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Abstract

This paper describes the development of an anti-windup scheme for systems
which consist of a parallel set of double integrators preceded by a static coupling
element and a saturation nonlinearity. A class of anti-windup compensators are
proposed which can guarantee global asymptotic stability of the origin of the
closed-loop system. Simple linear-like guidelines for choosing the anti-windup
compensator parameters are also given. The anti-windup compensator designs
are evaluated on a quadrotor unmanned aerial vehicle. Simulation results and
flight tests are presented to demonstrate the effectiveness of this approach.

Keywords: Actuator saturation, Aerospace applications, Antiwindup (AW)
compensator design, Nonlinear control, Quadrotor unmanned air vehicles
(UAVs).

1. Introduction

The double integrator is a fundamental system in control theory and has at-
tracted great interest from control engineers. Double integrators arise in a great
many applications, from mechanical systems (satellites, rigid body motion etc.)
to behaviour of agents in network controlled systems [1, 2].

Saturated double integrators have also been of interest to researchers studying
saturated systems since, it transpires, that they can be globally stabilised by
linear feedback control; saturated triple integrators cannot. It suffices to say
that saturated control of the double integrator has been studied extensively and
many techniques have been reported in literature [3, 4, 5, 6]. Typically however,10
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these studies have been devoted to simple double integrator systems; the class of
systems covered in this paper have, to the authors knowledge, not been studied

This paper describes the development of anti-windup compensators for systems
which comprise a number of parallel double integrators, preceded by a matrix
which effectively introduces coupling between the input channels; preceding this
matrix is the saturation nonlinearity which models the actuator constraints - see
Figure 1. It is of course possible to use quite standard anti-windup techniques
to tackle input saturation in such classes of system and the reader is referred to
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and references therein for details of
these. Furthermore, some specific anti-windup techniques for a class of system20

which includes that considered here have also been recently proposed by the
authors [20, 21].

Many of these techniques provide stability and performance guarantees for the
enitre nonlinear system by solving a set of linear matrix inequalities (LMIs)
[17, 22]. However, for a system of the structure depicted in Figure 1, one would
expect that a simpler method could be used to produce a suitable AW compen-
sator. Furthermore, the use of LMIs, would normally generate one “optimal”
solution whereas there may exist other solutions which might yield an AW com-
pensator with a satisfactory performance. Also, LMI methods typically focus on
the L2 gain as a performance measure meaning, effectively, that the performance30

is bounded from above by an affine function of the input energy. However, it
may, in fact, not be an adequate measure of the nonlinear system’s performance
given the fact that the output energy may scale in a nonlinear way with the
input energy in the nonlinear system [23].

The aim of this paper is to develop a globally stabilising anti-windup (AW)
scheme for the class of systems described in Figure 1 using the architecture
introduced in [14]. The compensators will be parametrised by a state-feedback
matrix which is constructed using some intuitive “linear-like” rules and not the
L2 gain conditions which often prevail in anti-windup synthesis. The approach
taken uses the method in [24] which uses a Lure-Postnikov Lyapunov function40

to generate a Popov-like sufficient condition to guarantee closed-loop global
stability for the system.

This solution provides a very large set of stabilising anti-windup compensators
for the constrained input-coupled double integrator system. To choose a par-
ticular compensator from this set, we advocate the use of formulae based on
a simple linear approximation of the compensator’s dynamics. This approach
provides a rapid, transparent method for anti-windup design and re-design and
the offers a level of simplicity and flexibility that will be highly appreciated in
a practical environment.

The paper is organised as follows. Section II describes the class of systems under50

consideration and briefly introduces the anti-windup architecture used. Section
III describes the main results of the paper, including the anti-windup design
approach and the tuning rules. Section IV introduces the quadrotor platform
and presents both simulated and experimental results, and the final section gives
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a brief conclusion.

Notation: The saturation function is defined as sat(.) : Rm 7−→ Rm for u =
[u1, . . . , um] and ui > 0, i ∈ I[1,m] such that

sat(u) = [sat(u1), . . . , sat(um)]T

sat(ui) = min{|ui|, ūi} × sign(ui)

The deadzone function Dz(.) : Rm 7−→ Rm is simply

Dz(u) = [Dz(u1), . . . ,Dz(um)]T = u− sat(u) (1)

For brevity, we denote ũ = Dz(u), the notation He{A} = A+AT .

