion model’s parameters are estimated as kf = 0.5755 and b = 0.005755. Thus,
the total control law applied to the hardware is of the form

u = ues + udi + uf . (59)
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6.3 States measurement

The two optical shaft encoders that measure the angular positions of the
pendulum and the arm have the resolution of 2048 counts per revolution in
quadrature mode (512 lines per revolution). The momenta p1 and p2 are ob-
tained from the relation p = Mq̇, where the angular velocities q̇1 and q̇2 of
the pendulum and arm are obtained by differentiating their corresponding
measured angular positions. A low-pass filter has been added to the output of
each differentiator to remove some high-frequency components (noise) which
appears as a result of quantization due to the encoder measurement. The low-
pass filters have been set as 50/(s + 50), with the cutoff frequency wf = 50
rad/sec or wf = 50/(2π) = 7.96 Hz.

6.4 Experimental results

In this section, we show our experimental results on the QUBE- rotary pen-
dulum system. The total control law (59) has been applied to stabilize the
pendulum at its upward position. The initial condition for the position of the
pendulum was q10 = 45◦. We will discuss later in this paper the factors that
limited achieving a larger (DoA). However, this DoA still far larger than what
was obtained using the linear controllers (the maximum achieved using a linear
controller given in [27] was q10 = 20◦).

In the experiment, the pendulum was set to start from a downward position.
A swing-up controller based on the strategy developed in [5] has been applied
to drive the pendulum up to the initial angle (q10). Once the pendulum reaches
this angle, the controller switches to the IDA-PBC stabilizing controller. The
controller parameters used in the experiment were m3 = 67, Kp = 8.0× 10−4,
Kv = 6× 10−6 and ǫ = 1. Note that while in simulation we can set the initial
values of every state, this is not the case for the experiment. The only state
for which the initial value can be set directly is the pendulum angle q10 .

Figures 12 and 13 show the experimental results for a hybrid controller (i.e.
swing-up and stabilizing) for the inverted pendulum. In order to clearly show
the effect of our proposed controller, we have magnified the parts of these
figures starting from the instant of commutation (t = 6.16 sec) i.e. the instant
in which the switching to IDA-PBC stabilizing controller take place as shown
in Figures 14 and 15.

We can observe from Figure 14, which depicts the time histories of the po-
sitions and velocities of the pendulum and the arm, that all states converge
to their desired equilibrium point, thus achieving asymptotic stabilization of
the closed-loop system with the controller (59). Furthermore, this figure shows
the smooth and fast convergence of the states while the pendulum and arm
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exhibit slight oscillatory behaviour (< 1.5 degrees). The profile of the control
input is shown in Figure 15. We can observe the smooth control effort but
with a more demanding effort to balance the pendulum at its vertical upward
position.
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Fig. 12. Experimental results (swing-up and stabilization): state trajectories of the
rotary pendulum system.
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Fig. 13. Experimental results (swing-up and stabilization): control input.

6.5 Robustness of the proposed IDA-PBC

In order to show the robustness of the proposed controller, the pendulum has
been perturbed, by slightly pushing it, at t = 14.5 sec. The experimental
results are shown in Figures 16 and 17. As we can observe, the states recover
from the injected disturbance, converging fast and smoothly to their desired
values. While the trajectories of the states q1, q̇1 and q̇2 converge to their exact
desired values, q2 which is the arm position converges to another position. This
is expected as each position of the arm is an equilibrium. Furthermore, Figure
17 shows that the control effort in response for the perturbation is smooth
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Fig. 14. Experimental results (stabilization): state trajectories of the rotary pendu-
lum system.
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Fig. 15. Experimental results (stabilization): control input.

and remains within the acceptable voltage range. It is evident from these
graphs that, the closed-loop system is robust with respect to disturbances
on the pendulum. Although in theory, global asymptotic stabilization can be
achieved, the maximum value of the pendulum angle achieved in experimental
results was q10 = 45◦. This can be mainly attributed to hardware limitations;
1) saturation of the control input; The motor is relatively small and provides
insufficient torque to enlarge the initial pendulum angle, thus the domain of
attraction. As shown in Figure 15, vmax was required already to stabilize the
system starting from q10 = 45◦. 2) The arm does not rotate a full 360◦ by
design: the encoder cable is attached from the pendulum module encoder to
the Encoder 1 connector on the top panel of the QUBE-Servo, hence a stopper
is used to avoid any contact between the pendulum and the cable as shown in
Figure 6.
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Fig. 16. Experimental results (robustness): state trajectories of the rotary pendulum
system.
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Fig. 17. Experimental results (robustness): control input.

7 Conclusion and Future Works

We have improved the IDA-PBC method for under-actuated mechanical sys-
tems. This improvement is achieved via a particular simplification of the
matching PDEs. Solving these PDEs is the main difficulty in application of this
method. We have defined a general construction procedure to reparametrize
the inertia matrix and used to simplify and solve potential energy PDEs,
achieving total energy shaping which is essential for stabilization of UMSs.
The result has been successfully applied to solve an almost global stabilization
control design for an inertia wheel pendulum and a rotary inverted pendulum
which belong to two groups of PCH systems, the separable and non-separable
systems, respectively. The proposed method has significantly simplified the
design computation and also yield a simpler form of the controller for both
systems. It has been also shown by realistic simulations that this design re-
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sults in a very high closed-loop performance of these systems in full nonlinear
dynamics.

Furthermore, we have presented a successful experimental implementation of
this approach to the rotary inverted pendulum hardware. The results have
proved the effectiveness of the controller and its robustness with respect to
disturbances. The theoretical results presented in this paper (together with
[28]) and the experimental results can be used as the motivation to use this
method in other real engineering applications. Current research is under way
to extend this approach for a larger class of underactuated mechanical systems,
as well as proposing an observer that facilitate the IDA-PBC methodology.
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