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Abstract

This paper proposes trajectory planning strategies for online reconfiguration of a multi-agent formation on a Lissajous curve. In

our earlier work [2], a multi-agent formation with constant parametric speed was proposed in order to address multiple objectives

such as repeated collision-free surveillance and guaranteed sensor coverage of the area with ability for rogue target detection and

trapping. This work addresses the issue of formation reconfiguration within this context. In particular, smooth parametric trajector-

ies are designed for the purpose using calculus of variations. These trajectories have been employed in conjunction with a simple

local cooperation scheme so as to achieve collision-free reconfiguration between different Lissajous curves. A detailed theoretical

analysis of the proposed scheme is provided. These surveillance and reconfiguration strategies have also been validated through

simulations in MATLAB® for agents performing parametric motion along the curves, and by Software-In-The-Loop simulation for

quadrotors. In addition, they are validated experimentally with a team of quadrotors flying in a motion capture environment.
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1. Introduction

The autonomous area surveillance task involves planning

paths for a single/multiple autonomous agents with a limited

sensing range. This could be done so as to ensure that all points

in an area of interest are viewed /sensed repeatedly in finite

time, with guaranteed detection of a target of interest in the area

being monitored. Multi-agent systems offer several advantages

over single agent systems for repeated coverage and target de-

tection tasks. The most significant the search and detection of

a rogue element, and reduction of the time required for a single

agent, which is alleviated by the parallelism implicit in multi-

agent implementations. Another notable advantage is the in-

creased robustness due to redundancy. Some major application

domains are searching for threats [28], surveillance ([21], [24]),

and so on. Some preliminary results in regard to the proposed

strategy were presented in [2], where a trajectory plan was pro-

posed for a multi-agent formation on a Lissajous curve in order

to achieve the following objectives simultaneously:
O1 Complete and periodic coverage of the rectangular region

of interest.

O2 Collision-free patrolling for agents having finite non-zero

size with agent speed bounded above by Vmax.

O3 Finite time entrapment and detection of a rogue element

held at the center of the region.
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The prior work in [2] considered a non-cooperating group of

agents on a Lissajous curve and exploited the geometric prop-

erties of the curve to meet the above objectives simultaneously.

Also, in [2] a sufficient upper bound on the agent size was de-

rived in order to guarantee collision-free motion of the multi-

agent formation.

In this paper, we extend the work of [2] to a cooperat-

ing reconfigurable multi-agent formation on Lissajous curves.

Our proposed reconfigurable multi-agent formation guarantees

smooth and collision-free trajectories for formation reconfigur-

ation, considering the following operations:

1) Agent addition, 2) Agent removal, 3) Agent replacement.

The key features of the proposed reconfiguration strategy are:

1. A connected communication graph between the formation

agents having limited communication range for coopera-

tion.

2. Parametric trajectories for smooth acceleration, decelera-

tion and transitions between Lissajous curves.

3. Cooperative assignment schemes for each reconfiguration

operation to ensure collision-free multi-agent transitions

from one Lissajous curve to another.

4. Collision-free trajectories are designed for agents having

finite non-zero size satisfying the size bound derived in

[2].

The proposed strategy has potential applications to target

search, repeated surveillance, monitoring and mapping of dy-

namic environments, area sweeping for cleaning, spraying, etc.
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The rest of this paper is organized as follows: Section 2 re-

calls some related works. Section 3 discusses some preliminar-

ies about Lissajous curves and the design of smooth trajectories

using the calculus of variations approach. Section 4 discusses

the theoretical details of the proposed surveillance strategy and

gives a systematic algorithm to implement it, recalling some

earlier work from [2]. Section 5 discusses the proposed form-

ation reconfiguration strategies for addition, removal and re-

placement of agents in the multi-agent formation proposed for

the surveillance strategy discussed in Section 4. Section 6 val-

idates the proposed surveillance and reconfiguration strategies

through simulations and experiment. Section 7 concludes the

paper.

2. Literature survey

The novelty of the work presented here is in simultaneously

addressing multiple surveillance objectives, while ensuring

collision-free paths for the multiple agents having a finite non-

zero size. In literature, several methods have been proposed

to address the aerial surveillance problem [13, 12, 3, 23, 11].

[13] takes an approach based on temporal logic. [12] pro-

poses a strategy based on parametrized curves using splines.

In contrast, [3] takes a ‘planning’ viewpoint based upon cast-

ing the problem as a partially observed Markov decision pro-

cess (POMDP). [23] have addressed the surveillance problem

with a particle swarm optimization based approach. The art-

icle [11] takes into account energy considerations leading to a

distinctive estimation/optimization problem. Our proposed sur-

veillance strategy is based on tracking a parametric curve, viz.,

the Lissajous curve, that lends itself to a clean analytic way of

path planning with a priori guarantees in certain performance

criteria.

While complete area coverage is subsumed in our object-

ive, our scheme goes well beyond it towards surveillance and

detection of rogue elements. Coverage by itself has been ex-

tensively researched as a stand-alone theme. We recall a few

relevant works here. One of the approaches for single agent

area coverage is cell decomposition (discussed in [5]) wherein

an area is divided into cells and these cells are searched sys-

tematically using zig-zag scan patterns. Occupancy grid based

strategies studied in [29], use a distance transform to assign a

specific numeric value to each free grid element starting from

a ‘goal’ point, and a pseudo-gradient descent approach to gen-

erate a coverage path from ‘start’ to ‘goal’. The grid based al-

gorithms such as Spiral Spanning Tree Coverage Algorithm [7]

and the Backtracking Spiral Algorithm [9] ensure that the robot

returns to its starting grid location after completion of the cov-

erage task. Thus these algorithms can be used for repeated cov-

erage tasks. Some of these approaches have also been extended

to multi-agent scenarios ([30], [15]). Another problem relev-

ant to patrolling is target search and detection. Recent works

in this direction include: gradient based strategies for multi-

UAV search [8], Voronoi partition based strategy using an un-

certainty map [10], and game theoretic search strategies [26].

In comparison to these approaches, the proposed strategy gives

deterministic guarantee on repeated complete coverage and tar-

get detection in finite time.

Closer in spirit to our approach are the works based on well

defined geometric curves such as raster scanning zigzag paths

used in cell based schemes discussed in [5], [15], etc., and space

filling curves such as the Hilbert curve for multi-agent coverage

in [25], and for non-uniform priority based coverage in [22] and

[20]. These curves often involve sharp turns and require addi-

tional path planning to return to the ‘start’ position to repeat

the task. However, Lissajous curves have a simple parametric

form and an appropriate choice of describing variables results

in a smooth periodic curve called a ‘non-degenerate Lissajous

curve’ ([6]) of prescribed mesh density within a rectangle of any

dimensions. The parametric form of the Lissajous curve sim-

plifies the expression for a moving reference point that can be

tracked by a robot. The problem of optimal choice of a Lissa-

jous curve for multi-agent persistent monitoring of 2-D spaces

has been addressed in [14], where each agent is assigned a sep-

arate Lissajous curve. Unlike [14], the aim of this work is to ex-

plore the advantage of multiple agents following a single curve

so that each agent covers the entire area over the period of time.

This feature allows robustness against failure and fast cover-

age due to parallelism. It also makes this approach suitable for

surveillance tasks where each agent is equipped with different

types of sensors.

In this work we also propose collision-free online reconfig-

uration trajectories for the multi-agent formation on Lissajous

curves proposed in [2]. We highlight some literature in broadly

related areas with similar motivations regarding multi-agent

formation reconfiguration. [27] have proposed a decentralised

trajectory planner which guarantees convergence of a multi-

robot formation to a centralised trajectory. Additionally, they

use a simple rule based assignment methodology for collision-

free formation shape reconfiguration. In [1], a quadrotor team

is employed for building a structure. For this task, collision-free

routes to shared resources, such as battery charging stations, are

computed using reserved passing lanes and reservation systems.

The problem of agent removal for recharging or refuelling

in long endurance missions has been posed as a problem of

scheduling and goal-reassignment task in [19] and [18]. [19]

present a heuristic method to solve a Mixed Integer Linear pro-

gram (MILP) formulation in order to efficiently cover a set of

targets with agent removal for recharging. In [18], this approach

has been extended considering an energy aware optimisation

objective with an initially uncertain energy expenditure model.

In [16] and [17], a Mixed Integer Quadratic Program (MIQP)

formulation has been used to plan piecewise smooth collision-

free trajectories for formation reconfiguration. Of these, [16]

use integer constraints to enforce collision avoidance for form-

ation reconfiguration of a heterogeneous team of quadrotors. In

[17] trajectories are computed for online substitution of quad-

rotors in a multi-quadrotor formation. In [19, 18, 17] and [16]

the reported experiments have been conducted by implementing

the proposed trajectory planners with appropriate optimisation

solvers on a central computer which commands the robots in

flight.

Other recent approaches of formation reconfiguration and
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control include the Virtual Rigid Body abstraction in [31] and

the use of path planning algorithms based on sequential con-

vex programming (SCP) in [4]. In [31], collision-free traject-

ories are obtained to maintain a fixed relative quadrotor forma-

tion in a manoeuvre and also to switch between a sequence of

quadrotor formations. In [4], an incremental sequential convex

programming algorithm has been proposed for finding feasible

collision-free trajectories for quadrotor teams. These are com-

puted in near real time on a central computer.

Note that these works depend significantly more on central-

ised processing as compared to our proposed reconfiguration

scheme.

3. Preliminaries

Let the dimensions of rectangular environment be 2A × 2B

with A, B ∈ R. We consider the Lissajous curves with paramet-

ric equation

x(s(t)) = A cos(as(t)), y(s(t)) = B sin(bs(t)), (1)

where s is the parameter, a and b ∈ N are co-prime positive

integer constants (having common factors, results in the same

Lissajous curve, e.g., a : b = 1 : 2, 4 : 8 and 12 : 24). The

coordinates X and Y are defined along the directions parallel

to the sides of the rectangle and the origin is chosen to be the

center of the rectangular region.

For the work presented in this paper, only non-degenerate

Lissajous curves (refer [6]) are considered, with the property

that its entire curve length is traversed only once along a single

direction by the running parameter s in the parametric period of

[0, 2π). To ensure non-degeneracy of (1), a must be an odd in-

teger. The properties of non-degenerate Lissajous curves used

to derive some results in this paper are stated with proofs in the

online supplement1. The points on the Lissajous curve which

are encountered twice within a complete traversal of the curve

are called intersection points (red and green points in Fig. 1),

and the points where the Lissajous curve touches the bound-

aries of the rectangular region of interest are called boundary

points (black and magenta points in Fig. 1). Together, the in-

tersection and boundary points are referred to as node points.

To guarantee smooth collision-free motion of the agents while

ensuring that the speed of the agents is bounded above by Vmax

(the maximum allowable speed of the agents), smooth transition

trajectories are used. The trajectories are designed to be at least

twice continuously differentiable, using calculus of variations

approach.

For this purpose, we consider the solutions of the calculus of

variations problem given in Lemma 1:

Lemma 1. The optimal function minimizing the integral
T f
∫

0

...
g 2(t)

2
dt for fixed end time T f > 0, subject to the following

sets of boundary conditions, is as follows:

1https://drive.google.com/open?id=0B4lbdPZ-BnshS25qcVc3TlNnV1U
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Figure 1: Non-degenerate Lissajous curve with a = 5, b = 6, A =

120, B = 100

C1 For g(0) = g0, ġ(0) = ġ0, g̈(0) = 0, g(T f ) =free, ġ(T f ) =

ġ f , g̈(T f ) = 0, it is:

g∗(t) = (ġ f − ġ0)

(

− t4

2T 3
f

+ t3

T 2
f

)

+ ġ0t + g0.

C2 For g(0) = g0, ġ(0) = 0, g̈(0) = 0, g(T f ) = g f , ġ(T f ) = 0,

g̈(T f ) = 0, it is:

g∗(t) = (g f − g0)
(

10T 2
f
− 15T f t + 6t2

)

t3

T 5
f

+ g0.

The proof for Lemma 1 is given in the appendix.

Notation : We define the following notations for brevity of

representation: T0, T f are start and end times of a parametric

trajectory. Tp = T f − T0 is the time period of the transition

trajectory. ∆t = t − T0 where t is the current time. ∆g = g f − g0

where g0, g f are initial and final parametric positions at times

T0 and T f respectively. Similarly ∆ġ = ġ f − ġ0, where ġ f , ġ0

are initial and final parametric speeds at times T0 and T f

respectively.

