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PII: S0947-3580(17)30464-8
DOI: 10.1016/j.ejcon.2018.06.003
Reference: EJCON 275

To appear in: European Journal of Control

Received date: 30 November 2017
Revised date: 19 May 2018
Accepted date: 19 June 2018
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Abstract

Target capture and station keeping problems for an autonomous vehicle agent have been studied in the literature for the cases where
the position of the agent can be measured. Station keeping refers to moving the agent to a target whose distances are predefined
from a set of beacons that can be stations or other agents. Here we study the target capture and station keeping problems for a
nonholonomic vehicle agent that does not know its location and can measure only distances to the target (to the beacons for station
keeping). This sensing limitation corresponds to consideration of unavailability of GPS and odometry in practical UAV settings. For
each of the target capture and station keeping problems, we propose a control algorithm that uses only agent-target (agent-beacon
for station keeping) range and range rate information. We show the stability and convergence properties of our control algorithms.
We verified the performance of our control algorithms by simulations and real time experiments on a ground robot. Our algorithms
captured the target in finite time in the experiments. Therefore, our algorithms are efficient in scenarios where GPS is unavailable
or target identification by vision algorithms is unreliable but continuous agent-target range measurements are available.

Keywords: Target capture, Station keeping, GPS denied environment, Nonholonomic vehicle

1. Introduction

Target capture, which is also referred to as target docking
or target pursuit, is the problem of reaching a target by a mo-
bile autonomous vehicle. This problem has been studied in a
collection of recent works, see for example [1], [2], and the ref-
erences therein. The autonomous vehicle A in the target capture
problem can be a mobile ground robot or an unmanned aerial
vehicle (UAV) trying to reach a target T . Usually, the target
T is a sensor that emits a certain form of signal which can be
used by a suitable sensor mounted on A to measure distance.
The case where the positions of A and T are both known in the
global coordinate frame is the standard target tracking problem
and can be solved in various ways. However, these solutions
cannot be applied when A can sense the distance to T only but
not the (relative) position. Thus, one needs to either utilize the
derivative of the distance measurements or estimate the target
location on-line to achieve the target capture objective.

For example, [3] derives a continuous-time adaptive local-
ization algorithm to localize T by assuming that mobile agent
A’s own position in global frame and its distance to the target T
at each time instant are available. This algorithm is established
to be robust to slow persistent drifts of T and guarantees per-
fect estimation in case of persistence of excitation (PE) of the
motion trajectory of A with respect to T . Further, [4] derives
a least-squares (LS) based estimation algorithm to achieve the
same objective, with further extension of the design to be used
with time-of-flight (TOF) sensors. Reference [5] presents re-
sults on the sensor/beacon placement, which guarantee practical
localization of sensors by using the source signals of a network

of beacons.
A further problem involving adaptive localization is adaptive

target pursuit, capture, or tracking. Reference [2] proposes an
adaptive control strategy based on [3] that achieves the target
capture task while localizing the target at the same time. Target
pursuit and circumnavigation around a target has been studied
in some other recent works as well, including [1, 6, 7, 8]. In
[1], the authors derive an algorithm that steers a nonholonomic
vehicle, by controlling only its angular velocity, to a source to
which the vehicle cannot measure its distance, but receives a
signal from the source in the form of an unknown function of
the distance. Employing extremum seeking and averaging tech-
niques, circumnavigation around the target is achieved in that
work. The localization algorithm of [3] and a motion control
law are combined in [8] for the same objective, assuming that
the range measurement to the target and the vehicle’s own po-
sition in a reference frame can be measured. Circumnavigation
is studied in [6] as well, with the assumption of bearing angle
measurement to the target instead of the range measurement.

Here we propose a control algorithm to solve the aforemen-
tioned target capture problem when the self-position measure-
ment is not available to the mobile agent. We assume that
the vehicle can sense the vehicle-target distance measurements
only; i.e., the vehicle does not utilize any other sensor such as
GPS, inertial measurement unit (IMU), or camera in the tar-
get capture control algorithm. In Section 2, we examine the
target capture problem for a nonholonomic vehicle by using a
switching-based control law inspired by the control approach
described in [9, 10, 11]. The switching between the control
rules is based on the range measurement and the range rate sig-
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nal. We first present the control law for a general case where
the range measurement and its time derivative are available. In
Section 3, we study the stability and convergence properties of
the proposed control algorithm. In Section 4, we discuss the
case of unavailability of range rate information and the use of
observer to compensate this case.

Further, in Section 5, we study the station keeping of non-
holonomic vehicles, which steers an autonomous vehicle A to-
wards a target location T , which is not known by the vehi-
cle explicitly, but defined by its pre-defined distances to a set
of stationary vehicles/sensors S 1, . . . , S N , which are known by
A. This problem has been considered in some works including
[12, 13, 14] and has applications in formation acquisition and
maintaining of autonomous multi-agent (vehicle/robot) systems
as well as wireless network based target localization and track-
ing. Assuming that T − S i distances are predefined and that A
can sense its distances to S i, we modify the control law in Sec-
tion 2 such that A minimizes the difference between T − S i and
A − S i distances to accomplish the station keeping task asymp-
totically.

A preliminary version of this work was presented in [19]
where switching control algorithms were proposed for the tar-
get capture and station keeping problems without real-time im-
plementation. Here, we modify the target capture control al-
gorithm of [19], demonstrating complete stability and conver-
gence analysis, and propose two novel control algorithms for
the station keeping problems as well. Since [8, 9, 10, 11] con-
sider the circumnavigation problem, the methodology of this
paper greatly differs from [8, 9, 10, 11] in that our purpose is to
steer the vehicle to a close vicinity of the target in contrast to
circumnavigation problem where the vehicle is desired to orbit
around the target with a relatively bigger radius. Furthermore,
the angular control law in our algorithm is bounded similar to
[22].

