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a b s t r a c t 

Despite many advances in the field of dead-time compensators (DTCs) for unstable first-order plus dead- 

time (UFOPDT) processes, the tuning, in general, is manually carried out. Therefore, this paper proposes 

simple tuning rules for a DTC intended to UFOPDT processes. The rules are based on the relative dead 

time, desired closed-loop time constant, and achievable robustness. Besides, as the practical implemen- 

tation is always in the discrete-time domain, a method to choose the sampling period for UFOPDT pro- 

cesses is presented. Four simulation examples from the literature are used to show the advantages of the 

proposed method. In addition, an experiment with a propeller pendulum is performed to confirm such 

advantages in the control of a real unstable process with dead time. 

© 2020 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Several application fields in industry, such as chemistry, avia- 

ion, among others, present a significant dead time and unstable 

pen-loop behavior [2,30] . For this class of systems, the closed- 

oop performance can be improved significantly using controllers 

hat incorporate the dead-time process model in its structure to 

redict the process output. The predictor is used to compensate 

he dead-time by avoiding the appearance of the time-delay in 

he characteristic equation, simplifying the tuning of the controller. 

hese kinds of controllers are also known as dead-time compen- 

ators (DTCs) [22] . One of the first and most widespread DTCs 

n literature was the Smith predictor (SP) proposed in 1957 [29] . 

owever, it presents some drawbacks and can not be used prop- 

rly for integrating and unstable open-loop processes [21,22] . Over 

he years, Smith’s idea has been refined and turned possible to ap- 

ly the DTCs not only to integrative or unstable open-loop pro- 

esses [13,39] , but predictive structures have also been incorpo- 

ated into more complex systems, which consider event-triggered 

ontrol [5,16] and linear parameter-varying (LPV) approaches [20] . 

In [13] , it was proposed a DTC structure for stable, unstable, 

nd integrative processes. The structure is based on an observer 
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sed to predict the process output and estimate the input distur- 

ance. The control input is computed based on the estimated dis- 

urbance and the output prediction using a proportional controller, 

herefore, avoiding windup effects. It is also proposed a particular 

olution for dead-beat response. In [1,3,4,28,38] , it was presented a 

TC structure, namely the Generalized Predictor (GP), whose main 

dea is to estimate the undelayed output in order to design a con- 

roller focusing on disturbance rejection. Another DTC was the fil- 

ered SP (FSP) [23,27] , where a primary controller is tuned to deal 

ith set-point tracking and a filter to deal with stability, robust- 

ess and disturbance rejection. 

In [8,9] , it was presented a modified FSP for first-order-plus- 

ead-time (FOPDT) models, with a proportional gain as the pri- 

ary controller instead of a traditional proportional-integral (PI) 

ontroller, namely P-FSP. In these two works, it was shown, by 

eans of simulations, that this control structure deals better with 

he problem of plants with saturating actuators, simplifying their 

reatment. In [11,12,40] , comparisons with the FSP where made 

y means of a series of experiments, confirming that the attrac- 

iveness of the P-FSP is not restricted just to the case of con- 

trained control. In [6] the formulation of the P-FSP was extended 

or integrating-plus-dead-time (IPDT) processes. In [7] , it was pro- 

osed a new implementation structure for the P-FSP to better deal 

ith IPDT processes and, by means of experiments, a comparison 

o a filtered PI controller was made, obtaining in constrained con- 

rol better performance and robustness. 

The works [31,32,34] proposed simplified versions of the FSP, 

ith lower-order controllers compared to the traditional version 
rved. 
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Fig. 1. The conceptual SDTC control structure. 

Fig. 2. Implementation control structure of the SDTC. 
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nd equivalent or better robustness and disturbance rejection re- 

ponse. 

For the aforementioned works tuning procedures are required 

or each particular system. On the other hand, tuning rules ap- 

roach allows the control engineer to obtain the controller adjust- 

ent directly from plant parameters. 

When controlling unstable processes with dead time, an impor- 

ant step with any controller is the tuning. A well-tuned controller 

an achieve both satisfactory performance and robustness. A sim- 

le way to achieve that is by means of a tuning rule. Employing an

nalytic tuning rule, instead of being tuned for a particular case, 

he controller can be tuned considering a general case. Therefore, 

roposing a tuning rule to adjust the controller is valuable to sim- 

lify the tuning process and to make it easier the use in the indus-

ry. 

In this work, a tuning rule is considered a mathematical ex- 

ression used to compute controller tuning parameters. It can be 

ased on model parameters, and desired performance and robust- 

ess specifications. There are in the literature only a few works 

hat proposed tuning rules for controllers that deal with unstable 

rst-order-plus-dead-time (UFOPDT) processes. Most of them were 

roposed for PI and PID controllers [18,19,25,36] . It is unusual to 

nd works proposing tuning rules for DTCs. An automatic tuning 

rocedure for a DTC scheme, using tuning rules based on optimiza- 

ion results, was presented in [24] . 

Even though the practical implementation of DTCs is in the 

iscrete-time domain, the aforementioned works do not study the 

ver or undersampling effect. For some industrial applications, it 

s highly necessary to save network and computational resources 

17] . Therefore, the ideal sampling period for control structures 

ould be the biggest one that does not significantly affect the per- 

ormance and robustness of the control system [35] . Furthermore, 

o simplify the design, analytic rules should be available to adjust 

he controller according to not only a desired robustness level, but 

lso to the process sampling period. 