Lemma 1 gives the template for designing the following tra-

jectories for the reconfiguration strategy:

Monotone transition trajectory

To design a monotone transition trajectory for smooth ac-

celeration or deceleration for a parameter gm(t) from an initial

parameter value and speed to a final parameter value and speed,

we use the solution for the free end state and fixed end time

boundary conditions C1 of the calculus of variations problem

discussed in Lemma 1. In this case the boundary conditions on

parameter value and speed are gm(T0) = g0 , ġm(T0) = ġ0 and

ġm(T f ) = ġ f , and the terminal value of gm(T f ) is free. Thus

parameter trajectory gm(t) and its derivatives are as follows:

gm(t) = ∆ġ













− ∆t4

2T 3
p

+
∆t3

T 2
p













+ ġ0∆t + g0, (2)

ġm(t) = ∆ġ













−2
∆t3

T 3
p

+
3∆t2

T 2
p













+ ġ0, (3)

3
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g̈m(t) = 6∆ġ













−∆t2

T 3
p

+
∆t

T 2
p













, (4)

...
g m(t) = 6∆ġ













−2
∆t

T 3
p

+
1

T 2
p













. (5)

Some properties of the gm(t) and its derivatives are summarised

as follows:

1. g̈m(T0) = 0, g̈m(T f ) = 0 implying constant parametric

speed at the beginning and the end of the transition tra-

jectory in the time window [T0, T f ].

2. From (4), t = T0 and T f are the solutions of g̈m(t) = 0, and

they are the only extremizers of ġm(t). For ġ0 < ġ f from

(5),
...
g m(T f ) < 0 and

...
g m(T0) > 0 which implies ġm(t) is

monotonically increasing in [T0 T f ] with minimum value

ġ0 at t = T0 and maximum value ġ f at t = T f . By similar

arguments, for ġ f < ġ0, ġm(t) is monotonically decreasing

in [T0 T f ] with minimum value ġ f at t = T f and maximum

value ġ0 at t = T0.

0 1 2 3 4 5 6 7 8 9 10
t (sec)

0

0.1

0.2

0.3

ġm(t)
(T0, ġ0)
(Tf , ġf )

0 1 2 3 4 5 6 7 8 9 10
t (sec)

0.2

1.2

2

3

gm(t)
(T0, g0)
(Tf , gf )

Figure 2: A monotone transition trajectory example where: T0 =

2 sec, g0 = 0.2, g f = 1.2, ġ0 = 0.1/sec, ġ f = 0.3/sec. Thus Tp = 5 sec

and T f = 7 sec

The value of the free terminal parameter gm(T f ) depends on

the fixed end time T f = T0 + Tp. Thus it depends on the width

of the time interval Tp specified for the transition. As a result,

to obtain a desired final parameter value gm(T f ) = g f , the ap-

propriate transition interval size Tp, and T f can be calculated

by substituting t = T f (i.e., ∆t = T f − T0) in (2) and we get

Tp =
2(g f − g0)

ġ f + ġ0

⇒ T f = T0 +
2(g f − g0)

ġ f + ġ0

. (6)

An example of this class of trajectories is shown in Fig. 2.

The parameters that completely specify such a monotone tra-

jectory are

T0, g0, g f , ġ0 and ġ f . (7)

Symmetric transition trajectory

In order to move a parameter gs from the initial boundary

conditions gs(T0) = g0, ġs(T0) = 0 and g̈s(T0) = 0, to the final

boundary condition gs(T f ) = g f , ġs(T f ) = 0, and g̈s(T f ) =

0 (i.e., parameter is stationary at initial and final time) over a

fixed time window [T0, T f ], we design a smooth trajectory that

accelerates and decelerates symmetrically. This is done using

the fixed end state and fixed end time boundary conditions C2 of

the calculus of variations problem discussed in Lemma 1. Thus

the parameter trajectory gs(t) and its derivatives are as follows:

gs(t) = ∆g
(

10T 2
p − 15Tp∆t + 6∆t2

) ∆t3

T 5
p

+ g0, (8)

ġs(t) =
30∆g

T 5
p

∆t2(Tp − ∆t)2, (9)

g̈s(t) =
60∆g

T 5
p

∆t(T 2
p − 3Tp∆t + 2∆t2), (10)

...
g s(t) =

60∆g

T 5
p

(T 2
p − 6Tp∆t + 6∆t2). (11)

Some properties of the gs(t) and its derivatives are summarised

as follows:

1. ġs(T0) = 0, g̈s(T0) = 0, ġs(T f ) = 0 and g̈s(T f ) = 0.

2. From (10), t = T0, T0 +
Tp

2
and T f are the solutions of

g̈s(t) = 0, and are the only extremizers of ġs(t). For g0 <

g f , from (11),
...
g s(T0) =

...
g s(T f ) =

60∆g

T 3
p
> 0 and

...
g s(T0 +

Tp

2
) = − 30∆g

T 3
p

< 0 which implies ġs(t) attains maximum

value at t = T0 +
Tp

2
, and minimum value at t = T0 and

t = T f . By similar arguments, for g f < g0, ġs(t) attains

its minimum value at t = T0 +
Tp

2
and maximum value at

t = T0 and t = T f .

3. For ġs(t), the maximum value ġmax for the case g0 < g f and

the minimum value ġmin for case g f < g0 are both attained

at t = To +
Tp

2
and

ġmax =
15|g f − g0|

8Tp

, ġmin = −
15|g f − g0|

8Tp

. (12)

0 1 2 3 4 5 6 7 8 9 10
t (sec)

0

0.25

0.5

0.75

1
ġs(t)
(T0, ġ0)
(Tf , ġf )
(

T0+Tf

2 , ġmax

)

0 1 2 3 4 5 6 7 8 9 10
t (sec)

0

1

2

3

4

gs(t)
(T0, g0)
(Tf , gf )

Figure 3: A symmetric transition trajectory example where: T0 =

2 sec, Tp = 5 sec, g0 = 1, g f = 3. Thus T f = 7 sec and ġmax =

0.75/sec at t =
T0+T f

2
= 4.5 sec

An example of this class of trajectories is shown in Fig. 3. The

constants which completely specify this trajectory are:

T0, T f , g0 and g f . (13)

The monotone transition trajectory is used to decelerate and

accelerate the multi-agent formation along the Lissajous curve.
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The symmetric transition trajectory is used to design collision-

free trajectories between Lissajous curves. The next section

summarises and builds upon the prior work in [2].

4. Proposed surveillance strategy

The proposed surveillance strategy discussed in this section

meets the objectives O1,O2 and O3 listed in Section 1 (as

shown in [2]). To develop the theory for the proposed trajectory

plans, we make the following assumptions:

1. Agents are helicopter or quadrotor like agents capable of

hovering.

2. The search area is an obstacle-free rectangle of dimensions

L × H and all agents are homogeneous and identical.

3. Each agent has a circular noise-free sensor footprint of ra-

dius rs <
1
2

√
L2 + H2 (i.e., half the diagonal length).

4. Position and timing information for each agent is available

from an external source (e.g., visual feedback using cam-

eras, GPS, etc.).

5. We assume ideal communication links without any delays

or packet losses.

Given any non-degenerate Lissajous curve, the proposed

multi-agent surveillance strategy defines collision-free traject-

ories for multiple agents on this curve, while ensuring that the

agent formation lies on an elliptical locus centered around the

origin at any instant of time. This is done by initially placing

N = a + b agents at equi-parametric separations on the Lissa-

jous curve with constants a, b in (1), and moving them along

the curve at equal parametric speed.

We briefly recall the results of the surveillance strategy from

[2] in the following subsections. Later in the paper, we extend

this strategy to a reconfigurable formation of agents on Lissa-

jous curves.

4.1. Multi-Agent formation

For the proposed placement of agents on the Lissajous curve,

the initial parameter value of the agent i′ is si′ (0) = si′

0
=

2π(i′−1)

a+b

where i′ ∈ {1, 2, ..., a + b}. For the surveillance strategy, since

all agents move at the same parametric rate ṡ on the Lissajous

curve, the parameter value of the agent at any given point in

time is given by si′ (t) = si′

0
+ s(t), where s(t) =

t
∫

0

ṡdt. The posi-

tion of the agent i′ is a function of s(t). From (1), yi′ (s(t)) =

B sin
(

2(i′−1)bπ

a+b
+ bs(t)

)

and xi′(s(t)) = A cos
(

2(i′−1)aπ

a+b
+ as(t)

)

.

Using the identity cos(θ) = cos(2π(i′ − 1) − θ), xi′ (s(t)) =

A cos
(

2(i′−1)bπ

a+b
− as(t)

)

. With a little abuse of notation, we de-

note the running parameter s(t) by s for brevity. In Claim 2

given in the online supplement1, we have shown that by ap-

propriate renumbering of the index i′ by i, the agents can be

numbered along the elliptical locus rather than the Lissajous

curve, and the resulting position coordinates of the agent i with

this new renumbering is given by

xi(s) = A cos
(

ψ̃i − as
)

, yi(s) = B sin
(

ψ̃i + bs
)

, (14)

where ψ̃i =
2π(i−1)

a+b
for i ∈ {1, 2, ..., a + b}.

There can be many pairs of mutually co-prime integers sat-

isfying the relation N = a + b. For example, with N = 7

the mutually co-prime (a, b) pairs satisfying N = a + b are

(1, 6), (2, 5), (3, 4), (4, 3), (5, 2) and (6, 1). In [2] an algorithm

was proposed for choosing the optimal (a, b) pair that maxim-

ises the size bound on the agent and minimises the area cov-

erage time (discussed in subsection 4.6). This algorithm could

select a degenerate (a, b) pair with even a and odd b, for ex-

ample (a, b) = (2, 5) for N = 7. In [2], this issue was addressed

by swapping the value of a with b and A with B, so as to get a

non-degenerate Lissajous curve. This is equivalent to a rotation

of reference frame.

In this paper, we propose an online formation reconfigura-

tion strategy that switches between Lissajous curves. Hence it

is convenient to maintain the same reference frame across the

selected Lissajous curves. Therefore, we represent the swap-

ping of a with b and A with B, by an equivalent phase shift in

the original frame as follows:

After the swap, the position coordinates of agent i on the

resulting non-degenerate Lissajous curve are

(x̂i(s′), ŷi(s′)) = (B cos(ψ̃i − bs′), A sin(ψ̃i + as′)).

These coordinates can be expressed in the original reference

frame by a rotation of −π
2

, as given below:

[

xi(s′)
yi(s′)

]

=

[

0 −1

1 0

] [

x̂i(s′)
ŷi(s′)

]

=

[

A cos(ψ̃i + π
2
+ as′)

B sin(ψ̃i + π
2
− bs′)

]

.

By substituting a negative parameter s = −s′ (re-

versing the direction of traversal), we get (xi(s), yi(s)) =
(

A cos(ψ̃i + π
2
− as), B sin(ψ̃i + π

2
+ bs)

)

. Thus the general rep-

resentation of the agent positions on the Lissajous curve for the

proposed strategy is

xi(s, ψ)|ψ=ψi = A cos (ψ − as) ,

yi(s, ψ)|ψ=ψi = B sin (ψ + bs) , (15)

where ψi =
2π(i−1)

a+b
+ oπ

2
and the offset o is

o = 1 − (a mod 2). (16)

4.2. Elliptical formation locus

In [2], it has been shown that the agent positions given by

(15) lie on a conic curve given by

y2

B2
+

x2

A2
− 2xy sin ((a + b)s)

AB
= cos2 ((a + b)s) , (17)

which represents an elliptical locus that is always centered

about the origin (xo, yo) = (0, 0).

For different values of parameter s, different elliptical loci

are obtained as shown in Fig. 4. For all k ∈ N, by (17) the

parameter values s = kπ
(a+b)

result in the ellipse x2

A2 +
y2

B2 = 1.

Similarly parameter values s =
(2k−1)π

2(a+b)
result in a degenerate

ellipse

x2

A2
+

y2

B2
+ (−1)k 2xy

AB
= 0,
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Figure 4: Loci of the agent positions with placements given by (14)

at different values of parameter s for Lissajous curve having a = 5,

b = 6, A = 160 and B = 120.

which is the straight line y =
(−1)k+1 B

A
x along the diagonals of the

rectangular region defined by [−A, A] × [−B, B]. Notice that

the equation of the ellipse given by (17), which is the locus for

the multi-agent formation, is only dependent on the parameter

s and not ψi. Now in (15), for an agent i, if we make s con-

stant (fixing the ellipse) and vary the parameter ψ, then we can

achieve a parametric motion along the formation ellipse. Note

that the formation ellipse has a parametric length 2π in terms of

the parameter ψ, thus the proposed formation places the agents

at equi-parametric intervals (ψ̃i =
2π(i−1)

N
for i ∈ {1, 2, ...,N})

along the parametric length of the formation ellipse. We use

this idea later to move the agents from one Lissajous curve to

another for formation reconfiguration.

