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Abstract

This paper presents a simple modification which can be maate-designed dynamic
anti-windup scheme in order to improve its performance. ghbuspeaking, the modifi-
cation enables the dynamic anti-windup compensator to act ifike a static anti-windup
compensator in certain circumstances. In particular, tbdification enables the output of
the compensator to decay more quickly than if it were absbateby effecting a swifter
recovery of linear behaviour. The modification is therefsuétable for - and indeed mo-
tivated by - applications where the original anti-winduprgmensator contains slow poles,
resulting in a potentially lengthy recovery of linear beioav. The paper describes in detail
the modification and presents conditions under which it is &bpreserve stability.
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1 Introduction

Anti-windup compensators supplement baseline contrdiesys in order to im-
prove their performance during control signal saturatiime idea of anti-windup
originated many years ago but the concept has been re-exdraiiensively by
the research community over the last two decades and manyewodwiques for
anti-windup analysis and design have been proposed - ségffi-nstance.

Anti-windup compensators are activated upon saturatidghetontrol signak(t),
normally by observing the signalt) := wu(t) — sat(u(t)) =: Dz(u(t)): once this
signal is non-zero the anti-windup compensator becomegeaand, if designed
properly, should maintain stability and improve performaduring periods of sat-
uration. A linearstatic anti-windup compensator has no dynamics and thus, once
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saturation is overi(t) = 0 for t > T'), the output of the anti-windup compensator,
v(t) will also be zero for allt > T'. A linear dynamicanti-windup compensator
behaves differently: once saturation is over, and agé&ip= 0 for ¢t > T, its states
decay exponentially to zero i.ez .., (t)|| < oy exp[—aq(t—T)]||zw. (T)|| for some
a1, ag > 0. Thus, if the anti-windup compensator contains slow modesutput
may take considerable time to decay to negligible valuesethy prolonging the
time taken for the system to recover from the effects of saitm.

Modern anti-windup compensators are typically designadgusariants of the

Multivariable Circle Criterion; that is they are designesing quadratic Lyapunov
functions with the aid of sector bounds on the saturaticaddene nonlinearities.
This approach essentially requires a certain transfettiimmeo be strictly positive
real. In order for the anti-windup compensator to bestow stricifpee realness
(and therefore stabilise the system during periods of aagur), it may be neces-
sary for the compensator to contain slow modes. The prickfpastability, there-

fore, may be a slow recovery of linear behaviour after sétumanas occurred: this
is contrary to theswift recovery of linear behaviouraditionally sought [7].

This paper proposes a nonlinear modification which can be-féted to a pre-
designed (dynamic) anti-windup compensator (a retro-fa tetro-fit) to enable
the output of the anti-windup compensator to decay moredhajifter saturation
has ceased. The nonlinear modification operates by mamgtdhie level of sat-
uration, and attenuating the magnitude of the anti-windoqmmensator’s output
depending on this: the nonlinear modification can be constlas a nonlinear
gain. It transpires that the use of this nonlinear gain, ttogrewith a simple filter of
order equal to the number of anti-windup outputs, can ensthlglity to be main-
tained whilst also improving small signal performance. Séeleas were motivated
by a flight control application considered by the authors9[[&nd in unpublished
work) which suffered a similar issue to that described abé&hough the solu-
tion to these problems was a little different in the motingtwork, some key ideas
remain the same in this paper.

It is stressed that this paper considers a nonlimeadificationto a pre-designed
anti-windup compensator. It does not consider the desigana priori nonlin-
ear compensator ([10-16]). The latter type of compensaayrperform better, and
perhaps even may be necessary in some cases ([17]), bualtypinee design condi-
tions are more complex and the dynamics may be faster aneftinemore difficult
to implement in practice. The advantage of the modificatimppsed here is that
it is simple to both design and implement and therefore irpkegwith the ethos
of anti-windup compensation.