Pm set of m×m symmetric positive-definite matrices.

Nm set of m×m symmetric non-negative definite matrices.

D set of diagonal matrices.

2. Systems under consideration60

2.1. The nominal system

The system under configuration is depicted in Figure 1 whereG(s) is the nominal
plant and K(s) is the controller. The reference signal is r(t), the measurement
y(t) and the controller demand u(t). The plant belongs to the family of input-
coupled systems with transfer function matrix

G(s) = GD(s)X (2)

where GD(s) has a block-diagonal structure

GD(s) = blockdiag(G1(s), G2(s), . . . , Gm(s)) (3)

and X ∈ Rm×m is a non-singular matrix. Each element in GD(s) has double
integrator dynamics. GD(s) has the state-space realisation

GD(s) ∼
[
AD BD
CD DD

]
(4)

GD(s)KD(s)
r y

G(s)K(s)

u
XX−1

χ(v)

Figure 1: System under consideration

3



where

AD = blockdiag(A,A,A, . . . A) ∈ R2m×2m (5)

BD = blockdiag(B,B,B, . . . B) ∈ R2m×m (6)

CD = blockdiag(C1, C2, C3, . . . Cm)Rp×2m (7)

DD = 0 (8)

The matrices Ci are not restricted to have a particular structure apart from
the fact that (Ci, A) should be detectable for all i ∈ {1, . . . ,m}. The controller
K(s) has the form

K(s) = X−1KD(s) (9)

where KD(s) has a block diagonal structure compatible with that of GD(s), viz

KD(s) = blockdiag(K1(s),K2(s), . . . ,Km(s)) (10)

In the absence of saturation, it is assumed that the controller K(s) internally
stabilises G(s) and ensures the system exhibits good performance. This is
equivalent to KD(s) internally stabilising GD(s) and, due to their block di-
agonal structure, this is equivalent to each Ki(s) interally stabilising Gi(s) for
all i ∈ {1, . . . ,m}. Thus each Ki(s) can be designed purely on the basis of
Gi(s).

When saturation is absent, here is no coupling between the i channels because
the nonlinearity (see Figure 1).

χ(v) = Xsat(X−1v) (11)

is simply the identity operator. However, when saturation is present i.e χ(v) 6= v,
the saturation element causes some nonlinear coupling between the system’s m
control loops and, unless X is diagonal, the decoupling offered by the nominal70

controller (10) is lost. This coupling is a well known trigger for performance
deterioration and instability [25].

2.2. Anti-windup compensator architecture

While a number of different anti-windup approaches [10] could be used to tackle
the saturation problem described above, these would typically produce an un-
structured anti-windup compensator. This section introduces a specially struc-
tured anti-windup compensator which exploits the structure of the plant (2)
and controller (9). The approach used is based on that introduced in [20, 21].

Consider the system depicted in Figure 2 where K(s) and G(s) are the struc-
tured plant and controller described in equations (2), (9), (4) and (10). Again,80

r(t) is the reference, y(t) the output and u(t) the physical control input. Also
shown is v(t) which can be considered as the virtual control input and the
anti-windup compensator Θ(s). The plant has a state-space realisation
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Figure 2: Input-coupled system with structured anti-windup

+

-

-
+

Nominal Linear Loop

NonLinear Loop

GDKD

r
y

XX−1

ṽ
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Figure 3: Equivalent interpretation of structured anti-windup problem

G(s) ∼
{
ẋ = ADx+BDXum
y = CDx

(12)

where um = sat(u) and the controller has the realisation

K(s) ∼

 ẋc = Acxc +Bcrr +Bcy(y + yd)
v = Ccxc +Dcrr +Dcy(y + yd)
u = X−1(v − vd)

(13)

Following [21], the anti-windup compensator is given the following structure,

Θ(s) ∼

 ẋa = (AD +BDFD)xa +BDX(u− um)
vd = FDxa
yd = CDxa

(14)
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where the, yet-to-be-defined matrix FD has the following structure.