4.3. Speed profile of the agents

Let Vmax be the largest permissible linear speed for each

agent. Differentiating (15) and assuming the running paramet-

ers ψ and s to be functions of time, the components of velocity

along the x-direction and the y-direction are

ẋ = −A sin(ψ − as)(ψ̇ − aṡ), (18)

ẏ = B cos(ψ + bs)(ψ̇ + bṡ), (19)

and the resultant speed V is given by

V(t) =

√

ẏ2 + ẋ2. (20)

It is desirable to have a continuous velocity profile of the agents

in order to facilitate a practical implementation of the proposed

surveillance and formation reconfiguration strategy. Further-

more, the resultant speed must be maintained below Vmax. For

the surveillance mission, it was proposed in [2] that the para-

meter ψ = ψi =
2π(i−1)

N
be a constant and the agents move on the

Lissajous curve at a constant non-zero parametric speed ṡnom

given by

ṡnom =
Vmax√

A2a2 + B2b2
. (21)

Thus ψ̇ = 0 and it was shown in [2] that selecting the nominal

value of ṡ = ṡnom guarantees V(t) ≤ Vmax.

4.4. Sensing and communication range of agents

From (15), the x and y coordinate separation between any

two agents i, j in the proposed formation, is given by

|xi − x j| = 2A
∣

∣

∣

∣

sin
(

Ψp − as
)

sin (Ψm)
∣

∣

∣

∣

and

|yi − y j| = 2B

∣

∣

∣

∣
cos

(

Ψp + bs
)

sin (Ψm)
∣

∣

∣

∣
,

where Ψp =
ψi+ψ j

2
, and Ψm =

ψi−ψ j

2
. As a result the Euclidean

distance between the agents i and j is

Di j = 2 sin(Ψm)

√

A2 sin2
(

Ψp − as
)

+ B2 cos2
(

Ψp + bs
)

. (22)

For adjacent agents along the elliptical locus, ψ j = ψi ±
2π
N

, because for the proposed strategy, the agents are equi-

parametrically distributed along the elliptical locus for all time.

Hence the Euclidean distance between adjacent agents is given

by

Dad = 2 sin

(

π

N

) √

A2 sin2
(

Ψp − as
)

+ B2 cos2
(

Ψp + bs
)

.

(23)

Dad is bounded above by DM = 2 sin
(

π
N

) √
A2 + B2. As a res-

ult, if each agent has a circular sensor footprint of radius rs,

then overlapping sensor footprints of parametrically adjacent

agents along the elliptical locus can be guaranteed at any value

of the parameter s by ensuring rs ≥ DM

2
. Similarly, by ensur-

ing that each agent’s spherical communication range has radius

rcom > DM, we guarantee that the adjacent agents can commu-

nicate for cooperation during formation reconfiguration man-

oeuvres. In practice, considering the presence of curve tracing

errors in the implementation using real robotic platforms such

as quadrotors, the lower bounds on sensor footprint radius rs

and communication range radius rcom are chosen as

rsm = η sin

(

π

N

) √
A2 + B2 and (24)

rcm = 2η sin

(

π

N

) √
A2 + B2 (25)

respectively, where η ≥ 1 is a safety factor to ensure sufficient

sensor footprint overlap and communication range.

4.5. Agents with non-zero size and coverage time

In practice, real agents such as ground robots or quadrotors

have a non-zero size and are not point agents. Thus in [2], an

upper bound rdu, on the radius of the circular hull was derived,

which contains the physical dimensions of the agent. This up-

per bound is given by:

rdu = sin

(

π

N

)

AB
√

A2a2 + B2b2
. (26)

Agents having sizes smaller than this bound are guaranteed

to have collision-free trajectories for the proposed surveillance

strategy.

Since N agents (where N = a + b) are initially placed along

the curve with a parametric separation of 2π
a+b

and all agents

6



move with equal parametric speed ṡnom along the curve, a para-

metric displacement of 2π
a+b

for all the agents guarantees that the

entire Lissajous curve is collectively traversed by all the agents.

As a consequence, an upper bound on the time taken to col-

lectively cover the entire rectangular area by the multi-agent

formation is

Tcov =
2π

(a + b)ṡnom

=
2π
√

A2a2 + B2b2

NVmax

. (27)

The results proved in [2] can be summarised by the following

theorem:

Theorem 1. Given a non-degenerate Lissajous curve de-

scribed by (1) having parameters A, B, a, b, the multi-agent

formation of parametric point agents on the curve given by (14),

equipped with a circular sensor footprint of radius rs given

by (24) and moving along the curve with an equal parametric

speed ṡnom given by (21) guarantees the fulfilment of objectives:

1) Collision-free paths for the agents in the formation, with

agent speed bounded above by Vmax.

2) Complete and repeated coverage of the rectangular area by

the multi-agent formation.

3) Finite time detection of a rogue element trying to escape from

the region starting from the center of the region.

4.6. Selection of Lissajous curve parameters

Suppose the number of agents to be used for the proposed

surveillance strategy is N, and they monitor a rectangular area

of dimensions L×H. Then we choose the Lissajous curve con-

stants A = L
2

and B = H
2

in (1). Recall that to achieve the

proposed multi-agent formation the agent positions are defined

by (15) where N = a + b for a pair of co-prime positive in-

tegers (a, b). For the proposed strategy we select the (a, b) pair

considering the following claim.

Claim 1. ([2]) For a given N, the value a∗ = B2N
A2+B2 with b =

N −a∗ is the minimizer of Tcov and maximizer of rdu, where Tcov

and rdu are given by (27) and (26) respectively.

In [2], it has been argued that for a δ > 0, Tcov(a
∗ + δ) =

Tcov(a∗ − δ). Hence, though a∗ may not be an integer, we

find the positive integer kc such that it is the nearest integer

to a∗ that yields a co-prime (kc,N − kc) pair. Then we select

(a, b) = (kc,N − kc). This choice is the coprime integer pair that

minimises the value of Tcov and maximises rdu while satisfying

a + b = N. We search for this mutually co-prime pair iterat-

ively using Algorithm 1. The completeness of this algorithm

has been proved in [2]. In the worst case, Algorithm 1 selects

the following:

(a, b) =















(1,N − 1), if A ≥ B

(N − 1, 1), if A < B.
(28)

In case the selected (a, b) pair corresponds to a degenerate

Lissajous curve, then instead of the swapping a with b and A

with B, as done in [2], the Algorithm 1 computes the phase

offset o given by (16).

Algorithm 1 Curve Select

Inputs: A, B, N

Functions: GCD

Outputs: a,b,o

1: a∗ = B2N
A2+B2 , du = ⌈a∗⌉ − a∗, dl = a∗ − ⌊a∗⌋

2: c = 1

3: if du ≤ dl or a∗ < 1 then

4: kc = ⌈a∗⌉, m = 0

5: if du > dl or a∗ > N − 1 then

6: kc = ⌊a∗⌋, m = 1

7: while GCD(kc, N − kc) , 1 do

8: kc = kc + (−1)c+mc

9: c = c + 1

10: a = kc, b = N − kc

11: o = 0

12: if GCD(kc, 2) = 2 then

13: o = 1

4.7. Number of agents in the formation

To practically implement the proposed surveillance strategy

we need to ensure the following:

1. Sufficient sensor footprint radius to ensure overlapping

sensing ring formation (i.e., rs ≥ rsm in (24)).

2. Sufficient communication range between agents for co-

operation (i.e., rcom ≥ rcm in (25)).

To ensure this for a given sensing capability rs and communic-

ation range rcom of a single agent, we need to compute the min-

imum number of agents Nmin for which the formation is defined.

Thus from (24), defining R = η
√

A2 + B2, the minimum num-

ber of agents necessary to ensure rs ≥ rsm is

Ns =

⌈

π

∣

∣

∣

∣

∣

sin−1
(

r1

R

)

∣

∣

∣

∣

∣

−1
⌉

with r1 =















rs, if rs < R
R, otherwise.

Similarly, from (25), the minimum number of agents required

to ensure rcom ≥ rcm are

Nc =

⌈

π

∣

∣

∣

∣

∣

sin−1
(

r2

2R

)

∣

∣

∣

∣

∣

−1
⌉

with r2 =















rcom, if rcom < 2R
2R, otherwise.

Thus the minimum number of agents in the formation that are

necessary to guarantee both rs ≥ rsm and rcom ≥ rcm, is given by

Nmin = max{Ns,Nc} ≥ 2. (29)

For the reconfiguration strategy, we design trajectories for ad-

dition, removal and replacement of agents in the subsequent

section. We assume that the maximum number of extra agents

Nextra > 0 to be used in addition to the Nmin agents is pre-

defined, and the maximum number of agents in the formation is

thus calculated as

Nmax = Nmin + Nextra. (30)

For normal operation we use N agents where Nmin < N ≤ Nmax.
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4.8. Bound on agent size

Our objective is to design smooth trajectories for reconfig-

uring the multi-agent formation from one Lissajous curve to

another depending on the number of agents being used. Given

a number of agents N j and the corresponding Lissajous curve

(a j, b j) selected using Algorithm 1, from (26) the upper bound

on the circular hull radius encompassing the dimensions of the

agent for the reconfigurable formation is selected as

rdm = min
j∈S N























AB
√

A2a2
j
+ B2b2

j

∣

∣

∣

∣

∣

∣

∣

∣

∣

N j = Nmin + j























× sin

(

π

Nmax

)

,

(31)

where S N := {0, 1, 2, ...,Nextra}. Thus rdm ≤ rdu j
=

AB
√

A2a2
j
+B2b2

j

sin
(

π
Nl

)

,∀ j ∈ S N .

Thus we have Algorithm 2, which initialises all the paramet-

ers discussed above for all the agents.

Algorithm 2 Initialisation

Inputs: L, H, rs, rcom Vmax, Nextra, η

Functions: Curve Select

Outputs: A, B, a, b, o, N, Nmin, Nmax, ṡnom, rdm and

(xi(0), yi(0)) ∀i ∈ {1, ...,N}
1: A = L

2
, B = H

2

2: if rs < η
√

A2 + B2 then

3: r1 = rs

4: else r1 = η
√

A2 + B2

5: if rcom < 2η
√

A2 + B2 then

6: r2 = rcom

7: else r2 = 2η
√

A2 + B2

8: Ns =

⌈

π

∣

∣

∣

∣

∣

sin−1
(

r1

η
√

A2+B2

)

∣

∣

∣

∣

∣

−1
⌉

9: Nc =

⌈

π

∣

∣

∣

∣

∣

sin−1
(

r2

2η
√

A2+B2

)

∣

∣

∣

∣

∣

−1
⌉

10: Nmin = max{Ns,Nc}, Nmax = Nmin + Nextra

11: for j = 0, 1, ...,Nextra do

12: N j = Nmin + j

13: [a j, b j, o j]=Curve Select(A, B, N j)

14: rd j
= AB

√

A2a2
j
+B2b2

j

15: rdm = min
{

rd j

∣

∣

∣ j ∈ {0, ...,Nextra}
}

× sin
(

π
Nmax

)

16: N = N1, a = a1, b = b1 and o = o1

17: ṡnom =
Vmax√

A2a2
1
+B2b2

1

18: for i = 1, ...,N do

19:

[

xi(0)

yi(0)

]

=















A cos
(

2π(i−1)

N
+

o1π

2

)

B sin
(

2π(i−1)

N
+

o1π
2

)















5. Formation reconfiguration strategy

In this section, we extend the proposed surveillance strategy

(discussed in Section 4) for a more practical setting where

agents may need to be added, removed or replaced from the

formation on the go. This is useful for applications where the

surveillance task might last for long durations. Furthermore, the

trajectories designed for these tasks must guarantee collision-

free motion of the agents. For this an appropriate selection

of trajectories is done by the agents via cooperation. This is

achieved by information exchange on a communication channel

and this channel is established between adjacent agents of the

formation by ensuring that the communication range rcom > rcm

(given by (25)).

Suppose the formation initially consists of N agents and our

objective is to switch to a formation of N − 1 or N + 1 agents.

For a reconfiguration, the trajectories are planned to move these

agents from the current Lissajous curve corresponding to N

agents to the Lissajous curve corresponding to N − 1 or N + 1

agents (selected in either case by Algorithm 1). For the replace-

ment operation, we design a simple exchange step where the

agent to be replaced is removed and a new agent takes its place

on the same Lissajous curve. The proposed surveillance and

reconfiguration strategy has been designed considering aerial

agents such as helicopters and quadrotors, which are capable

of safely decelerating to a zero speed in flight (hover) during

operation.

Using the parametric representation in (15), we design

collision-free parametric trajectories based on cooperation for

removal, addition and replacement of a single agent. For the

discussions in subsequent subsections, we use the notations

given in Table 1.

