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Abstract

In this paper, we propose a compositional framework for the construction of

discrete-time finite abstractions, also known as finite Markov decision processes,

from continuous-time stochastic hybrid systems by quantifying the distance be-

tween their outputs in a probabilistic setting. The proposed scheme is based on

the notion of stochastic simulation functions, which is used to relate continuous-

time stochastic systems with their discrete-time counterparts. Accordingly, one

can employ discrete-time abstract systems as substitutions of the continuous-

time ones in the controller design process with guaranteed error bounds on their

output trajectories. To this end, we first derive sufficient small-gain type condi-

tions for the compositional quantification of the probabilistic distance between

the interconnection of original continuous-time stochastic hybrid systems and

their discrete-time (finite or infinite) abstractions. We then construct finite ab-

stractions together with their corresponding stochastic simulation functions for

a particular class of nonlinear stochastic hybrid systems having some stability

property. We illustrate the effectiveness of the proposed results by applying our

approaches to the temperature regulation in a circular building and construct-

ing compositionally a discrete-time abstraction from its original continuous-time
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dynamics in a network containing 1000 rooms. We employ the constructed

discrete-time abstractions as substitutes to compositionally synthesize policies

regulating the temperature of each room for a bounded time horizon.

Keywords: Compositional Abstraction-based Synthesis, Continuous-Time

Stochastic Hybrid Systems, Small-Gain Conditions, Finite Markov Decision

Processes, Formal Synthesis.

1. Introduction

Motivations. Controller design for continuous-time stochastic hybrid sys-

tems to enforce complex logical properties such as those expressed as linear

temporal logic formulae [1] has been inherently a challenging task due to con-

tinuous state sets. In order to overcome this problem, one promising solution is5

to first abstract the original system by a simpler one possibly discrete in time

and finite in space, design a controller for the abstract system, and then refine

the controller back to the concrete (original) system via an interface map, by

providing guaranteed error bounds on the distance between their output trajec-

tories. Construction of finite abstractions was introduced and used over the last10

decade to alleviate the complexity of controller synthesis problems. In finite ab-

stractions, each discrete state and input respectively correspond to an aggregate

of continuous states and inputs of the original system. Since the abstractions

are finite, the algorithmic machineries from computer science [2] are applicable

to synthesize controllers for concrete systems.15

Unfortunately, construction of finite abstractions for complex systems in a

monolithic way suffers from the so-called curse of dimensionality : the complex-

ity grows exponentially with the dimension of the state set. To reduce this issue,

one promising approach is to consider the large-scale stochastic system as an

interconnected system composed of several smaller subsystems, and perform the20

abstraction in a compositional manner.

Related Literature. In the past few years, new results obtained for the

construction of finite abstractions of continuous-time stochastic systems. Reach-
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ability analysis for continuous-time stochastic systems is presented in [3], which

constructs finite-state Markov chain with provable error bounds. Finite bisimilar25

abstractions for incrementally stable stochastic control systems without discrete

dynamics are presented in [4]. Abstraction techniques for randomly switched

stochastic systems and incrementally stable stochastic switched systems are dis-

cussed in [5] and [6], respectively. Although original systems in [4, 6, 5] are

in the stochastic settings, their proposed abstractions are finite labeled transi-30

tion systems whereas in this work we consider finite Markov decision processes

(MDPs) as our finite abstractions. An approximation framework for construct-

ing infinite abstractions for jump-diffusion processes is proposed in [7]. Compo-

sitional construction of infinite abstractions is discussed in [8] using small-gain

type conditions.35

There have been also several results for discrete-time stochastic systems with

continuous-state spaces. Existing results include finite abstractions for formal

synthesis of discrete-time stochastic hybrid systems [9]. A sequential and adap-

tive girdding approach is proposed in [10, 11] with dedicated tools FAUST2 [12]

and StocHy [13]. Furthermore, formal abstraction-based policy synthesis is dis-40

cussed in [14, 15]. Compositional construction of infinite abstractions (model

order reductions) using small-gain type conditions is presented in [16]. Com-

positional construction of finite abstractions for discrete-time stochastic control

systems is presented in [17] and [18] using respectively dynamic Bayesian net-

works and dissipativity properties of subsystems and their abstractions. A new45

notion of disturbance bisimulation relation is proposed in [19] for compositional

construction of finite abstractions. Recently, a notion of approximate simula-

tion relation for stochastic systems is proposed in [20] that is based on lifting

probabilistic evolution of systems to a coupled space. This notion is extended

in [21] for compositional abstraction-based synthesis of general MDPs. This50

notion enables using both model order reduction and space discretization in a

unified framework.

There have been several results on the construction of finite abstractions

for non-stochastic systems. Construction of symbolic models for incrementally
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stable nonlinear control systems is proposed in [22]. Extension of the results to55

switched systems in given in [23]. Abstraction of nonlinear control systems with-

out stability assumptions is proposed in [24]. A new approach for hierarchical

control based on a quantitative version of simulation relations is proposed in [25]

which is based on constructing infinite abstractions (reduced order models).

In the context of stability analysis of large-scale non-stochastic systems via60

small-gain conditions, several results have been proposed in the past few years.

Stability verification of large-scale power systems with delay using the small-

gain theorem is proposed in [26]. Stability analysis of hybrid systems described

as feedback interconnections of smaller subsystems is proposed in [27] using a

Lyapunov-based small-gain framework. Construction of strong and weak Lya-65

punov functions for a feedback connection of two hybrid systems satisfying cer-

tain Lyapunov stability assumptions together with a small-gain condition is

presented in [28]. Stability verification of nonlinear control systems under in-

termittent information via the small-gain theorem is studied in [29, 30].

Contributions. Our main contribution in this paper is to propose for the70

first time a compositional framework for the construction of discrete-time finite-

space MDPs from continuous-time stochastic hybrid systems. We leverage suf-

ficient small-gain conditions to provide the compositionality results which rely

on a relation between the continuous-time subsystems and their discrete-time

counterparts by employing a notion of stochastic simulation functions. This type75

of relations enables us to compute a probability bound between the intercon-

nection of continuous-time concrete subsystems and that of their discrete-time

(in)finite abstractions. We show that if the original stochastic hybrid system has

a stability property, the probability bound associated with the non-stochastic

abstractions is less conservative than that of stochastic ones.80

In this respect, we first compositionally quantify the distance between the in-

terconnection of continuous-time stochastic hybrid subsystems and that of their

discrete-time (finite or infinite) abstractions in a probabilistic setting. We then

construct finite abstractions together with their corresponding stochastic sim-

ulation functions for a particular class of nonlinear stochastic hybrid systems.85
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To illustrate the effectiveness of the proposed results, we apply our approaches

to a temperature regulation in a circular building (presented as a running ex-

ample) and construct compositionally a discrete-time abstraction of a network

containing 1000 rooms. We employ the constructed discrete-time abstractions

as substitutes to compositionally synthesize policies regulating the temperature90

of each room for a bounded time horizon.

Recent Work. A limited subset of the provided results in this paper has

been recently presented in [31]. Our approach here differs from the one in [31]

in three main directions. First and foremost, we provide here a compositional

framework for the construction of finite MDPs for networks of continuous-time95

stochastic hybrid systems, whereas the proposed results in [31] only deal with

a single system. In this regard, we propose a max small-gain condition in

which the overall error is completely independent of the size of the network,

and is computed only based on the maximum errors associated to subsystems.

Second, we enlarge the class of systems to continuous-time stochastic hybrid100

ones, while the results in [31] only deal with stochastic control systems. As our

third main contribution, we propose a construction framework of finite MDPs for

a particular class of nonlinear stochastic hybrid systems by adding nonlinear

terms together with Poisson processes to the dynamics, whereas the results

in [31] only handle a class of linear affine systems. In addition, we provide the105

proofs of all statements here which were omitted in [31].

Organization. The rest of the paper is organized as follows. Section 2

gives mathematical preliminaries and notations, and also the formal definition

of continuous-time stochastic hybrid systems. In Section 3, we first introduce a

notion of stochastic pseudo-simulation functions for the stochastic hybrid sub-110

systems with internal inputs, and then define the stochastic simulation functions

for the interconnected systems without internal inputs. Section 4 contains the

main compositionality results of the paper. In Section 5, we provide a con-

struction framework of finite MDPs for a particular class of nonlinear stochastic

hybrid systems.115
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2. Preliminaries and Model Classes

2.1. Preliminaries

We consider a probability space (Ω,FΩ,PΩ), where Ω is the sample space, FΩ

is a sigma-algebra on Ω comprising subsets of Ω as events, and PΩ is a probability

measure that assigns probabilities to events. We assume that random variables120

in this paper are measurable functions of the form X : (Ω,FΩ) → (SX ,FX).

Any random variable X induces a probability measure on its space (SX ,FX)

as Prob{A} = PΩ{X−1(A)} for any A ∈ FX . We often directly discuss the

probability measure on (SX ,FX) without explicitly mentioning the underlying

probability space and the function X itself.125

A topological space S is called a Borel space if it is homeomorphic to a Borel

subset of a Polish space (i.e., a separable and completely metrizable space). Any

Borel space S is assumed to be endowed with a Borel sigma-algebra, which is

denoted by B(S). Examples of a Borel space are the Euclidean spaces Rn, its

Borel subsets endowed with a subspace topology, as well as hybrid spaces. We130

consider a map f : S → Y measurable whenever it is Borel measurable.