Although many solutions to compensate dead-time have been 

resented in the last years, in some cases, the performance of the 

losed-loop response presents similar or equivalent results. There- 

ore, what leads to the choice of one desired strategy is the sim- 

licity of the control structure and its tuning. Furthermore, tun- 

ng rules techniques often require easy-to-tune controllers based 

n simple models, like UFOPDT models. One of the controllers in 

he literature that satisfy these requirements is the simplified DTC 

SDTC), also known as simplified FSP (SFSP) [33] . Its adoption in 

his work is justified by: (i) it presents fewer tuning parameters 

han the FSP [31] , (ii) it can be directly extended to state-space 

odels and the implementation of the predictor does not need 

n explicit pole-zero cancellation when dealing with integrating 

r unstable processes [32] and, (iii) even though processes with 

aturation are not the focus of this work, it presents good perfor- 

ance for the case of saturating actuators just by adding the satu- 

ation model at the input of the process model, as widely studied 

n [8,9,11,12,15,40] . However, this characteristic does no hold for a 

implified control structure in a 2-DOF scheme. 

Therefore, in this context, the main contributions of this work 

re: (i) a tuning rule for a DTC, using UFOPDT models, based on 

he maximum achievable robustness to dead-time uncertainties, in 

rder to achieve a desired robustness and (ii) an analytic rule for 

hoosing the sampling period maintaining the robust stability con- 

ition obtained by the tuning rule. Furthermore, to the knowledge 

f the authors, the contributions of this manuscript are original 

nd have not been published in any other work in the literature. 

The content of this paper is divided into eight sections, as fol- 

ows. Section 1 is the introduction. In Section 2 , the SDTC is de-

cribed in order to present the controller base structure for the 

trategy proposed in this paper. The maximum achievable uncer- 
251 
ainty of dead-time is also addressed in Section 3 . The procedure 

or obtaining a rule to tune the robustness filter pole is shown 

n Section 4 . Meanwhile, the analysis of the sampling period is 

rovided in Section 5 . The simulation results are presented in 

ection 6 . Experimental results in a propeller pendulum plant are 

resented in Section 7 . The paper ends with the conclusions in 

ection 8 . 

. The simplified dead-time compensator 

The conceptual structure of the SDTC when using FOPDT mod- 

ls is presented in Fig. 1 , where G n (z) is the delay free nominal

rocess model, P (z) represents the real process, d n is the nomi- 

al dead time, k r and k are gains and V (z) is the robustness fil-

er. It is important o highlight that the conceptual structure of the 

DTC is used only for design purposes because it presents an un- 

table mode corresponding to the plant pole, which produces in- 

ernal stability problems. 

The nominal process model P n (z) = G n (z) z −d n can be repre- 

ented by 

 n (z) = 

b 0 z 
−1 

1 − a 1 z −1 
z −d n , (1) 

here 0 < a 1 < 1 for stable processes and a 1 > 1 for unstable pro-

esses. 

In the nominal case, it is considered that the nominal process 

odel represents with fidelity the process (P (z) = P n (z)) . Aiming 

o analyse controller properties, the closed-loop transfer functions 

nd the condition for robust stability are obtained for the nominal 

ase. 

 yr (z) = 

Y (z) 

R (z) 
= 

k r P n (z) 

1 + kG n (z) 
, (2) 

 yq (z) = 

Y (z) 

Q(z) 
= P n (z) 

[
1 − P n (z) V (z) 

1 + kG n (z) 

]
, (3) 

 un (z) = 

U(z) 

N(z) 
= 

−V (z) 

1 + kG n (z) 
, (4) 
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Fig. 3. Comparison between the data with results stable and unstable ˆ αc . 

Fig. 4. Comparison between the data and the rule ( λ = 0 . 1 ). 
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 r (ω) = 

∣∣∣∣1 + kG n (z) 

V (z) P n (z) 

∣∣∣∣
z= e jωT s 

> δP (ω) . (5) 

In the above expressions, R (z) , U(z) , N(z) , Y (z) and Q(z) are Z-

ransforms of the following signals, respectively: set-point, control 

ction, measurement noise, process output, and input load distur- 

ance; H yr (z) , H yq (z) , and H un (z) are the transfer functions of the

losed-loop system. I r (ω) is defined as robustness index, the norm- 

ound of the multiplicative uncertainty term is δP (ω) and T s is the 

ampling period frequency range at 0 < ω < π/T s . 

The SDTC tuning is made in two steps: the tuning for set-point 

racking and the tuning for load disturbance rejection. 

Firstly, the gains k and k r are tuned using (2) to place a desired

ole for set-point tracking performance. This is accomplished by 
252 
aking 

 yr (z) = 

(1 − a c ) z −1 

1 − a c z −1 
z −dn , (6) 

here (6) is the desired closed-loop transfer function. As a result 

f this equality, it is obtained 

 = 

a 1 − a c 

b 0 
, (7) 

 r = 

1 − a c 

b 0 
. (8) 

Finally, once k r and k are known, the robustness filter V (z) is 

esigned to stabilize the predictor and to reject disturbances at 

teady state. To be able to satisfy both conditions, V (z) requires 

t least two coefficients on its numerator. Therefore, it is written 
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Fig. 5. Robustness Indexes for system (36) with L = 1 . 5 . 