Table 1: Notations

Nc Number of agents before reconfiguration

(ac, bc, oc)
Lissajous curve constants for Nc agents

given by Algorithm 1 with Nc = ac + bc

si
c(t), ψi

c(t)
Curve parameters of agent i in terms

of Lissajous curve for Nc agents at time t

Nd Number of agents after reconfiguration

(ad, bd, od)
Lissajous curve constants for Nd agents

given by Algorithm 1 with Nd = ad + bd

si
d
(t), ψi

d
(t)

Curve parameters of agent i in terms

of Lissajous curve for Nd agents at time t

ψi
D

ψd parameter value corresponding to

formation positions on Lissajous curve for

Nd agents assigned to agent i for transition

∆i
ψ

Displacement in parameter ψi
d

for agent i

for reconfiguration to ψi
D

∆i jψ(t)
ψ parameter separation between

agent i and j at time t

Prior to any reconfiguration, the Nc agents lie on an elliptical

locus defined by the value of the parameter sc ∈ [0, 2π) accord-

ing to (17). Also for Nc agents on Lissajous curve described by

(ac, bc, oc), the agents are equi-parametrically spaced along an

ellipse in terms of parameter ψc ∈ [0, 2π) (refer (15)). Thus

parametric separation between the adjacent agents in terms of

parameter ψc is 2π
Nc

. This fact is used by each agent to identify

its adjacent agents’ parameters through communication.
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5.1. Steps for formation reconfiguration

A brief outline of the steps involved in the reconfiguration

operation are as follows:

• The multi-agent formation of Nc agents decelerates to

a stop on the Lissajous curve described by constants

(ac, bc, oc). This is done by using the monotone deceler-

ation trajectory (2) for the parameter sc, where the value

of ṡc = ṡnom is decelerated smoothly to ṡc = 0

• For addition and removal operations, where the number

of agents after reconfiguration Nd , Nc, a motion of the

agents along the formation ellipse is necessary to recon-

figure to the destination Lissajous curve for Nd agents

(described by constants (ad, bd, od)). Thus the parameter

transformation is done to express the curve parameters

(ψc, sc) in terms of the destination Lissajous curve as

(ψd, sd), for all agents.

• The agents are then assigned a destination position on the

Lissajous curve for Nd agents by a cooperative assignment

scheme, and this is followed by a motion of the agents

along the formation ellipse to these assigned positions by

variation of parameter ψd. Since the agents require to ac-

celerate from rest from the Lissajous curve for Nc agents

and decelerate back to rest on their assigned positions on

the Lissajous curve for Nd agents, the parameter ψd is var-

ied using the symmetric transition trajectory (8).

• Upon reaching the Lissajous curve for Nd agents, the

agents now accelerate along this new Lissajous curve to

ṡd = ṡnom using the monotone trajectory in (2) for para-

meter sd to resume normal surveillance operation.

The common steps involved in a reconfiguration operation

are discussed in further detail below:

5.1.1. Monotone decelaration of sc

When any one of the three reconfiguration operations is ini-

tiated at time TR, all the formation agents are brought to a halt

on the Lissajous curve for Nc agents. This is done by decel-

erating the ṡc to 0. One of the formation agents chosen as the

reconfiguration initiator agent iI , computes s̃ f = s
iI
c (TR) + π

8Nc
.

The choice of iI for each reconfiguration operation is operation

specific and will be discussed later. If s̃ is used as the stopping

sc parameter value for all active formation agents the formation

locus lies on the elliptical locus given by (17) for sc = s̃ f .

For the replacement operation the final stopping value for

agent i in the formation is selected as

si
f = s

iI

c f
= s̃ f , (32)

and this value is communicated to all formation agents by agent

iI via the communication links. For the addition and removal

applications, we intend to reconfigure the formation by mov-

ing along this ellipse. For agents having non-zero dimensions,

collisions can occur for a narrow elliptical locus as shown in

Fig. 5. Thus it is necessary to derive the range of parameter

sc for which motion along the ellipse should be prohibited, and
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34
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Figure 5: An agent removal example where agent 2 is removed and

the remaining agents cannot have a collision-free transition along the

dotted green elliptical locus due to their non-zero size

accordingly select an appropriate stopping parameter value s̃ f .

To do this, we have the following proposition:

Proposition 1. For adjacent agents, i and j of an Nc agent

formation having dimensions within a circular hull bound rdm,

and minimum ψ parameter separation ∆
i j

min
= mint∈R+ |ψ j

c(t) −
ψi

c(t)| > 0, all elliptical loci corresponding to parameter

sc < S avoid (33)

are feasible for collision-free agent transitions along these loci,

where S avoid = ∪k∈N
(

sdiag(k) − δs, sdiag(k) + δs

)

(mod 2π),

with sdiag(k) =
(2k−1)π

2Nc
, δs =

π
2Nc

rdm

√
A2+B2

AB

∣

∣

∣

∣

∣

sin

(

∆
i j

min

2

)

∣

∣

∣

∣

∣

−1

.

The proof of Proposition 1 is given in the appendix.

Remark 1. In Proposition 1 if the value of ∆
i j

min
decreases,

the δs increases as it is proportional to

∣

∣

∣

∣

∣

sin

(

∆
i j

min

2

)

∣

∣

∣

∣

∣

−1

. If δs ≥
π

2Nc
then no ellipse is feasible for collision-free transitions as

S avoid = [0, 2π). Thus to have a feasible elliptical locus for

transitions we must ensure δs <
π

2Nc
.

It will be shown in later sections that for addition ∆
i j

min
= 2π

Nd

and for removal ∆
i j

min
= 2π

Nc
. Thus the stopping parameter value

for agent iI is chosen as:

s
iI

c f
=

{

sdiag(k′) + δs, if s̃ f ∈ S avoid for k = k′

s̃ f , otherwise,
(34)

where sdiag and S avoid are as defined in Proposition 1. The value

of s
iI

c f
is communicated to the remaining agents in the formation

using the communication links and

si
c f = s

iI

c f
. (35)

We assume that the transition is initiated for all agents at the

same time, i.e., T i
R
≈ T

j

R
. The formation agents use the mono-

tone transition trajectory given by (2) (discussed in Section 3)

to smoothly decelerate to rest at si
c = s

iI

c f
. Thus from (7), the

constants that characterize this trajectory for agent i are:

T0 = T i
R, ġ0 = ṡnom, ġ f = 0, g0 = si

c(T0) and g f = si
c f .
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5.1.2. Parameter transformation

This step is carried out by each formation agent after comple-

tion of the monotone deceleration of ṡc to 0 (discussed in Sec-

tion 5.1.1). For brevity of notation, parameters sc(t) and ψc(t),

which are functions of time, are written as sc and ψc respect-

ively. This step is common to the agent addition and removal

operations as both involve agent motion from Lissajous curve

for Nc agents to the Lissajous curve for Nd agents along the

formation ellipse, and is not necessary for agent replacement

as Nc = Nd. For such a motion to be possible, the agent posi-

tions on the current Lissajous curve and the assigned positions

on the Lissajous curve for Nd agents must lie on the same el-

lipse at any given instant. In other words, for (ac, bc, sc) and

(ad, bd, sd), (17) must result in the same ellipse. This implies

that (ac + bc)sc = (ad + bd)sd, or,

sd =
ac + bc

ad + bd

sc. (36)

From (15), the position of agent i on the Lissajous curve (ac, bc)

in terms of parameters ψi
c and si

c is:

(xi, yi) =
(

A cos
(

ψi
c − acsi

c

)

, B sin
(

ψi
c + bcsi

c

))

,

where ψi
c is a constant . We can rewrite ψi

c − acsi
c = ψ

i
c + ad si

d
−

acsi
c − ad si

d
and ψi

c + bcsi
c = ψ

i
c + bcsi

c − bd si
d
+ bd si

d
. From (36),

substituting si
c =

ad+bd

ac+bc
si

d
leads to

ψi
c − acsi

c = ψ
i
d − ad si

d and ψi
c + bcsi

c = ψ
i
d + bd si

d ,

where

ψi
d = ψ

i
c +

adbc − acbd

ac + bc

si
d (mod 2π). (37)

Thus (xi, yi) =
(

A cos
(

ψi
d
− ad si

d

)

, B sin
(

ψi
d
+ bd si

d

))

is un-

changed under this transformation. Note that the number pairs

(ac, bc) and (ad, bd) are co-prime and both ac = ad and bc = bd

cannot hold simultaneously as (Nc , Nd). This implies that
ac

bc
,

ad

bd
which means

adbc−acbd

ac+bc
, 0. Thus we see that (36)

and (37) transform the parameters si
c, ψ

i
c of the Lissajous curve

with (ac, bc, oc) to the parameters si
d
, ψi

d
of the Lissajous curve

with (ad, bd, od) without affecting the position coordinates of

the agents. Since agents are at rest, from (36), ṡi
d
= ṡi

c = 0 and

ψ̇i
d
= ψ̇i

c = 0 for all i ∈ {1, ...,Nc}.

Remark 2. The ψ parameter separation between agents i and

j along the ellipse is remains unchanged under the parameter

transformation in (37) ,i.e.,

∆i jψ(t) = ψ
j
c(t) − ψi

c(t) = ψ
j

d
(t) − ψi

d(t). (38)

5.1.3. Symmetric transition of ψd

For both agent addition and removal operations the formation

agents move from the Lissajous curve for Nc agents to the Lis-

sajous curve for Nd agents. Separate cooperative leader selec-

tion and transition assignment schemes are proposed for either

operation in later sections that guarantee collision-free trans-

ition trajectories. These schemes assign a destination parameter

value ψi
D

(on the Lissajous curve for Nd agents) to each agent i,

from the set

ΨD =

{

2π(p − 1)

Nd

+
odπ

2
mod 2π : p ∈ {1, ...,Nd}

}

. (39)

These correspond to the agent formation positions on the Lis-

sajous curve for Nd agents from (15). Suppose the formation

agent i is assigned destination parameter values at time t = T i
Ψ

.

Each formation agent i must travel the parametric displacement

to reach the assigned ψi
D

value equal to

∆i
ψ = ψ

i
D − ψ

j

d
(TΨ), (40)

For both addition and removal, the cooperative leader selection

and transition assignment schemes also communicate necessary

information to the formation agents that allows them to com-

pute

∆max = max
i∈{1,...,Nd}

|∆i
ψ|. (41)

The agents then use the symmetric transition trajectory given

by (8) to move to the positions corresponding to the assigned

ψi
D

values. For this transition, ṡi
d
= 0 and as a result the agent

speed depends only on |ψ̇i
d
|. From (20), V i <

√
A2 + B2|ψ̇i

d
|.

Therefore, V i < Vmax, if |ψ̇i
d
| ≤ ψ̇max, where ψ̇max =

Vmax√
A2+B2

.

Thus from (12), considering peak parametric speed as ġmax =

ψ̇max for parametric interval |g f − g0| = ∆max, rearrangement of

the equation gives

Tp =
15∆max

8Vmax

√
A2 + B2.

Using Tp as transition time period in (8) for the agent im =

arg maxi∈{1,...,Nd} |∆
i
ψ| guarantees that its maximum parametric

speed is ψ̇max =
15∆max

8Tp
(hence limiting physical speed below

Vmax). We also use Tp as the transition time period for the

remaining formation agents. Thus from (12), for all i , im,

|ψ̇i
dmax
| = |ψ̇i

dmin
| = 15∆i

ψ

8Tp
≤ 15∆max

8Tp
= ψ̇max. Hence speeds of all the

agents are bounded above by Vmax.

From (13), the constants that characterise the symmetric tra-

jectory in (8) for agent i are

T0 = T i
ψ, Tp =

15∆max

√
A2 + B2

8Vmax

, g0 = ψ
i
d(T0), g f = ψ

i
D.

(42)

For both addition and removal the destination parameter val-

ues in ΨD are assigned such that the symmetric transitions

along the ellipse are in the same direction. Assuming negligible

communication delays, the transition start times for formation

agents i, j (i , j) satisfy T i
Ψ
≈ T

j

Ψ
= T0 . As a consequence we

have the following result for the relative parametric displace-

ment ∆i jψ:

Proposition 2. For formation agents i, j moving along the sym-

metric transition trajectories for parameter ψd characterised

by (42) for the time window t ∈ [T0, T f ], ∆
i jψ(t) given by

(38) is monotone in nature and achieves its extremal values at

t = T0, T f .
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Proof: Since symmetric transition trajectory for reconfigura-

tion is initiated at T0 = T i
ψ ≈ T

j

ψ and ends at T f = T0 + Tp,

from (9), the relative parametric speed between agents i and j,

is given by

∆i jψ̇(t) = ψ̇
j

d
(t) − ψ̇i

d(t) =
30(∆

j

ψ − ∆i
ψ)

T 5
p

∆t2(Tp − ∆t)2, (43)

where ∆t = t − T0, ∆
j

ψ and ∆i
ψ are given by (40). Thus from

(43), for t ∈ (T0, T f ), ∆
i jψ̇(t) > 0, if ∆

j

ψ −∆i
ψ > 0 and ∆i jψ̇(t) <

0, if ∆
j

ψ − ∆i
ψ < 0. This proves that ∆i jψ(t) = ψ

j

d
(t) − ψi

d
(t)

is monotone in nature and its extremal values are attained at

t = T0, T f . ✷

5.1.4. Monotone acceleration of sd

This step is common to all three reconfiguration operations.