We also assume that triple (Ω,FΩ,PΩ) denotes a probability space endowed

with a filtration F = (Fs)s≥0 satisfying the usual conditions of completeness

and right continuity. Let (Ws)s≥0 be a b-dimensional F-Brownian motion, and

(Ps)s≥0 be an r-dimensional F-Poisson process. We assume that the Poisson135

process and Brownian motion are independent of each other. The Poisson pro-

cess Ps = [P1
s; · · · ;Pr

s] models r events whose occurrences are assumed to be

independent of each other.

2.2. Notation

We employ the following notation throughout the paper. We denote the140

set of nonnegative integers by N := {0, 1, 2, . . .} and the set of positive in-

tegers by N≥1 := {1, 2, 3, . . .}. The symbols R, R>0, and R≥0 denote the

set of real, positive and nonnegative real numbers, respectively. We employ

x = [x1; . . . ;xN ] to denote the corresponding vector of dimension
∑
i ni, given
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N vectors xi ∈ Rni , ni ∈ N≥1, and i ∈ {1, . . . , N}. Given functions fi : Xi → Yi,145

for any i ∈ {1, . . . , N}, their Cartesian product
∏N
i=1 fi :

∏N
i=1Xi →

∏N
i=1 Yi

is defined as (
∏N
i=1 fi)(x1, . . . , xN ) = [f1(x1); . . . ; fN (xN )]. We denote by ‖ · ‖

and ‖ · ‖2 the infinity and Euclidean norms, respectively. Given a measurable

function f : N → Rn, the (essential) supremum of f is denoted by ‖f‖∞ :=

(ess)sup{‖f(k)‖, k ≥ 0}. The identity matrix in Rn×n is denoted by In. The150

column vectors in Rn×1 with all elements equal to zero and one are denoted by

0n and 1n, respectively. The identity function and composition of functions are

respectively denoted by Id and symbol ◦. A function γ : R≥0 → R≥0, is said

to be a class K function if it is continuous, strictly increasing, and γ(0) = 0. A

class K function γ(·) is said to be a class K∞ if γ(r)→∞ as r →∞.155

2.3. Continuous-Time Stochastic Hybrid Systems

We consider stochastic hybrid systems in continuous-time (ct-SHS) defined

over a general state space as in the following definition.

Definition 2.1. A continuous-time stochastic hybrid system (ct-SHS) in this

work is characterized by the tuple

Σ = (X,U,W,U ,W, f, σ, ρ, Y, h), (1)

where:

• X ⊆ Rn is the state space of the system;160

• U ⊆ Rm is the external input space of the system;

• W ⊆ Rp is the internal input space of the system;

• U and W are subsets of the sets of all F-progressively measurable processes

taking values in Rm and Rp;

• f : X × U × W → X is the drift term which is globally Lipschitz con-165

tinuous: there exist constants Lx,Lν ,Lw ∈ R≥0 such that ‖f(x, ν, w) −

f(x′, ν′, w′)‖ ≤ Lx‖x− x′‖+ Lν‖ν − ν′‖+ Lw‖w−w′‖ for all x, x′ ∈ X,

for all ν, ν′ ∈ U , and for all w,w′ ∈W ;
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• σ : Rn → Rn×b is the diffusion term which is globally Lipschitz continuous

with the Lipschitz constant Lσ;170

• ρ : Rn → Rn×r is the reset term which is globally Lipschitz continuous

with the Lipschitz constant Lρ;

• Y ⊆ Rq is the output space of the system;

• h : X → Y is the output map.

A continuous-time stochastic hybrid system Σ satisfies

Σ :

dξ(t) = f(ξ(t), ν(t), w(t)) dt+ σ(ξ(t)) dWt + ρ(ξ(t)) dPt,

ζ(t) = h(ξ(t)),
(2)

P-almost surely (P-a.s.) for any ν ∈ U and any w ∈ W, where stochastic175

processes ξ : Ω×R≥0 → X and ζ : Ω×R≥0 → Y are called the solution process

and the output trajectory of Σ, respectively. We also employ ξaνw(t) to denote

the value of the solution process at time t ∈ R≥0 under input trajectories ν and

w from initial condition ξaνw(0) = a P-a.s., where a is a random variable that

is F0-measurable. We also denote by ζaνw the output trajectory corresponding180

to solution process ξaνw. Here, we assume that the Poisson processes Pzs , for

any z ∈ [1; r], have the rates λz. We emphasize that the postulated assumptions

on f, σ, and ρ ensure existence, uniqueness, and strong Markov property of the

solution process [32].

Remark 2.2. Note that the underlying dynamic considered in (2) is a class185

of stochastic hybrid systems in which the drift and diffusion terms model the

continuous part and the Poisson process models the discrete jump of the system.

In fact, as showed in [7], linear stochastic hybrid automata are a class of the

systems defined in (2). The employed notion of hybrid systems here is different

from the one presented in [33].190

Remark 2.3. In this paper, we are ultimately interested in investigating continuous-

time stochastic hybrid systems with possibly large-state dimensions but without
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Figure 1: A circular building in a network of 1000 rooms.

internal inputs. In this case, the tuple (1) reduces to (X,U,U , f, σ, ρ, Y, h) with

f : X × U → X, and ct-SHS (2) can be re-written as

Σ :

dξ(t) = f(ξ(t), ν(t)) dt+ σ(ξ(t)) dWt + ρ(ξ(t)) dPt,

ζ(t) = h(ξ(t)).

The interconnected stochastic hybrid systems, defined later in Subsection 4.1,

are also a class of hybrid systems without internal inputs, resulting from the

interconnection of ct-SHSs with both internal and external inputs.

For the sake of better illustration of the results, we provide our case study

as a running example throughout the paper.195

Case Study. Consider a network of n = 1000 rooms each equipped with

a heater and connected circularly as depicted in Figure 1. The model of this

case study is adapted from [34] by including nonlinearity and stochasticity in

the model. The evolution of the temperature T (·) can be described by the

interconnected stochastic differential equation

Σ :

dT (t) = (AT (t) + θThν(t) + β̄TE + ϕ(ξ(t))dt+GdWt +RdPt,

ζ(t) = T (t),
(3)

where A is a matrix with diagonal elements aii = −2η − β̄, i ∈ {1, . . . , n},

off-diagonal elements ai,i+1 = ai+1,i = a1,n = an,1 = η, i ∈ {1, . . . , n − 1}, and

all other elements are identically zero, G = 0.5In, R = 0.2In, and ϕ(ξ(t)) =

[0.5ϕ1(0.5ξ1(t)); . . . ; 0.5ϕn(0.5ξn(t))] with ϕi(x) = sin(x), ∀i ∈ {1, . . . , n}. Pa-

rameters η = 0.05, β̄ = 0.005, and θ = 0.01 are conduction factors, respectively,200
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between the rooms i±1 and i, the external environment and the room i, and the

heater and the room i. Moreover, TE = [Te1 ; . . . ;Ten ], ν(t) = [ν1(t); . . . ; νn(t)],

and T (t) = [T1(t); . . . ;Tn(t)], where Ti(t) is taking values in the set [20, 21],

for all i ∈ {1, . . . , n}. Outside temperatures are the same for all rooms: Tei =

−1 ◦C, ∀i ∈ {1, . . . , n}, and the heater temperature is Th = 50 ◦C.205

2.4. Discrete-Time Finite Abstractions of ct-SHS

In this subsection, we discuss discrete-time finite abstractions (also known

as finite Markov decision processes) of continuous-time stochastic hybrid sys-

tems. Note that in the setting of this paper, the infinite abstraction refers to

an approximation of the original system in the discrete-time but continuous-210

space domain, while the finite abstraction is another approximation in both

discrete-time and discrete state set. In order to propose the construction pro-

cedure for finite abstractions, we first need to introduce infinite abstractions

as time-discretized versions of ct-SHS in (2) as defined next, because our finite

abstractions are constructed from the infinite discrete-time counterparts.215

Definition 2.4. A discrete-time infinite abstraction of ct-SHS Σ is denoted by

the tuple

Σ̃ =
(
X̃, Ũ , W̃ , ς, f̃ , Ỹ , h̃

)
, (4)

where:

• X̃ ⊆ Rn is a Borel space as the state space of the system. We denote by

(X̃,B(X̃)) the measurable space with B(X̃) being the Borel sigma-algebra

on the state space;

• Ũ ⊆ Rm is a Borel space as the external input space of the system;220

• W̃ ⊆ Rp is a Borel space as the internal input space of the system;

• ς is a sequence of independent and identically distributed (i.i.d.) random

variables from a sample space Ω to the set Vς ,

ς := {ς(k) : Ω→ Vς , k ∈ N};
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• f̃ : X̃× Ũ ×W̃ ×Vς → X̃ is a measurable function characterizing the state

evolution of the system;

• Ỹ ⊆ Rq is a Borel space as the output space of the system;

• h̃ : X̃ → Ỹ is a measurable function that maps a state x̃ ∈ X̃ to its output.225

For given initial state x̃(0) ∈ X̃ and input sequences {ν̃(k) : Ω → Ũ , k ∈ N}

and {w̃(k) : Ω→ W̃ , k ∈ N}, evolution of Σ̃ can be written as

Σ̃ :

 ξ̃(k + 1) = f̃(ξ̃(k), ν̃(k), w̃(k), ς(k)),

ζ̃(k) = h̃(ξ̃(k)),
k ∈ N. (5)

We associate to Ũ and W̃ the sets Ũ and W̃ to be the collections of sequences

{ν̃(k) : Ω → Ũ , k ∈ N} and {w̃(k) : Ω → W̃ , k ∈ N}, in which ν̃(k) and

w̃(k) are independent of ς(t) for any k, t ∈ N and t ≥ k. For any initial state

ã ∈ X̃, ν̃(·) ∈ Ũ and w̃(·) ∈ W̃, the random sequences ξ̃ãν̃w̃ : Ω × N → X̃,

ζ̃ãν̃w̃ : Ω×N→ Ỹ satisfying (5) are respectively called the solution process and230

output trajectory of Σ̃ under external input ν̃, internal input w̃, and initial state

ã.