FD = blockdiag(F1, F2, . . . , Fm) (15)

The anti-windup compensator dynamics (14) are structured compatibly with
those of the plant dynamics GD(s). In fact, the anti-windup compensator has
a coprime-factor based structure [21, 14] although this will not be important
here. Defining e = x+xa, it follows that the dynamics (12)-(14) can be written
as90

Gcl(s) ∼


ė = (AD +BDDcyCD)e+BDCcxc +BDDcrr
ẋc = BcyCDe+Acxc +Bcrr
vlin = DcyCDe+ Ccxc +Dcrr
ylin = CDe

(16)

Θ(s) ∼

 ẋa = (AD +BDFD)xa +BDχ̃(vlin − vd)
vd = FDxa
yd = CDxa

(17)

where χ̃(.) : Rm 7→ Rm is defined as

χ̃(v) := XDz(X−1v) = v − χ(v) (18)

Graphically, this implies that Figure 2 can be re-drawn as Figure 3. This
prompts the following standing assumption.

Assumption 1. The following matrix is Hurwitz

Acl(s) =

[
AD +BDDcyCD BDCc

BcyCD Ac

]

With this assumption in mind, one can then see from the dynamics (16) and
(17), or equivalently from Figure 3 that the entire system will be stable, if
the upper block is stable, or equivalently if the origin of (17) is asymptotically
stable. The main stability problem in the paper can now be defined.

Problem 1. Consider the system (17) where AD, BD, CD are defined in (5)-100

(7), χ̃(.) : Rm 7→ Rm is defined in (18) and X is a nonsingular matrix. Find
conditions on FD which ensure the origin is globally asymptotically stable.
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A similar problem was considered in [20, 21], but in that paper, it was assumed
that the plant was strictly stable, Gi(s) ∈ RH∞ for all i ∈ {1, . . . ,m}. It is easy
to relax the conditions in [21] to the case that G(s) /∈ RH∞(as is the case here),
but then the results provided are only local not global. In the next section,
global results will be provided.

3. Structured Anti-windup design

Section 2.1 established that, with the structure of anti-windup compensator
given in equation (14), the stability of the system in Figure 2 is equivalent110

to that in Figure 3. Under Assumption 1, the stability of Figure 2 is then
reduced to that of finding an FD which guarantees the stability of the origin
of the system described in equation (17). This section will provide a family of
matrices FD which solve Problem 1 and will give guidance on how one might
select a particular FD from this family.

3.1. Tyan and Bernstein’s Result

Consider a linear system with input saturation whose state-space realization is
given as;

ẋ(t) = Aox(t) +Bosat(u(t)) (19)

u(t) = Kox(t) (20)

where it is assumed that the state-space matrices are structured as

Ao =

[
Az 0
0 As

]
Bo =

[
Bz
Bs

]
(21)

As ∈ Rns×ns is Hurwitz, Az ∈ Rnz×nz and has eigenvalues on the imaginary
axis. Bz ∈ Rnz×m, Bs ∈ Rns×m and all signals are assumed to be of compatible
dimensions.

According to [24], it is possible to present sufficient conditions which ensure120

global stability of the above system by using a Popov-like Lyapunov function
that consists of a positive semi -definite quadratic term and an additional inte-
gral term. This result is summarized as follows;

Theorem 1. Given that

R =

[
Rz 0
0 Rs

]
, Rz ∈ Nnz , Rs ∈ Nns , Ko =

[
K1 . . .Km

]T
and assuming that (Ao,Ko) is observable or (Ao,Ko) is detectable and (Ao, R)

is observable, if there exist matrices R2 ∈ DNm N ∈ DNm, P ∈ N(nz+ns) such
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that the following equations and inequalities are satisfied:

0 = ATo P + PAo +R (22)

0 = BTo P +NKoAo +R2Ko (23)

0 < 2R2 − (NKoBo +BTo K
T
o N) (24)

0 < P +KT
o NKo (25)

then the origin of the system (19)-(20) is globally asymptotically stable and the
Lyapunov function guaranteeing stability is given by

V (x) = xTPx+ 2

m∑
i=1

∫ ui=Kix

0

Nisati(ui)dui

The proof of Theorem 1 can be found in [24]. The proof shows that global
stability can be guaranteed for the given saturated system in (19)-(20) or used
to construct a stabilizing controller for the system. This result is used in the next
two sections as the basis for constructing anti-windup compensators. The main
novelty of this result is that there is no requirement for the quadratic part of
the Lyapunov function to be positive definite; only positive semi -definiteness of
this is required. This enables relaxed conditions for global asymptotic stability130

to be obtained, compared to those normally obtained using Lur’e Lyapunov
functions.