Fig. 6. Robustness Indexes for system (36) with L = 0 . 2 . 
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 (z) = 

v 0 + v 1 z −1 

1 − βz −1 
, (9) 

here β is a tuning parameter. 

Also, to meet conditions (i) and (ii), it is necessary, respectively, 

hat 

 yq (z) | z=1 = 0 , 

 yq (z) | z= a 1 = 0 . (10) 

This is, respectively, equivalent to 

 (1) = k r , 

 − V (a 1 ) a 
−dn 
1 = 0 . (11) 

These expressions result in the following system of equations: 

v 0 + v 1 = k r (1 − β) 

 0 + 

v 1 
a 1 

= k 

(
1 − β

a 1 

)
a d n 

1 
, (12) 

rom where one can obtain the values of v 0 and v 1 as 

 0 = 

1 

1 − a 1 
[ k r (1 − β) − k (a 1 − β) a d n 

1 
] , (13) 

 1 = 

1 

[ −a 1 k r (1 − β) + k (a 1 − β) a d n ] . (14)

1 − a 1 

1 V

253 
.1. Implementation control structure 

The implementation structure of the SDTC is shown in 

ig. 2 where the transfer function S(z) is given by 

(z) = 

b 0 z 
−1 

1 − a 1 z −1 

(
k − v 0 + v 1 z −1 

1 − βz −1 
z −d 

)
. (15) 

Note that the undesired pole of the process z = a 1 appears in 

he above expression, making the resulting closed-loop system 

nternally unstable. In [23] , a pole-zero cancellation method was 

sed to avoid this problem. In a later work [32] , another solution 

as proposed for unstable processes in the continuous-time 

omain that can also be applied to the discrete-time domain. It 

s important to mention that the conceptual structure of the FSP, 

hown in Fig. 1 , cannot be used in practice because it presents 

ome unobservable modes. However, this structure is useful for 

ontrol design, allowing to easily find conditions to deal with 

table, integrative, and unstable dead-time processes. The im- 

lementation structure, shown in Fig. 2 , is free of unobservable 

odes and should be used in practice. 

By using partial fractions decomposition for β � = a 1 and condi- 

ions (11) , S(z) can be rewritten as 

(z) = 

b 0 kz −1 

1 − a 1 z −1 
− b 0 ka d 1 z 

−d−1 

1 − a 1 z −1 
+ 

Bz −d 

1 − βz −1 
, (16) 

here B = b 0 (βv 0 + v 1 ) / (β − a 1 ) . 

By applying long division in the first term of (16) , S(z) results 

(z) = 

d ∑ 

i =1 

ka i −1 
1 b 0 z 

−i + 

B 

1 − βz −1 
z −d . (17) 

herefore, the process pole z = a 1 no longer appears in the expres- 

ion of S(z) , which guarantees internal stability. By using this ex- 

ression, the controller can also be implemented in a two-degree- 

f-freedom (2DOF) control structure. 

The above formulations allow an analysis of the control prob- 

em for UFOPDT models. Hereafter, attention is focused on the tun- 

ng rules problem with analysis of the sampling period and of the 

aximum multiplicative uncertainty. The tuning procedure of the 

ontroller for other orders, stable and integrative cases can be seen 

n [31,32] . 

. Achievable robustness of the SDTC 

In this section, the maximum achievable robustness produced 

y the SDTC for UFOPDT models is analyzed. Without loss of gen- 

rality, the analysis is performed in the Laplace domain. 

For this study, the following nominal process model 

 n (s ) = G n (s ) e −L n s = 

b 

s − a 
e −L n s , (18) 

s considered, where G n (s ) is the delay-free model, b is a gain, a 

s the model pole, and L n is the dead time. The feedback gain k is

uned to obtain the desired closed-loop pole p c leading to 

 = (a − p c ) /b. (19) 

In this analysis, a first order filter 

 (s ) = 

b 1 s + b 2 
s − αc 

(20) 

s used, where b 1 and b 2 are the filter coefficients and αc is a free

uning parameter. Hence, the filter V (s ) can be derived from the 

ollowing two conditions as addressed in [31] 

 (0) = k r = k − a/b, (21) 

 (a ) = ke L n a . (22) 
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Fig. 7. Example 1: nominal closed-loop response. 
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Once having (20), (21) and (22) , b 1 and b 2 are obtained 

 2 = 

(
a 

b 
− k 

)
αc , (23) 

 1 = 

k (a − αc ) e L n a − b 2 
a 

. (24) 

As stated in [31] , there is a trade off between performance and 

obustness. So, to achieve the highest as possible robustness, the 

imit of the parameters αc and p c should tend to zero, thus, the 

ollowing equations are derived 

lim 

p c ,αc → 0 
V (s ) = 

a 

b 
e L n a , k = 

a 

b 
. (25) 

Using (5) and (25) the achievable robustness for the SDTC is 

btained 

 r (ω) = 

w 

ae L n a 
, ω > 0 . (26) 