A discrete-time infinite abstraction of ct-SHS Σ in (4) can be equivalently

represented as a Markov decision process (MDP) [35]

Σ̃ =
(
X̃, Ũ , W̃ , T̃x̃, Ỹ , h̃

)
,

where the map T̃x̃ : B(X̃) × X̃ × Ũ × W̃ → [0, 1], is a conditional stochastic

kernel that assigns to any x̃ ∈ X̃, ν̃ ∈ Ũ , and w̃ ∈ W̃ , a probability measure

T̃x̃(·|x̃, ν̃, w̃) on the measurable space (X̃,B(X̃)) so that for any set A ∈ B(X̃),

P(x̃(k + 1)∈A | x̃(k), ν̃(k), w̃(k))=

∫
A
T̃x̃(dx̃(k + 1)|x̃(k), ν̃(k), w̃(k)).

For given inputs ν̃(·), w̃(·), the stochastic kernel T̃x̃ captures the evolution of the

state of Σ̃ and can be uniquely determined by the pair (ς, f̃) from (4).

Given the discrete-time stochastic hybrid system presented in (5), we are235

interested in the following Markov policies to control the system.
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Definition 2.5 ([36]). A Markov policy for the discrete-time stochastic hybrid

system Σ̃ in (5) is a sequence µ̄ = (µ̄0, µ̄1, µ̄2, . . .) of universally measurable

stochastic kernels µ̄n, each defined on the input space Ũ given X̃ × W̃ . The

class of all such Markov policies is denoted by Mp.240

A Markov policy is very similar to the notion of state feedback in control the-

ory. According to the above definition, the Markov policy observes the exact

values of state ξ̃(n) ∈ X̃ and internal input w̃(n) ∈ W̃ at time step n, and

selects the external input ν̃(n) ∈ Ũ as a sample from the probability measure

µ̄n(· | ξ̃(n), w̃(n)).245

Now we proceed with constructing finite MDPs Σ̂ as finite abstractions of

the discrete-time stochastic hybrid systems Σ̃ presented in (5). The abstraction

algorithm is adapted from [37] with some modifications. We assume the state

and input sets of Σ̃ are restricted to compact subsets over which we are inter-

ested to perform the synthesis. The rest of the state sets can be considered as250

single absorbing states in both Σ̃ and Σ̂. In order to make the notation easier,

we assume this procedure is already applied to the system and eliminate the

absorbing states from the presentation. Then the abstraction algorithm in this

work is based on finite partitions of sets X̃ = ∪zXz, Ũ = ∪zUz, and W̃ = ∪zWz

and selection of representative points ξ̄z ∈ Xz, ν̄z ∈ Uz, and w̄z ∈Wz as abstract255

states and inputs as in the following definition.

Definition 2.6. Given a ct-SHS Σ = (X,U,W,U ,W, f, σ, ρ, Y, h) with its time-

discretized version Σ̃ =
(
X̃, Ũ , W̃ , ς, f̃ , Ỹ , h̃

)
, the finite abstraction Σ̂ can be

represented as

Σ̂ = (X̂, Û , Ŵ , ς, f̂ , Ŷ , ĥ), (6)

where X̂ = {ξ̄z, z = 1, . . . , nξ̃}, Û = {ν̄z, z = 1, . . . , nν̃}, and Ŵ = {w̄z, z =

1, . . . , nw̃} are the sets of selected representative points. Function f̂ : X̂ × Û ×

Ŵ × Vς → X̂ is defined as

f̂(ξ̂, ν̂, ŵ, ς) = Φξ̃(f̃(ξ̂, ν̂, ŵ, ς)), (7)

where Φξ̃ : X̃ → X̂ is the map that assigns to any ξ̃ ∈ X̃, the representative

12



point ξ̄ ∈ X̂ of the corresponding partition set containing ξ̃. The output map ĥ

is the same as h̃ with its domain restricted to finite state set X̂ and the output

set Ŷ is just the image of X̂ under h̃. The initial state of Σ̂ is also selected260

according to ξ̂0 := Φξ̃(ξ̃0) with ξ̃0 being the initial state of Σ̃.

Abstraction map Φξ̃ presented in (7) satisfies the inequality

‖Φξ̃(ξ̃)− ξ̃‖ ≤ δ, ∀ξ̃ ∈ X̃, (8)

where δ is the state discretization parameter defined as δ := sup{‖ξ̃− ξ̃′‖, ξ̃, ξ̃′ ∈

Xz, z = 1, 2, . . . , nξ̃}.

Remark 2.7. Note that there is no restriction on discretizing the state, external

and internal input sets. However, the size of the state discretization parameter δ265

appears in the formulated error (cf. (35)): one can decrease the error by reducing

the state discretization parameter. We also do not have any constraint on the

shape of the partition elements in constructing the finite MDPs. For the sake of

easy implementation, one can consider the partition sets as boxes and the center

of each box as representative points.270

Remark 2.8. Note that in order to satisfy the abstraction condition proposed

in (8) with bounded δ, we need to restrict ourselves to compact subsets of the

state and input spaces, and construct finite partitions from them.

A schematic relation between Σ, Σ̃, and Σ̂ is depicted in Figure 2. In the next

sections, we provide a framework for compositional synthesis of interconnected275

discrete-time (finite or infinite) abstractions from ct-SHS. We define notions of

stochastic pseudo-simulation and simulation functions for quantifying the prob-

abilistic error between the original continuous-time stochastic hybrid systems

and that of their discrete-time (finite or infinite) abstractions with and without

internal inputs, respectively.280

3. Stochastic Pseudo-Simulation and Simulation Functions

In this section, we first introduce a notion of stochastic pseudo-simulation

functions (SPSF) for ct-SHS with both internal and external inputs. We then
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Figure 2: A schematic relation between Σ, Σ̃, and Σ̂.

define a notion of stochastic simulation functions (SSF) for ct-SHS with only

external inputs. We mainly employ these two definitions to quantify the prob-285

abilistic closeness of interconnected continuous-time stochastic hybrid systems

and their discrete-time (finite or infinite) abstractions.

Definition 3.1. Consider a ct-SHS Σ = (X,U,W,U ,W, f, σ, ρ, Y, h) and its

(in)finite abstraction Σ̂ = (X̂, Û , Ŵ , ς, f̂ , Ŷ , ĥ) with internal inputs. A function

S : X×X̂ → R≥0 is called a stochastic pseudo-simulation function (SPSF) from290

Σ̂ to Σ if

• ∃α ∈ K∞ such that

∀x ∈ X,∀x̂ ∈ X̂, α(‖h(x)− ĥ(x̂)‖) ≤ S(x, x̂), (9)

• ∀k ∈ N, ∀ξ := ξ(kτ) ∈ X,∀ξ̂ := ξ̂(k) ∈ X̂, and ∀ν̂ := ν̂(k) ∈ Û , ∀w :=
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w(kτ) ∈W , ∀ŵ := ŵ(k) ∈ Ŵ , ∃ν := ν(kτ) ∈ U such that

E
[
S(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]
≤ max

{
κS(ξ, ξ̂), ρint(‖w − ŵ‖), ρext(‖ν̂‖), ψ

}
, (10)

for some chosen sampling time τ ∈ R>0, 0 < κ < 1, ρext, ρint ∈ K∞, and

ψ ∈ R>0.

We write Σ̂ �PS Σ if there exists an SPSF S from Σ̂ to Σ, and call the hybrid

system Σ̂ a discrete-time (in)finite abstraction of concrete (original) system295

Σ. Abstraction Σ̂ could be finite or infinite depending on cardinalities of sets

X̂, Û , Ŵ .

