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Abstract

This paper presents a simple modification which can be made toa pre-designed dynamic
anti-windup scheme in order to improve its performance. Roughly speaking, the modifi-
cation enables the dynamic anti-windup compensator to act more like a static anti-windup
compensator in certain circumstances. In particular, the modification enables the output of
the compensator to decay more quickly than if it were absent,thereby effecting a swifter
recovery of linear behaviour. The modification is thereforesuitable for - and indeed mo-
tivated by - applications where the original anti-windup compensator contains slow poles,
resulting in a potentially lengthy recovery of linear behaviour. The paper describes in detail
the modification and presents conditions under which it is able to preserve stability.
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1 Introduction

Anti-windup compensators supplement baseline control systems in order to im-
prove their performance during control signal saturation.The idea of anti-windup
originated many years ago but the concept has been re-examined extensively by
the research community over the last two decades and many newtechniques for
anti-windup analysis and design have been proposed - see [1–6] for instance.

Anti-windup compensators are activated upon saturation ofthe control signalu(t),
normally by observing the signal̃u(t) := u(t) − sat(u(t)) =: Dz(u(t)): once this
signal is non-zero the anti-windup compensator becomes active and, if designed
properly, should maintain stability and improve performance during periods of sat-
uration. A linearstaticanti-windup compensator has no dynamics and thus, once
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saturation is over (̃u(t) = 0 for t > T ), the output of the anti-windup compensator,
v(t) will also be zero for allt > T . A linear dynamicanti-windup compensator
behaves differently: once saturation is over, and againũ(t) = 0 for t > T , its states
decay exponentially to zero i.e.‖xaw(t)‖ ≤ α1 exp[−α2(t−T )]‖xaw(T )‖ for some
α1, α2 > 0. Thus, if the anti-windup compensator contains slow modes,its output
may take considerable time to decay to negligible values, thereby prolonging the
time taken for the system to recover from the effects of saturation.

Modern anti-windup compensators are typically designed using variants of the
Multivariable Circle Criterion; that is they are designed using quadratic Lyapunov
functions with the aid of sector bounds on the saturation/deadzone nonlinearities.
This approach essentially requires a certain transfer function to be strictly positive
real. In order for the anti-windup compensator to bestow strict positive realness
(and therefore stabilise the system during periods of saturation), it may be neces-
sary for the compensator to contain slow modes. The price paid for stability, there-
fore, may be a slow recovery of linear behaviour after saturation has occurred: this
is contrary to theswift recovery of linear behaviourtraditionally sought [7].

This paper proposes a nonlinear modification which can be retro-fitted to a pre-
designed (dynamic) anti-windup compensator (a retro-fit toa retro-fit) to enable
the output of the anti-windup compensator to decay more rapidly after saturation
has ceased. The nonlinear modification operates by monitoring the level of sat-
uration, and attenuating the magnitude of the anti-windup compensator’s output
depending on this: the nonlinear modification can be considered as a nonlinear
gain. It transpires that the use of this nonlinear gain, together with a simple filter of
order equal to the number of anti-windup outputs, can enablestability to be main-
tained whilst also improving small signal performance. These ideas were motivated
by a flight control application considered by the authors ([8,9] and in unpublished
work) which suffered a similar issue to that described above. Although the solu-
tion to these problems was a little different in the motivating work, some key ideas
remain the same in this paper.

It is stressed that this paper considers a nonlinearmodificationto a pre-designed
anti-windup compensator. It does not consider the design ofan a priori nonlin-
ear compensator ([10–16]). The latter type of compensator may perform better, and
perhaps even may be necessary in some cases ([17]), but typically the design condi-
tions are more complex and the dynamics may be faster and therefore more difficult
to implement in practice. The advantage of the modification proposed here is that
it is simple to both design and implement and therefore in keeping with the ethos
of anti-windup compensation.

Notation. Notation is standard throughout. The saturation function is defined as

sat(u) = sign(u)min{ū, |u|} ū > 0 (1)

The deadzone function is defined as

Dz(u) = sign(u)max{0, |u| − ū} ū > 0 (2)
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The identitysat(u) = u−Dz(u) holds. Frequently, the notatioñu = Dz(u) is used.

The identity matrix of sizem is denotedIm. A vector of sizem whose elements
are all unity is defined as1m. A positive (negative) definite symmetric matrixM is
indicated byM > (<) 0.