3.2. Anti-windup design for input-coupled double integrator systems

This section applies Theorem 1 to the structured anti-windup design problem,
defined in Problem 1. In order to study asymptotic stability of the origin, note
that the state-equation in (17) can be re-written, in the case where vlin ≡ 0, as

ẋa = ADxa +BDXsat(X
−1FDxa) (26)

which is in the same form as in Theorem 1, with Az = AD, Bz = BD and
K = FD. The following proposition is the main result of the section.

Proposition 1. Consider the system (17) where AD, BD, CD are defined in
(5)- (7), χ̃(.) : Rm 7→ Rm is defined in (18) and X ∈ Rm×m is a nonsingular
matrix. Assume that there exists two positive definite diagonal matrices V and
W such that

V = XTWX

and let FD = (Im ⊗ F ) where F = [Fa Fb] is chosen such that sign(Fa) =
sign(Fa) = −sign(β). Then the origin of (17) is globally asymptotically stable.140
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Proof: This proof is an application of Theorem 1 to the system (26). In this
case, Az = AD, Bz = BD and K = FD, so equations/inequalities (22)-(25)
become:

0 = ATDPD + PDAD +Rz (27)

0 = XTBTDPD +NX−1FDAD +R2X
−1FD (28)

0 < 2R2 −NX−1FDBDX +XTBTDF
T
D(X−1)TN (29)

0 < PD + FTD(X−1)TNX−1FD (30)

Let Rz = 0 and R2 = 0, (this satisfies the conditions of Theorem 1 i.e Rz, R2 ∈
Dm ≥ 0) and let N = V where V is a positive definite diagonal matrix which
therefore also satisfies the conditions of Theorem 1 (N ∈ Dm ≥ 0). This implies
that the expressions (27) - (30) become

0 = ATDPD + PDAD (31)

0 = XTBTDPD + V X−1FDAD (32)

0 < −V X−1FDBDX +XTBTDF
T
D(X−1)TV (33)

0 < PD + FTD(X−1)TV X−1FD (34)

By assumption V = XTWX for diagonal positive definite V,W , so W =
(XT )−1V X−1. Letting PD = W ⊗ P where P ∈ R2×2 ≥ 0, means that (31) -
(34) can be re-written as

0 = (Im ⊗AT )(W ⊗ P ) + (W ⊗ P )(Im ⊗A) (35)

0 = XT (Im ⊗BT )(W ⊗ P ) + V X−1(Im ⊗ F )(Im ⊗A) (36)

0 < −V X−1(Im ⊗ F )(Im ⊗B)X +XT (Im ⊗BT )(Im ⊗ FT )(X−1)TV (37)

0 < (W ⊗ P ) + (Im ⊗ FT )(X−1)TV X−1(Im ⊗ F ) (38)

Using the following properties

(A⊗B)(C ⊗D) = AC ⊗BD (39)

(A⊗B)
T

= AT ⊗BT (40)

equations 35- 38 then simplify to:

0 = W ⊗ (PAT + PA) (41)

0 = XT (W ⊗ (BTP + FA)) (42)

0 < −XT (W ⊗ (FB +BTFT ))X (43)

0 < W ⊗ (P + FTF ) (44)
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Next, each expression (41)-(44) is considered in turn. Let A and B have the
realisations

A =

[
0 1
0 0

]
B =

[
0
β

]
(45)

Equation 41. Because W is positive definite by assumption, this holds if150

ATP + PA = 0. Letting

P =

[
Pa Pb
Pb Pd

]
(46)

we thus have [
0 0
0 0

]
=

[
0 1
0 0

]T [
Pa Pb
Pb Pd

]
+

[
Pa Pb
Pb Pd

] [
0 1
0 0

]
(47)

=

[
0 0
Pa Pb/c

]
+

[
0 0
Pa Pb/c

]T
(48)

Therefore Pa = Pb = 0.

Equation 42. X is full rank, so this holds if BTP+FTA = 0. This is equivalent
to [

0 0
]

=
[
0 β

] [Pa Pb
Pb Pd

]
+
[
Fa Fb

] [0 1
0 0

]
(49)

=
[
βPb βPd + Fa

]
(50)

Therefore Pd = −Fa/β and because, Pd must be positive semi-definite it is
necessary and sufficient for sign(Fa) = −sign(β) or Pd = 0 and Fa = 0.