Remark 3.2. Note that since the concrete system in this work is considered in

continuous-time domain, one can employ Dynkin’s formula [38] and establish

the following equality:

E
[
S(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ(kτ), ξ̂(k), ν(kτ), ν̂(k), w(kτ), ŵ(k)
]

= Eς

[
S(ξ(kτ), ξ̂(k + 1)) + E

[ ∫ (k+1)τ

kτ

LS(ξ(t), ξ̂(k + 1))dt
] ∣∣ ξ̂(k), ν̂(k), ŵ(k)

]
,

where LS is the infinitesimal generator of the stochastic process acting on func-

tion S [4], and Eς is the conditional expectation acting only on the noise of the

abstract system. The above Dynkin’s formula is employed later in Subsection 5.1300

to show the results of Theorem 5.1.

Remark 3.3. Note that the above definition does not put any restriction on

the state set of abstract systems; therefore, it can also be employed to establish

a stochastic pseudo-simulation function from infinite abstractions Σ̃ presented

in (4) to Σ (cf. the case study).305

Remark 3.4. Condition (10) implicitly implies existence of a function ν(t) =

νν̂(ξ(kτ), ξ̂(k), w(kτ), ŵ(k)), for any kτ ≤ t ≤ (k+1)τ, fulfilling inequality (10).

This function is called an interface function and can be employed to refine a

synthesized policy ν̂ for Σ̂ to a policy ν for Σ.
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Now, we adapt the above notion to the interconnected ct-SHS without in-310

ternal inputs by omitting all the terms related to w, ŵ which will be utilized in

Theorem 3.6 for relating interconnected systems.

Definition 3.5. Consider a ct-SHS Σ = (X,U,U , f, σ, ρ, Y, h) and its finite

abstraction Σ̂ = (X̂, Û , ς, f̂ , Ŷ , ĥ) without internal inputs. A function V : X ×

X̂ → R≥0 is called a stochastic simulation function (SSF) from Σ̂ to Σ if315

• ∃α ∈ K∞ such that

∀x ∈ X,∀x̂ ∈ X̂, α(‖h(x)− ĥ(x̂)‖) ≤ V (x, x̂), (11)

• ∀k ∈ N, ∀ξ := ξ(kτ) ∈ X,∀ξ̂ := ξ̂(k) ∈ X̂, and ∀ν̂ := ν̂(k) ∈ Û , ∃ν :=

ν(kτ) ∈ U such that

E
[
V (ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂] ≤ max
{
κV (ξ, ξ̂), ρext(‖ν̂‖), ψ

}
,

(12)

for some chosen sampling time τ ∈ R>0, 0 < κ < 1, ρext ∈ K∞, and

ψ ∈ R>0.

We write Σ̂ �S Σ if there exists an SSF V from Σ̂ to Σ, and call the hybrid

system Σ̂ a discrete-time (in)finite abstraction of concrete (original) system Σ.

The next theorem shows how SSF can be utilized to compare output tra-320

jectories of original interconnected continuous-time stochastic hybrid systems

and that of their discrete-time (finite or infinite) abstractions. This theorem

is borrowed from [16, Theorem 3.3] with slight modification, and holds for the

setting here since the max form of SSF here implies the additive form used in

[16].325

Theorem 3.6. Let Σ = (X,U,U , f, σ, ρ, Y, h) be a ct-SHS and Σ̂ = (X̂, Û , ς, f̂ ,

Ŷ , ĥ) its discrete-time abstraction without internal inputs. Suppose V is an SSF

from Σ̂ to Σ. For any input trajectory ν̂(·) ∈ Û that preserves Markov property

for the closed-loop Σ̂, and for any random variables a and â as the initial states

of the ct-SHS and its discrete-time abstraction, there exists an input trajectory
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ν(·) ∈ U of Σ through the interface function associated with V such that the

following inequality holds:

P

{
sup

0≤k≤Td

‖ζaν(kτ)− ζ̂âν̂(k)‖ ≥ ε | [a; â]

}
(13)

≤

1− (1− V (a,â)
α(ε) )(1− ψ̂

α(ε) )Td if α (ε) ≥ ψ̂
κ ,

(V (a,â)
α(ε) )(1− κ)Td + ( ψ̂

κα(ε) )(1− (1− κ)Td) if α (ε) < ψ̂
κ ,

where constant ψ̂ > 0 satisfies ψ̂ ≥ ρext(‖ν̂‖∞) + ψ.

4. Compositional Abstractions for Interconnected Hybrid Systems

In this section, we analyze networks of stochastic hybrid subsystems

Σi = (Xi, Ui,Wi,Ui,Wi, fi, σi, ρi, Yi, hi), i ∈ {1, . . . , N}, (14)

and discuss how to construct their finite abstractions together with an SSF

based on corresponding SPSF functions of their subsystems.

4.1. Interconnected Stochastic Hybrid Systems330

We consider a collection of stochastic hybrid subsystems Σi as in (14) where

their internal inputs and outputs are partitioned as

wi = [wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN ],

yi = [yi1; . . . ; yiN ], (15)

and their output spaces and functions are of the form

Yi =

N∏
j=1

Yij , hi(xi) = [hi1(xi); . . . ;hiN (xi)]. (16)

The outputs yii are interpreted as external ones, whereas the outputs yij with

i 6= j are internal ones which are employed to interconnect these stochastic

hybrid subsystems. For the interconnection, if there is a connection from Σj

to Σi, we assume that wij is equal to yji. Otherwise, we put the connecting

output function identically zero, i.e. hji ≡ 0. Now we define the concrete335

interconnected stochastic hybrid systems.

17



Definition 4.1. Consider N ∈ N≥1 stochastic hybrid subsystems Σi = (Xi, Ui

,Wi,Ui,Wi, fi, σi, ρi, Yi, hi), i ∈ {1, . . . , N}, with the input-output configuration

as in (15) and (16). The interconnection of Σi for any i ∈ {1, . . . , N}, is the

concrete interconnected stochastic hybrid system Σ = (X,U,U , f, σ, ρ, Y, h), de-

noted by I(Σ1, . . . ,ΣN ), such that X :=
∏N
i=1Xi, U :=

∏N
i=1 Ui, f :=

∏N
i=1 fi,

σ := [σ1(x1); · · · ;σN (xN )], ρ := [ρ1(x1); · · · ; ρN (xN )], Y :=
∏N
i=1 Yii, and

h =
∏N
i=1 hii, subject to the following constraint:

∀i, j ∈ {1, . . . , N}, i 6= j : wji = yij , Yij ⊆Wji.

Remark 4.2. Note that we employ the term “internal” for inputs and outputs

of subsystems that are affecting each other in the interconnection: internal out-

put of a subsystem affects internal input of another subsystem. We utilize the

term “external” for inputs and outputs that are not used for the sake of con-340

structing the interconnection. Properties of the interconnected system are spec-

ified over the external outputs. The main goal is to synthesize external inputs

to satisfy desired properties over external outputs.

An example of the interconnection of two concrete stochastic hybrid subsystems

Σ1 and Σ2 is illustrated in Figure 3.345

I(Σ1,Σ2)

Σ1

Σ2

y11
Wt1 , Pt1

ν1

y22

ν2

Wt2 , Pt2

y12

w21 y21

w12

Figure 3: Interconnection of two concrete stochastic hybrid subsystems Σ1 and Σ2.

Case Study (Continued). By considering the individual rooms as
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Σi described by

Σi :


dTi(t) = (aiiTi(t)+θThνi(t)+ηwi(t)+β̄Tei +0.5ϕi(0.5ξi(t)))dt+0.5dWti

+ 0.2dPti ,

ζi(t) = Ti(t),

one can readily verify that Σ = I(Σ1, . . . ,ΣN ) where wi(t) = [ζi−1(t); ζi+1(t)]

(with ζ0 = ζn, ζn+1 = ζ1).

4.2. Compositional Abstractions of Interconnected Hybrid Systems

In this subsection, we consider Σi = (Xi, Ui,Wi,Ui,Wi, fi, σi, ρi, Yi, hi) as

an original ct-SHS and Σ̂ as its discrete-time finite abstraction given by the

tuple Σ̂i = (X̂i, Ûi, Ŵi, ςi, f̂i, Ŷi, ĥi) with the input-output configuration similar

to (15) and (16), where Ŵi ⊆ Wi and Ŷi ⊆ Yi. In order to present the compo-

sitionality results of the paper, we assume there exist SPSF Si from Σ̂i to Σi

satisfying conditions (9), (10) in Definition 3.1 with the corresponding functions

and constants denoted by αi, ρinti, ρexti, κi, and ψi. Since we construct our

finite MDPs Σ̂i from time-discretized versions of original systems (i.e. from Σ̃i),

we define here the abstraction map Φw̃ji
on W̃ji that assigns to any w̃ji ∈ W̃ji

representative point w̄ji ∈ Ŵji of the corresponding partition set containing

w̃ji. The mentioned map satisfies

‖Φw̃ji(w̃ji)− w̃ji‖ ≤ µji, ∀w̃ji ∈ W̃ji, (17)

where µji is an internal input discretization parameter defined similar to δ

in (8). Now we define a notion of interconnection applicable to discrete-time350

finite abstractions. Note that condition (17) helps us to freely take quantization

parameters of internal input sets at the cost of having an additional error term

formulated in ψ in (31).