We demonstrate the performance of the proposed control al-
gorithms via simulations and experimental tests on a nonholo-
nomic mobile ground robot in Sections 6 and 7. Section 8
presents the conclusions and future directions of the work.

2. Target Capture Problem and Control Design

In this section, we formally define the target capture problem
and present our proposed control law to solve this problem for
a mobile nonholonomic vehicle, assuming that the range and
range-rate measurements are available to the vehicle.

2.1. Problem Definition

Consider a nonholonomic vehicle A with the dynamics

[
ẋA, ẏA

]>
= v [cos(θ), sin(θ)]> , θ̇ = ω, (1)

where pA(t) , [
xA(t), yA(t)

]> ∈ <2 and θ(t) ∈ (−π, π] are the
unknown position vector and heading angle of the vehicle in the
global coordinate frame, and u(t) , [v(t), ω(t)]> ∈ <2 is the
control input of the vehicle with 0 ≤ v ≤ v̄ and −ω̄ ≤ ω ≤ ω̄,
with v̄, ω̄ being the maximum linear and angular speeds of the
vehicle, respectively. Consider also a target T with unknown

Figure 1: Illustration of the vehicle-target configuration

constant position pT , [
xT , yT

]> ∈ <2. We denote the dis-
tance between A and T by

r(t) , ‖pA(t) − pT ‖ . (2)

This configuration is illustrated in Fig. 1. Another representa-
tion of the dynamics (1) uses a time-varying coordinate system
centered at A, and the unknown angle θT ∈ (−π, π] from the
vector pT − pA to the current heading of A [9]:

ṙ(t) = −v(t) cos(θT (t)), (3)

θ̇T (t) = ω(t) +
1

r(t)
v(t) sin(θT (t)). (4)

We focus on driving the nonholonomic vehicle A to the εr-
neighborhood Bεr (pT ) ,

{
p ∈ <2 | ‖p − pT ‖ ≤ εr

}
of the target

T , where εr is a pre-defined small threshold constant, and stop
the vehicle in this region.

Problem 1. Consider a nonholonomic vehicle A with motion
dynamics (1). Given the range measurement r(t) in (2) and its
time derivative ṙ(t), find a control law u(t) = [v(t), ω(t)]> so
that A converges to the εr neighborhood Bεr (pT ) of T in finite
time.

A similar problem is considered in [1] in the context of ex-
tremum seeking, carrying expense of added sinusoid search sig-
nals. Here we follow a more direct approach similar to that of
[9, 11] for the target capture problem.

2.2. Control Law

In this subsection, we derive the base control law we propose,
assuming that range-rate ṙ(t) is perfectly available for measure-
ment. In Section 4, we discuss implementation without having
ṙ information directly. Inspired by the circumnavigation control
design in [9, 11], we propose the control law

u = [v, ω]> , (5)

v(t) =

{
v̄, if r(t) > εr

0, otherwise,
(6)

ω(t) =



(
(sgn(ṙ(t)) + 1)c +

(1 + α)v̄
r(t)

)
σ

(−ṙ(t)
v̄

)
, if r(t) > εr

0, otherwise,
(7)

2
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σ(x) =



1, if x ≤ √
1 − γ

1−x2

γ
, if

√
1 − γ < x < 1

0, if x ≥ 1
(8)

where, for r(t) ≥ εr, σ (−ṙ/v̄) = σ(cos(θT )) is a function that
regulates the angle θT , v̄ is the pre-specified maximum linear
speed, and 0 < γ < 1, c > 0, and α > 0 are design parameters.
The plot of σ(·) for γ = 0.1 is provided in Fig. 2. The function
sgn is defined such that sgn(x) = 1 for x > 0, sgn(x) = −1 for
x < 0, and sgn(0) = 0. α > 0 is a positive constant tuning pa-
rameter to be used for vehicle path performance enhancement.
Selection of c and α is nominally arbitrary, unless ω̄ is pre-
specified, i.e, the asymptotic stability and convergence results
to be established in the sequel are valid for any c > 0 and α > 0.
Selection of the values of these parameters for actual imple-
mentation is performed via simulation based trials and ad-hoc
numerical analysis. The values of c, α, εr, and ω̄, however,
are dependent to each other through the control law (7). (7),(8)
imply that

0 ≤ ω ≤ 2c +
(1 + α)v̄

εr
.

Hence, in addition to v̄, if ω̄ is also pre-specified, α and c need
to satisfy

0 < α ≤ εr(ω̄ − 2c)
v̄

− 1. (9)

(6) and (7) imply that the vehicle stops when it enters the
small discBεr (pT ) around the target T . Selection of the constant
γ is further discussed in Section 3.

-0.5 0 0.5 1 1.5
x

-0.5

0

0.5

1

1.5

(x
)

Figure 2: The σ function in (8) for γ = 0.1.

Remark 1. In most robotics systems, the linear speed v and
angular speed ω are saturated by their maximum values before
they are fed to actuators. Our algorithm (5)-(8) guarantees that
v, ω take values within the bounds 0 ≤ v ≤ v̄ and 0 ≤ ω ≤ ω̄.
Furthermore, as will be discussed in the next section, stability
and convergence properties of our algorithm do not depend on
the vehicle’s maximum speeds.