Notation. Notation is standard throughout. The saturation functsoshefined as
sat(u) = sign(u) min{a, [u|} @ >0 1)
The deadzone function is defined as

Dz(u) = sign(u) max{0, |u| —u} u >0 2)



The identitysat(u) = uw—Dz(u) holds. Frequently, the notatian= Dz(u) is used.

The identity matrix of sizen is denoted/,,. A vector of sizem whose elements
are all unity is defined ak,,. A positive (negative) definite symmetric matriX is
indicated byM > (<) 0.
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Fig. 1. Anti-windup configuration. In the standard anti-diip configuratior@ is the iden-
tity; in this paper,Q is a nonlinear operator.

The paper considers the system depicted in Figure 1, wheteR? represents
the plant measurements; € R andu,, = sat(u) the controller output and the
plant input respectively: € R"" the reference demantypically withn,, = 1; and

d € R™ the disturbance. The signal which activates the anti-winchmpensator
isDz(u) =: u € Rando € R™ is the signal the anti-windup compensator injects
into the controller. The linear dynamics of the plant andabetroller are given by
the state-space realisations:

G | B = Aty & Byt + Byad -
Yy = Cpl‘p + Dpdd

T = Acxc + ch + Bcrr + Bcvﬁ
K~ 4)
U = chc + Dcy + Depr + Dey0

The state dimensions of the plant and the controller arpeasely,n, andn.. It
is assumed throughout thd}, is Hurwitz and that, in the absence of saturatiin,
internally stabilise$.

The nonlinear anti-windup compensator, depicted in Fidure a cascade of two
components. The first is a linear component, which is assumbd pre-designed
and, for simplicity, strictly proper. This has state-spezaisation:

Ty = Agxy + Bal
A~ (5)

v = CLa,



The second component is thati-windup modification filtewhich is a dynamic
nonlinear operator with state-space realisation

i‘q = fq(xqauav)

U = gy(xg, u,v)

Q~ (6)

The functionsf,(., .,.) andg,(., ., .) will be specified later, as will the state-vector
dimension. IfQ is the identity operator, standard linear anti-windup cengation
is recovered, i.ev = v. In this case, providing\ has been designed to globally
stabilise the origin of the system, nothing else needs pgovihis paper considers
a 9, not equal to the identity, which improves performance imssense.

2.1 Description of the modification

Before providing the technical details behind the nonlimeadification filter,Q,

it is useful to describe the way in which it is envisaged torape The rationale
behind the introduction of the nonlinear modification isdascribed in the previ-
ous section, to provide faster attenuation of the anti-windompensation signal
after saturation has ceasedo that the return to linear behaviour is swifter. How-
ever, when significant saturation takes placex(> u), it is desirable to leave in
place the anti-windup compensator so that it functions iggnally intended. From

a simplistic perspective, the purpose of the nonlinearaipeg is, then, to adjust
(in a nonlinear fashion) the gain of the anti-windup compgmsbetween zero (no
saturation) and one (full saturation).

This nonlinear attenuation is accomplished by monitorimg level of saturation,
through measurement aefand then using this to set the “gain” ¢f. However, it
transpires that such a strategy may result in unsatisfattansient performance
(especially when the control signal passes from fully sd&d in one direction to
fully saturated in the opposite direction) and leads to gpliicit expression for the
control signak: which may result in the system being ill-posed. For thessaes,
Q features some dynamics and, as will be clear later, the eladithese dynamics
effectively reduces to choosing the bandwidth of a linegefil

3 Motivating Example

To illustrate the problem described above, we consider amele which has been
inspired by the authors’ work on anti-windup design for PN@idance [9]. The

example is realistic as the essence of the problem is sitoilrat of the applied

work described in [9], but it is also illustrative due to thenple interpretation

which can be given to the anti-windup compensator.