Definition 4.3. Consider N ∈ N≥1 finite stochastic hybrid subsystems Σ̂i =

(X̂i, Ûi, Ŵi, ςi, f̂i, Ŷi, ĥi), i ∈ {1, . . . , N}. The interconnection of Σ̂i is the fi-

nite interconnected stochastic hybrid system Σ̂ = (X̂, Û , ς, f̂ , Ŷ , ĥ), denoted by

Î(Σ̂1, . . . , Σ̂N ), such that X̂ :=
∏N
i=1 X̂i, Û :=

∏N
i=1 Ûi, ς := [ς1, . . . , ςN ],
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f̂ :=
∏N
i=1 f̂i, Ŷ :=

∏N
i=1 Ŷii, and ĥ =

∏N
i=1 ĥii, subject to the following con-

straint:

∀i, j∈{1, . . . , N}, i 6= j : ŵji = Φw̃ji
(ŷij), Φw̃ji

(Ŷij) ⊆ Ŵji.

Now we raise the following small-gain assumption that is essential for the com-

positionality result in this section.355

Assumption 1. Assume that there exist K∞ functions δ̃f , λ̄ such that (λ̄ −

Id) ∈ K∞ and K∞ functions κij defined as

κij(s) :=

κis if i = j,

(Id + δ̃f ) ◦ ρinti ◦ λ̄ ◦ α−1
j (s) if i 6= j,

satisfy

κi1i2 ◦ κi2i3 ◦ · · · ◦ κir−1ir ◦ κiri1 < Id (18)

for all sequences (i1, . . . , ir) ∈ {1, . . . , N}r and r ∈ {1, . . . , N}.

The small-gain condition (18) implies the existence of K∞ functions σ̄i [39,

Theorem 5.5], satisfying

max
i,j

{
σ̄−1
i ◦ κij ◦ σ̄j

}
< Id, i, j = {1, . . . , N}. (19)

Remark 4.4. Note that since αj, σi in Assumption 1 are K∞ functions and

consequently strictly increasing, their inverses always exist.

Remark 4.5. Note that the small-gain condition (18) is a standard one in

studying the stability of large-scale interconnected systems via input-to-state sta-360

ble Lyapunov functions [40, 41].

This condition is automatically satisfied if each κii is less than identity (κii <

Id,∀i ∈ {1, . . . , N}). Since this condition should be satisfied for all possible

sequences (i1, . . . , ir) ∈ {1, . . . , N}r, r ∈ {1, . . . , N}, it allows some subsystems

to compensate the undesirable effects of other subsystems in the interconnected365

network such that this condition is satisfied.
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In the next theorem, we employ small-gain Assumption 1 to quantify the

error between the interconnection of continuous-time stochastic hybrid subsys-

tems and that of their discrete-time abstractions in a compositional manner.

Theorem 4.6. Consider an interconnected ct-SHS Σ = I(Σ1, . . . ,ΣN ) induced

by N ∈ N≥1 continuous-time stochastic hybrid subsystems Σi. Suppose that

each Σi admits a discrete-time abstraction Σ̂i together with an SPSF Si. If

Assumption 1 holds and maxi σ̄
−1
i for σ̄i as in (19) is concave, then function

V (x, x̂) defined as

V (x, x̂) := max
i
{σ̄−1

i (Si(xi, x̂i))}, (20)

is an SSF from Σ̂ = Î(Σ̂1, . . . , Σ̂N ) to Σ = I(Σ1, . . . ,ΣN ).370

The proof of Theorem 4.6 is provided in the Appendix.

The results of Theorem 4.6 are schematically depicted in Figure 4. As illus-

trated, if there exists an SPSF Si(xi, x̂i) between each original subsystem and

its corresponding finite MDP, one can construct an SSF V (x, x̂) as proposed

in (20) between the interconnected original system and its interconnected finite375

abstraction provided that the small-gain condition (18) is satisfied.

5. Construction of Stochastic Pseudo-Simulation Functions

In this section, we impose conditions on the infinite ct-SHS Σ enabling us to

establish an SPSF from its finite abstraction Σ̂ to Σ. The required conditions are

presented for a particular class of continuous-time nonlinear stochastic hybrid380

systems as in the next subsection.This is one of the contributions of our work

compared to [31] in which only the class of linear affine systems is handled.

5.1. A Class of Nonlinear Stochastic Hybrid Systems

In this subsection, we focus on a special class of continuous-time nonlinear

stochastic hybrid systems Σ and quadratic pseudo-stochastic simulation func-385

tions S. First, we formally define this class of systems. Afterwards, we construct
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Figure 4: Compositionality result of the paper given that the small-gain condition (18) is

satisfied.

their finite abstractions Σ̂ as discussed in Subsection 2.4, and then provide con-

ditions under which a nominated S is an SPSF from Σ̂ to Σ.

The class of continuous-time nonlinear stochastic hybrid systems is defined

as

Σ :

dξ(t) = (Aξ(t)+Bν(t)+Dw(t)+Eϕ(Fξ(t))+b) dt+GdWt+
∑r
z=1RzdPzt ,

ζ(t) = Cξ(t),

(21)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, D ∈ Rn×p, E ∈ Rn×1, F ∈ R1×n,

G ∈ Rn×1, b ∈ Rn×1, and Ri ∈ Rn×1,∀z ∈ [1; · · · ; r]. We use the tuple

Σ = (A,B,C,D,E, F,G,b, R, ϕ, λ),

where R = {R1, . . . , Rr}, λ = {λ1, . . . , λr} with λz as the rates of Poisson pro-

cesses Pzt , to refer to the class of stochastic hybrid systems in (21). The discrete-
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time infinite abstraction of Σ is described by

Σ̃ :

 ξ̃(k + 1) = ξ̃(k) + ν̃(k) + D̃ w̃(k) + R̃ς(k),

ζ̃(k) = C̃ξ̃(k),
k ∈ N, (22)

where D̃ and R̃ are arbitrarily chosen. Our goal here is to use Σ̃ as the time-

discretized version of Σ in order to establish an SPSF from Σ̂ to Σ via Σ̃ while390

finding the best approximation error. Later, we show that R̃ = 0n and D̃ =

0n×p result in the least approximation error (cf. Remark 5.3).

Case Study (Continued). The discrete-time infinite abstraction of

Σi is given by

Σ̃i :

T̃i(k + 1) = T̃i(k) + ν̃i(k),

ζ̃i(k) = T̃i(k),
k ∈ N.

Note that, as discussed in Remark 5.3, we consider here R̃i = D̃i = 0

in order to have the smallest constants ψi for each Si (which results

in smaller probabilistic error).395

We present the discrete-time finite abstraction of Σ̃ as

Σ̂ :

 ξ̂(k + 1) = Φξ̃(ξ̂(k) + ν̂(k) + D̃ ŵ(k) + R̃ς(k)),

ζ̂(k) = Ĉξ̂(k),
k ∈ N, (23)

where map Φξ̃ : X̃ → X̂ satisfies inequality (8). Now we nominate the following

quadratic simulation function

S(x, x̂) = (x− Px̂)TM(x− Px̂), (24)

where P is a square matrix and M is a positive-definite matrix of appropriate

dimension. In order to show that the nominated S in (24) is an SPSF from Σ̂

to Σ, we require the following two key assumptions on Σ.

Assumption 2. Assume that there exists a concave function γ ∈ K∞ such that

S satisfies

S(x, x′)− S(x, x′′) ≤ γ(‖x′ − x′′‖), (25)

for any x, x′, x′′ ∈ X.
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Note that as shown in [4] and by employing the mean value theorem, As-400

sumption 2 is always satisfied for function S in (24) being restricted to a compact

subset of X ×X.

Assumption 3. Let Σ = (A,B,C,D,E, F,G,b, R, ϕ, λ). Assume that for some

constant κ̃ ∈ R>0, there exist matrices M � 0, K, P , Q, L and H of appro-

priate dimensions such that the following matrix (in)equalities hold:405

(A+BK)TM +M(A+BK) � −κ̃M, (26)

AP = BQ, (27)

E = BL, (28)

D = BH. (29)

Note that there exist matrices Q, L, and H satisfying conditions (27), (28),

and (29) if and only if im AP ⊆ im B, im E ⊆ im B, and im D ⊆ im B,

respectively. Now, we provide another main results of the paper showing that

under Assumptions 2 and 3, function S in (24) is an SPSF from Σ̂ to Σ.

Theorem 5.1. Let Σ = (A,B,C,D,E, F,G,b, R, ϕ, λ) and Σ̂ be its discrete-410

time finite abstraction with discretization parameter δ. Suppose Assumptions 2

and 3 hold, and Ĉ = C̃ = CP. Then function S in (24) is an SPSF from Σ̂ to

Σ.

The proof of Theorem 5.1 is provided in the Appendix.