Remark 2. For ground vehicle applications, εr can be chosen
small to arrive a close neighborhood of the target, or it can

be chosen relatively bigger if the target lies on a foreign vehi-
cle to avoid collision. For fixed-wing UAV applications, since
UAV-ground target collision does not occur due to the altitude
difference, εr can be chosen small to move the UAV to a close
vicinity of the ground target on the x-y plane.

3. Stability and Convergence Analysis

In this section we provide stability and convergence analysis
of the proposed control law (5)–(8), together with a formal dis-
cussion of the intuition behind the selection of switching rules
(6),(7). The key component in the control law is the steering
ω law (7). The aim is to drive θT to zero, corresponding to the
direction in which the approach rate −ṙ is maximized. This aim
can be reformulated as maximizing cos(θT ), which is indirectly
measured in terms of ṙ and v via (3) as

cos(θT (t)) =
−ṙ(t)
v(t)

. (10)

The function σ(·) in (8) is used to penalize the deviation of θT

from its desired value zero, as depicted in Fig. 2. (7) guides
the agent A to rotate with a rate dependent on r(t), v(t) = v̄,
and the sign of ṙ(t) as long as A is outside the target vicinity
ball Bεr (pT ), unless |θT | gets sufficiently close to zero, which is
quantified by the term σ(−ṙ(t)/v̄). The switches to zero in the
control inputs (6) and (7) prevent chattering and assure that the
vehicle stops once it enters the disc Bεr (pT ).

To analyze the stability and convergence of the system
(3),(4),(6)-(8), we first focus on the motion dynamics for pA

outside of Bεr (pT ). For r(t) ≥ εr, substituting (7) into (4) gives

θ̇T = c
(
1 − sgn(cos(θT ))

)
σ(cos(θT )) (11)

+
v̄
r

((1 + α)σ(cos(θT )) + sin(θT )) .

The following lemma states some of the stability and conver-
gence properties of (11), treating r(t) as a positive bounded
auxiliary signal:

Lemma 1. For any signal r(t) that satisfies εr < r(t) ≤ rmax ∀t,
for some finite rmax > 0, (11) has two equilibriums; an isolated
equilibrium at θe1 = 0, and an asymptotically stable equilib-
rium at θe2 = −θε , where θε is defined as

θε = sin−1
(

γ

1 + α

)
< θγ = sin−1 (√

γ
)
. (12)

Furthermore, for (11), there exists a finite time instant tr0 ≥ 0
such that

|θT | ≤ θγ, ∀t ≥ tr0 . (13)

Proof. Based on (8), we can write (11) more explicitly, consid-
ering the different cases for θT (t) ∈ (−π, π]:

1. If |θT (t)| ≤ θγ, then:

θ̇T (t) =
v(t)
r(t)

(
1 + α

γ
sin2(θT ) + sin(θT )

)

=
v(t)
r(t)

(
1 + α

γ
sin(θT ) + 1

)
sin(θT ), (14)

3
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noting that for 0 < γ � 1, we have 0 < θγ � π

2
.

2. If |θT (t)| > θγ, then:

θ̇T (t) = c
(
1 − sgn(cos(θT ))

)
+

v̄
r

(1 + α + sin(θT )) , (15)

since, in this case, cos(θT ) ≤
√

1 − sin2(θγ) =
√

1 − γ. To
further analyze (15), Case 2 can be split into the following
sub-cases:
2.(a) If |θT | ≥ π

2
, then: sgn(cos(θT )) ≤ 0 implies

θ̇T (t) ≥ c +
v̄
r

(1 + α + sin(θT )) ≥ c. (16)

2.(b) If |θT | < π

2
, then:

θ̇T (t) =
v̄
r

(1 + α + sin(θT )) ≥ αv̄
r
. (17)

(16) and (17) imply that, for Case 2, we have

θ̇T (t) ≥ min{c, αv̄
rmax
} > 0. (18)

For Case 1, analyzing (14), it can be seen that θ̇T = 0 for θT ∈
{−θε , 0}; θ̇T < 0 for θT ∈ (−θε , 0); θ̇T > 0 for θT ∈ [−θγ,−θε) ∪
(0, θε]. This, together with (18), proves the lemma.

We now present the main result of this section.

Proposition 1. Consider Problem 1 and the control law (5)-(8).
Then, the vehicle A converges to the disc Bεr (pT ) in finite time.

Proof. (3) and (6) imply that ṗA = 0 for pA ∈ Bεr (pT ). We first
show that r(t) is upper bounded, in order to apply Lemma 1. It
follows from (14) that if θT (0) = 0, then θT (t) = 0 for all t ≥ 0,
and hence ṙ = −v̄ which implies r(t) ≤ r(0) for all t ≥ 0.

If θT (0) ∈ (−π
2
, 0), then (3),(17) together with the analysis of

Case 1 in the proof of Lemma 1 imply that ṙ(t) ≤ 0 and hence
r(t) ≤ r(0) for all t ≥ 0.

Otherwise, (3) implies that ṙ(t) = −v̄ cos(θT (t)) > 0 only if

|θT (t)| > π

2
. Further, (16),(17) together with the analysis of

Case 1 in the proof of Lemma 1 imply that |θT (t)| > π

2
can

be satisfied only for a finite time interval of length π/c or less.
Hence, 0 < ṙ(t) ≤ v̄ only for a finite time interval t f0 < t < t f1 .
Therefore, r(t) ≤ r(t f1 ) < ∞ for all t ≥ 0, which completes the
proof of boundedness of r(t).