In this case, the dynamics of plant comprise the lateral ohyos of an aircraft
combined with a first order actuator. The plant output to batrotied is the roll



attitude,¢(t), and the controller measures this in addition to the ro# rét), the
actuator positiornr,.(t) and roll attitude demand,(t) i.e.r = ¢4. The controller
is purely staticand hence, whef(t) = v(¢) (no modification), can be described
via:

u(t) = Dey(t) + Derr(t) + Deyo(t) (7)
For this system, an anti-windup compensator was designied tise method of
[18] and this yielded a compensator with output [v] v4), v; € R, vy € R3.
The correspondin@., = [-1 D.,], so the effect of the anti-windup compensator
can be combined into a “totat’,(t)

vp(t) == —v1(t) + Dovse(t) € R (8)

It is simpler to observe the anti-windup action from thisngijthan observe the
four signals associated witht).

|deally, we would likevr () to be inactive apart from when saturation occurs. How-
ever, in the case of dynamic anti-windup compensatorsgifdynamics are suffi-
ciently slow,vr will linger after saturation has ceased. This is becauseinasg
lu(t)] <u ¥Vt >t,, we have

V() = Cop €Xp[Agw (t — t5)]Taw (ts) (9)
Unfortunately, due to the mix of slow and fast dynamics in fent, the anti-
windup compensator designed using the method in [18] edutta slow real pole
at~ 1073 radian/s. This meant that recovery of linear behaviour W@s.s
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Fig. 2. Sanitised aircraft example response. Note thatritiexandup signalsr(t) are not
present in the linear and saturated cases in (b)

Figure 2 (a) shows the roll attitude response of the aireedimple under various
conditions. The saturation limits we28 units and the reference demagd(t) is a
series of pulses. The linear response (black) is well-damapd brisk, but when sat-
uration (red) is introduced - and no anti-windup is used +é&sponse contains large
overshoots. For certain reference demands, the systems enienit cycle. Unfor-
tunately, when full-order anti-windup above is introdug¢ethgenta), the response
does not improve much: although the overshoots lessenylireréier anti-windup



compensator’s action is too aggressive and (see Figurg thébanti-windup signal
associated with this compensator decays very slowly, mgahat the system fails
to track the pulse references (Figure 2 (a)). To preventthrasking problems, the
modification described earlier is introduced to the systEme. blue trace in Figure
2 (a) shows that tracking performance is now much improves dan be explained
by the faster decay of the anti-windup signal(t) which is seen in Figure 2 (b).
The following sections describe how such a nonlinear maifia can be added
without compromising stability.

4  Problem Formulation
4.1 Nonlinear Modification Filtel©Q

Before formally stating the problem, the dynamics of thelm&ar modification
filter, Q, are defined and the dynamics of the system are re-writtestl\Eithe
dynamics ofQ are considered to take the following form:

(10)

v =—-Cury+v

0~ {x'q = Agzy+ (1 = B(u)) By

wheres(.) : R — [0, 1] is a nonlinear function defined by

Bu) := Da(u)/u = max{0, (Ju| — u)/|ul} (11)

Note thatf(u) = 0 when|u| < w i.e. when saturation does not take place. The
state-space matricésl,, B,, C,) are not specified at the moment, but if they are
chosen to correspond to those of a low-pass filter i.e.

(Ag, By, Cy) = (AL, Iy, M) A>0

it follows that when saturation is not activg(f:) = 0) the outputv — 0 i.e. the
output of Q decays to zero. Similarly if saturation is present and estten that is
|u| >> u, thenfB(u) — 1 which implies thatr, — 0 and thus the output — v.

This form of @ functions in the way envisaged in Section 2.1, althoughnbisthe
only choice possible.

4.2 LFT modelling

The dynamics of the plant and the controller can be combioethtain

(12)

jjcl - Aclxcl + Bclua + Bclvla
Pcl ~
U = Cclxcl + Dclvf)
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Fig. 3. Equivalent Representation of Nonlinear Anti-wipdising an “LFT”

where expressions for the above matrices can be found irpghendix. The matrix
A 1s Hurwitz because it is assumed that the nominal contretkgrilises the sys-
tem without saturation. For convenience, the nonlineaction(.,.) : R™ xR
R™ is defined:

(v u) = Bu)v (13)
Thus the dynamics of the plant and the controller, (12),ithesak anti-windup com-
pensator (5), and the modification filter (10), can be combimethe following
“LFT” form, illustrated in Figure 3, where the LTI elemeht has state-space real-
isation:

& = Az + Biu + By (v, u)

v = Chyx
The state-space matrices are given in the appendix.