2 System Architecture
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Fig. 1. Anti-windup configuration. In the standard anti-windup configurationQ is the iden-
tity; in this paper,Q is a nonlinear operator.

The paper considers the system depicted in Figure 1, wherey ∈ R
p represents

the plant measurements;u ∈ R andum = sat(u) the controller output and the
plant input respectively;r ∈ R

nr the reference demand,typically with nr = 1; and
d ∈ R

nd the disturbance. The signal which activates the anti-windup compensator
is Dz(u) =: ũ ∈ R andṽ ∈ R

nv is the signal the anti-windup compensator injects
into the controller. The linear dynamics of the plant and thecontroller are given by
the state-space realisations:

G ∼











ẋp = Apxp +Bpum +Bpdd

y = Cpxp +Dpdd
(3)

K ∼











ẋc = Acxc +Bcy +Bcrr +Bcvṽ

u = Ccxc +Dcy +Dcrr +Dcvṽ
(4)

The state dimensions of the plant and the controller are, respectively,np andnc. It
is assumed throughout thatAp is Hurwitz and that, in the absence of saturation,K

internally stabilisesG.

The nonlinear anti-windup compensator, depicted in Figure1, is a cascade of two
components. The first is a linear component, which is assumedto be pre-designed
and, for simplicity, strictly proper. This has state-spacerealisation:

Λ ∼











ẋa = Aaxa +Baũ

v = Caxa
(5)
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The second component is theanti-windup modification filterwhich is a dynamic
nonlinear operator with state-space realisation

Q ∼











ẋq = fq(xq, u, v)

ṽ = gq(xq, u, v)
(6)

The functionsfq(., ., .) andgq(., ., .) will be specified later, as will the state-vector
dimension. IfQ is the identity operator, standard linear anti-windup compensation
is recovered, i.e.̃v = v. In this case, providingΛ has been designed to globally
stabilise the origin of the system, nothing else needs proving. This paper considers
aQ, not equal to the identity, which improves performance in some sense.

2.1 Description of the modification

Before providing the technical details behind the nonlinear modification filter,Q,
it is useful to describe the way in which it is envisaged to operate. The rationale
behind the introduction of the nonlinear modification is, asdescribed in the previ-
ous section, to provide faster attenuation of the anti-windup compensation signal
after saturation has ceased, so that the return to linear behaviour is swifter. How-
ever, when significant saturation takes place (u >> ū), it is desirable to leave in
place the anti-windup compensator so that it functions as originally intended. From
a simplistic perspective, the purpose of the nonlinear operatorQ is, then, to adjust
(in a nonlinear fashion) the gain of the anti-windup compensator between zero (no
saturation) and one (full saturation).

This nonlinear attenuation is accomplished by monitoring the level of saturation,
through measurement ofu and then using this to set the “gain” ofQ. However, it
transpires that such a strategy may result in unsatisfactory transient performance
(especially when the control signal passes from fully saturated in one direction to
fully saturated in the opposite direction) and leads to an implicit expression for the
control signalu which may result in the system being ill-posed. For these reasons,
Q features some dynamics and, as will be clear later, the choice of these dynamics
effectively reduces to choosing the bandwidth of a linear filter.

3 Motivating Example

To illustrate the problem described above, we consider an example which has been
inspired by the authors’ work on anti-windup design for PIO avoidance [9]. The
example is realistic as the essence of the problem is similarto that of the applied
work described in [9], but it is also illustrative due to the simple interpretation
which can be given to the anti-windup compensator.

In this case, the dynamics of plant comprise the lateral dynamics of an aircraft
combined with a first order actuator. The plant output to be controlled is the roll

4



attitude,φ(t), and the controller measures this in addition to the roll rate p(t), the
actuator positionxact(t) and roll attitude demandφd(t) i.e. r = φd. The controller
is purely staticand hence, wheñv(t) ≡ v(t) (no modification), can be described
via:

u(t) = Dcy(t) +Dcrr(t) +Dcvv(t) (7)

For this system, an anti-windup compensator was designed using the method of
[18] and this yielded a compensator with outputv = [v′

1
v′
2
]′, v1 ∈ R, v2 ∈ R

3.
The correspondingDcv = [−1 Dcr], so the effect of the anti-windup compensator
can be combined into a “total”vT (t)

vT (t) := −v1(t) +Dcrv2(t) ∈ R (8)

It is simpler to observe the anti-windup action from this signal than observe the
four signals associated withv(t).