Now, to complete the proof, we only need to show there ex-
ists a finite time instant tr ≥ 0 such that r(tr) ≤ εr. To obtain
contradiction, assume that

r(t) > εr, ∀t. (19)

Based on Lemma 1, this would imply that there exists tr0 ≥ 0
such that (13) holds. Hence, (3) would imply that

ṙ(t) ≤ −v̄ cos(θγ) = −v̄
√

1 − γ, ∀t ≥ tr0 . (20)

Taking time integral of (20) leads to

r(t) ≤ rtr0
− v̄

√
1 − γ(t − tr0 ), ∀t ≥ tr0 ,

which contradicts with the assumption (19). Hence, the proof
is completed.

The phase portrait of θT is illustrated in Fig. 3. All the so-
lutions starting from the initial condition θT , 0 converge to
θT = −θε .

Figure 3: The phase portrait of θT : There are two equilibrium points one of
which is at θT = 0 and the other is at θT = −θε .

Remark 3. As γ tends to zero, σ(x) becomes sharper around
x = 1, and θε , θγ and θe2 = −θε tend to zero, which results in
faster convergence to the target. As γ tends to one, θe2 = −θε
tends to −π

2 , which results in slower convergence to the target.
However, in real implementations, if θe2 is close to zero, the
vehicle can miss the equilibrium and θT can become positive,
which can rotate the vehicle one full turn to enter again the
zone −π2 < θT < 0 and slow down convergence to the target. We
analyze this case in section 7.

4. Control without Range Rate Information

The control design in Section 2 assumes that the range rate
ṙ is available. This, in general, is not the case due to sensing
limitations of the vehicle A. When the range rate information is
not available, one possible attempt is to approximate ṙ by tak-
ing first-order differences of consecutive r measurement sam-
ples. However, this method may yield significantly large ap-
proximation errors when the signal-to-noise ratio of the range
measurements is low. Typical approaches to obtaining first and
higher order derivative estimates of a measured signal include
high gain observer and sliding mode observer designs [15]. On
the other hand, in [19], a linear first-order filter is applied to
approximate the range-rate signal.

[17, 18] develop results for the super twisting algorithm, a
special class of the second-order sliding mode observers, for
perturbed systems. Motivated by [17, 18], [9] uses a sliding-
mode observer to estimate the range-rate from range measure-
ments as follows:

˙̂x1(t) = x̂2 + k1|x1 − x̂1| 12 sgn(x1 − x̂1), (21)
˙̂x2(t) = k2sgn(x1 − x̂1) + k3(x1 − x̂1),

where ki are design constants, sgn(·) is as in (8), and x̂1, x̂2 are
estimates of the range r and range-rate ṙ signals, respectively.

4
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An advantage of employing sliding-mode observer (21) in state
estimation is that the estimated signal x̂2 converges to the actual
signal ṙ in finite time [9].

The sliding-mode observer technique can be applied here to-
gether with the control law (5) to solve the target capture prob-
lem as well by relaxing the range-rate signal knowledge as-
sumption. In that circumstance, the control law is defined by
(5)-(8) with the exception that in (7), ṙ is replaced by the esti-
mate x̂2 which is obtained by (21).

5. Range Based Station Keeping

In Section 2, we proposed a target capture control law for a
nonholonomic vehicle A for driving A to the target location pT .
There we assumed that A has the vehicle-target distance mea-
surements r(t) all the time. Target capture objective has its own
hardness because the self-position is not available to A. In this
section, we consider a more challenging scenario: A does not
know the target location pT and the vehicle-target distance r(t);
the only information available to A is the set of desired distance
values between pT and each of the other vehicles/sensors in the
multi-agent network. The objective of acquiring and maintain-
ing this set of desired distances simultaneously is called station
keeping problem [16].

Station keeping is as significant as target capture and plays
a critical role in formation acquisition in multi-agent systems
[20]. However, station keeping problem is more difficult to
solve than target capture, especially for nonholonomic vehi-
cles. As will be more clear in the sequel, the difficulty stems
from many aspects. First is the unavailability of the vehicle-
target distance. This fact prevents the designer from employ-
ing tools of classical feedback control and restricts the range of
applicable control techniques to a narrow domain. Instead of
the vehicle-target distance, the designer is given a set of dis-
tance values that nonlinearly depend on the target location, the
vehicle’s self location as well as the locations of other vehi-
cles/sensors. Furthermore, as is the case for the target cap-
ture problem studied in Section 2, position based control al-
gorithms/laws cannot be applied to station keeping problem di-
rectly due to the assumption of unavailibility of the vehicle’s
self-position, and the nonholonomic vehicle kinematics needs
to be taken into account. We tackle these issues below by em-
ploying the available measurements in the nonlinear control de-
sign deliberately.

In the remainder of this section, we define the station keeping
problem in general terms and propose our control law compar-
ing it with the results of [12, 13, 16].

5.1. Problem Definition

For convenience of the problem definition and the analysis,
we focus on 2-dimensional case. We consider the following
problem:

Problem 2. Consider a nonholonomic vehicle A with mo-
tion dynamics (1) and a set of N sensor stations S =

{S 1, · · · , S N}, N ≥ 3, with unknown positions pi ∈ <2 for each

S i. Consider also a target location pT ∈ <2 for A that is de-
fined in terms of a given set of compatible desired distances d∗i ,
to satisfy

‖pT − pi‖ = d∗i , ∀i. (22)

Assume that pi are not collinear, and the desired distances d∗i
and actual distances ‖pA(t) − pi‖ , di(t) are available to A.
Find a control law u = [v(t), ω(t)]> so that A converges to the
εr neighborhood of Bεr (pT ) of the target location pT in a finite
time.

Remark 4. In order to uniquely specify pT by the distances d∗i ,
we need N ≥ 3 sensors on a two-dimensional Euclidean plane.

The configuration of the scenario of Problem 2 is illustrated
in Fig. 4.