Inequality 43. Again noting that X is full rank, this is satisfied if −FB −
BTFT > 0. This can be written as

0 <−
[
Fa Fb

] [0
β

]
+
[
0 β

] [Fa
Fb

]
(51)

=− 2Fbβ (52)

Thus for this inequality to hold we must have sign(Fb) = −sign(β).

Inequality 44. Finally, noting that Pa = Pb = 0, inequality (44) holds if

0 <

[
0 0
0 Pd

]
+

[
Fa
Fb

] [
Fa Fb

]
=

[
F 2
a FaFb

FaFb Pd + F 2
b

]
(53)
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Therefore for this inequality to hold we must strengthen our conclusion to
sign(Fa) = −sign(β): it cannot be zero or only positive semi-definiteness would
be proven.160

Hence with sign(Fa) = sign(Fa) = −sign(β), the conditions of Theorem 1 are
fulfilled and the origin of the system (26) will be globally asymptotically stable.
�

This proposition proves that for input-coupled double integrator systems, there
exist a large family of anti-windup compensators which are able to ensure global
asympotic stability of the origin.

Remark 1: Note that in the case that X = 1 and hence χ(.) = sat(.), the
system (26) reduces to the simple saturated double integrator system which
was discussed in [24, 26]

3.3. Performance Consideration170

Proposition 1 shows that for input-coupled double integrator plants, there ex-
ist a large family of anti-windup compensators guaranteeting global asymptotic
stability: the entries of the matrix F simply need to be opposite in sign to β.
However, only a portion of this range of values may provide acceptable perfor-
mance. In this section, we propose a transparent procedure for selecting suitable
ranges of F for acceptable peformance based on the anti-windup compensator
dynamics.

Due to the structure of the anti-windup compensator, the plant and the con-
troller, the gains F are chosen on a loop-by-loop basis; that is the standard
double integrator system is considered in order to choose the gains of F , which180

is then used to construct FD = (I ⊗ F ) as required for the full anti-windup
dynamics given in (14). Therefore, we set m = 1 and consider the anti-windup
dynamics given by equation (26) which can be written as

ẋ = Ax+Bsat(u) u = Fx (54)

The saturation function is then replaced by the time varying gain, viz:

sat(u) = σ(u)u σ(.) : R 7→ [0, 1] (55)

This then results in
ẋ = (A+Bσ(u)F )x (56)

The A-matrix of the compensator therefore has the form

A+Bσ(u)F =

[
0 1

βσ(u)Fa βσ(u)Fb

]
(57)

We can use simple linear analysis to estimate the performance of the AW com-
pensator since it is known that any F satisfying Proposition 1 will ensure global
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stability of the origin. Hence, the roots of the characteristic equation for the
nonlinear loop will remain inside the desired stability region and the character-
istic equation is given by

s2 − βσ(u)Fbs− βσ(u)Fa = 0 (58)

If σ(u) is replaced by a constant σ0 such that σ0 ∈ [0, 1] then the above equation
becomes

s2 − βσ0Fbs− βσ0Fa = 0 (59)

The standard second order characteristic equation is defined as

s2 + 2ζωns+ ω2
n = 0 (60)

where ωn is the undamped natural frequency and ζ is the damping ratio. Thus
comparing the coefficients of both equations 59 and 60, we can obtain expres-
sions for ωn and ζ as

ωn =
√
−βσ0Fa ζ = −Fb

2

√
−βσ0
Fa

(61)

Rearranging equation (61) such that Fa and Fb are made subject of the formula
gives

Fa = −ω2
n/βσ0 Fb = −2ζ

√
− Fa
βσ0

(62)

Equation (62) implies that Fa is a function of the desired natural frequency ωn
of the system while Fb is a function of the selected value of Fa and the desired
damping ratio ζ. Note however that both Fa and Fb depend also on σ0 which
represents the level of saturation. In reality, the saturation level varies, causing
σ0 to fluctuate between the range [0, 1]. However, Fa and Fb could be designed
by choosing a suitable value of σ0, possibly corresponding to some lower limit on
σ and then it would be expected that the compensators would have acceptable190

performance if the saturation did not cause σ(.) to deviate too much from this
value. For example, if the control signal was expected to exceed twice the
saturation limits, σ0 could be chosen as 0.5 and hence, the AW compensator
can be designed using this value. This means that for each fixed σ(u) ∈ [0, σ0],
the anti-windup compensator would then have a damping ratio of no greater
than the ζ associated with σ(u) = σ0. It is accepted that this approach will not
guarantee any rigorous performance specification, but it seems to work well in
the practical results reported later.