In DT processes, the most critical source of uncertainty is the 

elated to the time delay [21] . Thus, for simplicity, the multiplica- 

ive uncertainty is given by 

P (ω) = 

| P ( jω) − P n ( jω) | 
| P n ( jω) | = 

∣∣e −δL jω − 1 

∣∣, ω > 0 (27) 

here δL = L − L n and L represents the real process delay. An upper

imit of δP (ω) can be defined as 

P (ω) = | δL | ω ≥ δP (ω) , ω > 0 . (28)

According to (5), (26) , and (28) the following robustness stabil- 

ty condition can be obtained 

 δL | < 

1 

ae L n a 
= δL m 

, (29) 

here δL m 

represents the maximum upper bound of the dead-time 

ismatch that an SDTC structure can stabilise. 
254 
The time delay uncertainty will now be defined as a fraction 

f the maximum upper bound of the dead-time-estimation error, 

uch that 

 = L n + δL = L n + λ.δL m 

, (30) 

s can be seen from Eqs. (29) and (30) λ is within the range 

 < λ < 1 to guarantee robust stability. In practice, it is not com- 

on to consider the dead time mismatch close to the achievable 

obustness. Therefore, in this work, λ is considered to be within 

he range [0.07 – 0.3] to include the most typical values of a dead- 

ime mismatch from the literature [14,28,37] . 

. Tuning rules of the robustness filter 

In this section, tuning rules are proposed for the SDTC regard- 

ng open-loop unstable processes represented by UFOPDT models. 

he proposed tuning rules are obtained through several simula- 

ions considering the normalised model 

 n (s ) = 

1 

s − 1 

e −L n s . (31) 

The main objective of the simulations is to tune the robustness 

lter for several scenarios, i.e., considering different nominal dead 

imes L n , desired closed-loop time constants τcl = 1 /p cl , and max- 

mum upper bounds λ within a desired range. Based on the ob- 

ained data, a new approach for the robustness filter tuning is pro- 

osed, as detailed in the following steps: 

1. Set parameters L n , τcl , and λ within the range [0.2 to 1.5], 

[1.3 to 2] and [0.07 to 0.3], respectively. These ranges were 

chosen to comprise the average works in literature. 

2. Choose a data point ( L n , τcl , λ) from step 1. 

3. Determine the feedback gain k = (1 − 1 /τcl ) for the desired 

set-point tracking. 

4. Gradually vary αc until the minimum distance between 

I r (ω) and δP (w ) is equal to 2 dB in order to obtain a robust
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Fig. 8. Example 1: perturbed closed-loop response. 

Table 1 

Coefficients of the esti- 

mated function polynomial 

(32) . 

Coefficient Value 

p 0 1 . 2517 

p 1 −1 . 2199 

p 2 12 . 4692 

p 3 −3 . 5003 
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t

a

stability margin. The numerator filter parameters b 2 and b 1 
are calculated through (23) and (24) , respectively. 

5. Repeat steps 2–4 until the αc for all data points are com- 

puted. 

6. Estimate a function, using polynomial linear regression on 

the dataset, based on the polynomial 

ˆ αc = p 0 + p 1 · L n + p 2 · τcl + p 3 · λ. (32) 

The coefficients of the estimated function polynomial are 

presented in Table 1 . 

7. Check the stability of all solutions, by testing ˆ αc in simula- 

tions for the full parameters range. 

Results are detailed in Fig. 3 , in which red and blue color 

represent the unstable and stable cases, respectively. The un- 

stable restriction is overcome by doing 

λ < 0 . 1 · τcl − 0 . 1 · L n + 0 . 3 . (33) 

In such a way as to validate the proposed rule, it will be graph-

cally compared with the dataset. The rule is obtained from a 4-D 

ataset, thus, to make possible the visualization in a 3-D chart, the 

arameter λ is fixed in 0.1. Fig. 4 represents the comparison of the 

lter tuning with the method from steps 2–5 and with the tuning 

ule, when λ = 0 . 1 . The red dots indicate the ˆ αc values calculated

ccording to (32) . 
255 
As can be seen in (32) , the data is approximated by a first-order 

olynomial function. A higher order approximation could obtain a 

etter accuracy, but with a very small performance improvement 

o justify a rather complex polynomial. 

Therefore, in this work, the estimated robustness parameter is 

iven by 

ˆ c = p 0 + p 1 · L n + p 2 · τcl + p 3 · λ, (34) 

ubject to: λ < 0 . 1 · τcl − 0 . 1 · L n + 0 . 3 , where: 

 

0 . 07 < λ < 0 . 3 ;
1 . 3 < τcl < 2 ;
0 . 2 < L n < 1 . 5 . 

(35) 

. Sampling period analysis 

The choice of sampling period T s is known to have a signifi- 

ant effect on the performance and robustness of a control sys- 

em [35] . From the implementation perspective, it is interesting to 

hoose the highest possible sampling period without compromis- 

ng robustness and performance. As the implementation of DTC’s 

s in the discrete-time domain, then, higher sampling periods im- 

ly simpler control algorithms. For instance, having a closed-loop 

TC system with a delay of L n = 1 . 0 (s) and a sampling period of

 s = 0 . 01 s would mean that at least 100 samples would have to

e stored to compute the control signal at each sampling period. 

herefore, in this work, the choice of the sampling period is per- 

ormed by an graphical analysis for FOPDT models which considers 

he following normalized model. 