It is assumed that an anti-windup compensatdras been designed such that the
closed loop system, wit@ replaced by the identity, is asymptotically stable. More-
over, because many popular anti-windup design technig@gsraessence, based
on an application of the Circle Criterion, it is assumed thatsystem without the
dynamics ofQ, satisfies the matrix inequality associated with the Ci@igerion.
WhenQ is omitted, the dynamics of the system become

Ty = Apxy + Bot
5, ~ ¢ 0Ty ¢ (15)

u = Crx

where the state-space matri¢efs, B,, C,) are defined in the appendix. This moti-
vates the main assumption of the paper

Assumption 1 There exists a symmetric positive definite maffix> 0 and a
positive scalarv, > 0 such that the following matrix inequality is satisfied:

AP, + P,Ay PiBy + Chw
oFe + FoeAg by (W (16)

* —QUJ(



Remark 1: This paper considers asymptotically stable open-loopesystA, is a
Hurwitz matrix. In this case, there will always exist a follder ¢, = n,) anti-
windup compensator of the form (5) which renders the sagdraystem exponen-
tially stable via the Circle Criterion. However, Assumtib does not stipulate that
the compensatanustbe full-order and often a low-order compensator is peryectl
satisfactory ([19,20]). In fact, Assumption 1nst necessaryall that is really re-
quired is for the saturated system with anti-windup to bergsyptically stable by
an appropriate Lyapunov function. However, Assumption Liide typical for
many modern anti-windup designs and allows neat results twbkained. O

Remark 2: Assumption 1 implies thatl; is Hurwitz, that is the linear controller
stabilises the linear plant. This is evident from the suitebf A, in the appendix.
O

The following is the problem addressed in the remainder @fpiper.

Problem 2 Consider the system (14) whereand (v, u) are defined in equations
(2) and (13). Find conditions, in the form of linear matrieiualities, which ensure
that the origin of the system is globally asymptoticallyosta

Remark 3: Problem 2 is focused on ensuring the origin of the system aniin
windup modification isasymptotically stabteit does not explicitly consider per-
formance, which is the reason for introducing the modifarafilter. One can intu-
itively understand the reason why the modification filter imigield improved tran-
sient behaviour (as explained in Section 3) but charaaterihis mathematically
is difficult. Firstly, the modification filter is not expectéd improve thel, gain
properties of the anti-windup compensator because, fgellvels of saturation
(i.e. “large” L, signals) the modification filter essentially makes no modiian.
Similarly, a decay rate charaterisation seems to fail be=ailne decay rate of the
modified compensatal and A is always determined by the slowest element (i.e.
A). However, the intuitive behaviour of the compensatorgetbgr with its stabil-
ity guarantees should be sufficient for improved time-dan@erformance to be
observed. OJ

5 Main Results

5.1 Sector Conditions

One of the nonlinearities featured M is the deadzone nonlinearity, = Dz(u)
which is well known to satisfy certain sector inequaliti€ae purpose of this sub-
section is to derive similar sector conditions for the noedr element) (v, v) and
also - taking inspiration from [21] - combinations of the finearitiesDz(u) and



(v, u). These conditions are more palatable, with the shorthand

Vi = 1i(v,u) = B(u)v; (17)

The following result can be stated.