4. Quadrotor UAV Simulation and Experimental Results

4.1. Quadrotor platform description200

The quadrotor UAV has emerged as an interesting aerial platform for a number
of useful applications. It has been the subject of several studies [27, 28, 29, 21]
including the problem of saturation in UAVs [30, 31, 21, 32].
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Figure 4: Picture of the 2014 3DR Quadrotor

The 2014 3DR quadrotor [33] is used as an experimental platform in this paper
(see Figure 4). It is a DIY quadrotor kit that has been equipped with a va-
riety of sensors onboard including the inertial measurement unit-IMU (3-axes
accelerometers and rate gyroscopes), magnetometers and barometric pressure
sensors These sensors are contained in the Ardupilot Mega (APM 2.6) pro-
grammable flight controller board whose firmware has been modified to suit our
design requirements.210

This quadrotor consists of a number of components which include four 850kV
brushless DC motors, four 12” two-bladed propellers, a 4in1 20A electronic speed
controller (ESC), a GPS-compass system, a Lithium-polymer 11.1V, 5500mAh
battery and a 433MHz transceiver telemetry kit. The interconnection of all
these components is shown in Figure 5. The quadrotor performance and status
is monitored from a computer that runs the software that communicates with
the quadrotor remotely via the telemetry system. The values of the controller
gains as well as other important parameters of the 3DR quadrotor are given in
the Table 1. The next subsection describes the generated forces and torques as
applied to the dynamics of the quadrotor UAV.220

Motor Motor

Motor Motor

1 2

3 4

B������ 4 �� � E	


APM Flight Controller

Power Module Compass

GPS
&

GPSCompass

Telemetry

Reciever

Radio

Tele-

metry

433MHz
Outputs Inputs

Figure 5: Quadrotor hardware schematic

4.2. Dynamic Model

The model of the quadrotor used for design and simulation is similar to that
developed in [34]. Consider the structure of a quadrotor UAV as depicted in
Figure 6. Each motor acts on the body depending on its varying rotational
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Table 1: Approximate values of 3DR Quadrotor parameters and online PD Gains

Parameters Description Values Units
g Gravity 9.81 ms−2

m Mass 2.1 kg
d Distance 0.3 m
k1 Force constant 0.89
k2 Torque constant 0.11

Jx Pitch Inertia 2.85 x 10−6 kgm−2

Jy Roll Inertia 2.85 x 10−6 kgm−2

Jz Yaw Inertia 1.81 x 10−6 kgm−2

Kφ,P Proportional gain 0.22
Kθ,P 0.22
Kψ,P 0.4
Kφ,D Derivative gain 0.004
Kθ,D 0.004
Kψ,D 0.003
Throttle via Kz,P Throttle rate P gain 6
Throttle via Kz,D Throttle rate D gain 0.001

speed and generates an input force and a torque as it rotates. The total sum of
all the forces generated by the motors control the lift force. The four motors can
be thought of as two pairs, for which one pair of motors (front and back motors)
rotating in one direction control the pitch θ and the other pair of motors (left
and right motors) rotating in the opposite direction control the roll φ while a
manipulation of the speed of both pairs control the yaw ψ movement.230

Fl Ff

Fb Fr

τl

τb

τf

τr

θ, q φ, p

ψ, r

y, v x, u

z, w

Figure 6: Schematic showing Force, Torque and States definition of a Quadrotor

The full nonlinear dynamic model was constructed according to [34] and was
used for simulation purposes. For controller and anti-windup compensator de-
sign, the model was simplified according to that procedure described in [34]. In
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particular, the dynamics of the quadrotor can be summarised as
φ̈ = 1

Jx
τφ

θ̈ = 1
Jy
τθ

ψ̈ = 1
Jz
τψ

z̈ ≈ g − 1
mF

(63)

where φ, θ and ψ are the pitch, roll and yaw attitudes in inertial space, Jx, Jy, Jz
are the moments of inertia in the x, y, z axes, τφ, τθ, τψ are the roll pitch and
yaw torques, F is the total lift force and m, g are the mass of the quadrotor and
acceleration due to gravity respectively. Note that the dynamics are, essentially
a set of parallel integrators with transfer function matrix