Ideally, we would likevT (t) to be inactive apart from when saturation occurs. How-
ever, in the case of dynamic anti-windup compensators, if the dynamics are suffi-
ciently slow,vT will linger after saturation has ceased. This is because, assuming
|u(t)| < ū ∀t > ts, we have

vT (t) = Caw exp[Aaw(t− ts)]xaw(ts) (9)

Unfortunately, due to the mix of slow and fast dynamics in theplant, the anti-
windup compensator designed using the method in [18] resulted in a slow real pole
at≈ 10−3 radian/s. This meant that recovery of linear behaviour was slow.
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Fig. 2. Sanitised aircraft example response. Note that the anti-windup signalsvT (t) are not
present in the linear and saturated cases in (b)

Figure 2 (a) shows the roll attitude response of the aircraftexample under various
conditions. The saturation limits were25 units and the reference demand,φd(t) is a
series of pulses. The linear response (black) is well-damped and brisk, but when sat-
uration (red) is introduced - and no anti-windup is used - theresponse contains large
overshoots. For certain reference demands, the system enters a limit cycle. Unfor-
tunately, when full-order anti-windup above is introduced(magenta), the response
does not improve much: although the overshoots lessen, the full-order anti-windup
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compensator’s action is too aggressive and (see Figure 2 (b)) the anti-windup signal
associated with this compensator decays very slowly, meaning that the system fails
to track the pulse references (Figure 2 (a)). To prevent these tracking problems, the
modification described earlier is introduced to the system.The blue trace in Figure
2 (a) shows that tracking performance is now much improved; this can be explained
by the faster decay of the anti-windup signal,vT (t) which is seen in Figure 2 (b).
The following sections describe how such a nonlinear modification can be added
without compromising stability.

4 Problem Formulation

4.1 Nonlinear Modification FilterQ

Before formally stating the problem, the dynamics of the nonlinear modification
filter, Q, are defined and the dynamics of the system are re-written. Firstly, the
dynamics ofQ are considered to take the following form:

Q ∼











ẋq = Aqxq + (1− β(u))Bqv

ṽ = −Cqxq + v
(10)

whereβ(.) : R 7→ [0, 1] is a nonlinear function defined by

β(u) := Dz(u)/u = max{0, (|u| − ū)/|u|} (11)

Note thatβ(u) = 0 when |u| < ū i.e. when saturation does not take place. The
state-space matrices(Aq, Bq, Cq) are not specified at the moment, but if they are
chosen to correspond to those of a low-pass filter i.e.

(Aq, Bq, Cq) = (−λInv
, Inv

, λInv
) λ > 0

it follows that when saturation is not active (β(u) = 0) the output̃v → 0 i.e. the
output ofQ decays to zero. Similarly if saturation is present and extensive, that is
|u| >> ū, thenβ(u) → 1 which implies thatxq → 0 and thus the output̃v → v.
This form ofQ functions in the way envisaged in Section 2.1, although it isnot the
only choice possible.

4.2 LFT modelling

The dynamics of the plant and the controller can be combined to obtain

Pcl ∼











ẋcl = Aclxcl +Bcluũ+Bclvṽ

u = Cclxcl +Dclvṽ
(12)
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Fig. 3. Equivalent Representation of Nonlinear Anti-windup using an “LFT”

where expressions for the above matrices can be found in the appendix. The matrix
Acl is Hurwitz because it is assumed that the nominal controllerstabilises the sys-
tem without saturation. For convenience, the nonlinear functionψ(., .) : Rnv×R 7→
R

nv is defined:
ψ(v, u) = β(u)v (13)

Thus the dynamics of the plant and the controller, (12), the linear anti-windup com-
pensator (5), and the modification filter (10), can be combined in the following
“LFT” form, illustrated in Figure 3, where the LTI elementΣ has state-space real-
isation:

Σ ∼



























ẋ = Ax+B1ũ+B2ψ(v, u)

u = C1x

v = C2x

(14)

The state-space matrices are given in the appendix.