Figure 4: Depiction of the station keeping scenario for a four-sensor case

Problem 2 is defined in the context of sensor networks by
assuming that the stationary agents in the network are anchors,
i.e., sensors with known positions. In that setting, A is driven
to the target pT whose distances to the set of anchors are avail-
able to A, assuming A measures its distances to the anchors at
all time. Another interpretation of Problem 2 in the context
of robotic networks is as follows: Given a set of N stationary
vehicles S = {S 1, · · · , S N}, N ≥ 3, with unknown positions
pi ∈ <2, a mobile sensory vehicle A with unknown position
pA(t) ∈ <2 is required to merge to S by converging to a target
location pT which is at a specified distance d∗i to each vehicle
S i in the network.

Problem 2 has been studied in [12, 13, 16], assuming the
mobile vehicle A has holonomic point agent kinematics and the
self-position information is available to A, as opposed to what
is assumed here. [13] has proposed an adaptive switching con-
trol law to solve Problem 2 for the three-sensor case assuming
the distance measurements di(t) are noisy. [16] has studied the
case of N ≥ 3 sensors in both two and three-dimensional spaces
for holonomic vehicles. [16] has proposed an indirect adaptive
control method that estimates the unknown sensor positions us-
ing the distance measurements di(t) and the self position of A,
then uses these estimates in a gradient control law applied to a
cost function whose unique minimum corresponds to the target
location pT .

We adapt the A-centered polar dynamic representation (3),(4)
to the setting of Problem 2 considering the relative location of

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

each S i as follows:

ḋi(t) = −v(t) cos(θi(t)), (23)

θ̇i(t) = ω(t) +
1

di(t)
v(t) sin(θi(t)). (24)

where i = {1, · · · ,N} and θi ∈ (−π, π] is the angle from the vec-
tor pi − pA to the current heading of A. Here, di(t) and θi(t) can
be considered as the analogue of the range term r and the angle
θT of the target capture dynamics (3),(4). Note that, defining
the unknown distance between A and T as in (2) and the un-
known angle θT ∈ (−π, π] from the vector pT − pA to the current
heading of A, as before, the kinematic relations (3), (4) are still
valid.

Based on the above observations, we propose three different
approaches to Problem 2 in the following subsections.

5.2. Control Design Based on Inter-Vehicle Distance Regula-
tion

The aim of the first approach is to simultaneously drive the
individual station distance keeping errors, i.e., the entries of

E(t) = [e1(t), · · · , eN(t)]> , ei(t) = di(t) − d∗i , (25)

to zero via minimizing a certain norm of E(t). This norm was
selected to be a weighted form of the Euclidean norm

‖E‖2 =
(
e2

1 + · · · + e2
N

)1/2
. (26)

Alternatively, one can consider the error term rE(t) to be mini-
mized as the∞-norm of E(t),

rE(t) = ‖E(t)‖∞ = max
i∈{1,··· ,N}

|ei(t)|, (27)

with the maximizer index

iE(t) = arg max
i∈{1,··· ,N}

|ei(t)|. (28)

Lemma 2. Consider Problem 2. Then, we have r(t) = ‖pA(t) −
pT ‖ > rE(t) when pA(t) , pT , where r, rE are defined in
(2),(27), respectively.

Proof. In each triangle 4pA pT pi for i = 1, · · · ,N, noting that
‖pA − pT ‖ = r, ‖pA − pi‖ = di, ‖pT − pi‖ = d∗i , from the
triangle inequality, we have r + d∗i ≥ di and r + di ≥ d∗i . Hence,
r(t) > |ei(t)| for all i and all t, and the result follows.

We modify the control law derived in Section 2 to solve Prob-
lem 2 as follows:

u = [v, ω]> , (29)

where

v(t) =

{
v̄, if rE(t) > εr

0, otherwise,
(30)

ω(t) =



(
(sgn(ḋiE (t)) + 1)c +

(1 + α)v̄
diE (t)

)
σ

(−ḋiE (t)
v̄

)
, if rE(t) > εr

0, otherwise.
(31)

where the switching function σ(·) is defined, as before, in (8),
and α, c are as in (9).

5.3. Control Design Based on Circumnavigation

The second approach we propose is to first set the vehicle
A on a circular orbit with radius d∗i around pi for a particu-
lar i ∈ {1, . . . ,N} by utilizing the circumnavigation algorithm in
[10] and then stop it, while moving on this orbit, when it arrives
at Bεr (pT ). Arrival of Bεr (pT ) is checked utilizing Lemma 2.
The particular i, the index of the station Si to orbit around, can
be selected based on the a priori information about the sensing
and communication reliability, or having the minimal initial dis-
tance di(0) to A, or having the minimal distance d∗i to the target
T . Hence, the proposed motion algorithm based on [10] is as
follows:

v(t) =

{
v̄, if rE(t) > εr

0, otherwise,
(32)

ω(t) =


−k

(
v̄ cos

(
sin−1

(
da

di(t)

))
− ḋi(t)

)
, if di(t) ≥ da

0, otherwise.
(33)

where k >
1
d∗i

is a scalar design constant and da =

√
(d∗i )2 − 1

k2
. We now present the convergence result of

(32),(33).

Proposition 2. Consider Problem 2 and the control law
(32),(33). Then, the vehicle A converges to the disc Bεr (pT )
in finite time.

Proof. Theorem 3.1 of [10] implies that there exists a finite
time instant t∗ such that |ei(t)| < εr for t > t∗. Since T lies
on the circle with center pi and radius d∗i , this further implies
the convergence to Bεr (pT ) in finite time.