Lemma 3 Consider the nonlinear functiorisz(.) : R — R and(.,.) : R™ x
R — R™, as defined in equations (2) and (13), andiebe defined as in equation
(17). Then the following inequalities hold for all positisealarsn:

Dz(u)n(u — Dz(u)) >0 VYu e R (18)

1/}277<'Uz_wz> Z 0 Vu,vi eR Vie {1,...,7”%}
(19)

(Dz(u) + ¥i)n[u+v; — (Dz(u) + ;)] >0 Vu,v; e R Vie {1,...,n,}
(20)

(Dz(u) — ¥)nlu —v; — (Dz(u) — ;)] >0 VYu,v; e R Vie{l,...,n,}
(21)

Proof:

i) Inequality (18) is simply the standard sector inequality
i) Inequality (19). The left hand side may be written as

Yin(vi — i) = viB(u)n(l — Bu))v; (22)
= vuinB(u)(1 = B(u)) >0 (23)

where the last inequality follows becausg:) € [0, 1].
i) Inequality (20). Noting thaDz(u) = S(u)u, we can write:

(Dz(u) + i)nfu + v — (Dz(u) 4+ ¢5)] = (u + v;) B(u)n(l — Bu))(u+ U(z%4)
= (u+v)nBu)(1 - B(w))  (25)

where again the last inequality follows because) € [0, 1].
iv) This follows by similar reasoning to the third. ([

5.2 Stability conditions

Lemma 3 can be used in the derivation of Lyapunov conditionstability using
a Lur’e-type Lyapunov function.

Proposition 4 Consider the system described by equation (14). Then tlggnori
is globally asymptotically stable if there exist a positdefinite symmetric matrix
P > 0, adiagonal positive definite matrix, > 0, positive scalars; > 0 andn >



0, and diagonal matrice(;, X, which satisfy the following matrix inequalities

'P+PA PBi+C (w41 X11)+Ci Xo1+A'Cin PBo+-Ch(Wo+X1)+C11' X

* —2’11]1 - 21’X11 + H(ClBlBiCi) —21,X2 -+ T]ClBQ <0
* * —2W2 - 2X1
(26)
X, + Xy >0 (27)
X1 —Xy>0 (28)

Proof: The proof of the proposition is similar to classical abselsiability proofs
[22]. First we choose a Lyapunov function

V(z) = 2/ Pz + 29 /0  Dalo)do (29)

whereP > 0 is a positive define matrix angl > 0 a positive scalar. The derivative
along the trajectories of the system (14) can be calculated a

V(z) = 2(2'P 4 nDz(u)C,)(Azx 4 Byt + Byy) (30)
x / AP+ PA PB,+ACn PBs x

=la *x  n(CiBy + B\C!) nCi B, | | @ (31)
0 * * 0 (G

Using the state-space realisationboin (14) we can re-write the sector conditions
in Lemma 3 as:

Condition (i) (from inequality (18)):

ﬂ'wl(C’lx — ’lj) >0 w >0 (32)

Condition (i) (from inequality (19)):

WWo(Cow —1p) >0 Wy = diag(way, . . ., wap) > 0 (33)
Condition (iii): Using inequality (20), for any positive scalars ;, it follows that
2> (Da(u) — sy fu — vi — (Da(w) — )] > 0 (34)
Defining

W3 = diag(wsq, . .., w3y,) >0 (35)

10



and noting that

]_/Wg]_ = Zw&i (36)
1/W3 = [w3,1 Wz **+ W3np, (37)

allows inequality (34) to be written as

/

x 0 C11'W31+ CIWs1 C11'Ws + CoWs | | x
a * —21'W51 —21'W, | >0 (38)
Y * * —2W; Y

W3 = diag(wsy, . . ., Wa) >0 (39)

Condition (iv) This follows in a similar manner to inequality (38), excépat the
starting point is inequality (21).

/

T 0 CI1'W4l — CoWal —CI1IW, + CoWy | |
a * —21'W,1 21'W, w| =0 (40)
i * * —2W, Y

Wy = diag(wyi, . . ., Wa) > 0 (42)

Appending inequalities (32)-(40) to the derivative of oyapunov function (31)
yields the inequality

A'P+PA PBy+C)(wi+1 (Wat+ W) 1)+C(Wy— W) 1+ A'Cly

x
Viz)<|a * —2uwy — 21 (W5 + W1 + n(Cy By + B,C})
(0 * *
PBQ+C£(W2+W3+W4)+C{1/(W3—W4) Xz
—21' (W5 — Wy) + nCy B, @ (42)
—2Wy — 2(W3 + Wy) Y
Defining
X1 = Wg + W4 (43)
Xy = Wi — W, (44)