It is assumed that an anti-windup compensatorΛ has been designed such that the
closed loop system, withQ replaced by the identity, is asymptotically stable. More-
over, because many popular anti-windup design techniques are, in essence, based
on an application of the Circle Criterion, it is assumed thatthe system without the
dynamics ofQ, satisfies the matrix inequality associated with the CircleCriterion.
WhenQ is omitted, the dynamics of the system become

Σℓ ∼











ẋℓ = Aℓxℓ +Bℓũ

u = Cℓx
(15)

where the state-space matrices(Aℓ, Bℓ, Cℓ) are defined in the appendix. This moti-
vates the main assumption of the paper

Assumption 1 There exists a symmetric positive definite matrixPℓ > 0 and a
positive scalarwℓ > 0 such that the following matrix inequality is satisfied:







A′

ℓPℓ + PℓAℓ PℓBℓ + C ′

ℓwℓ

⋆ −2wℓ






< 0 (16)
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Remark 1: This paper considers asymptotically stable open-loop systems;Ap is a
Hurwitz matrix. In this case, there will always exist a full-order (na = np) anti-
windup compensator of the form (5) which renders the saturated system exponen-
tially stable via the Circle Criterion. However, Assumption 1 does not stipulate that
the compensatormustbe full-order and often a low-order compensator is perfectly
satisfactory ([19,20]). In fact, Assumption 1 isnot necessary: all that is really re-
quired is for the saturated system with anti-windup to be asymptotically stable by
an appropriate Lyapunov function. However, Assumption 1 would be typical for
many modern anti-windup designs and allows neat results to be obtained. �

Remark 2: Assumption 1 implies thatAcl is Hurwitz, that is the linear controller
stabilises the linear plant. This is evident from the structure ofAℓ in the appendix.
�

The following is the problem addressed in the remainder of the paper.

Problem 2 Consider the system (14) whereũ andψ(v, u) are defined in equations
(2) and (13). Find conditions, in the form of linear matrix inequalities, which ensure
that the origin of the system is globally asymptotically stable.

Remark 3: Problem 2 is focused on ensuring the origin of the system withanti-
windup modification isasymptotically stable; it does not explicitly consider per-
formance, which is the reason for introducing the modification filter. One can intu-
itively understand the reason why the modification filter might yield improved tran-
sient behaviour (as explained in Section 3) but characterising this mathematically
is difficult. Firstly, the modification filter is not expectedto improve theL2 gain
properties of the anti-windup compensator because, for large levels of saturation
(i.e. “large” L2 signals) the modification filter essentially makes no modification.
Similarly, a decay rate charaterisation seems to fail because, the decay rate of the
modified compensatorQ andΛ is always determined by the slowest element (i.e.
Λ). However, the intuitive behaviour of the compensator, together with its stabil-
ity guarantees should be sufficient for improved time-domain performance to be
observed. �

5 Main Results

5.1 Sector Conditions

One of the nonlinearities featured inΣ is the deadzone nonlinearity,ũ = Dz(u)
which is well known to satisfy certain sector inequalities.The purpose of this sub-
section is to derive similar sector conditions for the nonlinear elementψ(v, u) and
also - taking inspiration from [21] - combinations of the nonlinearitiesDz(u) and
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ψ(v, u). These conditions are more palatable, with the shorthand

ψi := ψi(v, u) = β(u)vi (17)

The following result can be stated.

Lemma 3 Consider the nonlinear functionsDz(.) : R 7→ R andψ(., .) : Rnv ×
R 7→ R

nv , as defined in equations (2) and (13), and letψi be defined as in equation
(17). Then the following inequalities hold for all positivescalarsη:

Dz(u)η(u− Dz(u)) ≥ 0 ∀u ∈ R (18)
ψiη(vi − ψi) ≥ 0 ∀u, vi ∈ R ∀i ∈ {1, . . . , nv}

(19)

(Dz(u) + ψi)η[u+ vi − (Dz(u) + ψi)] ≥ 0 ∀u, vi ∈ R ∀i ∈ {1, . . . , nv}
(20)

(Dz(u)− ψi)η[u− vi − (Dz(u)− ψi)] ≥ 0 ∀u, vi ∈ R ∀i ∈ {1, . . . , nv}
(21)

Proof:

i) Inequality (18) is simply the standard sector inequality.
ii) Inequality (19). The left hand side may be written as

ψiη(vi − ψi) = viβ(u)η(1− β(u))vi (22)
= v2i ηβ(u)(1− β(u)) ≥ 0 (23)

where the last inequality follows becauseβ(u) ∈ [0, 1].
iii) Inequality (20). Noting thatDz(u) = β(u)u, we can write:

(Dz(u) + ψi)η[u+ vi − (Dz(u) + ψi)] = (u+ vi)β(u)η(1− β(u))(u+ vi)
(24)

= (u+ vi)
2ηβ(u)(1− β(u)) (25)

where again the last inequality follows becauseβ(u) ∈ [0, 1].
iv) This follows by similar reasoning to the third. ��

5.2 Stability conditions

Lemma 3 can be used in the derivation of Lyapunov conditions for stability using
a Lur’e-type Lyapunov function.