Remark 5.2. Note that we nominated the simulation function in the quadratic415

form as in (24) and obtained the matrix inequality condition (26). Satisfying

this inequality has a necessary and sufficient condition which is stabilizability of

the pair (A,B). Alternatively, other forms of simulation functions can be used

but the corresponding required conditions need to be obtained according to the

definition of the simulation function and for example sum of squares programs420

[42].
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Case Study (Continued). Conditions (26)-(29) are satisfied by Mi =

1, Pi = 1, Qi = −0.21, Li = 1, Hi = 0.1. By taking τ = 0.1, λi = 0.5, πi =

1, π̃i = 0.99, δ̃i = 0.01, δ̃′i = 1, η̄i = 0.01, function Si(Ti(kτ), T̃i(k)) = (Ti(kτ) −

T̃i(k))2 is an SPSF from Σ̃i to Σi satisfying condition (9) with αi(s) = s2,∀s ∈425

R≥0 and condition (10) with κi = 0.99, ρexti(s) = 2.04s, ρinti(s) = 7.78 ×

10−11s2, ∀s ∈ R≥0, and ψi = 1.36× 10−8.

The functions and constants α, ρext, ρint ∈ K∞, 0 < κ < 1, and ψ ∈ R>0 in

Definition 3.1 associated with S in (24) are obtained as

α(s) :=
λmin(M)

nλmax(CTC)
s2, ∀s ∈ R≥0,

κ :=1− (1− π̃)κ̄,

ρext(s) :=(1 + δ̃)(
1

π̃κ̄
)γ((1 +

1

η̄
)(1 + η̄′)(1+η̄′′)s), ∀s ∈ R≥0,

ρint(s) :=(1 + 1/δ̃)(
1

π̃κ̄
)(1 + δ̃′)e−κ̃ττpπ‖

√
MD‖22s2, ∀s ∈ R≥0,

ψ :=(1 + 1/δ̃)(
1

π̃κ̄
)(1 + 1/δ̃′)(e−κ̄ττ(GTMG+ π‖

√
Mb‖22

+

r∑
z=1

λzR
T
zMRz+π‖

√
M

r∑
z=1

λzRz‖22) + γ((1 + η̄)δ)

+ γ((1 +
1

η̄
)(1 +

1

η̄′
)

√
Tr(R̃T R̃)) + γ((1+

1

η̄
)(1+η̄′)(1+

1

η̄′′
) ‖D̃ ‖ ‖ŵ‖)),

where κ̄ = 1− e−κ̃τ , and 0 < π̃ < 1 and δ̃, δ̃′, η̄, η̄′, η̄′′ > 0 are chosen arbitrarily.

Note that if γ is linear, then ρext, and ψ defined in (10) reduce to

ρext(s) :=(1 + δ̃)(
1

π̃κ̄
)γ(s), ∀s ∈ R≥0,

ψ :=(1 + 1/δ̃)(
1

π̃κ̄
)(1 + 1/δ̃′)(e−κ̃ττ(GTMG+ π‖

√
Mb‖22

+

r∑
z=1

λzR
T
zMRz+π‖

√
M

r∑
z=1

λzRz‖22)+γ(δ)+γ(

√
Tr(R̃T R̃))+γ(‖D̃ ‖ ‖ŵ‖)).

Remark 5.3. Note that for the abstraction Σ̃ in (22), ρext, and ψ defined
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in (10) reduce to

ρext(s) :=(1 + δ̃)(
1

π̃κ̄
)γ((1 + η̄)(1 + η̄′)s), ∀s ∈ R≥0,

ψ :=(1 + 1/δ̃)(
1

π̃κ̄
)(1 + 1/δ̃′)(e−κ̃ττ(GTMG+ π‖

√
Mb‖22 +

r∑
z=1

λzR
T
zMRz

+π‖
√
M

r∑
z=1

λzRz‖22)+γ((1+
1

η̄
)

√
Tr(R̃T R̃))+γ((1+η̄)(1+

1

η̄′
) ‖D̃ ‖ ‖ŵ‖)).

Moreover, if the abstraction Σ̃ is non-stochastic (i.e. R̃ = 0n) with D̃ = 0n×p,

then

ρext(s) :=(1 + δ̃)(
1

π̃κ̄
)γ(s), ∀s ∈ R≥0,

ψ :=(1 + 1/δ̃)(
1

π̃κ̄
)(1 + 1/δ̃′)(e−κ̃ττ(GTMG+ π‖

√
Mb‖22

+

r∑
z=1

λzR
T
zMRz+π‖

√
M

r∑
z=1

λzRz‖22). (30)

This means if the concrete system has some stability property, it is actually better

to go with the non-stochastic infinite abstractions than the stochastic ones since430

the non-stochastic abstractions are closer than the stochastic versions to the

concrete systems (cf. the case study).

Remark 5.4. Note that not having any internal input in the abstract systems

in (23) (i.e. D̃ = 0n×p) will actually result in less approximation error. In

fact, the smart choice of the interface map in (33) still ensures that the output435

trajectories of abstract systems follow those of the original ones with a quantified

probabilistic error bound which gets smaller if D̃ = 0n×p.

Case Study (Continued). Now we proceed with checking the small-gain

condition (18) that is required for the compositionality result. By taking σ̄i(s) =

s, ∀i ∈ {1, . . . , n}, condition (18) and as a result condition (19) are always440

satisfied. Hence, V (T (kτ), T̂ (k)) = maxi(Ti(kτ) − T̂i(k))2 is an SSF from Σ̃

to Σ satisfying conditions (11) and (12) with α(s) = s2,∀s ∈ R≥0, κ = 0.99,

ρext(s) = 2.04s,∀s ∈ R≥0, and ψ = 1.36× 10−8.

By taking the initial states of Σ and Σ̃ as 20.511000, and utilizing Theo-

rem 3.6, one can guarantee that the distance between outputs of Σ and Σ̃ will
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not exceed ε = 0.5 during the time horizon Td = 12 with probability at least

91%, i.e.,

P(‖ζ(kτ)− ζ̃(k)‖ ≤ 0.5, ∀k ∈ [0, 12]) ≥ 0.91 .

We now synthesize a controller for Σ via its discrete-time abstraction Σ̃ such

that the controller keeps the temperature of each room in a safe set [20, 21]. The445

idea here is to design a local controller for the abstract subsystem Σ̃i, and then

refine it back to subsystem Σi via the interface function. We employ the soft-

ware tool SCOTS [43] on a machine with Linux Ubuntu (Intel i7@3.6GHz CPU

and 16 GB of RAM) to synthesize controllers for Σ̃i maintaining the temper-

ature of each room in the comfort zone [20, 21]. The required memory usage450

and computation time for synthesizing controllers for each room are respectively

184 MB and 70 seconds. Closed-loop state trajectories of a representative room

with different noise realizations in a network of 1000 rooms are illustrated in

Figure 5. Furthermore, several realizations of the norm of error between outputs

of Σ and Σ̃ are illustrated in Figure 6. In order to provide more practical anal-455

ysis on the proposed probabilistic bound, we also run Monte Carlo simulation

for 10000 runs. In this case, one can statistically guarantee that the distance

between outputs of Σ and Σ̃ is always less than or equal to 0.24 with the same

probability (i.e., at least 91%). This issue is expected and the reason is due

to the conservative nature of simulation functions, but with the gain of provid-460

ing formal guarantees on the probabilistic distance between output trajectories

rather than empirical ones. Note that we intentionally dropped the noise and

instead used SCOTS [43]. The reason is because we formally showed that if the

concrete system has some nice stability property and the two systems are in

continuous-time and discrete-time domains, it is actually better to construct465

and employ the non-stochastic abstraction (as discussed in Remark 5.3).

5.2. Analysis on Probabilistic Closeness Guarantee

In order to have a practical analysis on the probabilistic closeness guarantee,

we provide Table 1 in which we discuss the proposed closeness guarantees for

different values of time horizon, closeness precision, diffusion and reset terms.470
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Figure 5: Closed loop state trajectories of a representative room with different noise realiza-

tions in a network of 1000 rooms, for Td = 12.
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Figure 6: Several realizations of the norm of the error between the outputs of Σ and of Σ̃, i.e.

‖ζ(kτ)− ζ̃(k)‖, for Td = 12.
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Table 1: Probabilistic error bound proposed in (13) based on Td, ε, G and R.

Time horizon Td 5 10 15 20 30 40

Probabilistic closeness 96% 92% 88% 85% 78% 71%

Precision ε 0.1 0.3 0.5 0.7 0.9 1.1

Probabilistic closeness 6% 75% 91% 95% 97% 98%

Diffusion term G 0.1 0.3 0.5 0.7 0.9 1.1

Probabilistic closeness 63% 59% 53% 45% 35% 27%

Reset term R 0.1 0.3 0.5 0.7 0.9 1.1

Probabilistic closeness 75% 68% 53% 37% 23% 12%

We fixed the employed parameters in the case study and computed the closeness

for different ranges of Td, G,R, ε. We have also fixed τ = 0.03 for computing

the probabilistic bound for G,R. As seen, the probabilistic closeness guarantee

is improved by either decreasing Td, G,R or increasing ε. Note that constant ψ

in (13) is formulated based on diffusion and reset terms as in (30).475

6. Discussion

In this paper, we proposed a compositional framework for the construction of

discrete-time finite MDPs of continuous-time stochastic hybrid systems. We first

introduced notions of stochastic pseudo-simulation and simulation functions for

quantifying the probabilistic error between outputs of the original continuous-480

time stochastic hybrid systems and those of their discrete-time (finite or infi-

nite) abstractions with and without internal inputs, respectively. We also de-

rived sufficient small-gain conditions for the compositional quantification of the

probabilistic distance between the interconnection of original continuous-time

stochastic hybrid systems and their discrete-time abstractions. We then con-485

structed finite abstractions together with their corresponding stochastic pseudo-

simulation functions for a special class of nonlinear stochastic hybrid systems.