11



gives the inequality (26). This means th&t andlV, can be recovered as

W3 — (Xl + XQ) (45)

NNl NN

Wy = =(X; — Xy) (46)

Inequalities (27) and (28) ensulié; andV, are positive definite and diagonall]

Proposition 4 gives conditions which ensure that the syst@manti-windup and

the modification filterQ are asymptotically stable. It assumes that the plant, the
controller and the filter dynamics are given. A typical forfrfitier was argued to

be a bank of first order filters described by equation (4.1% mext shown that, if
Assumption 1 is satisfied, there will always exist an antidvip modification filter

Q ensuring stability.

Proposition 5 Assume the plant, controller and anti-windup compensayoad-
ics are given and let Assumption 1 be satisfied. Then therayalwxist matrices
(A,, By, C,) such that Proposition 4 is satisfied.

Proof: Let X; and X, be two sufficiently “small” matrices satisfying inequadisi
(27) and (28). Also, let) be a sufficiently small scalar. In this case, a sufficient
condition for inequality (26) to be satisfied is for the follmg inequality to hold:

AP+ PA PB; + Clwy PBy + CLW,
* * —2W,

The matrixB; is given by (see appendix)

By, = 0 (48)

Thus, for sufficiently smalB,, and sufficiently smallV;, it follows that inequality
(47) will be satisfied if their exist matrice8 > 0 and a scalatv; > 0 such that
following inequality is satisfied:

* —2’11]1

12



Referring to the appendix, it can be seen that this matrigguaéty has the structure

/

A —BuaC, B o/
P+(x) P
B0 C. A, 0 ~C! Dy, <0 (50)
* —2w1

Let A, € R™ be a Hurwitz matrix; then there exists > 0 satisfying
AP, + PyA, <0

Now let A, = €A, and letP = blockdiag(P;, P,), P, > 0. Then inequality (50)
will be satisfied for sufficiently small > 0 and B,, or sufficiently small 5B,, C,),
if the following inequality is satisfied for some matrB > 0 and scalatw; > 0

A%Pg + PgAg Png -+ Céwl (51)

* —211)1

which is exactly Assumption 1. [N

5.3 Improved stability conditions

The results of the previous subject exploited sector bodimeles of the deadzone
nonlinearity, along with the three new sector conditiorisiduced in Lemma 3 re-
garding the nonlinearity(v, u) and the deadzone nonlinearity. However, the dead-
zone nonlinearity is alsslope restrictedwith the upper bound on its slope beihg
and the lower bound being zero; With the shorthafd) = Dz(u), the following
inequality is satisfied

P(u1) — d(uz)

Uy — Uz

0<

<1 VYu; #u

In this case the following inequality is satisfied almostrgwéhere ([23,24]):

S(un(i—d(u)) >0 YueR Vn>0 (52)

In this case, the following Lyapunov function can be usechadbasis for proving
stability

!/

XY
Y’ 2

T

5 +2291‘($) (53)

V() = [:’;
¢

13



where

gi(@) =1 [ 6(0)ds =0 Vu (54)
9:(2) = pz [ fo = $(o)do >0 W (55)
9s(a) = pis [ 1= 06(0)}odo = 0 Vu (56)
91(2) = s [ 00(0)]o — 6(0)]do = 0 W (57)

ando(.) is the sub-differential operator. A neater Lyapunov fumetivhich yields
similar stability conditions can be obtained using the apph of [25]. The Lya-
punov function (53) can be used, together with the sectgualties from Lemma
3 and the slope inequality (52) to prove the following result

Proposition 6 Consider the system described by equation (14). Then tlynori
is globally asymptotically stable if there exist a positdefinite symmetric matrix
X > 0, a matrixY, a diagonal positive definite matrid’, > 0, positive scalars
wy; >0,2>0,n7>0andy; >0 € {1,...,4}), and diagonal matrices(;, X5
which satisfy the following matrix inequalities