 (s ) = 

1 

s − 1 

e −L n s . (36) 

The graphical analysis of the sampling period is performed in 

he boundaries of the dead-time range defined in Section 4 , which 

re L n = 1 . 5 and L n = 0 . 2 , respectively. 
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Fig. 9. Example 2: nominal closed-loop response. 

Fig. 10. Example 2: perturbed closed-loop response. 
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Fig. 11. Example 3: nominal closed-loop response. 

Table 2 

Performance comparison. 

Example P n (s ) P ′ n (s ) normalized τcl [s] L δL (%) δL max 

1 
1 

s − 1 
e −1 . 5 s – 2.01 1.5 5 0.2231 

2 
1 

s − 1 
e −1 . 2 s – 1.303 1.2 10 0.3012 

3 
1 

s − 1 
e −0 . 5 s – 1.303 0.5 20 and 50 0.6065 

4 
3 . 433 

103 . 1 s − 1 
e −20 s 3 . 433 

s − 1 
e −0 . 194 s 0.2008 0.2 30 0.8237 

Table 3 

Controller parameters for example 1. 

T s = 0 . 01 T s = 0 . 1 

P n (z) 0 . 01005 
z−1 . 01 

z −150 0 . 1052 
z−1 . 105 

z −15 

k 1.496 1.464 

k r 0.4963 0.4637 

V (z) 8 . 692 −8 . 69 z −1 

1 −0 . 9968 z −1 
8 . 396 −8 . 382 z −1 

1 −0 . 9683 z −1 

5
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.1. Analysis for L n = 1 . 5 

Initially, the SDTC controller is designed using the tuning rule 

rom (32) in Section 4 . Thus, the closed-loop time constant is 

hosen: τcl = 2 , resulting ˆ αc = −0 . 3219 . This proposal considers a

0% of delay uncertainty compared to the maximum achievable 

obustness (see (29) ), which means λ = 0 . 3 . Secondly, an equiv-

lent discrete-time controller is designed for the set of sampling 

eriods T s = { 0 . 01 , 0 . 02 , 0 . 03 , 0 . 05 , 0 . 1 , 0 . 25 } which are sub-

ultiples of L . Finally, in Fig. 5 are plotted the multiplicative 

ncertainty, the robustness index considering different sampling 

eriods, and the shortest dead-time multiplicative uncertainty δP 

hat violates the robustness stability condition (28) for the set of 

ampling periods. 

Considering the same security margin, i.e. the minimum dis- 

ance between δP and the I curve, Fig. 5 is generated including 
R 

257 
 range of sampling periods. Then, making the security margin be 

ero, δP is obtained. Note that the security margin, which can be 

easured at the critical frequency ω c [35] , remains constant for 

ampling period T s ≤ 0 . 1 . 

As expected, the curves of I R present the same gain at medium 

nd low frequencies. Nevertheless, there is a gain reduction near to 

requency π/T s . This behaviour, in practice, does not compromise 

he achievable robustness for the set of controllers and sampling 

eriods, only the controller with T s = 0 . 25 presented an achievable 

obustness reduction. 

Besides, it is important to highlight that the lowest frequency 

here δP achieves the maximum gain is ω m 

= π/ δL , thus, through 

 graphical analysis from Fig. 5 , it can be seen that the sampling

eriod must obey the following condition 

π

T s 
> 

π

δL 
= ω m 

, (37) 

hich is equivalent to 

 s < δL = 0 . 1069 . (38) 

Therefore, the final choice of sampling period must satisfy 

38) and T s must be a sub-multiple of L . From this analysis the 

est choice is T s = 0 . 1 , in accordance with the graphical analysis. 

Afterwards, a similar analysis is performed for L n = 0 . 2 . 
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Fig. 12. Example 3: perturbed closed-loop response. 

Table 4 

Controller parameters for example 2. 

T s = 0 . 01 T s = 0 . 1 

P n (z) 0 . 01005 
z−1 . 01 

z −120 0 . 1052 
z−1 . 105 

z −12 

k 1.496 1.464 

k r 0.4963 0.4637 

V (z) 8 . 06 −8 . 057 z −1 

1 −0 . 993 z −1 
7 . 676 −7 . 644 z −1 

1 −0 . 9326 z −1 

Table 5 

Controller parameters for example 3. 

T s = 0 . 01 T s = 0 . 1 

P n (z) 0 . 01005 
z−1 . 01 

z −50 0 . 1052 
z−1 . 105 

z −5 

k 1.762 1.704 

k r 0.7625 0.7040 

V (z) 7 . 059 −7 . 044 z −1 

1 −0 . 9805 z −1 
6 . 383 −6 . 258 z −1 

1 −0 . 8215 z −1 

Table 6 

Controller parameters for example 4. 