GD(s) = diag(
1

Jxs2
,

1

Jys2
,

1

Jzs2
,

1

ms2
) (64)

The relationship between the physical control signal, which is taken as the square
of the motor velocities, and the body axis torques and forces are given [34] as

F
τφ
τθ
τψ

 =


k1 k1 k1 k1
0 −ρk1 0 ρk1
ρk1 0 −ρk1 0
−k2 k2 −k2 k2


︸ ︷︷ ︸

X


δf
δr
δb
δl


︸ ︷︷ ︸
u

(65)

where k1 and k2 are constants that are determined experimentally, ρ is the
distance between the centre of mass and the propellers, and δ∗ is the motor
angular velocity squared. Thus the linearised quadrotor dynamics have the
form G(s) = GD(s)X as required.

Because X is invertible, the controller for the system will take the form; K(s) =
X−1KD(s) where KD(s) is a block diagonal transfer function matrix, as indi-
cated in equation (10) with each element consisting of a PD controller for each
individual channel. The diagonal elements of the controller KD(s) therefore
have the form

KD(s) ∼


vφ = Kφ,P [rφ − φ]−Kφ,D[p]
vθ = Kθ,P [rθ − θ]−Kθ,D[q]
vψ = Kψ,P [rψ − ψ]−Kψ,D[r]
vz = Kz,P [rz − z]−Kz,D[ż] + g

(66)

whereKφ,P ,Kθ,P ,Kψ,P ,Kz,P are the proportional gains, Kφ,D,Kθ,D,Kψ,D,Kz,D

are the derivative gains, vφ,θ,ψ,z is the control input (in virtual coordinates),rφ,θ,ψ,z
is the desired reference, p, q, r are the angular rates corresponding to φ̇, θ̇, ψ̇ and
φ, θ, ψ, z is the system output. There is a slight abuse of notation in equation
(64) since the height controller is actually affine with a gravity compensation
term included. In the absence of saturation, note that this controller will form a240
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Table 2: Damping Ratios and AW Gains for Simulations at ωn = 800rad/s

Damping Ratio Fa Fb Remark

ζ = 0.5 -1.8240 -0.0023 ζ < 1
ζ = 1 -1.8240 -0.0046 ζ = 1
ζ = 5 -1.8240 -0.0228 ζ > 1

Table 3: Damping Ratios and AW Gains for Simulations at ωn = 500rad/s

Damping Ratio Fa Fb Remark

ζ = 0.5 -0.7125 -0.0014 ζ < 1
ζ = 1 -0.7125 -0.0028 ζ = 1
ζ = 5 -0.7125 -0.0142 ζ > 1

set of 4 decoupled closed-loops where each controller stabilises one of the double
integrator systems. However, note that when saturation occurs, this decoupling
is compromised and performance deteriotation occurs.

The dynamics of the quadrotor (64) can be written in the form of (3) by choosing
a state-space realisation where AD has the form in (5) and BD has the form in
(6) with β = 1. This then implies CD has the form of (7) where m = 4 and

C1 =
1

Jx
I2 C2 =

1

Jy
I2 C3 =

1

Jz
I2 C4 =

1

m
I2 (67)

This, coupled with the fact that there exists diagonal positive definite matrices
W,V such that V = XTWX, enables the design of anti-windup compensators
according to Section 3.3.

4.3. Simulation Results250

AW compensators corresponding to the approach described above were designed
for the entire quadrotor system at σ0 = 1. The AW compensators had a natural
frequency of ωn = 800rad/s and the damping ratio was varied as listed in
Table 2. A further set of AW compensators were designed using a frequency
of ωn = 500rad/s and the damping ratio was varied as listed in Table 3. For
brevity, only the pitch responses are discussed here.

Figure 7a shows the nominal response of the pitch channel for a pulse demand of
0.4rad and Figure 7b indicates that the saturated system has poor performance
and displays overshoot several times greater than the attitude demand. During
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saturation, some off-axis coupling can be observed (not shown on plot) because260

the system loses the decoupling properties provided by virtue of the structure
G(s) = GD(s)X.
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Figure 7: Pitch output response:(a) Nominal; (b) Saturation, no AW
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Figure 8: Control response:(a) Nominal; (b) Saturation, no AW
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Figure 9: Pitch output response:(a) Saturation, ωn = 500rad/s with AW at different ζ; (b)
Saturation, ωn = 800rad/s with AW at different ζ