AP 4+ PA PBy + Cl(wy + 1'X11) + C4Xo1 + A'Y Y PBy+ C4(Wa + X)) + C11' X, |
* —2w1 — 21’X11 + Y/Bl + BiY z Y/BQ — 21/X2
* * 0 0
I * * * —2Wy —2X, |
0 (H1—p2) A'CY (Ha—p3)C1HA'Con 0
L (—p)(C1B1+B1C1)  —pa+BiCln (1 — p2)C1Bo <0 (58
* * —2n nC1 B,
* * * 0
XY
>0 (59)
*x Z
X1+ X, >0 (60)
X;— X5 >0 (61)

whereP(X, s, j13) = X + (na + 113)C1Ch

Proof: The proof follows in a similar manner to that of Propositigrescept that
the Lyapunov function (53) is used. In addition, the slopsrretion (52) is noted
to yield:

d(u)n(C(Az + Bi¢ + Bath) — p(u)) > 0

14



Combining the expression fdf, obtained from (53), and the sector conditions from
Lemma 3, after some algebra, yields the result. [

6 Examples
6.1 Circuit Example

This example was used in a number of papers to illustrate ¢éhefiis of nonlin-
ear anti-windup [13,21]. The plant and controller have tbikoWing state-space
matrices:

[ _10.6000 —6.0900 —0.9000 |1.0000 |
A,|B, 1.0000 0 0 0
_ (62)
C,|D, 0 1.0000 0 0
| —1.0000 —11.0000 —30.0000{ 0 |
—0.0800 0 ]0.0010
=10% x | 0.0010 0 0 (63)
0.0203 1.6000(0.0800
andB.,. = —B., D.. = —D,.. The anti-windup terms are injected through
B., 0 B.
- (64)
D., —1 D,

The anti-windup compensator is a full-order compensatsigihed using the method
described in [18] withV, = 1, W, = 0.1. This anti-windup compensator has an
output vectorn € R? since one output is fed directly to the controller outpyd (
and the other to the controller input,§. Therefore, the anti-windup modification
filter state-space matrices can be chosen as

(AQ7B(17C(1) = (_>\127[27>\IQ> (65)

where)\ > 0. Proposition 5 implies the existence of such a modificatilverffor
sufficiently small\ > 0. For this system) was chosen as = 10 and the matrix
inequalities in Proposition 4 were feasible.

Figure 4 shows the plant output and input response of themsykir a pulse input
demand of magnitude 3. It can be seen that for this input,ébpanse of the sys-
tem is sluggish with standard linear anti-windup compeasabut without anti-
windup compensation the response is worse. When the antiupi modification
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Fig. 4. Circuit exampley(t), large pulse. Nominal linear response: black. Saturated re
sponse: red. Standard anti-windup: magenta. Anti-windith modification filter: solid
black

filter is added, the system response retains the briskneélss efstem without anti-
windup compensation, but without the excessive overstaesrly the response
has improved. The presence of the anti-windup modificatiter #nables the con-
trol signal to be more active, compared to the system witHmgrovement is even
better for smaller reference demands.

6.2 Lightly damped example

This example has similar features to the motivating aitoggahmple without the
complexities present in the real systerhe plant has two lightly damped complex-
conjugate poles close to the imaginary axis. Its stateespwatrices are:

0 1 | o]
A|B, —0.1 —0.01]0.25
= (66)
,|D, 1 0 |o
0 -1 0

The plant has two outputs, with, roughly the second beinglénsative of the first.
A static controller provides good performance for this sgstind is given by

DC = [_8 - 72]7 Dcr - 87 Dcv - [_1 Dc] (67)

A full-order anti-windup compensator was designed for siyitem using the method
of [18] with W, = I, andW, = 0.1. This anti-windup compensator has three in-
puts to the controllerr{, = 3) although, because the controller is static, this actu-
ally could be realised as just one input as mentioned in @e&i Therefore, the
modification filter matrices were chosen as

(AQ7BQ7CQ) = (_)\]37[37)\13) (68)
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rated response: red. Standard anti-windup: magenta.wintdup with modification filter:
blue. Note that the@ responses for the linear and saturated cases are zero &etaas-
ti-windup is active. Note when no modification filter is usgd) = v(t)

with A = 2. Proposition 4 was then used to verify that the system woaldtable
with this choice ofQ.