Proposition 4 Consider the system described by equation (14). Then the origin
is globally asymptotically stable if there exist a positivedefinite symmetric matrix
P > 0, a diagonal positive definite matrixW2 > 0, positive scalarsw1 > 0 andη >
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0, and diagonal matricesX1, X2 which satisfy the following matrix inequalities















A′P+PA PB1+C
′

1
(w1+1

′X11)+C
′

2
X21+A

′C ′

1
η PB2+C

′

2
(W2+X1)+C

′

1
1
′X2

⋆ −2w1 − 21′X11 + η(C1B1B
′

1
C ′

1
) −21′X2 + ηC1B2

⋆ ⋆ −2W2 − 2X1















< 0

(26)

X1 +X2 > 0 (27)
X1 −X2 > 0 (28)

Proof: The proof of the proposition is similar to classical absolute stability proofs
[22]. First we choose a Lyapunov function

V (x) = x′Px+ 2η
∫ C1x

0

Dz(σ)dσ (29)

whereP > 0 is a positive define matrix andη > 0 a positive scalar. The derivative
along the trajectories of the system (14) can be calculated as

V̇ (x) = 2(x′P + ηDz(u)C1)(Ax+B1ũ+B2ψ) (30)

=















x

ũ

ψ















′














A′P + PA PB1 + A′C ′

1
η PB2

⋆ η(C1B1 +B′

1
C ′

1
) ηC1B2

⋆ ⋆ 0





























x

ũ

ψ















(31)

Using the state-space realisation ofΣ in (14) we can re-write the sector conditions
in Lemma 3 as:

Condition (i)(from inequality (18)):

ũ′w1(C1x− ũ) ≥ 0 w1 > 0 (32)

Condition (ii) (from inequality (19)):

ψ′W2(C2x− ψ) ≥ 0 W2 = diag(w21, . . . , w2m) > 0 (33)

Condition (iii): Using inequality (20), for any positive scalarsw3,i, it follows that

2
nv
∑

i

(Dz(u)− ψi)w3,i[u− vi − (Dz(u)− ψi)] ≥ 0 (34)

Defining

W3 = diag(w31, . . . , w3m) > 0 (35)
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and noting that

1
′W31 =

nv
∑

i

w3,i (36)

1
′W3 =

[

w3,1 w3,2 · · · w3,nv

]

(37)

allows inequality (34) to be written as















x

ũ

ψ















′














0 C ′

1
1
′W31+ C ′

2
W31 C

′

1
1
′W3 + C ′

2
W3

⋆ −21′W31 −21′W3

⋆ ⋆ −2W3





























x

ũ

ψ















≥ 0 (38)

W3 = diag(w31, . . . , w3m) > 0 (39)

Condition (iv): This follows in a similar manner to inequality (38), exceptthat the
starting point is inequality (21).















x

ũ

ψ















′














0 C ′

1
1
′W41− C ′

2
W41 −C ′

1
1
′W4 + C ′

2
W4

⋆ −21′W41 21′W4

⋆ ⋆ −2W4





























x

ũ

ψ















≥ 0 (40)

W4 = diag(w41, . . . , w4m) > 0 (41)

Appending inequalities (32)-(40) to the derivative of our Lyapunov function (31)
yields the inequality

V̇ (x) ≤















x

ũ

ψ















′














A′P+PA PB1+C
′

1
(w1+1

′(W3+W4)1)+C
′

2
(W3−W4)1+A

′C ′

1
η

⋆ −2w1 − 21′(W3 +W4)1+ η(C1B1 +B′

1
C ′

1
)

⋆ ⋆

PB2+C
′

2
(W2+W3+W4)+C

′

1
1
′(W3−W4)

−21′(W3 −W4) + ηC1B2

−2W2 − 2(W3 +W4)





























x

ũ

ψ















(42)

Defining

X1 :=W3 +W4 (43)
X2 := W3 −W4 (44)
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gives the inequality (26). This means thatW3 andW4 can be recovered as

W3 =
1

2
(X1 +X2) (45)

W4 =
1

2
(X1 −X2) (46)

Inequalities (27) and (28) ensureW3 andW4 are positive definite and diagonal.��

Proposition 4 gives conditions which ensure that the systemwith anti-windup and
the modification filterQ are asymptotically stable. It assumes that the plant, the
controller and the filter dynamics are given. A typical form of filter was argued to
be a bank of first order filters described by equation (4.1). Itis next shown that, if
Assumption 1 is satisfied, there will always exist an anti-windup modification filter
Q ensuring stability.