5.4. Control Design Based on Convex Station Keeping Cost

In this section, we propose another alternative approach in-
spired by the convex station keeping cost approach of [16, 21].
The authors in [21] solve the problem of localization based on
range measurements by minimizing a convex cost function that
uniquely defines the target point at its only minimum point. The
authors in [16] further proposes a controller based on the same
cost function to steer the vehicle A to pT assuming that pA,
together with di, d∗i , are known to A. Both [21] and [16] use
the radical axes as the key tool. A radical axis l of two cir-
cles C(pi, d∗i ),C(p j, d∗j ) has the property that for any q on l, the
following holds:

‖q − pi‖2 − ‖q − p j‖2 = (d∗i )2 − (d∗j )
2. (34)

If pA is at distance δi j from l at the pi side (without loss of
generality), we have (Fig. 5):

d2
i − d2

j = ‖pA − pi‖2 − ‖pA − p j‖2
= (hi − δi j)

2 − (h j + δi j)
2

= h2
i − h2

j − 2δi j(hi + h j)

= (d∗i )2 − (d∗j )
2 − 2δi jd

∗
i j.
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Then it follows that

δi j =

∣∣∣∣
(
d2

i − d2
j

)
−

(
(d∗i )2 − (d∗j )

2
)∣∣∣∣

2d∗i j

.

pA

pT

pi

pj

d∗i

d∗j

d∗i

d∗j

l

δij

Figure 5: The radical axis l of the circles C(pi, d∗i ),C(p j, d∗j ).

Define (N − 1)-dimensional vector

δ(pA) =



δ1N
...

δ(N−1)N


.

Note that δ(pA)|pA=pT = 0. Lemma 2.2 of [21] implies that
‖δ(pA)‖2 is a convex function of pA with global minimizer at
pA = pT . Because d∗i j is unknown to A, we consider the scaled
distances

ξi j =

∣∣∣∣
(
d2

i − d2
j

)
−

(
(d∗i )2 − (d∗j )

2
)∣∣∣∣

2
,

and

ζ(pA) =
1
N

∥∥∥∥∥∥∥∥∥∥



ξ1N
...

ξ(N−1)N



∥∥∥∥∥∥∥∥∥∥
.

Similarly, Lemma 2.2 of [21] implies that (ξ(pA))2 is a convex
function of pA with global minimizer at pA = pT . Based on this
fact, we propose the following algorithm:

v(t) =

{
v̄, if rE(t) > εr

0, otherwise,
(35)

ω(t) =



(
(sgn(ζ̇(t)) + 1)c +

(1 + α)v̄
ζ(t)

)
σ

(−ζ̇(t)
v̄

)
, if ζ(t) > εr

0, otherwise,
(36)

where rE is as in (27), and α, c are as in (9).

6. Simulations

In this section, we present the simulation results for the tar-
get capture and station keeping algorithms that we proposed in
Section 2 and 5. We used MATLAB R© with a fixed time step of
0.1 seconds for simulations. We set c = 1 in all simulations.

6.1. Target Capture

We analyzed the vehicle motion with the control law (5)-(8).
The following parameter values were used in simulations:

v̄ = 0.3m/sec, εr = 0.3m.

The vehicle’s initial and target locations were set as follows:

pA(0) = [−3.2, 0.5]>m, pT = [0, 0]>m.

Fig. 6 represents the motion of the vehicle for different α and
γ values for 30 seconds. Fig. 7 shows the range measurement
r, the range rate ṙ, and the control signals v, ω. The vehicle
achieved the objective successfully for all the parameter values
given, i.e., the vehicle entered theBεr disc around the target T in
a finite time (14 seconds) and stopped once it reached the disc.
Difference in the parameters α and γ caused slight changes in
the motion characteristics. Since ω is directly proportional to
α, for the same γ setting, the higher α value (gray path) caused
slightly sharper maneuvers compared with the lower α value
(green path).

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
x-axis [m]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

y-
ax

is
 [m

]

Target
=1, =0.1
=1, =0.3
=1, =0.5
=1, =0.8
=0.5, =0.5
=3, =0.5

Figure 6: Target capture simulations: Vehicle motion on the plane with the
control law (5)-(8). The black square and red cross denote the initial vehicle
location pA(0) and the target location pT , respectively.

6.2. Station Keeping

We now present the motion behavior of the vehicle with the
control algorithms proposed in Section 5. We assumed that
three beacons were located at the following positions:

p1 = [−0.4, − 0.2]>m, p2 = [0.4, 0]>m, p3 = [0, 0.5]>m.

The target was located at pT = [0, 0]>m.
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Figure 7: Target capture simulations: The range measurement r, time derivative
of the range measurement ṙ, and the control signals v, ω.

We now present the performance of the control algorithm
(32),(33) for different values of the design parameter k and the
initial heading angle θ(0) (Fig. 8). Since k proportionally affects
the magnitude of ω, higher k values produced sharper maneu-
vers for the same initial heading angle θ(0). For the same initial
location and k setting, difference in the initial heading angle did
not cause a significant change in the vehicle’s trajectory.

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
x-axis [m]

-2

-1.5

-1
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0
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2

y-
ax

is
 [m

]

Figure 8: Station keeping based on circumnavigation simulations: Vehicle mo-
tion and positions of the beacons and the target.

Fig. 9 demonstrates the performances of the station keeping
based on the inter-vehicle distance approach and station keep-
ing based on convex cost function approaches for the same set-
ting. The vehicle arrives the neighborhood Bεr of the target in

all runs. Station keeping based on convex function approach
drives the vehicle to Bεr in less time compared to the inter-
vehicle distance regulation approach.