T s = 0 . 5 T s = 5 

P n (z) 0 . 01702 
z−1 . 005 

z −40 0 . 01741 
z−1 . 051 

z −4 

k 1.742 1.562 

k r 1.4506 1.2709 

V (z) 3 . 787 −3 . 769 z −1 

1 −0 . 9877 z −1 
3 . 354 −3 . 206 z −1 

1 −0 . 8839 z −1 

5
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c

c  
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p

o

t

p

w
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V

l

i

I

.2. Analysis for L n = 0 . 2 

In this case, the SDTC closed-loop pole is the same as in the 

revious example ( τcl = 2 ), then, using Eq. (32) , the filter pole is

omputed as ˆ αc = −1 . 0952 . 

To perform the analysis, equivalent discrete-time controllers 

onsidering the set T s = { 0 . 01 , 0 . 02 , 0 . 04 , 0 . 05 , 0 . 1 , 0 . 2 } are

hosen. In Fig. 6 are plotted δP considering 30% of uncertainty 
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 λ = 0 . 3 ), the maximum achievable robustness, δP , and the robust- 

ess index for the set of sampling periods. As evidenced in Fig. 6 ,

he proposed controller has the same achievable robustness for all 

et of sampling periods. 

Following the condition established by (38) , in this case, the 

ondition would be 

 s < δL = 0 . 3006 . (39) 

However, as previously shown in the analysis of Figs 5 and 

 , for simplicity, it is assumed that the sampling period is sub- 

ultiple of the nominal dead time L n . Thus the chosen sampling 

eriod must satisfy 

 s < min ( δL , L n ) . (40) 

. Simulation results 

In order to validate the tuning rules, comparative examples 

ommonly used in the literature considering UFOPDT processes are 

resented in Table 2 . 

To achieve a disturbance rejection response faster than the 

pen-loop dynamics, the robustness filter was tuned according to 

he rule present in (32) and the sampling period was chosen as 

resented in Section 5 . 

For each example, it has been performed simulations with and 

ithout noise. Besides, for a fair comparison, the same noise is 

dded for each example. In this work, only the noise simulation 

gures are illustrated, as the noise does not significantly impact 

he dynamics of the responses. 

The performance indices Integral Absolute Error (IAE), Total 

ariation (TV), and the cost function J for all examples are calcu- 

ated only for input disturbance rejection response and presented 

n Tables 7 and 8 . These indices are defined as follows 

AE = 

∫ ∞ 

| e (t ) | dt , (41) 

0 
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Fig. 13. Example 4: nominal closed-loop response. 

Table 7 

Performance indices for non-noisy simulation examples. The two best cases are highlighted in bold text. 

Example Nominal Perturbed 

IAE TV J IAE TV J 

Example 1 SDTC [ T s = 0 . 01 ] 4.79 1.54 6.6 4.79 2.09 9.1 

SDTC [ T s = 0 . 1 ] 5.05 1.61 7.3 5.04 2.30 10.9 

Ref. [28] [ T s = 0 . 01 ] 6.86 1.31 8.1 6.85 2.09 12.5 

Example 2 SDTC [ T s = 0 . 01 ] 1.87 0.94 0.5 1.87 1.56 2.7 

SDTC [ T s = 0 . 1 ] 1.98 0.99 0.5 2.01 1.77 2.9 

Ref. [14] 5.89 2.38 13.1 5.86 2.77 13.9 

Example 3 SDTC [ T s = 0 . 01 ] 2.44 3.48 2.7 2.44 6.97 12.1 

SDTC [ T s = 0 . 1 ] 2.67 3.70 3.3 2.76 8.28 15.6 

Ref. [14] 4.27 3.81 10.4 4.26 5.27 13.6 

Example 4 SDTC [ T s = 0 . 5 ] 68.72 2.29 167.5 88.29 4.10 346.4 

SDTC [ T s = 5 ] 76.25 2.42 197.4 100.13 4.43 367.2 

Ref. [37] [ T s = 0 . 5 ] 101.11 2.37 226.8 101.21 3.92 402.9 

Ref. [14] 110.27 2.55 342.1 110.54 3.63 536.8 

T

J

w

J

J

u  

e

t

t  

h

6

i

s

P

T

[

 

F

s

b  
V = 

∞ ∑ 

i =1 

| u i +1 − u i | , (42) 

 = J 1 + J 2 , (43) 

here 

 1 = IAE ·
∞ ∑ 

i =1 

| y i +1 − y i | , (44) 

 2 = IAE ·
( 

∞ ∑ 

i =1 

| u i +1 − u i | − | 2 u m 

− u ∞ 

− u 0 | 
) 

, (45) 

 0 is the initial value, u ∞ 

is the final value, and u m 

is the most

xtreme value of the control signal. 

All the simulations herein are carried out using a continuous- 

ime process plant, while the designed controllers are discrete- 
259 
ime transfer functions. In Tables 7 and 8 , the two best cases are

ighlighted in bold text. 

.1. Example 1 

The proposed controller is compared with one recently studied 

n [28] , which consist in a SP generalisation. The model used for 

imulations is the first one presented in Table 2 , such as 

 n (s ) = 

1 

s − 1 

e −1 . 5 s . (46) 

his system is remarked as rather challenging due to its long delay 

26,28] . 