Figure 5 (a) shows the time history of the first output of th&tegn due to a 3-2-1-1-
type reference demand of magnitude 0.5 units. The detéoardue to saturation
is not catastrophic and the saturated response closebw®lihe linear response
with a little more overshoot and a small loss of phase. Howekie response with
linear anti-windup is quite disappointing, with the resperseeming to show a
“steady state” error. This may be explained by a very slove fa@ing present in
the anti-windup compensator, which causes one of the antdwp signals (the
second element af) to decay slowly: once the anti-windup compensator has been
activated, its effects linger for a long time. This is showifrigure 5 (b): for clarity
only the second element of the signalg) € R? have been plotted (note: when
no modification filter is present(t) = v(t¢)). The blue trace in Figure 5 (a) shows
the response when the modification filter is introduced: és@onse is much closer
to the linear response, although still slightly worse thaett wvith no anti-windup.
Note that the response of the anti-windup compensator (Eigyb)) now decays
much faster, explaining the improved response.

Figure 6 shows the responses of system to a larger 3-2-leferefe demand. The
pulses in this case are closer together and reference hastotg4 units. For this
larger, faster demand Figure 6 (a) shows greater degradatibehaviour when
saturation is introduced but no anti-windup is presentotitput oscillates for many
seconds after the last pulse is applied (at 15 seconds). \Wigestandard anti-
windup compensator is used, the response is very disajpppiwith the system
output non-zero, and of large magnitude, 25 seconds aftelagt pulse demand.
While not much performance can be achieved with this levead@iration, when
the anti-windup modification filter is added, at least thepatibf the system decays
to zero, as expected, within a few seconds of the last pulsg la@plied. As with
the smaller reference demand, Figure 6 (b) explains whyttdrelard anti-windup
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Fig. 6. Lightly damped examplej(t), large pulse. Nominal linear response: black. Satu-
rated response: red. Standard anti-windup: magenta.wintdup with modification filter:
blue. Note that the@ responses for the linear and saturated cases are zero &etaas-
ti-windup is active. Note when no modification filter is usgd) = v(t)

response is rather poor: the anti-windup signél) is remains non-zero well after
the the reference demand returns to zero.

7 Conclusion

This paper has proposed a simple nonlinear modification fNtech can be ap-
pended to a linear dynamic anti-windup compensator in pgptEentially, to im-
prove performance of the overall system. The idea, roughty use the modifica-
tion filter to reduce the activity of the anti-windup compatms when saturation has
ceased, making the dynamic compensator behave more likdéi@a@te. The work
has only treated the case of a single saturation elemennuttgle saturation case
can be treated in a similar technical framework but in thsedde number of sec-
tor conditions which will hold will increase dramaticallypa it is likely that some
pairing of anti-windup inputs with outputs would be neededider to obtain vis-
ibly improved performance. A direction for further imprewent would be to add
a robustness criterion to ensure that the use of the nonlnedification does not
impair the nominal system’s robustness.
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A State-space matrices
Nominal linear closed-loop system:
A, + B,D.C, B,C.|—B,|B,D.,

= B.C, A, | 0 | B, (A.1)
D.C,  C.| - | Da

_Acl B.,Cy —BwCy|Bew| 0 -
A |By| B> 0 A, 0 B,| O
al-l-1=10 Bec. 4, |0 -8, (A.2)
Oy — | — Ca DayCoq =D Cq| — | —

I 0 C, 0 - = ]

State-space matrices bj;:

Acl Bcvaa Bclu
=10 A, |B, (A.3)
C(cl Dcvaa -

Ag Bg
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