After completing the symmetric transition trajectory along the

elliptical locus for agent addition and removal operations, and

agent exchange for the replacement operation, all the Nd agents

have reached their destination ψi
D

values on the Lissajous curve

selected for Nd agents, and are at rest. Now the agents accel-

erate along this curve using the monotone transition traject-

ory for parameter sd given by (2) to resume performing the

proposed surveillance strategy with Nd agents with parametric

speed ṡd = ṡnom according to (21) for the new Lissajous curve

with (ad, bd, od). This is initiated by an initiator agent iI (op-

eration specific) via the communication links. We assume that

the transition is initiated by the leader iL at T0 = T i
a for agent

i (where T i
a ≈ T

j
a for i , j and i, j ∈ {1, ...,Nd}). From (7) the

constants that specify this trajectory in (2) for each agent i are

T0 = T i
a, g0 = si

d(T0), g f = g0 +
π

8Nd

, ġ0 = 0, ġ f = ṡnom.

(44)

5.1.5. Symmetric transition to way-point

Here an agent moves from its initial position P0 with coordin-

ates (x0, y0), to a final way-point position P f with coordinates

(x f , y f ) by performing a symmetric transition trajectory (given

by (8)) for the displacement along the vector
−−−−→
P0P f ( having

length d f =
√

(x f − x0)2 + (y f − y0)2 ). Assuming this trans-

ition is done over a time window [T0, T f ] with T f = T0 + Tp

where Tp ≥ 15d f

8Vmax
, then from (12) selecting the constants

T0 = T
ia
0
, Tp = T ia

p , g0 = 0 and g f = d f

in (13) for the trajectory given by (8), ensures that the agent

speed is bounded above by Vmax.

We now discuss the reconfiguration steps involved in each of

the three operations separately.

5.2. Agent removal

The removed agent ir has two adjacent neighbours ip and

in on the formation ellipse with parameter values ψ
in
c = ψ

ir
c +

2π
Nc

mod 2π and ψ
ip

c = ψ
ir
c − 2π

Nc
mod 2π respectively. The al-

gorithmic sketch of the steps for the agent removal operation

are as follows:

Initial condition: Proposed formations of Nc agents mov-

ing on the Lissajous curve for surveillance at altitude hF .

1: Removal initialisation: Agent ir stops communication

lowers altitude at t = TR to hL < hF , and returns to base to

land. Number of formation agents remaining Nd = Nc − 1.

2: Monotone deceleration of parameter sc: initiated by

agent in for Nd formation agents.

3: Parameter transformation: from (sc, ψc) to (sd, ψd),

done when ṡi
c = 0 for all formation agents i.

4: Leader selection: Leader agent iL selected from {in, ip}
5: Transition assignment: Destination positions on the Lis-

sajous curve for Nd agents are assigned to formation agents

by leader iL

6: Symmetric transition trajectory of parameter ψd:

Agents move along formation ellipse to reach assigned des-

tination positions on the Lissajous curve for Nd agents.

7: Monotone acceleration of parameter sd: initiated by

agent in after the previous step, Nd formation agents ac-

celerate along the Lissajous curve for Nd agents to resume

area surveillance.

The reconfiguration steps for the formation agents unique to the

agent removal operation are as follows:

5.2.1. Removal initialisation

When agent ir is removed from the formation of Nc agents at

time t = TR, its next agent in alerts the remaining agents about

the removal of agent ir via the communication links. We assume

that the remaining Nd = Nc−1 formation agents (having indices

j ∈ {1, ...,Nc} \ {ir}) are updated about the removal at time t =

T
j

R
≈ TR. This is followed by the monotone deceleration of the

parameter sc for which agent in is the initiator agent iI (refer

Section 5.1.4).

5.2.2. Leader selection and transition assignment

For the agent removal operation Nd = Nc−1, assuming agent

ir is removed, the leader agent iL is selected from the agents in
and ip (neighbours of ir in the formation with parameter values

ψ
in
c = ψ

i
c +

2π
Nc

mod 2π and ψ
ip

c = ψ
i
c − 2π

Nc
mod 2π, respectively).

If agent in is selected as the leader (as shown in Fig 6) then after

the parameter transformation, the direction of transition along

the ellipse is selected in the direction of the increasing ψd para-

meter (,i.e., ψ̇d > 0) as shown in the Fig. 6, as it is guaranteed

to have an adjacent agent within its communication range of

rcom (at parameter ψc = ψ
in
c +

2π
Nc

mod 2π before the parameter

transformation). Similarly, if agent ip is selected as the leader

then the direction of transition along the ellipse is selected in the

direction of the decreasing ψd parameter (i.e., ψ̇d < 0). The des-

tination parameter values on the Lissajous curve for Nd agents

lie in the set ΨD given by (39). The element in ΨD which is

nearest to iL along the chosen direction of transition is selected

as the destination parameter value for the leader iL. For agent in
(shown in Fig. 6), the nearest element of ΨD encountered along

the ψ̇d > 0 direction is at ψn
cl
=

⌈(

ψ
in
d
− odπ

2

)

Nd

2π

⌉

2π
Nd
+

odπ

2
, and

parametric interval δ
in
ψ = ψ

n
cl
− ψin

d
as shown in Fig. 6. Similarly

for agent ip, the nearest element of ΨD encountered along the
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Figure 6: Transition assignment example for the removal of an agent

from a Nc = 5 agent formation for leader iL = in.

ψ̇d < 0 direction is at ψ
p

cl
=

⌊(

ψ
ip

d
− odπ

2

)

Nd

2π

⌋

2π
Nd
+

odπ

2
, and para-

metric interval δ
ip

ψ = ψ
ip

d
− ψp

cl
as shown in Fig. 6. Both agents

in and ip compute the values of δ
ip

ψ and δ
in
ψ , and the leader agent

iL is selected as follows:

iL =















in, if δ
in
ψ ≤ δ

ip

ψ ,

ip, if δ
in
ψ > δ

ip

ψ .
(45)

The destination parameterψ
iL

D
and the corresponding parametric

distance |∆i
ψ| (given by (40)) for the leader iL is selected as

(ψ
iL

D
, |∆iL

ψ |) =














(ψn
cl
, δ

in
ψ), if iL = in,

(ψ
p

cl
, δ

ip

ψ ), if iL = ip.
(46)

As a consequence of choices in (45) and (46), the selected

leader has smaller value of the parametric transition distance

|∆iL

ψ | assigned for reconfiguration. The leader communicates

ψ
iL

d
and ψ

iL

D
values to the remaining formation agents using the

communication links between adjacent agents. The subsequent

values in ΨD are assigned as destination parameter values to

the subsequent agents, in the sequence in which they are en-

countered on the formation ellipse along the ψ̇d < 0 direction

for iL = ip and ψ̇d > 0 direction for iL = in (shown in Fig. 6).

Mathematically this can be written as

ψi
D =















ψ
iL

D
+

2πni

Nd
mod 2π, if iL = in,

ψ
iL

D
− 2πni

Nd
mod 2π, if iL = ip,

(47)

where ni is the count of agent i relative to iL along the transition

direction, and is computed as

ni =















(ψi
d
− ψiL

d
mod 2π) Nc

2π
, if iL = in,

(ψ
iL

d
− ψi

d
mod 2π)

Nc

2π
, if iL = ip.

(48)

Here ni ≤ Nd − 1 is an integer because prior to any transition

along the ellipse, |ψi − ψiL | is an integer multiple of 2π
Nc

for the

agents i ∈ {1, ...,Nc} \ {ir , iL}.

For the destination parameter assignment given by (46) and

(47), |∆i
ψ| (given by (40)) is the parametric transition distance

that each agent must move along the formation ellipse to reach

the assigned destination value ψi
D

. Suppose the leader agent

iL = in. Then as illustrated in Fig. 6, the values of |∆i
ψ| for

agents i ∈ {1, ...,Nc} \ {ir} are given by

|∆i
ψ| = |∆

iL

ψ | + ni

(

2π

Nd

− 2π

Nc

)

. (49)

Equation (49) also holds for the case iL = ip. From (49), for the

agent removal case, the longest parametric transition distance

∆max in (41) is obtained for ni = Nd − 1 and Nd = Nc − 1, and is

given by

∆max = |∆iL

ψ | + 2π
Nc − 2

Nc(Nc − 1)
.

This is followed by the symmetric transition in the ψd parameter

for the Nd formation agents as discussed in Section 5.1.3.

Claim 2. The destination parameter assignment scheme given

by (47) guarantees collision-free symmetric transition traject-

ories in parameter ψd for the Nd formation agents.

Proof: Prior to the agent removal, |∆i jψ(t)| = |ψ j
c(t)−ψi

c(t)| = 2π
Nc

for adjacent agents i and j. We assume that agent j succeeds

agent i along the selected direction of transition, i.e., i, j satisfy

n j = ni + 1 in (48). Thus in the time interval [T0, T f ] for the

symmetric transition of formation agents, with T0 = T i
Ψ
≈ T

j

Ψ

and T f = T0 + Tp, the initial and final parametric displace-

ment (in parameter ψd) from agent i to the adjacent agent on

the formation ellipse along the direction of transition is given

by:

∆i jψ(T0) =















4π
Nc

if i = ip

2π
Nc

if i , ip

,∆i jψ(T f ) =
2π

Nd

for iL = in, (50)

∆i jψ(T0) =















−4π
Nc

if i = in
−2π
Nc

if i , in
,∆i jψ(T f ) =

−2π

Nd

for iL = ip. (51)

From Proposition 2, we know that ∆i jψ(t) is monotone for t ∈
[T0, T f ] and attains its maximum and minimum values at T0 or

T f . Thus from (50) and (51), the minimum value of |∆i jψ(t)| =
∆

i j

min
= 2π

Nc
for the agent removal operation. From Proposition 1

and (31), δs =
π

2Nc

√
A2+B2

√

A2a2
j
+B2b2

j

sin
(

π
Nmax

)

∣

∣

∣

∣
sin

(

π
Nc

)

∣

∣

∣

∣

.

Since Nc ≤ Nmax and (a j, b j) are co-prime positive integers,

δs <
π

2Nc
. Moreover, as the formation agents stop on a feas-

ible ellipse with sc , S avoid (which is ensured as discussed

in Section 5.1.1), the symmetric transition trajectories in the

parameterψd for the proposed transition assignment scheme are

collision-free. ✷

5.3. Agent addition

For the agent addition operation, ip and in are the formation

agents parametrically preceding and succeeding the assigned

formation position for added agent ia respectively. The al-

gorithmic sketch of the steps for adding agent ia to a formation

of Nc agents to get a formation of Nd = Nc + 1 agents are as

follows:
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Initial condition: Proposed formations of Nc agents mov-

ing on the Lissajous curve for surveillance at altitude hF .

1: Addition Initialisation: Agent ia waiting at height hL,

alerts the closest formation agent ic to initiate the agent ad-

dition operation when in communication range.

2: Monotone deceleration of parameter sc: initiated by

agent ic at t = TR for all formation agents.

3: Parameter update for added agent: The formation agents

cooperatively calculate the s
ia
d

, ψ
ia
d

parameters for the form-

ation position of agent ia, and communicate the same to ia.

ia moves to its assigned formation position at height hL

4: Parameter transformation: From (sc, ψc) to (sd, ψd),

done for formation agents i at height hF when ṡi
c = 0.

5: Leader selection: Leader agent iL is selected from {in, ip}
6: Transition assignment: Destination positions on the Lis-

sajous curve for Nd agents are assigned to formation agents

by iL.

7: Symmetric transition trajectory of parameter ψd:

Agents move along formation ellipse to reach assigned des-

tination positions on new Lissajous curve.

8: Agent ia enters formation: During the symmetric trans-

ition trajectory, ia rises to height hF when the ascent is

collision-free.

9: Monotone acceleration of parameter sd: initiated by

agent ia after the previous two steps. The Nd formation

agents accelerate along the Lissajous curve for Nd agents

to resume area surveillance.

We now discuss the reconfiguration steps specific to the addi-

tion operation for the added agent ia and the formation agents.

5.3.1. Addition initialisation

The agent to be added to the formation is launched from the

home base and it hovers at altitude hL < hF . When formation

agent ic is in communication range, it is alerted by ia to ini-

tiate the agent addition operation. Agent ic then initiates the

monotone deceleration of the parameter sc for the Nc formation

agents.

5.3.2. Parameter update for added agent

The formation agents calculate the position of entry on the

elliptical locus for the added new agent and communicate the

corresponding ψd and sd values to the added agent. The cal-

culation of these values is done considering Lemma 2 (proof

given in the Appendix).

Lemma 2. Suppose P1, P2, ..., PN are N parametrically equi-

spaced points on a closed curve C with the convention PN+1 =

P1, and Q1,Q2, ...,QN+1 are N + 1 parametrically equi-spaced

points on the same curve C with convention QN+2 = Q1. Then

there is exactly one pair of adjacent Q points contained in the

interval [Pi, Pi+1) of adjacent P points for some i ∈ {1, ...,N}.

From (15), we know that for the proposed formation, the

agent positions on the Lissajous curve partition the elliptical

locus in parametrically equal parts in terms of parameter ψc.