Figures 9a and 9b show the pitch response with AW compensation. The pitch
response improves as ζ increases from 0.5 to 5 with the best response at ζ =
5. Note that at higher undamped natural frequencies, better responses were
obtained from the system and these can be seen in the difference between Figure
9a and Figure 9b. All plots of Figure 8 and Figure 10 show the control signal
response both at nominal and at saturation.
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Figure 10: Control response: [(a), (b)] Saturation, ωn = 500rad/s and ωn = 800rad/s with
AW at different ζ
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Figure 11: Pitch angle response-Artificial limit flight section: (a) [from left] Typical Nominal
response ; (b) Saturated response no AW

4.4. Flight Test Results

The quadrotor platform was setup with the PD controller as the baseline con-270

troller while simple PID controllers were added as outer-loop controllers for
waypoint navigation. The outer loop controllers were used to prepare the UAV
for autonoumous flight with a constant mission in an outdoor environment. In
the outdoor flight, the quadrotor was set up to follow pre defined mission paths
and reference commands coded in its autopilot while it was monitored remotely
via a telemetry link.

The saturated motor commands are angular velocities but our quadrotor has
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Figure 12: Pitch angle response: (a) [from left] Saturation, ωn = 500rad/s with AW at
ζ = 0.5; (b) Saturation, ωn = 500rad/s with AW at ζ = 2.
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Figure 13: Pitch angle response: (a) [from left] Saturation, ωn = 840rad/s with AW at
ζ = 0.5; (b) Saturation, ωn = 840rad/s with AW at ζ = 2.

no sensor that measures this. However, there is a direct correllation between
the angular velocities and the motor’s PWM commands; where the angular ve-
locity is obtained by converting the motor velocity data provided in revolutions280

per minute (RPM) values for pulse width modulation (PWM) levels operating
within a range of 1000 µs (1 ms) and 2000 µs (2 ms) at a frequency of 490 Hz.
For this system, the motor’s PWM values are used as the saturated elements
instead of the angular velocities.

The saturation limits on the motor command were imposed on the system using
the firmware and were set to a modest 13% of nominal operation. These were
done to help maintain a certain level of uniformity in the flight data results
collected and to ensure maximum safety.

Figure 11a shows a typical pitch response when no artificial limits were im-
posed. This can be interpreted as the nominal case. Figure 11b shows a similar290

section of the flight, but with the artificial limits applied, but without AW com-
pensation. One can see that when the limits are imposed, the pitch response
deteriorates and almost becomes unstable.

Figures 12a and 12b show the response of the system when the artificial limits are
applied and the AW compensators corresponding to ωn = 500rad/s at ζ = 0.5
and ζ = 2 are used. The results seem better than the saturated no AW case
but with a less than desirable signal tracking.

Figures 13a and Figure 13b show improved responses when the artificial limits
are applied and the AW compensators corresponding to ωn = 840rad/s at ζ =
0.5 and ζ = 2 are engaged. Note the good performance of the compensators300

with the signals in phase with the desired reference.

When comparing the results of both values of ωn, it can be seen that the AW
compensators for ζ = 2 produce better responses than the compensators for
ζ = 0.5.

Since all experiments were carried out outdoors, there are some differences be-
tween all flights recorded due to weather conditions such as gust, wind speed
etc.

Remark 2: Both the simulation tests and the experimental tests confirm that
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the higher the value of ωn chosen, the better the performance of the AW com-
pensator at different ζ. However, it is important to note that the choice of ωn310

should be such that the AW compensator is sufficiently fast enough to give good
performance but within the limit of the quadrotor’s processor power.

5. Conclusion

This paper has proposed a technique for synthesizing AW compensators for
systems containing double integrators. A Popov-like sufficient condition from
[24] was used to ensure closed-loop global stability of the system and simple
linear analysis based on the compensators natural frequency and damping ratio
was used to guide design of the compensator. The resulting expression for the
free-parameter FD in the anti-windup compensator is exceptionally simple and
a range of values can be chosen without having to repeat any stability analysis.320

This approach was used to synthesize AW compensators for a quadrotor system
and applied both in simulation and on an experimental platform. The results
show that during saturation, the quadrotor system performance improved and
hence illustrates the effectiveness of the approach. It is not claimed that the
results reported here are superior to those in [21], but the anti-windup design
procedure is considerably simpler and re-design rapid.
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