The SDTC is tuned according to the proposed rules for λ = 0 . 3 .

or the purpose of comparing the sampling period analysis de- 

cribed in Section 5 , it will be used the sampling period given 

y [28] , T s = 0 . 01 s, and the achieved by the proposed strategy,
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Fig. 14. Example 4: perturbed closed-loop response. 

Table 8 

Performance indices for noisy simulation examples. The two best cases are highlighted in bold text. 

Example Nominal Perturbed 

IAE TV J IAE TV J 

Example 1 SDTC [ T s = 0 . 01 ] 4.89 10.05 59.8 4.90 15.23 70.6 

SDTC [ T s = 0 . 1 ] 5.15 9.17 61.7 5.16 12.11 79.8 

Ref. [28] [ T s = 0 . 01 ] 6.90 12.79 107.2 6.91 23.27 142.7 

Example 2 SDTC [ T s = 0 . 01 ] 0.95 38.04 53.8 2.01 17.65 41.5 

SDTC [ T s = 0 . 1 ] 1.04 29.75 49.4 2.14 13.08 45.7 

Ref. [14] 5.93 288.96 1579.4 5.88 266.43 1654.5 

Example 3 SDTC [ T s = 0 . 01 ] 1.98 82.70 225.9 2.77 68.44 216.5 

SDTC [ T s = 0 . 1 ] 2.17 64.23 209.9 3.06 56.78 261.5 

Ref. [14] 4.46 382.75 1919.7 4.45 406.81 1915.7 

Example 4 SDTC [ T s = 0 . 5 ] 88.20 5.69 683.5 89.24 8.44 882.8 

SDTC [ T s = 5 ] 97.37 5.01 724.8 100.22 7.42 984.5 

Ref. [37] [ T s = 0 . 5 ] 101.94 31.54 3591.9 102.13 35.70 3619.8 

Ref. [14] 110.72 1945.2 273120.0 110.67 1948.3 27402.0 
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m

 s = 0 . 1 s. The obtained discrete model and the controller param-

ters for each sampling period are listed in Table 3 . For all exam- 

les, gains k and k r were calculated according to (7) and (8) , re-

pectively. The robustness filter parameter ˆ αc was obtained using 

32) . 

Fig. 7 presents the results for the nominal case and Fig. 8 for 

he case with uncertainty. The simulations show the proposed 

ontroller response using both sampling periods, T s = 0 . 01 s and 

 s = 0 . 1 s, compared to the controller response from reference [28] .

 unity step-change is applied at time t = 10 s and a negative con-

tant load disturbance of magnitude 0.1 was added to the the con- 

rol signal at time t = 100 s. 

As can be seen from Figs 7 and 8 , using either T s = 0 . 01 or T s =
 . 1 , both SDTCs get similar responses. This allows using a larger

ampling period without compromising the performance signifi- 

antly. The IAE, TV and J are computed considering the simula- 

ions data from 90 s to 180 s. The SDTC presented better IAE 

nd J for both nominal and uncertainty cases, as can be seen in 
f

260 
ables 7 and 8 . However, both SDTCs presented faster disturbance 

ejection, consequently higher TV, in the noise free case. 

.2. Example 2 

Consider the following example [14] 

 n (s ) = 

1 

s − 1 

e −1 . 2 s . (47) 

The process discrete model and the controller parameters with 

ampling period T s = 0 . 1 s and T s = 0 . 01 s using λ = 0 . 3 are given

y Table 4 . 

For comparative purposes, it was used a recent continuous-time 

ontroller studied in [14] . Fig. 9 illustrates the results for the nom- 

nal case and Fig. 10 for the perturbed case. A unit step change 

n the set point starts at t = 0 s and a step change disturbance of

agnitude 0.1 was introduced at t = 40 s . 

It can be seen from Figs 9 and 10 that the SDTCs presented 

aster disturbance rejection, smaller cost function, and better noise 
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Fig. 15. The propeller pendulum. 
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ttenuation even with a more aggressive tuning, leading to better 

esults for all performance indices, as can be seen in Tables 7 and 

 . 

.3. Example 3 

Consider another process studied in [14] 

 n (s ) = 

1 

s − 1 

e −0 . 5 s . (48) 

The process discrete-time models with sampling period T s = 

 . 01 s and T s = 0 . 1 s using λ = 0 . 2 are given by 

Simulation results for nominal and with uncertainty case are 

hown in Figs 11 and 12 , respectively. For this simulation, an unit 

tep change is added to the set-point at t = 0 s and a negative unit

tep load disturbance is applied to the process input at t = 15 s. 

The SDTC presented faster disturbance rejection and better per- 

ormance indexes for all the scenarios in the nominal case, as can 

e seen in Tables 7 and 8 . The perturbed case presented better 

ndices, except for the TV and J of the noise-free case. Also, note 

hat in the noisy case, the SDTCs present better noise attenuation 

n terms of TV, even with a first-order robustness filter, because 

he control structure of [14] does not present a solution to deal 

ith measurement noise. 