Thus from Lemma 2, at any point in time exactly two adja-

cent agent positions on the Lissajous curve for Nd = Nc + 1

agents (shown as green spots in Fig. 7) must lie between two

adjacent agent positions on the Lissajous curve for Nc agents

(shown as blue spots in Fig. 7) along the elliptical locus. Hence

2�=
Nd

�
i p
2

�
ip
�

2�=
Nc

in

ip

2�
=N
d

�
i�
 

Assigned to
agent ia for

�
i�
2 � �

i�
�

Destination positions
of Nd agents on the
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agents
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Elliptical locus of the
agent formation
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tion along the elliptical
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_ d > 0
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Destination position
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formation agents

Figure 7: Transition assignment example for the addition of an agent

from a Nc = 5 agent formation for leader iL = in.

after the calculation of the stopping parameter value si
f

as dis-

cussed in Section 5.1.1, each of the formation agents computes

the transformed values si
d f

and ψi
d

of the stopping parameter

value si
f
= s

ic
f

and ψi
c using (36) and (37) respectively. Defining

ΨD as in (39), each formation agent then computes the follow-

ing terms:

δi
1 =

⌈(

ψi
d −

odπ

2

)

Nd

2π

⌉

2π

Nd

+
odπ

2
− ψi

d, (52)

δi
2 =

2π

Nc

−
(

δi
1 +

2π

Nd

)

, (53)

where δi
1

is the parameter separation between ψi
d

and the closest

destination position on the Lissajous curve for Nd agents (from

the set ΨD) along the ψ̇d > 0 direction. As a consequence of

Lemma 2, the value of δi
2
> 0 for exactly one of the formation

agents (as shown in Fig. 7). We call this agent as agent ip.

Agent ip then selects the value of the destination parameter ψ
ia
D

(from the set ΨD) for the entry position of the added agent ia as

follows:

ψ
ia
D
=















ψ
ip

d
+ δ

ip

1
, if δ

ip

1
> δ

ip

2

ψ
ip

d
+ 2π

Nc
− δip

2
, if δ

ip

1
≤ δip

2
.

(54)

It will be shown later in the transition assignment step that

this choice ensures a shorter transition along the elliptical locus

for the formation agents to reconfigure to the Lissajous curve

for Nd agents. Assuming that the reconfiguration is initiated at

time TR, the values of Nc, ψ
ia
D

, s
ic
c (TR) and s

ia
c f
= s

ic
c f

are commu-

nicated to agent ia by the formation agents. Agent ia transforms

s
ia
c f

to s
ia
d f

using (36), and also calculates coordinates of the entry

point into the formation using (15) as

(x
ia
E
, y

ia
E

) =

(

A cos(ψ
ia
D
− ad s

ip

d f
), B sin(ψ

ia
D
+ bd s

ip

d f
)

)

. (55)
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It then computes the time period for monotone deceleration of

s
ic
c for agent ic using (6) as T

ic
p =

2(s
ic
c f
−s

ic
c (T i

R
))

ṡnom
. Agent ia then

moves to position given by (55) using the symmetric trans-

ition for a way-point (discussed in Section 5.1.5) with transition

period Tp = max
(

T
ic
p ,

15d f

8Vmax

)

. This ensures that the added agent

ia does not reach its formation position before the formation

agents decelerate to a halt with ṡc = 0.

5.3.3. Leader selection and transition assignment

After the parameter transformation step is completed for the

formation agents at height hF , and the agent ia has reached

formation position given by (55) at height hL < hF , the forma-

tion agents must be assigned a destination ψ
j

D
parameter values

on the Lissajous curve for Nd = Nc + 1 agents, from the set ΨD

given by (39), so that they can transition along the formation el-

lipse t these locations for reconfiguration. This can be achieved

by motion along the ψ̇d > 0 or the ψ̇d < 0 direction.

The parameter value ψi
d

of the formation agent i on the Lis-

sajous curve for Nc agents ( corresponding to the blue spots in

Fig. 7) and elements of set ΨD, corresponding to the location

of the formation agents on the Lissajous curve for Nd = Nc + 1

agents (green spots in Fig. 7), are equi-spaced on the formation

ellipse, with a parametric separation of 2π
Nc

and 2π
Nd

respectively.

In Section 5.3.2 from Lemma 2, agent ip was identified as the

only formation agent having exactly one pair of destination val-

ues from ΨD in the interval
[

ψ
ip

d
, ψ

ip

d
+ 2π

Nc

)

(i.e., with δ
ip

2
> 0 in

(53)). We call the adjacent agent parametrically succeeding ip

as in, having parameter value ψ
in
d
= ψ

ip

d
+ 2π

Nc
mod 2π. From (54),

the formation position of agent ia lies between ip and in on the

formation ellipse. The leader agent to initialise the direction of

transition assignment is chosen as

iL =















ip, if δ
ip

1
> δ

ip

2

in, if δ
ip

1
≤ δip

2

. (56)

Thus the destination values from ΨD are assigned to the form-

ation agents as the closest value along ψ̇d > 0 for iL = in, and

along ψ̇d < 0 for iL = ip. This is mathematically written as

ψi
D =















⌊(

ψi
d
− odπ

2

)

Nd

2π

⌋

2π
Nd
+

odπ

2
if iL = ip,

⌈(

ψi
d
− odπ

2

)

Nd

2π

⌉

2π
Nd
+

odπ

2
if iL = in.

(57)

As a consequence of Lemma 2, outside the segment
[

ψ
ip

d
, ψ

in
d

)

,

the positions corresponding to values of ψi
d

and elements of ΨD

alternate along the elliptical locus as shown in Fig. 7. Thus this

assignment yields parametrically non-overlapping transition in-

tervals as shown in Fig. 7. The destination parameter values

from ΨD are assigned according to (47) and (48) (as in the re-

moval case).

Also, the magnitude of the parametric transition distance |∆i
ψ|

(given by (40)) for agent i can be expressed in terms of the para-

metric transition distance of the leader |∆iL

ψ | using (49), where

ni is calculated according to (48). If iL = in as shown in Fig.

7, then |∆iL

ψ | = |∆
in
ψ | =

2π
Nd
− δip

2
. Similarly if iL = ip, then

|∆iL

ψ | = |∆
ip

ψ | =
2π
Nd
−δip

1
. Thus the leader selection in (56) ensures

that the transition direction corresponding to the shorter para-

metric transition distance is selected. Since Nd = Nc + 1 from

(49), the longest transition interval for any formation agent for

the agent addition case is given by

∆max = ∆
iL

ψ .

This is followed by the symmetric transition in the ψd para-

meter for the Nc formation agents at formation height hF (as

discussed in Section 5.1.3).

Claim 3. The destination parameter assignment scheme given

by (47) guarantees collision-free symmetric transition traject-

ories in parameter ψd for the Nc formation agents at formation

height hF .

Proof: We discuss collision-free transition between ia (waiting

at formation height hL) and leader iL separately in the subsec-

tion 5.3.4. The remaining Nc agents are at formation altitude hF

and equi-parametrically spaced along the elliptical locus prior

to any transitions in parameter ψd at time t = T0. We assume

agent j succeeds agent i along the selected direction of trans-

ition, i.e., i, j satisfy n j = ni+1 in (48). Thus the initial value of

∆i jψ (given in (38)) for adjacent formation agents i and j prior

to reconfiguration is

∆i jψ(T0) =















2π
Nc

if iL = in,
−2π
Nc

if iL = ip.
(58)

After the symmetric transition is over, ia is at its formation pos-

ition at height hF and we have Nd agents at their assigned para-

meter values given by (57). As a consequence of Lemma 2,

outside the segment
[

ψ
ip

d
, ψ

in
d

)

, the positions corresponding to

values of ψi
d

and elements of ΨD assigned by (57) alternate

along the elliptical locus as shown in Fig. 7. Thus after the

completion of the symmetric transition,

∆i jψ(T f ) = ψ
j

D
− ψi

D =















2π
Nd

if iL = in,
−2π
Nd

if iL = ip.
(59)

As a consequence of Proposition 2, from (58) and (59), the min-

imum value of |∆i jψ(t)| = ∆i j

min
= 2π

Nd
for the agent addition oper-

ation. From Proposition 1 and (31), δs =
π

2Nc

√
A2+B2

√

A2a2
j
+B2b2

j

sin
(

π
Nmax

)

∣

∣

∣

∣

∣

sin

(

π
Nd

)

∣

∣

∣

∣

∣

.

Since Nd ≤ Nmax and (a j, b j) are co-prime positive integers,

δs <
π

2Nc
. Moreover, as the formation agents stop on a feas-

ible ellipse with sc , S avoid (which is ensured as discussed

in Section 5.1.1), the symmetric transition trajectories in the

parameterψd for the proposed transition assignment scheme are

collision-free. ✷

5.3.4. Entry of agent ia in the formation

Recall that agent ia is still waiting at its formation position

at hL < hF . As a consequence of leader selection in (56) and

parameter assignment in (54), agent iL is the nearest formation

agent to agent ia in terms of the parametric separation in ψd
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before the commencement of the transition along the formation

ellipse. During the symmetric transition in parameter ψd, agent

ia rises to formation altitude hF when its Euclidean distance

from agent iL is greater than 2rdm. This guarantees the collision-

free rise of agent ia to result in a formation of Nd = Nc+1 agents

at height hF at the end of the symmetric transition trajectory

discussed in Section 5.1.3.

5.4. Agent replacement

The agent replacement operation replaces formation agent ir
with a new agent iR. The algorithmic sketch of the steps for

replacing an agent in the formation of Nc agents are as follows:

Initial condition: Proposed formations of Nc agents mov-

ing on the Lissajous curve for surveillance.

1: Replacement Initialisation: Agent iR initialised with id of

agent ir, and waiting at height hL < hF , alerts the closest

formation agent ic to initiate the agent replacement opera-

tion.

2: Monotone deceleration of parameter sc: initiated by

agent ic for all formation agents.

3: Parameter update for agent iR: Formation agent ir (at

height hF) communicates the s
ir
c , ψ

ir
c parameters to agent iR.

iR moves to the position of ir at height hL < hF .

4: Position exchange of ir and iR: This is done after the

previous two steps are complete. Agent ir returns to base

and lands.

5: Monotone acceleration of parameter sd = sc: initiated

by agent iR after the previous step, Nc formation agents ac-

celerate along the Lissajous curve for Nc agents to resume

area surveillance.

We discuss the reconfiguration steps unique to the replacement

of the formation agent ir by agent iR below.

5.4.1. Replacement initialisation

The agent iR is initialised with the id ir of the formation agent

that it is meant to replace. Agent iR takes off from the base loc-

ation and waits at height hL < hF for the formation agents (at

height hF) to approach. When the closest formation agent ic
is within communication range, agent iR alerts agent ic to initi-

ate the agent replacement operation. Also, agent iR communic-

ates the id of the formation agent ir to the formation agents via

agent ic. Agent ic then initiates the monotone deceleration of

the parameter sc (discussed in Section 5.1.1 ) for the Nc forma-

tion agents.

5.4.2. Parameter update of agent iR

With the initiation of the monotone deceleration trajectory

for sc, the agent ir sends its parameter ψ
ir
c , s

ir
c (TR) and parameter

s
ir
c f

corresponding to the stopping formation ellipse, to agent

iR using the communication links via agent ic. Using (15), the

agent iR at height hL calculates coordinates directly below agent

ir at height hF as

(x
iR
E
, y

iR
E

) =
(

A cos(ψir
c − acs

ir
f
), B sin(ψir

c + bcs
ir
f
)
)

. (60)

Similar to the addition case (in Section 5.3.2) the agent iR
computes time period for monotone deceleration of s

ir
c using

(6) as T
ir
p =

2(s
ir
c f
−s

ir
c (T i

R
))

ṡnom
, and moves to the position given by

(60) using the symmetric transition for a way-point (discussed

in Section 5.1.5) with transition period Tp = max
(

T
ir
p ,

15d f

8Vmax

)

.

5.4.3. Position exchange of ir and iR

After the formation agents decelerate to rest at height hF ,

and agent iR reaches the position coordinates (60) at height

hL < hF (say at time t = T s
0
), then the agents iR and ir are

both at rest at the same position coordinates, and are separ-

ated in altitude by distance hF − hL. In Section 4.2, we have

seen that for a fixed value of s = so, E(ψ) = [A cos(ψ −
aso) B sin(ψ + bso)]T is the parametric equation of an el-

lipse with parameter ψ. Thus the tangent vector is given

by T (ψ) =
[−A sin(ψ − acso) B cos(ψ + bcso))

]T
. Consider the

vector N(ψ) = ±[B cos(ψ + bcso) A sin(ψ − acso)]T . Then the

inner product 〈N(ψ),T (ψ)〉 = 0 for all ψ, which implies that it

gives the direction of the local normal to the ellipse. IfN(ψ) is

an outward normal to the elliptical locus at the point E(ψ), then

〈N(ψ),E(ψ)〉 = AB cos(Ncso) ≥ 0, because the elliptical locus

is always centered at the origin, and is a convex curve. Thus to

ensure the selection of the outward normal,N(ψ) is chosen as

N(ψ) = sign (cos(Ncso))

[

B cos(ψ + bso)

A sin(ψ − aso)

]

(61)

where sign(x) =















1, if x ≥ 0

−1, if x < 0
.