We illustrated the effectiveness of the proposed approaches by applying our
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results to the temperature regulation in a circular building and constructing

compositionally a discrete-time abstraction from its original continuous-time490

dynamic in a network containing 1000 rooms. We employed the constructed

discrete-time abstraction as a substitute to compositionally synthesize policies

regulating the temperature of each room for a bounded time horizon. Providing

a construction framework of finite MDPs for general nonlinear stochastic hybrid

systems is still open as a potential direction for a future work.495
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[40] S. Dashkovskiy, B. S. Rüffer, and F. R. Wirth, “An ISS small gain theo-

rem for general networks,” Mathematics of Control, Signals, and Systems

(MCSS), vol. 19, no. 2, pp. 93–122, 2007.

34
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8. Appendix

Proof of Theorem 4.6: We first show that SSF V in (20) satisfies the

inequality (11) for some K∞ function α. For any x = [x1; . . . ;xN ] ∈ X and

x̂ = [x̂1; . . . ; x̂N ] ∈ X̂, one gets:

‖h(x)− ĥ(x̂)‖ = max
i
{‖hii(xi)− ĥii(x̂i)‖} ≤ max

i
{‖hi(xi)− ĥi(x̂i)‖}

≤ max
i
{α−1

i (Si(xi, x̂i))} = β (max
i
{σ̄−1

i (Si(xi, x̂i))}) = β(V (x, x̂))

where β(s) = maxi

{
α−1
i ◦ σ̄i(s)

}
for all s ∈ R≥0, which is a K∞ function

and (11) holds with α = β−1.
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We continue with showing (12), as well. Let κ(s) = maxi,j{σ̄−1
i ◦κij ◦ σ̄j(s)}.

It follows from (19) that κ < Id. Since maxi σ̄
−1
i is concave, one can readily

acquire the chain of inequalities in (31) using Jensen’s inequality, inequality (17),

and by defining ρext(·), and ψ as

ρext(s) :=

maxi{σ̄−1
i ◦ ρexti(si)},

s.t. si≥ 0, ‖[s1; . . . ; sN ]‖ = s,

ψ := max
i
σ̄−1
i (Λi),

where Λi := (Id + δ̃−1
f ) ◦ (ρinti ◦ λ̄ ◦ (λ̄− Id)−1(maxj,j 6=i{µji}) + ψi). Hence, V645

is an SSF from Σ̂ to Σ which completes the proof. �

Remark 8.1. Note that to show Theorem 4.6, we have employed the following

inequalities: ρint(a+ b) ≤ ρint ◦ λ̄(a) + ρint ◦ λ̄ ◦ (λ̄− Id)−1(b),

a+ b ≤ max{(Id + δ̃f )(a), (Id + δ̃−1
f )(b)},

for any a, b ∈ R≥0, where ρint, δ̃f , λ̄, (λ̄− Id) ∈ K∞.

Proof of Theorem 5.1: Since Ĉ = CP , we have ‖Cx−Ĉx̂‖2 ≤ nλmax(CTC)

‖x−Px̂‖2, and similarly λmin(M)‖x−Px̂‖2 ≤ (x−Px̂)TM(x−Px̂). One can

readily verify that λmin(M)
nλmax(CTC)

‖Cx−Ĉx̂‖2 ≤ S(x, x̂) holds ∀x, ∀x̂, implying that650

inequality (9) holds with α(s) = λmin(M)
nλmax(CTC)

s2 for any s ∈ R≥0. We proceed

with showing that the inequality (10) holds, as well. Using Assumption 2, we

have

E
[
S(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ=ξ(kτ), ξ̂= ξ̂(k), ν=ν(kτ), ν̂= ν̂(k), w=w(kτ),

ŵ= ŵ(k)
]

=E
[
S(ξ((k+1)τ), ξ̂(k+1))

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]−E[S(ξ((k+1)τ), ξ̂)
∣∣ξ,

ξ̂, ν, ν̂, w, ŵ
]
+E
[
S(ξ((k+1)τ), ξ̂)

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ] ≤ E[S(ξ((k+1)τ), ξ̂)
∣∣ ξ, ξ̂,

ν, ν̂, w, ŵ
]
+E
[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ ξ̂, ν̂, ŵ].
Now by employing Dynkin’s formula [38], one obtains
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E
[
V (ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂]
= E

[
max
i

{
σ̄−1
i (Si(ξi((k + 1)τ), ξ̂i(k + 1)))

} ∣∣ ξ, ξ̂, ν, ν̂]
≤ max

i

{
σ̄−1
i (E

[
Si(ξi((k + 1)τ), ξ̂i(k + 1))

∣∣ ξ, ξ̂, ν, ν̂])}
= max

i

{
σ̄−1
i (E

[
Si(ξi((k + 1)τ), ξ̂i(k + 1)) | ξi, ξ̂i, νi, ν̂i

]
)
}

≤ max
i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), ρinti(‖wi − ŵi‖), ρexti(‖ν̂i‖), ψi})

}
= max

i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), ρinti(max

j,j 6=i
{‖wij − ŵij‖}), ρexti(‖ν̂i‖), ψi})

}
= max

i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), ρinti(max

j,j 6=i
{‖yji − ŷji + ŷji − Φw̃ij

(ŷji)‖}),

ρexti(‖ν̂i‖), ψi})
}

≤ max
i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), ρinti(max

j,j 6=i
{‖hj(xj)− ĥj(x̂j)‖+ ‖ŷji − Φw̃ij (ŷji)‖}),

ρexti(‖ν̂i‖), ψi})
}

≤ max
i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), ρinti(max

j,j 6=i
{α−1

j (Sj(xj , x̂j)) + µji}), ρexti(‖ν̂i‖), ψi})
}

≤ max
i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), ρinti ◦ λ̄(max

j,j 6=i
{α−1

j (Sj(xj , x̂j))})

+ ρinti ◦ λ̄ ◦ (λ̄− Id)−1(max
j,j 6=i
{µji}), ρexti(‖ν̂i‖), ψi})

}
≤ max

i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), (Id + δ̃f ) ◦ ρinti ◦ λ̄(max

j,j 6=i
{α−1

j (Sj(xj , x̂j))}),

ρexti(‖ν̂i‖),Λi})
}

= max
i,j

{
σ̄−1
i (max{κij(Sj(xj , x̂j)), ρexti(‖ν̂i‖),Λi})

}
= max

i,j

{
σ̄−1
i (max{κij ◦ σ̄j ◦ σ̄−1

j (Sj(xj , x̂j)), ρexti(‖ν̂i‖),Λi})
}

= max
i,j

{
σ̄−1
i (max{κij ◦ σ̄j(V (x, x̂)), ρexti(‖ν̂i‖),Λi})

}
= max{κ(V (x, x̂)), ρext(‖ν̂‖), ψ}. (31)
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E
[
S(ξ((k+1)τ), ξ̂)

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]+E[γ(‖ξ̂(k + 1)− ξ̂‖)
∣∣ ξ̂, ν̂, ŵ]

= Eς

[
S(ξ, ξ̂)+E

[ ∫ (k+1)τ

kτ

LS(ξ(t), ξ̂)dt
]∣∣ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ].
Since the infinitesimal generator LS acting on function S is defined as

LS(ξ, ξ̂) =∂ξS(ξ, ξ̂)f(ξ, ν, w) +
1

2
Tr(σ(ξ)σ(ξ)T∂ξ,ξS(ξ, ξ̂))

+

r∑
j=1

λj(S(ξ + ρ(ξ)erj , ξ̂)− S(ξ, ξ̂)), (32)

where erj denotes an r-dimensional vector with 1 on the j-th entry and 0 else-

where, and

∂ξS(ξ, ξ̂) = 2(ξ(t)−P ξ̂)TM, ∂ξ,ξS(ξ, ξ̂) = 2M,

then one has

Eς

[
S(ξ, ξ̂)+E

[∫ (k+1)τ

kτ

LS(ξ(t), ξ̂)dt
] ∣∣ ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ]
=Eς

[
S(ξ, ξ̂)+E

[ ∫ (k+1)τ

kτ

(2(ξ(t)−P ξ̂)T M(Aξ(t)+Eϕ(Fξ(t)) +Bν(t)

+b+Dw(t))+GTMG+ 2(ξ(t)−P ξ̂)TM
r∑

z=1

λzRz+

r∑
z=1

λzR
T
zMRz)dt

]
∣∣ ξ̂, ν̂, ŵ]+E[γ (‖ ξ̂(k + 1)− ξ̂ ‖)

∣∣ξ̂, ν̂, ŵ].
Given any ξ(t), ξ̂(k), w(t) and ŵ(k), we choose ν(t) via the following interface

function:

ν(t) = K(ξ(t)−P ξ̂(k))−Qξ̂(k)−Lϕ(Fξ(t))+H(w(kτ)−ŵ(k))−Hw(t), (33)

where kτ ≤ t ≤ (k + 1)τ . By employing conditions (27), (28) and (29) , and
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the definition of the interface function in (33), we have

Eς

[
S(ξ, ξ̂)+E

[ ∫ (k+1)τ

kτ

(2(ξ(t)−P ξ̂)TM(Aξ(t)+Eϕ(Fξ(t)) +Bν(t)+b +Dw(t))

+GTMG+ 2(ξ(t)−P ξ̂)TM
r∑

z=1

λzRz +

r∑
z=1

λzR
T
zMRz)dt

] ∣∣ ξ̂, ν̂, ŵ]
+ E

[
γ(‖ξ̂(k+1)−ξ̂‖)

∣∣ξ̂, ν̂, ŵ]=Eς

[
S(ξ, ξ̂)+E

[∫ (k+1)τ

kτ

(2 (ξ(t)−P ξ̂)TM((A+

BK)(ξ(t)−P ξ̂) +b+D(w − ŵ)) +GTMG+ 2(ξ(t)−P ξ̂)TM
r∑

z=1

λzRz

+

r∑
z=1

λzR
T
zMRz)dt

]∣∣ ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)−ξ̂‖)
∣∣ξ̂, ν̂, ŵ].