Proposition 5 Assume the plant, controller and anti-windup compensator dynam-
ics are given and let Assumption 1 be satisfied. Then there always exist matrices
(Aq, Bq, Cq) such that Proposition 4 is satisfied.

Proof: Let X1 andX2 be two sufficiently “small” matrices satisfying inequalities
(27) and (28). Also, letη be a sufficiently small scalar. In this case, a sufficient
condition for inequality (26) to be satisfied is for the following inequality to hold:















A′P + PA PB1 + C ′

1
w1 PB2 + C ′

2
W2

⋆ −2w1 0

⋆ ⋆ −2W2















< 0 (47)

The matrixB2 is given by (see appendix)

B2 =















0

0

−Bq















(48)

Thus, for sufficiently smallBq, and sufficiently smallW2, it follows that inequality
(47) will be satisfied if their exist matricesP > 0 and a scalarw1 > 0 such that
following inequality is satisfied:







A′P + PA PB1 + C ′

1
w1

⋆ −2w1





 < 0 (49)
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Referring to the appendix, it can be seen that this matrix inequality has the structure





















Aℓ −BclvCq

Bq[0 Ca] Aq







′

P + (⋆) P







Bℓ

0





+







C ′

ℓ

−C ′

qDclv





w1

⋆ −2w1















< 0 (50)

Let Ãq ∈ R
nq be a Hurwitz matrix; then there exists aPq > 0 satisfying

Ã′

qPq + PqÃq < 0

Now letAq = ǫÃq and letP = blockdiag(Pℓ, Pq), Pℓ > 0. Then inequality (50)
will be satisfied for sufficiently smallǫ > 0 andBq, or sufficiently small(Bq, Cq),
if the following inequality is satisfied for some matrixPℓ > 0 and scalarw1 > 0







A′

ℓPℓ + PℓAℓ PℓBℓ + C ′

ℓw1

⋆ −2w1






< 0 (51)

which is exactly Assumption 1. ��

5.3 Improved stability conditions

The results of the previous subject exploited sector boundedness of the deadzone
nonlinearity, along with the three new sector conditions introduced in Lemma 3 re-
garding the nonlinearityψ(v, u) and the deadzone nonlinearity. However, the dead-
zone nonlinearity is alsoslope restricted, with the upper bound on its slope being1
and the lower bound being zero; With the shorthandφ(u) = Dz(u), the following
inequality is satisfied

0 ≤
φ(u1)− φ(u2)

u1 − u2
≤ 1 ∀u1 6= u2

In this case the following inequality is satisfied almost everywhere ([23,24]):

φ̇(u)η(u̇− φ̇(u)) ≥ 0 ∀ u ∈ R ∀ η > 0 (52)

In this case, the following Lyapunov function can be used as the basis for proving
stability

V (x) =







x

φ







′ 





X Y

Y ′ z













x

φ






+ 2

4
∑

i=1

gi(x) (53)
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where

g1(x) = µ1

∫ u

0

φ(σ)dσ ≥ 0 ∀u (54)

g2(x) = µ2

∫ u

0

[σ − φ(σ)]dσ ≥ 0 ∀u (55)

g3(x) = µ3

∫ u

0

[1− ∂φ(σ)]σdσ ≥ 0 ∀u (56)

g4(x) = µ4

∫ u

0

∂φ(σ)[σ − φ(σ)]dσ ≥ 0 ∀u (57)

and∂(.) is the sub-differential operator. A neater Lyapunov function which yields
similar stability conditions can be obtained using the approach of [25]. The Lya-
punov function (53) can be used, together with the sector inequalities from Lemma
3 and the slope inequality (52) to prove the following result.