The agent ir computes a way-point on unit outward normal

direction N̂(ψ) =
N(ψ)

‖N(ψ)‖ at distance d
ir
f
= 3rdm, and moves to this

point using the symmetric trajectory to a waypoint (discussed

in Section 5.1.5) with Tp =
15d f

4Vmax
. Upon completion of this

motion, the agent ir alerts agent iR, which rises to the formation

height hF and agent ir simultaneously reduces its altitude to

hL. The formation containing agent iR, then performs monotone

acceleration of parameter sd = sc along the Lissajous curve for

Nc agents (discussed in Section 5.1.4) and agent ir returns to

base to land.

Remark 3. In both reconfiguration operations of removal and

replacement, the removed or replaced agent ir is at a height

hL < hF at the end of the reconfiguration and is made to return

to the base and land, using the symmetric trajectory to a way-

point (discussed Section 5.1.5) with Tp =
15d f

8Vmax
.

6. Simulation and experimental validation

The proposed surveillance strategy of using an elliptical
formation of multiple agents on a Lissajous curve discussed
in Section 4 was validated through simulation and experiments
with differential drive robots in prior work in [2]. The video of
these experiments and simulation can be found at the web-link:
https://youtu.be/rhygE32UDO8

The reconfiguration scheme for the formation discussed in Section

5 is validated here by simulation in MATLAB® for parametric agents

(agents whose positions are defined by (15)) having finite non-zero

sizes. In order to achieve a decentralized implementation of the recon-

figuration strategy on actual quadrotors, we first develop and test the

on-board software for path planning and inter-agent communication
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for the quadrotors as agents, using a Software-In-The-Loop (SITL)

simulator in a ROS-Gazebo environment. The same software is then

used on the actual quadrotors (developed in-house) to experimentally

validate the reconfiguration strategy in a motion capture environment.

Table 2: Inputs to Algorithm 2. (Distances in meters)

L H rs rcom Vmax Nextra η

MATLAB

Simulation 1
10 7 4.7 9.5 0.5 2 1.05

MATLAB

Simulation 2
10 7 1.5 3.2 1 2 1.05

SITL

Simulation
25 16 7 11 0.3 1 1.05

Experiment 5 5 2.7 5.5 0.2 1 1.05

Table 3: Output of Algorithm 2. (Distances in meters)

A B a b o N Nmin Nmax ṡnom rdm

MATLAB

Simulation 1
5 3.5 2 3 π

2
5 4 6 0.0345 0.481

MATLAB

Simulation 2
5 3.5 4 11 π

2
15 14 16 0.023 0.074

SITL

Simulation
12.5 8 3 7 0 10 9 10 0.0045 0.459

Experiment 2.5 2.5 3 2 0 5 4 5 0.0222 0.407

6.1. MATLAB® simulations

To validate the theory of the proposed surveillance (discussed in

Section 4) and reconfiguration strategy (discussed in Section 5), we

present two MATLAB® simulations: The first to illustrate the nature

of the agent trajectories and the second to demonstrate scalability. The

inputs to Algorithm 2 for both simulations are given in Table 2 and the

corresponding outputs are given in Table 3. The addition of agent 6 to a

5 agent formation at time t = 12 sec is considered for discussion here,

and the simulated trajectories shown in the Fig. 8 include the speeds

of the agents, the parameter rates ψ̇, ṡ and parameter values ψ, s of

all agents. As illustrated by the Fig. 8, the monotone parametric tra-

jectory (2) smoothly accelerates and decelerates the agents along the

Lissajous curve and the symmetric trajectory (8) smoothly transitions

the agents from one Lissajous curve to the other. Furthermore, as dis-

cussed in the theory, the speeds of the agents are always maintained

below Vmax = 50 cm/s in the X-Y plane. (For altitude changes we use

step change commands when X-Y plane velocities are zero). The para-

meter trajectories are smooth except for the step just before the ∆T3

interval. This jump in the parameter value corresponds to the para-

meter transformation step where the agent parameters ψ and s for the

current Lissajous curve are expressed in terms of the destination Lissa-

jous curve (ψd , sd) while conserving position coordinates (as discussed

in Section 5.1.2). The s parameter trajectories of agents 1-5 overlap as

they all lie on the same formation ellipse, both before and after the

reconfiguration. The s parameter value of the agent 6 is initialised on

the destination Lissajous curve as it reaches its assigned formation po-

sition directly after the ∆T1 transition. The parameter values ψ prior

to the addition at t = 12 sec and after reconfiguration t > 60 sec are

equispaced, indicating equi-parametric formation along the elliptical

locus on both the Lissajous curves, before and after reconfiguration.

In order to demonstrate the scalability for the second simulation,

we assume a smaller sensor footprint radius and communication range

(refer to Table 2). Thus the number of agents required for this case

is larger. For both simulations, the circular hull radius of the agents

is selected as the sufficient bound rdm given by Algorithm 2. From

the simulations, we observe that the motion of the agents both during
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on the Lissajous curve for 5 agents
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Legend

Figure 8: Trajectories for agent addition case for MATLAB simula-

tion 1

surveillance along the Lissajous curve and during reconfiguration are

collision-free, thus validating the strategies for surveillance and recon-

figuration designed in Sections 4 and 5.

Remark 4. The videos of both the MATLAB® simulations for all three

reconfiguration operations can be found at the web-link:

https://youtu.be/HEg5XfbBusY

6.2. Software-In-The-Loop simulation

Since the proposed surveillance and reconfiguration strategies are

developed for aerial agents such as quadrotors or helicopters, our final

objective is to implement it using programmable autonomous quadro-

tors.

The quadrotors built for the experiment use the Pixhawk v12 flight

controller running the PX4 flight stack3 for stabilisation of the drone.

Reference commands (such as commanded position) can be sent to

the Pixhawk using the MAVLink communication packets4 on a serial

channel.

To simulate this setup, we use the Software-In-The-Loop (SITL)

simulator5 for the PX4 flight stack that uses the Robot Operating Sys-

tem (ROS) (Version: Kinetic Kame6) along with the physics simulator

2https://docs.px4.io/en/flight_controller/pixhawk.html
3https://dev.px4.io/en/
4https://mavlink.io/en/
5https://dev.px4.io/en/simulation/gazebo.html
6http://wiki.ros.org/kinetic
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Gazebo7 (Version 8). This simulation is done on a computer system

equipped with a NVIDIA Geforce GTX 1060 graphics card and run-

ning the Ubuntu 16.04 Xenial LTS operating system. For each quadro-

tor, an instance of the PX4 flight stack is simulated, and the proposed

strategy for surveillance (Sectiopn 4) and reconfiguration (Section 5)

is implemented as a C++ script, which is written adhering to the node-

topic structure of ROS (called UAV i ctrl node for agent i). The MAV-

ROS8 package is used to translate between the ROS interface and the

MAVLink packets, which are sent via a UDP port to the PX4 flight

stack simulation (SITL component) of the corresponding quadrotor.

In this manner the SITL simulation environment allows simulation of

the physics for multiple quadrotors along with a simulated instance of

the PX4 flight stack for each agent. The SITL component acquires the

quadrotor states as feedback and sends actuator command values to the

Gazebo simulator as shown in the Fig. 9.

Each quadrotor receives communication data from all other quadro-

tors in the simulation. This is done for ease of implementing the multi-

agent network in ROS, and the limited communication range rcom is

simulated in the navigation code for each agent by ignoring received

data from agents outside a sphere of radius rcom centered around the

agent. We use the joy9 package to issue basic commands to the multi-

agent formation such as take-off, mission start, land, and reconfigura-

tion commands, namely:

1) removal command with agent ID

2) replacement command with agent ID

3) addition command to initiate formation reconfiguration.

Gazebo � Simulator

Gazebo
States

PX4

ight
stack
SITL

joy

M�VROS

Node

Gazebo
Actuation
Inputs

U�V i ctrl Node
for Drone �

Position &
orientation
commands

Position &
orientation
feedback

Communication data from drones j �= �

ROS Kinetic Environment

MAVLink
Packets

Buttons and axes data

Arm/Disarm
service

Figure 9: SITL simulation framework for each 3DR Iris quadrotor

in ROS-Gazebo environment, using the PX4 flight stack simulated in

Loop

The inputs and outputs of the Algorithm 2 for the SITL simulation

are given in Tables 2 and 3 respectively. From Table 3, we see that the

upper bound on circular hull radius of the agents is rdm = 0.459 m. For

the SITL simulator, we have selected the 3DR Iris quadrotor10 model

(shown in Fig. 9) from the available models. This quadrotor has a

motor to motor length of 55 cm and a propeller diameter of 10 inch

(or 25.4 cm). Thus it has a circular hull of radius rd = 0.402 m < rdm

7http://gazebosim.org/
8http://wiki.ros.org/mavros
9http://wiki.ros.org/joy

10http://www.arducopter.co.uk/iris-quadcopter-uav.html

(calculated as 55+24.5
2

cm). Gazebo simulates the complete physics of

all the 3DR Iris quadrotors, along with an instance of the simulated

PX4 flight stack for each quadrotor, which tracks the reference position

commands issued using its internal PID control loops.

Remark 5. The video of the SITL multi-quadrotor simulation can be

found at the web-link:

https://youtu.be/XKXlvEDB-Qo

The top-left window is a video recording of the Gazebo SITL simula-

tion, and the top-right window shows the video of the recorded simu-

lation coordinates of the quadrotors, plotted in MATLAB® .

6.3. Implementation

Figure 10: Block diagram of the experimental setup

Figure 11: Quadrotor used for experiment

The experiment discussed here has been performed in an indoor

laboratory space using a motion capture system for localisation. This
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system comprises of ten Vantage V511 cameras as shown in Fig. 10.

The quadrotors used for the experiment were made in-house (shown in

Fig. 11). The design specifications of the quadrotors are given in Table

4. The sensor calibration and inner PID control-loops tuning for these

quadrotors for the PX4 flight stack running on the Pixhawk v1 flight

controller was done using the QGroundControl12 software.

Table 4: Quadrotor Specifications

Structure
X-type frame 20 cm × 20 cm

3 mm thick glass fiber sheet

Motors EMax RS2205S 2300kV

Propellers
DALPROP T5045 3 bladed

5 inch diameter, 4.5 inch pitch

Speed Controllers
BLHeli S DShot600

30A Cicada ESC

Flight Controller

Pixhawk v1 with Firmware:

px4fmu-v2 lpe v1.6.0

release candidate 4

Companion Computer

Raspberry Pi 3B with Ubuntu

Mate 16.04 Operating System and

ROS Kinetic Kame installed

Battery

4-Cell(4S), 25C, 5200mAh

Lithium-Polymer with

16.8V peak voltage

Total Weight 1.18 kg

Endurance 12-14 minutes

The inputs and outputs of the Algorithm 2 for the experiment are

given in Tables 2 and 3 respectively. From Table 3 we see that the up-

per bound on circular hull radius of the agents is rdm = 0.407 m. The

quadrotor we have constructed has a motor to motor length of 28.3 cm

and a propeller diameter of 5 inch (or 12.7 cm). Thus it has a circular

hull of radius rd = 0.205 m < rdm (calculated as 28.3+12.7
2

cm). The same

C++ script UAV i ctrl developed for the SITL simulation in Section

6.2 is used for implementing the proposed surveillance and reconfig-

uration strategy with the quadrotors shown in Fig. 11. Each quadro-

tor has a Raspberry Pi 3B13 companion computer onboard which runs

the UAV i ctrl and MAVROS nodes for the corresponding quadrotor.

As a result, the proposed strategy is implemented in a decentralized

manner. A block diagram of the experimental setup is shown in Fig.

10. The quadrotors are fitted with reflective markers for operation in

the VICON motion capture space. The VICON cameras detect these

markers and the HP workstation processes the camera data using the

VICON Tracker V3.4 software14 and broadcasts its data stream on a

Local Area Network. The roscore node15 which is the master node

for handling the complete ROS network runs on a central computer

running ROS Indigo Igloo16 on the Ubuntu 14.04 LTS. This computer

processes the VICON data stream and converts it to a ROS compat-

ible format using the vicon bridge node17 in ROS Indigo. It also runs

the joy node to read joystick commands for initiating take off, land,

agent removal with ID, agent replacement with ID and agent addition.