Using Young’s inequality [44] as ab ≤ π
2 a

2 + 1
2π b

2, for any a, b ≥ 0 and any

π > 0, by employing Cauchy-Schwarz inequality and using condition (26), one

has

Eς

[
S(ξ, ξ̂)+E

[∫ (k+1)τ

kτ

(2 (ξ(t)−P ξ̂)TM((A+BK)(ξ(t)−P ξ̂)+b+D(w − ŵ))

+GTMG+ 2(ξ(t)−P ξ̂)TM
r∑

z=1

λzRz +

r∑
z=1

λzR
T
zMRz)dt

]∣∣ ξ̂, ν̂, ŵ]
+ E

[
γ(‖ξ̂(k+1)−ξ̂‖)

∣∣ξ̂, ν̂, ŵ]≤Eς[S(ξ, ξ̂)+E
[ ∫ (k+1)τ

kτ

(−κ̃S(ξ(t), ξ̂)+π‖
√
Mb‖22

+π‖
√
MD‖22‖w−ŵ‖22+GTMG+

r∑
z=1

λzR
T
zMRz+π‖

√
M

r∑
z=1

λzRz‖22)dt
]

∣∣ ξ̂, ν̂, ŵ]+ E[γ(‖ξ̂(k+1)− ξ̂‖)
∣∣ ξ̂, ν̂, ŵ] =Eς

[
S(ξ, ξ̂)+ E

[ ∫ (k+1)τ

kτ

−κ̃S(ξ(t), ξ̂) dt

+τ(π‖
√
Mb‖22+π‖

√
MD‖22‖w − ŵ‖22+GTMG+

r∑
z=1

λzR
T
zMRz

+ π‖
√
M

r∑
z=1

λzRz‖22)
]∣∣ ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ].
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Using Gronwall inequality [45], one has

Eς

[
S(ξ, ξ̂)+E

[∫ (k+1)τ

kτ

−κ̃S(ξ(t), ξ̂)dt+τ(π‖
√
Mb‖22+ π‖

√
MD‖22‖w − ŵ‖22

+GTMG+

r∑
z=1

λzR
T
zMRz+π‖

√
M

r∑
z=1

λzRz‖22)
] ∣∣ ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)− ξ̂‖)

∣∣
ξ̂, ν̂, ŵ

]
≤ Eς

[
e−κ̃τS(ξ, ξ̂)+E

[
e−κ̃ττ(π‖

√
Mb‖22 + pπ‖

√
MD‖22‖w − ŵ‖2

+GTMG+

r∑
z=1

λzR
T
zMRz+π‖

√
M

r∑
z=1

λzRz‖22)
]∣∣ ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)−ξ̂‖)

∣∣
ξ̂, ν̂, ŵ

]
= e−κ̃τS(ξ, ξ̂) + e−κ̃ττ(GTMG+π‖

√
Mb‖22 + pπ‖

√
MD‖22‖w − ŵ‖2

+

r∑
z=1

λzR
T
zMRz+π‖

√
M

r∑
z=1

λzRz‖22)+E
[
γ(‖ξ̂(k+1)−ξ̂‖)

∣∣ξ̂, ν̂, ŵ].
Since function γ defined in Assumption 2 is concave, using Jensen inequality655

one has

E
[
γ(‖ξ̂(k+1)−ξ̂‖)

∣∣ ξ̂, ν̂, ŵ]
=E
[
γ(‖ξ̂(k+1)−(ξ̂ + ν̂ + D̃ ŵ + R̃ς) + (ξ̂ + ν̂ + D̃ ŵ +R̃ς)−ξ̂‖)

∣∣ ξ̂, ν̂, ŵ]
≤E
[
γ(δ + ‖ν̂ + D̃ŵ + R̃ς‖)

∣∣ ξ̂, ν̂, ŵ]
≤γ((1 + η̄)δ) + E

[
γ((1 +

1

η̄
)‖ν̂ + D̃ŵ + R̃ς‖)

∣∣ ξ̂, ν̂, ŵ]
≤γ((1+η̄)δ) + γ((1+

1

η̄
)(1+η̄′)‖ν̂+D̃ ŵ‖)+γ((1+

1

η̄
)(1+

1

η̄′
)E
[
‖R̃ς‖

∣∣ ξ̂, ν̂, ŵ])
≤γ((1+η̄)δ)+γ((1+

1

η̄
)(1+ η̄′)‖ν̂+D̃ ŵ‖)+γ((1+

1

η̄
)(1+

1

η̄′
)E
[
([R̃ς]T [R̃ς])

1
2
∣∣ ξ̂, ν̂, ŵ])

≤γ((1+η̄)δ)+γ((1+
1

η̄
)(1+η̄′)(1+η̄′′)‖ν̂‖) +γ((1+

1

η̄
)(1+η̄′)(1+

1

η̄′′
)‖D̃ ‖ ‖ŵ‖)

+ γ((1+
1

η̄
)(1+

1

η̄′
)(E
[
[R̃ς]T [R̃ς]

∣∣ ξ̂, ν̂, ŵ]) 1
2 )

=γ((1 + η̄)δ) +γ((1+
1

η̄
)(1+η̄′)(1+η̄′′)‖ν̂‖) +γ((1+

1

η̄
)(1+η̄′)(1+

1

η̄′′
) ‖D̃ ‖ ‖ŵ‖)

+ γ((1 +
1

η̄
)(1 +

1

η̄′
)

√
Tr(R̃T R̃)), (34)

where η̄, η̄′, η̄′′ ∈ R>0. Then one can conclude that
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E
[
S(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]
≤ e−κ̃τS(ξ, ξ̂) +γ((1+

1

η̄
)(1+η̄′)(1+η̄′′)‖ν̂‖) + e−κ̃ττpπ‖

√
MD‖22‖w − ŵ‖2

+e−κ̃ττ(GTMG+π‖
√
Mb‖22+

r∑
z=1

λzR
T
zMRz+π‖

√
M

r∑
z=1

λzRz‖22)+γ((1+η̄)δ)

+ γ((1 +
1

η̄
)(1 +

1

η̄′
)

√
Tr(R̃T R̃)) + γ((1+

1

η̄
)(1+η̄′)(1+

1

η̄′′
) ‖D̃ ‖ ‖ŵ‖). (35)

Using the previous inequality and by employing the similar argument as the one

in [46, Theorem 1], one obtains

E
[
S(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]
≤ max

{
κS(ξ, ξ̂), ρint(‖w − ŵ‖), ρext(‖ν̂‖), ψ

}
,

which completes the proof with

α(s) :=
λmin(M)

nλmax(CTC)
s2, ∀s ∈ R≥0,

κ :=1− (1− π̃)κ̄,

ρext(s) :=(1 + δ̃)(
1

π̃κ̄
)γ((1 +

1

η̄
)(1 + η̄′)(1+η̄′′)s), ∀s ∈ R≥0,

ρint(s) :=(1 + 1/δ̃)(
1

π̃κ̄
)(1 + δ̃′)e−κ̃ττpπ‖

√
MD‖22s2, ∀s ∈ R≥0,

ψ :=(1 + 1/δ̃)(
1

π̃κ̄
)(1 + 1/δ̃′)(e−κ̄ττ(GTMG+ π‖

√
Mb‖22 +

r∑
z=1

λzR
T
zMRz

+ π‖
√
M

r∑
z=1

λzRz‖22) + γ((1 + η̄)δ) + γ((1 +
1

η̄
)(1 +

1

η̄′
)

√
Tr(R̃T R̃))

+ γ((1+
1

η̄
)(1+η̄′)(1+

1

η̄′′
) ‖D̃ ‖ ‖ŵ‖)),

where κ̄ = 1− e−κ̃τ , 0 < π̃ < 1, and δ̃, δ̃′ > 0. �

Remark 8.2. Note that since the abstract system Σ̂ in this work is considered in

discrete-time domain, then the infinitesimal generator LS(x, x̂) defined in (32)660

is different from the usual one that was employed in [4].
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