-4 -3 -2 -1 0 1 2
x-axis [m]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y-
ax

is
 [m

]

Figure 9: Station keeping simulations: Vehicle motion and positions of the
beacons and the target. Black squares denote the initial locations.

7. Experiments

We evaluated our control algorithms with off-the-shelf
ground robot and equipments.

7.1. Experimental Setup

We tested the control algorithms on an iRobot c© Create
ground robot (Fig. 10). iRobot has two actuated wheels on its
two sides and one omnidirectional wheel on the front. This ve-
hicle’s motion is modeled by the nonholonomic kinematics (1).
The vehicle accepts the linear speed v and angular speed ω as
the control inputs, and converts them to the left and right wheel
control inputs by the following relation:

vl = v − lrad

2
ω, vr = v +

lrad

2
ω, (37)

where vl, vr are the control inputs for the left wheel and right
wheel, respectively, and lrad = 252.5mm is the distance be-
tween the left and right wheels.

We equipped the robot with an Odroid R© microcontroller
that runs the Robot Operating System (ROS). We used an
Optitrack c© Motive motion capture (Mocap) system to obtain
the vehicle-target (or, for station keeping, vehicle-station) dis-
tance data to be used by the controller. The robot’s ground truth
position data were also obtained from the Mocap system for il-
lustration purposes. The Mocap system was composed of 15
cameras that were mounted around the test area and connected
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Figure 10: The iRobot c© Create ground vehicle with Odroid (top) and the ex-
perimental testbed with Mocap cameras at the RISC Lab (bottom).

to a ground station. The Mocap system calculated the distance
between the vehicle and the given virtual target (or, for station
keeping, virtual stations) location, and transmitted it to the ROS
environment. The Mocap system can generate accurate posi-
tion data with up to few millimeters measurement errors. We
calculated the range-rate data by using the first order difference
between two consecutive range data as follows:

z[k] =
r[k] − r[k − 1]

Ts
,

where k is the time index, Ts is the sampling time, r[k] = r(kTs)
is the range measurement at step k, and z is an approximation
of the range-rate ṙ. Because the vehicle-target range data ob-
tained from the Mocap system was precise, we obtained pre-
cise range-rate data by the first-order difference method in the
experiments.

We note that the distance measurements can be obtained by
other sensor fusion techniques applied to on-board sensors’
data. One can also obtain the distance measurements by two
ultrawideband (UWB) sensors, with one sensor being located
at the target and with the other sensor being located on the ve-
hicle.

7.2. Target Capture

We tested the target capture algorithm given in (5)-(8) for
different parameter values. We used the same parameter val-
ues and initial conditions with the simulations for consistency.
We located the target at pT = [0, 0]>m, and initiated the vehi-
cle from pA(0) = [−3.2, − 0.2]>m with the heading angle of
θ(0) = 1.5π radians. In all experiments, fixed discrete step time
of 0.1 seconds and the following parameter values were used:

v̄ = 0.3m/sec, εr = 0.3m, c = 1. (38)

iRobot’s turning rate was being saturated at ω̄ = 4.25rad/sec by
the firmware. Thus, we selected the parameter α with respect
to (9) as follows:

0 < α <
0.3(4.25 − 2)

0.3
− 1 = 1.25.

However, we used α > 1.25 in some runs to compare the per-
formance.

We analyzed the motion behavior of the vehicle for different
α and γ values (Fig. 11). The vehicle started from close loca-
tions with the same initial heading angle in all experiments. The
vehicle achieved the objective in all experiments, i.e., it entered
the Bεr disc around the target in finite time (around 20 seconds)
and stopped once it reached there. The algorithm with the pa-
rameter values α = 1, γ = 0.8 showed the best performance in
terms of path smoothness (blue path). For the other values of
α, γ, the vehicle rotated a full turn at least once before it ar-
rived the disc Bεr . We explain the reason for these full-turns in
Section 7.4. Fig. 12 shows the range measurement r, the range
rate ṙ, and the control signals v and ω for α = 1, γ = 0.1.

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
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-1.5

-1
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0
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y-
ax
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 [m

]

=1, =0.8
A initial
Target

=1, =0.1
A initial
A initial

=1, =0.3
A initial

=0.5, =0.5
A initial

=1, =0.5
A initial

=3, =0.5

Figure 11: Target capture experiments: Trajectories of the vehicle for various α
and γ values.

We repeated the target capture experiments with the sliding
mode observer given in section 4 for γ = 0.1, α = 1, and
k1 = {0.5, 1}, k2 = {0.5, 1}, k3 = 0.1. We observed that, for
the same α, γ setting, the vehicle makes more full turns than
the first-order difference method case and arrived the disc Bεr

in 26 seconds for k1 = k2 = 0.5, k3 = 0.1 and in 35 seconds for
k1 = k2 = 1, k3 = 0.1.

7.3. Station Keeping

Further, we evaluated performances of the three control algo-
rithms presented in Section 5. In all experiments, we used three
stations. We chose the positions of the stations randomly. We
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Figure 12: Target capture experiments: The range measurement r, the range
rate ṙ, and the control signals v and ω for α = 1, γ = 0.1.

used the following design parameter values in all experiment
runs:

v̄ = 0.3m/sec, εr = 0.3m, Ts = 0.1sec, c = 1.

Station Keeping Based on Inter-Vehicle Distance Regulation:
We tested the control law (30),(31) with three stations and the
target being located at the following positions:

p1 = [0.5, 0.2]>m, p2 = [−0.6, − 0.5]>m, p3 = [0, 0.7]>m,

pT = [0, 0]>m.

The vehicle’s path for different α and γ values are shown in
Fig. 13. Although the vehicle rotated full turn multiple times
while searching for the target T , it entered the disc Bεr around
the target T in a finite time for all parameter values given.