The roscore node running on the central computer interacts with the

Raspberry Pi’s via a Wi-Fi network setup using a wireless router. For

this we use the concept of a multicomputer ROS network18. Thus each

11https://www.vicon.com/products/camerasystems/vantage
12http://qgroundcontrol.com/
13https://www.raspberrypi.org/products/

raspberry-pi-3-model-b/
14https://docs.vicon.com/display/Tracker34/

Vicon+Tracker+User+Guide
15http://wiki.ros.org/roscore
16http://wiki.ros.org/indigo
17http://wiki.ros.org/vicon_bridge
18http://wiki.ros.org/ROS/Tutorials/MultipleMachines

Raspberry Pi receives localisation as well as inter-agent communica-

tion data via Wi-Fi within this multi-computer ROS network, and in

turn commands the Pixhawk flight controller via a local instance of

the MAVROS Node, using a USB wired link. The Raspberry Pi issues

(X,Y,Z) position commands corresponding to the si, ψi parameters of

agent i, and the flight altitude (hF = 1.5 m or hL = 0.5 m). It also issues

a constant heading command of 0 rad. The Pixhawk v1 flight control-

ler tracks these commands using the PID loops in the PX4 firmware.

These loops in turn use the on-board sensor data and localisation data

available from the motion capture system as feedback.

Remark 6. The video of the multi-quadrotor experiment discussed

above can be found at the web-link:

https://youtu.be/DUNR0-T9zTA

The top-left window is a video recording of the quadrotors in flight, and

the top-right window shows the video of recorded position coordinates

of the quadrotors as captured by the motion capture system (ortho-

graphic top view), plotted in MATLAB® . The bottom left video shows

the motion capture markers on the quadrotors seen by the VICON cam-

eras on the VICON Tracker V3.4 software.

From the videos in Remark 5 and Remark 6, we see that for the

SITL simulation and the experiment in a VICON environment, all

three reconfiguration operations are performed with smooth collision-

free trajectories of the quadrotors in the same simulation/flight, hence

validating our proposed multi-agent surveillance and formation recon-

figuration strategy. The step commands are only used for initialisation

of the quadrotor positions in the formation, and for changing altitude

from hF to hL and vice-versa.

7. Conclusion

We have proposed in [2], a multi-agent formation on Lissajous

curves which performs collision-free surveillance of a rectangular

area. We have proposed here a reconfiguration strategy whereby a

quadrotor can be added, removed or replaced using a decentralized

cooperating scheme.

We have validated our results through MATLAB® simulations for

agents having a non-zero size satisfying a theoretically derived size

bound. To demonstrate the practical applicability of the proposed sur-

veillance and reconfiguration strategies, we have also presented simu-

lations, for quadrotors in a ROS-Gazebo based Software-In-The-Loop

simulator and have implemented the same with a team of five quadro-

tors in a motion capture environment. This work has potential applic-

ations in security, asset protection, agricultural monitoring, distributed

sensing, etc.
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Appendix

Proof of Lemma 1: Let V(
...
g (t), t) =

...
g 2(t)

2
, then cost J =

T f
∫

0

V(
...
g (t), t)dt. For convenience of notation denoting kth detivative of

g(t) as g(k)(t), the first variation ∂J is computed as:

∂J =

T f
∫

0

(

V
(...
g (t) + δg(3)(t), t

)

− V
(...
g (t), t

)

)

dt (62)

and by the necessary condition for optimality, at the optimal trajectory

g∗(t) (denoted as g∗t for short), ∂J = 0. Thus using Taylor series ex-

pansion in (62) about g(t) = g∗t yields ∂J =

T f
∫

0

∂V(g(3)(t),t)

∂g(3)(t)

∣

∣

∣

∣

g∗t
δg(3) (t) dt.

By repeated application of integration by parts,

∂J =
∂V(g(3)(t), t)

∂g(3)(t)

∣

∣

∣

∣

∣

∣

g∗t

δg(2)(t)
∣

∣

∣

T f

0
− d

dt















∂V(g(3)(t), t)

∂g(3)(t)

∣

∣

∣

∣

∣

∣

g∗t















δg(1)(t)
∣

∣

∣

T f

0

+
d2

dt2















∂V(g(3)(t), t)

∂g(3)(t)

∣

∣

∣

∣

∣

∣

g∗t















δg (t)
∣

∣

∣

T f

0
−

T f
∫

0

d3

dt3















∂V(g(3)(t), t)

∂g(3)(t)

∣

∣

∣

∣

∣

∣

g∗t















δg(t) dt.

From the fixed boundary conditions, δg(2)(T f ) = δg(2)(0) = 0,

δg(1) (T f ) = δg(1)(0) = 0, δg(0) = 0. Thus, the first variation simpli-

fies to

∂J =
d2

dt2















∂V(g(3)(t), t)

∂g(3)(t)

∣

∣

∣

∣

∣

∣

g∗t















δg(T f ) −
T f

∫

0

d3

dt3















∂V(g(3)(t), t)

∂g(3)(t)

∣

∣

∣

∣

∣

∣

g∗t















δg(t) dt.

(63)

By substituting V(
...
g (t), t) =

...
g 2(t)

2
, the Euler-Lagrange equation (63)

simplifies to g∗(6)(t) = 0. Then from the Euler-Lagrange equation, for

some constants c1, c2, c3, c4, c5 and c6,

g∗(t) = c1t5 + c2t4 + c3t3 + c4t2 + c5t + c6, (64)

g∗(1)(t) = 5c1t4 + 4c2t3 + 3c3t2 + 2c4t + c5, (65)

g∗(2)(t) = 20c1t3 + 12c2t2 + 6c3t + 2c4, (66)

g∗(3)(t) = 60c1t2 + 24c2t + 6c3, (67)

g∗(4)(t) = 120c1t + 24c2, (68)

g∗(5)(t) = 120c1 . (69)

The solutions for both the boundary value conditions C1 and C2 are

as follows:

1. Since ∂J = 0 and δg(T f ) need not be zero, d2

dt2

(

∂V(g(3)(t),t)

∂g(3)(t)

∣

∣

∣

∣

g∗(t)

)

= 0 in

addition to the Euler-Lagrange equation. This simplifies to g∗(5)(t) = 0

and from (69), c1 = 0. From the given boundary conditions at t = 0

and (64), (65), (66) we get c6 = g0, c5 = ġ0 and c4 = 0 respectively.

The boundary conditions at t = T f gives 0 = 12c2T 2
f
+ 6c3T f and

ġ f = 4c2T 3
f
+ 3c3T 2

f
+ ġ0 which gives rise to this linear system of

equations

[

2T f 1

4T 3
f

3T 2
f

] [

c2

c3

]

=

[

0

ġ f − ġ0

]

. (70)

Solving this system of linear equations, c2 = −
ġ f −ġ0

2T 3
f

, c3 =
ġ f−ġ0

T 2
f

.

Thus, g∗(t) = (ġ f − ġ0)

(

− t4

2T 3
f

+ t3

T 2
f

)

+ ġ0t + g0.

2. The second set of boundary conditions C2 represent a fixed end-

time T f and fixed end state g(T f ) = g f problem. Thus at t = 0 and

t = T f , (64)- (69) result in the following Linear system of equations.




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
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T 5
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T 4
f

T 3
f

T 2
f

T f 1

0 0 0 0 0 1

5T 4
f

4T 3
f

3T 2
f

2T f 1 0

0 0 0 0 1 0

20T 3
f

12T 2
f

6T f 2 0 0

0 0 0 2 0 0
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








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
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




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






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



















c1
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c3

c4

c5

c6



















































=



















































g f

g0

ġ f

ġ0

g̈ f

g̈0



















































=



















































g f

g0

0

0

0

0



















































. (71)

Solving (71), gives

c1 =
6(g f −g0)

T 5
f

, c2 =
15(g0−g f )

T 4
f

, c3 =
10(g f−g0)

T 3
f

, c4 = c5 = 0, c6 = g0

Thus, g∗(t) = (g f − g0)
(

10T 2
f
− 15T f t + 6t2

)

t3

T 5
f

+ g0. ✷

Lemma 3. For u ∈ [ −π
2
, π

2
], sin2 u ≥ 4

π2 u2

Proof: Consider the following cases:

Case 1: For u = 0,± π

2
, sin2 u = 4

π2 u2. Thus the claim holds true at

these values.

Case 2: For u ∈
(

−π
2
, 0

)

∪
(

0, −π
2

)

, let f (u) = sin2 u

u2 . By differentiating

and simplifying the resultant expression, f ′(u) = sin 2u

u3 (u−tan u). Using

the infinite Taylor series for tan u = u + u3

3
+ 2u5

15
+ ... for |u| < π

2
,

f ′(u) = − sin 2u
(

1
3
+ 2u2

15
+ ...

)

for |u| < π
2
.

Thus for u ∈
(

−π
2
, 0

)

, f ′(u) > 0 which implies that f (u) is monotone

increasing and thus f (u) > f
(

−π
2

)

which implies sin2 u

u2 > 4

π2 or sin2 u >

4

π2 u2. Similarly for u ∈
(

0, π
2

)

, f ′(u) < 0 which implies that f (u) is

monotone decreasing and thus f (u) > f
(

π
2

)

which implies sin2 u

u2 > 4

π2

or sin2 u > 4

π2 u2. Hence, Case 1 and Case 2 considered together prove

the claim. ✷

Proof of Proposition 1: For any two agents i, j in the form-

ation, ψ
j
c = ψi

c + ∆
i jψ mod 2π. From (22), the Euc-

lidean distance between agents i and j is given by Di j =

2 sin(
∆i jψ

2
)

√

A2 sin2
(

Ψp − ac sc

)

+ B2 cos2
(

Ψp + bc sc

)

and Ψp = ψi
c +

∆i jψ

2
. From Lemma 3 in the appendix, we get a parabolic lower bound

for A2 sin2(ψi
c+

∆i jψ

2
−ac sc) and B2 cos2(ψi

c+
∆i jψ

2
+bc sc) as 4

π2 A2u2 and

4

π2 B2
(

u + (ac + bc)sc − (2k−1)π

2

)2
respectively, where u = ψi

c+
∆i jψ

2
−ac sc

for some k ∈ N. Thus D2
i j
> 4 sin2(

∆i jψ

2
) f (u), where

f (u) =
4

π2
A2u2 +

4

π2
B2

(

u + Nc sc −
(2k − 1)π

2

)2

.

Solving
d f (u)

du
= 0 we get u∗ = − B2

A2+B2

(

Nc sc − (2k−1)π

2

)

which is a min-

imizer as f (u) is a sum of parabolic functions having positive coeffi-

cients. Thus if Di jmin
is the minimum distance between the agents i

and j, then D2
i jmin
≥ 4 sin2(

∆i jψ

2
) f (u∗). Substituting value of u∗ in this

inequality and simplifying the resultant expression leads to

Di jmin
≥ 4

π

ABNc√
A2 + B2

∣

∣

∣

∣

∣

∣

sin

(

∆i jψ

2

)
∣

∣

∣

∣

∣

∣

∆s, (72)

where ∆s =

∣

∣

∣

∣

sc − (2k−1)π

2Nc

∣

∣

∣

∣

. Hence if we guarantee

4

π

ABNc√
A2 + B2

∣

∣

∣

∣

∣

∣

∣

sin















∆
i j

min

2















∣

∣

∣

∣

∣

∣

∣

∆s > 2rdm (73)
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where ∆
i j

min
= mint∈R+ |∆i jψ(t)| , then we can ensure Di jmin

> 2rdm and

the transition along the ellipse is guaranteed to be collision-free. Re-

arranging (73) results in the following inequalities: sc > sdiag(k) + δs

and sc < sdiag(k)−δs, where sdiag(k) =
(2k−1)π

2Nc
for k ∈ N is the parameter

value for which the agents lie on the the degenerate ellipse (or the di-

agonal line) as shown in Fig. 4, and δs =
π

2Nc

rdm

√
A2+B2

AB

∣

∣

∣

∣

∣

∣

sin

(

∆
i j

min

2

)
∣

∣

∣

∣

∣

∣

−1

.

Thus all ellipses corresponding to all the s values satisfying

sc < ∪k∈N
(

sdiag(k) − δs, sdiag(k) + δs

)

mod 2π (74)

are feasible for agent transitions. ✷

Proof of Lemma 2: If Q1, · · · ,QN+1 are N + 1 equi-spaced

points on C, by pigeonhole principle, at least one of the segments

[Pi, Pi+1) contains two Q j’s. This proves the existence of at least one

such Q j,Q j+1 pair within a [Pi, Pi+1) segment (with j ∈ {1, ...,N + 1}).
There are N equi-spaced segments of the form [Pi, Pi+1) which are

disjoint and cover C, so if two of them contain a pair of Q j’s each, the

remaining N − 3 of Q j’s are distributed among the remaining N − 2

segments, thus at least one of them does not contain any Q j points.

Suppose the segment [Pi′ Pi′+1) for some i′ ∈ {1, ...,N}, doesn’t con-

tain a Q j, then this segment in turn is contained within a [Q j′ , Q j′+1)

segment for some j′ ∈ {1, ...,N + 1}. But if the parametric curve length

of C is L, then [Pi′ Pi′+1) is of length L
N

and [Q j′ , Q j′+1) is of length
L

N+1
and [Pi′ Pi′+1) 1 [Q j′ , Q j′+1), which is a contradiction. Thus there

is exactly one Q j pair contained in a [Pi, Pi+1) segment. ✷
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