Proposition 6 Consider the system described by equation (14). Then the origin
is globally asymptotically stable if there exist a positivedefinite symmetric matrix
X > 0, a matrixY , a diagonal positive definite matrixW2 > 0, positive scalars
w1 > 0, z > 0, η > 0 andµi > 0 (i ∈ {1, . . . , 4}), and diagonal matricesX1, X2

which satisfy the following matrix inequalities





















A′P̃ + P̃A P̃B1 + C ′

1
(w1 + 1

′X11) + C ′

2
X21 + A′Y Y P̃B2 + C ′

2
(W2 +X1) + C ′

1
1
′X2

⋆ −2w1 − 21′X11+ Y ′B1 + B′

1
Y z Y ′B2 − 21′X2

⋆ ⋆ 0 0

⋆ ⋆ ⋆ −2W2 − 2X1





















+





















0 (µ1−µ2)A
′C ′

1
(µ4−µ3)C

′

1
+A′C ′

2
η 0

⋆ (µ1−µ2)(C1B1+B
′

1
C ′

1
) −µ4+B

′

1
C ′

1
η (µ1 − µ2)C1B2

⋆ ⋆ −2η ηC1B2

⋆ ⋆ ⋆ 0





















< 0 (58)







X Y

⋆ z





 > 0 (59)

X1 +X2 > 0 (60)
X1 −X2 > 0 (61)

whereP̃ (X, µ2, µ3) = X + (µ2 + µ3)C
′

1
C1

Proof: The proof follows in a similar manner to that of Proposition 4, except that
the Lyapunov function (53) is used. In addition, the slope restriction (52) is noted
to yield:

φ̇(u)η(C(Ax+B1φ+B2ψ)− φ̇(u)) ≥ 0
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Combining the expression forV̇ , obtained from (53), and the sector conditions from
Lemma 3, after some algebra, yields the result. ��

6 Examples

6.1 Circuit Example

This example was used in a number of papers to illustrate the benefits of nonlin-
ear anti-windup [13,21]. The plant and controller have the following state-space
matrices:







Ap Bp

Cp Dp





 =





















−10.6000 −6.0900 −0.9000 1.0000

1.0000 0 0 0

0 1.0000 0 0

−1.0000 −11.0000 −30.0000 0





















(62)







Ac Bc

Cc Dc






= 103 ×















−0.0800 0 0.0010

0.0010 0 0

0.0203 1.6000 0.0800















(63)

andBcr = −Bc,Dcr = −Dc. The anti-windup terms are injected through







Bcv

Dcv





 =







0 Bc

−1 Dc





 (64)

The anti-windup compensator is a full-order compensator designed using the method
described in [18] withWp = 1, Wr = 0.1. This anti-windup compensator has an
output vectorv ∈ R

2 since one output is fed directly to the controller output (v1)
and the other to the controller input (v2). Therefore, the anti-windup modification
filter state-space matrices can be chosen as

(Aq, Bq, Cq) = (−λI2, I2, λI2) (65)

whereλ > 0. Proposition 5 implies the existence of such a modification filter for
sufficiently smallλ > 0. For this system,λ was chosen asλ = 10 and the matrix
inequalities in Proposition 4 were feasible.

Figure 4 shows the plant output and input response of the system for a pulse input
demand of magnitude 3. It can be seen that for this input, the response of the sys-
tem is sluggish with standard linear anti-windup compensation, but without anti-
windup compensation the response is worse. When the anti-windup modification
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Fig. 4. Circuit example:y(t), large pulse. Nominal linear response: black. Saturated re-
sponse: red. Standard anti-windup: magenta. Anti-windup with modification filter: solid
black

filter is added, the system response retains the briskness ofthe system without anti-
windup compensation, but without the excessive overshoot;clearly the response
has improved. The presence of the anti-windup modification filter enables the con-
trol signal to be more active, compared to the system without. Improvement is even
better for smaller reference demands.

6.2 Lightly damped example

This example has similar features to the motivating aircraft example without the
complexities present in the real system. The plant has two lightly damped complex-
conjugate poles close to the imaginary axis. Its state-space matrices are:







Ap Bp

Cp Dp





 =





















0 1 0

−0.1 −0.01 0.25

1 0 0

0 −1 0





















(66)

The plant has two outputs, with, roughly the second being thederivative of the first.
A static controller provides good performance for this system and is given by

Dc = [−8 − 7.2], Dcr = 8, Dcv = [−1 Dc] (67)

A full-order anti-windup compensator was designed for thissystem using the method
of [18] with Wp = I2 andWr = 0.1. This anti-windup compensator has three in-
puts to the controller (nv = 3) although, because the controller is static, this actu-
ally could be realised as just one input as mentioned in Section 3. Therefore, the
modification filter matrices were chosen as

(Aq, Bq, Cq) = (−λI3, I3, λI3) (68)
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Fig. 5. Lightly damped example:y(t), small pulse. Nominal linear response: black. Satu-
rated response: red. Standard anti-windup: magenta. Anti-windup with modification filter:
blue. Note that thẽv responses for the linear and saturated cases are zero because no an-
ti-windup is active. Note when no modification filter is usedṽ(t) ≡ v(t)

with λ = 2. Proposition 4 was then used to verify that the system would be stable
with this choice ofQ.