Station Keeping Based on circumnavigation: We tested the
algorithm (32),(33) with three stations and the target being lo-
cated at the following positions:

p1 = [0.5, 0]>m, p2 = [0, − 0.5]>m, p3 = [−0.8, 0.1]>m,

pT = [0, 0]>m.

The vehicle was initiated from different locations on the plane
with different heading angles. The design parameter was set to
k = {5, 10}. The vehicle arrived the discBεr in all runs (Fig. 14).
To analyze the effect of the parameter k to the path of the ve-
hicle, we initiated the vehicle from two close locations with
different k values (green and orange paths). We observed that
the higher k value produced a smoother path compared to the
lower k value.

Station Keeping Based on Convex Cost Function: We tested
the algorithm (35),(36) with three stations and the target being
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x-axis [m]
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Figure 13: Station keeping based on inter-vehicle distance regulation experi-
ment: Trajectories of the vehicle for various α and γ values and initial locations.
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Figure 14: Station keeping based on circumnavigation experiment: Trajectories
of the vehicle for various k values and initial locations.

located at the following positions:

p1 = [0.5, 0]>m, p2 = [0, − 0.5]>m, p3 = [−0.5, 0.0]>m,

pT = [0, 0]>m.

We run the system for four different parameter sets (Fig. 15).
We chose the vehicle’s initial locations and heading angles to
be very close to each other to compare the effects of the pa-
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rameter values better. The vehicle arrived the disc Bεr in three
runs (blue, orange, and green paths) in finite times. In the other
run (red path), since the vehicle had multiple full turn rotations
while it was slightly approaching the target T , we ended the
experiment before it arrived the target.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
x-axis [m]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

y-
ax

is
 [m

]

Figure 15: Station keeping based on convex cost function experiments: Trajec-
tories of the vehicle for various α and γ values

7.4. Discussion on the Experimental Results

In this section, we demonstrate some of the experimental
tests implemented to save space. We tested our control algo-
rithms in much more experiments than what we illustrated in
this section; for various vehicle initial locations, parameter val-
ues, and various target and station locations. The experiments
verified the effectiveness and reliability of our target capture
and station keeping algorithms. The differences between the
simulation data and experiment data are the shape of the path
driven by the vehicle toward the target and the time elapsed
until the vehicle arrived the target. In target capture experi-
ments, the most important factor that caused this difference is
that the vehicle missed the equilibrium θe1, θe2 in the experi-
ments. Note that catching the actual equilibrium points θe1, θe2

is usually not possible due to numerical properties of the hard-
ware used. When θT lies in the interval −π2 < θT < 0, θT starts
approaching θe2 which is very small for small γ values. While
the robot approaches the equilibrium θT = θe2, θT became pos-
itive at times, and the robot had to rotate a full turn to enter
again the equilibrium point in −π

2 < θe2 < 0 (Fig. 3). This be-
havior can be seen in Fig. 11 where the vehicle had to rotate
a full turn multiple times for γ = {0.1, 0.3, 0.5}. For instance,
for γ = 0.3, α = 1, we have θe2 = − sin−1(0.15) u −0.15rad,
which is close to zero. Nevertheless, the vehicle-target distance
decreased asymptotically and became less than the threshold εr

after finite time. Since this issue did not occur in simulations,

the simulation results were naturally much smoother. Another
reason for the differences between the simulation and experi-
mental results is the inaccuracies inherent to the robot’s motion
such as actuation dynamics. We note that despite these minor
differences, both the simulations and experiments demonstrate
the convergence property of our algorithms.

We set c = 1 in all our simulations and experiments. The
design parameter c changes the time elapsed when the vehicle
moves away from the target, i.e., when |θT | ≥ π

2 , by adjusting
the magnitude of ω. Since the parameter c, together with α,
are related to ω̄ through (7), it can be chosen suitably to meet
the maximum angular speed condition of a particular vehicle,
if any. Specifically, if the actuation mechanism of the vehicle
saturates the angular speed, the parameter c can be chosen in
such a way that ω̄ does not exceed the saturation value. Thus,
all properties of the proposed control laws will remain valid in
the case of saturation nonlinearities.

In this section, we compared effects of different parameter
values on a ground robot. The effects of these parameters may
vary on a different robot because of the robot’s individual dy-
namics. For this reason, we suggest tuning the parameters of
our control algorithms experimentally for every robot within
the bounds proposed here to find the best parameter setting for
that individual robot.

8. Conclusion

We have proposed control algorithms for nonholonomic au-
tonomous vehicle agents to solve target capture and station
keeping problems. Our target capture algorithm requires only
continuous agent-target range and range rate measurements.
The station keeping algorithms require only continuous agent-
beacon range and range rate measurements. We suggest the use
of a sliding mode observer for the case where the range rate
measurements are not directly available to the controller. We
have presented the stability and convergence properties of the
target capture algorithm and the station keeping based on cir-
cumnavigation algorithm. Furthermore, we have verified the
applicability and effectiveness of the proposed algorithms on a
ground robot in both simulations and experiments. Because our
algorithms use only range and range rate measurements which
can be obtained by UWB or by other low-cost range sensors,
our algorithms can be used in GPS-denied environments or in
scenarios where vision algorithms cannot provide enough in-
formation about the target.

Distance data obtained from range sensors usually include
high noise. In future, we plan to analyze the stability and con-
vergence properties under noisy range data. Additionally, we
plan to implement the proposed algorithms on UAVs where the
linear and angular velocities are not the actual control inputs,
and the proposed algorithms need to be integrated with low-
level motion controllers.
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