.4. Example 4 

The chemical reactor concentration control problem that was 

lso studied in many works, such is [14,33,37] , will be analyzed 

n this case study. The model is given by 

 n (s ) = 

3 . 433 

101 . 1 s − 1 

e −20 s , (49) 

nd the normalized model from Table 2 

 

′ 
n (s ) = 

3 . 433 

s − 1 

e −0 . 194 s . (50) 

The process discrete model with sampling period T s = 0 . 5 s and

 s = 5 s using λ = 0 . 08 is given by 

The SDTCs were compared with both references [14,37] . Results 

re shown in Figs 13 and 14 for nominal and with uncertainty case, 

espectively. For comparison, a step change with magnitude 5 is 

dded to the set-point at t = 50 s and a negative unity step change

s applied to the process at t = 600 s. 
261 
It can be noted from Tables 7 and 8 that the proposed strategy 

as a better load disturbance response in terms of IAE for both 

oisy and non-noisy cases and, in the noisy case, better noise at- 

enuation in terms of TV, with a bigger difference com pared to the 

ontroller from Ref. [14] . Also, for all cases, SDTC presented smaller 

ost function. Considering the twelve scenarios, the SDTCs had bet- 

er indices in ten of them. The exception was the TV from the 

oise-free cases, due to the more aggressive tuning of the SDTCs. 

. Experimental results 

In this section, an in-house developed propeller pendulum, 

hown in Fig. 15 , is used to validate both the proposed tuning rule 

nd the method of choosing the sampling period. The propeller 

endulum is a nonlinear system, and its dynamics varies accord- 

ng to the angle θ . In this work, the control objective is to control 

he angular position when the angle θ is bigger than 90 ◦ at steady- 

tate, precisely, when the open-loop dynamic is unstable [10] . 

Fig. 16 shows a simplified diagram of the developed system. As 

an be seen, the system consists of an arm with a propeller (ac- 

uator) to rotate the arm angle. The input is the propeller motor 

oltage, and the output is the angular arm position. For simplic- 

ty, the input is normalised between the range [ −1 , 1] . The output,

hat is, the angular arm position, is estimated using a video camera 

nd an image processing algorithm. The control strategy is imple- 

ented in a computer and, through a dedicated wi-fi network, it 

eceives and sends the output measurements and the control sig- 

al, respectively. 

The pendulum model can be obtained using a phenomenologi- 

al analysis or though identification methods. In this case, the sec- 

nd approach is used, so that, considering the operation point of 

10 ◦, the following model is obtained. 

 n (s ) = 

4 . 0 6 6 

11 . 11 s − 1 

e −3 s . (51) 

Observe that the dead time is originated mainly by the accumu- 

ation of time lags from a series of processes, like the video cap- 

ure, image processing, network communication, and high-order 

ynamics that are not modelled. 

The normalised model is then given by 

 

′ 
n (s ) normalised = 

4 . 0 6 6 

s − 1 

e −0 . 27 s . (52) 

y using τcl = 2 , λ = 0 . 2 , and (32) , it results αc = −0 . 5043 . 

Through identification experiments the maximum dead-time 

ncertainty was estimated as δL = 1 . 4 s . By using condition (40) ,

here T s < min ( δL = 1 . 4 , L n = 3) , T s can be chosen in the set T s =
 0 . 15 , 0 . 3 , 0 . 6 , 1 } s . Therefore, the sampling period was chosen

s T s = 1 s and the discrete-time model of the process results as 

 n (z) = 

0 . 383 z −1 

1 − 1 . 094 z −1 
z −3 . (53) 

Considering the tuning parameters and model (53) , the SDTC 

esults then with k = 1 . 273 , k r = 1 . 0275 and robustness filter 

 (z) = 

4 . 362 − 3 . 955 z −1 

1 − 0 . 604 z −1 
. (54) 

The experiment was performed with a set-point step change of 

0 ◦ at t = 20 s and a step disturbance of 0.5 added to the control

ignal at t = 100 s . 

The results can be seen in Fig. 17 . Although the system is non-

inear and has modeling uncertainties involved, the controller suc- 

essfully stabilises the system, tracks the set-point, and properly 

ejects the step load disturbance. Therefore, the experiment shows 

hat the proposed tuning rule and the method for sampling period 

hoice can be used to control a real unstable delayed process sub- 

ected to noise and uncertainties. 
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Fig. 16. Propeller pendulum control system. 

Fig. 17. Output and control signal responses of the experiment. 
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involved. 
. Conclusion 

This work proposed new tuning rules for the SDTC applied to 

FOPDT processes. The proposal guarantees robustness for pro- 

esses with a wide range of nominal time delays, dead-time uncer- 

ainty, and desired closed-loop dynamics. As the SDTC implemen- 

ation is done in the discrete-time domain, then it is also proposed 

 methodology for a proper choice of the sampling period, which 

s highly desirable to be the biggest as possible but without affect- 

ng the performance and robustness significantly. This is useful in 

ndustrial applications to save network resources. 
262 
The effectiveness of the proposal can be observed through 

imulation and experimental results. From the simulations, the 

ew tuning rules allowed the SDTC to provide better or equiv- 

lent results for disturbance rejection when compared to recent 

orks. In addition, it was possible to use sampling periods ten 

imes larger than the other discrete controllers used for compar- 

son, attaining performance close to or better than other con- 

rollers in the literature. The experiment showed that both pro- 

osed strategies presented good performance and robustness, even 

hen it is applied to a nonlinear system with several uncertainties 
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