Figure 5 (a) shows the time history of the first output of the system due to a 3-2-1-1-
type reference demand of magnitude 0.5 units. The deterioration due to saturation
is not catastrophic and the saturated response closely follows the linear response
with a little more overshoot and a small loss of phase. However, the response with
linear anti-windup is quite disappointing, with the response seeming to show a
“steady state” error. This may be explained by a very slow pole being present in
the anti-windup compensator, which causes one of the anti-windup signals (the
second element of̃v) to decay slowly: once the anti-windup compensator has been
activated, its effects linger for a long time. This is shown in Figure 5 (b): for clarity
only the second element of the signalsṽ(t) ∈ R

3 have been plotted (note: when
no modification filter is present̃v(t) ≡ v(t)). The blue trace in Figure 5 (a) shows
the response when the modification filter is introduced: the response is much closer
to the linear response, although still slightly worse than that with no anti-windup.
Note that the response of the anti-windup compensator (Figure 5 (b)) now decays
much faster, explaining the improved response.

Figure 6 shows the responses of system to a larger 3-2-1-1 reference demand. The
pulses in this case are closer together and reference has magnitude 4 units. For this
larger, faster demand Figure 6 (a) shows greater degradation in behaviour when
saturation is introduced but no anti-windup is present: theoutput oscillates for many
seconds after the last pulse is applied (at 15 seconds). Whenthe standard anti-
windup compensator is used, the response is very disappointing with the system
output non-zero, and of large magnitude, 25 seconds after the last pulse demand.
While not much performance can be achieved with this level ofsaturation, when
the anti-windup modification filter is added, at least the output of the system decays
to zero, as expected, within a few seconds of the last pulse being applied. As with
the smaller reference demand, Figure 6 (b) explains why the standard anti-windup
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Fig. 6. Lightly damped example:y(t), large pulse. Nominal linear response: black. Satu-
rated response: red. Standard anti-windup: magenta. Anti-windup with modification filter:
blue. Note that thẽv responses for the linear and saturated cases are zero because no an-
ti-windup is active. Note when no modification filter is usedṽ(t) ≡ v(t)

response is rather poor: the anti-windup signal,v(t) is remains non-zero well after
the the reference demand returns to zero.

7 Conclusion

This paper has proposed a simple nonlinear modification filter which can be ap-
pended to a linear dynamic anti-windup compensator in order, potentially, to im-
prove performance of the overall system. The idea, roughly,is to use the modifica-
tion filter to reduce the activity of the anti-windup compensator when saturation has
ceased, making the dynamic compensator behave more like a static one. The work
has only treated the case of a single saturation element: themultiple saturation case
can be treated in a similar technical framework but in this case the number of sec-
tor conditions which will hold will increase dramatically and it is likely that some
pairing of anti-windup inputs with outputs would be needed in order to obtain vis-
ibly improved performance. A direction for further improvement would be to add
a robustness criterion to ensure that the use of the nonlinear modification does not
impair the nominal system’s robustness.
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A State-space matrices

Nominal linear closed-loop system:







Acl Bclu Bclv

Ccl − Dclv





 =















Ap +BpDcCp BpCc −Bp BpDcv

BcCp Ac 0 Bcv

DcCp Cc − Dcv















(A.1)

State-space matrices ofΣ:















A B1 B2

C1 − −

C2 − −















=





























Acl BclvCa −BclvCq Bclu 0

0 Aa 0 Ba 0

0 BqCa Aq 0 −Bq

Ccl DclvCa −DclvCq − −

0 Ca 0 − −





























(A.2)

State-space matrices ofΣℓ:







Aℓ Bℓ

Cℓ −





 =















Acl BclvCa Bclu

0 Aa Ba

Ccl DclvCa −















(A.3)
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