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Abstract

We introduce a new type of norm for non-degenerate zonotopes to solve the point containment problem,
i.e., whether a point lies in a zonotope. With this norm we prove the co-NP-completeness of the zonotope
containment problem, i.e., whether a zonotope is contained within another one. We propose novel algo-
rithms to solve the zonotope containment problem exactly in polynomial time when fixing the dimension
or the number of generators of either of the two zonotopes. In addition, we propose an optimisation-based
algorithm, that is particularly suitable for disproving containment for zonotopes.

Keywords: zonotope, containment problem, zonotope norm, computational complexity, computational
geometry, optimization.

1. Introduction

For two sets U and V , deciding whether U ⊆ V
defines a class of decision problems called contain-
ment problems. Although in general these prob-
lems cannot be solved algorithmically, containment
problems are often solvable if some structure for U
and V is assumed, e.g., when U and V are polytopes
or zonotopes. Zonotopes are sets that cannot only
be represented compactly but are also closed under
linear maps and Minkowski sum. Owing to these
favourable properties, zonotopes are used for reach-
ability analysis [1], set-based observers [2], fault de-
tection [3], robust control [4], controller synthesis
[5], and conformance checking [6]. The aforemen-
tioned applications often require solving the zono-
tope containment problem, i.e., whether a zonotope
is contained in another one. This is, for instance,
useful for verifying an invariant of a discrete-time
system by checking whether the reachable set of the
next step is contained in the previous one.

Previous research has primarily focused on the
containment problem of the more general class of
polytopes [7], [8]. In [7], it is shown that the com-
plexity of the problem depends heavily on the form
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of the input, as polytopes may be represented us-
ing either a halfspace or a vertex representation.
The work in [9] attempted to solve the containment
problem by proposing a necessary but not sufficient
condition for U ⊆ V to hold if U and V are zono-
topes. This condition can be determined in poly-
nomial time, and numerical results show that it is
correct in a large number of cases, but the question
of whether this could be extended to a sufficient
criterion running in polynomial time was left unan-
swered.

Contributions. In this paper, we show that an ex-
act algorithm that solves the zonotope contain-
ment problem in polynomial time does not exist
unless P = NP, disproving the conjecture left unan-
swered in [9]. To do so, we will first define a
norm for non-degenerate zonotopes. This enables
us to transform the containment problem into an
optimisation problem, which will be shown to be
co-NP-complete. Finally, we propose several algo-
rithms1 that solve the zonotope containment prob-

1The scripts of our results, including the code
generating the figures in this document, are avail-
able at the URL https://github.com/AdrianKulmburg/

ZonotopeContainmentProblem

The implementation depends on the CORA toolbox [10].
The algorithms presented in section 4 will also be made avail-
able for the CORA 2021 release.
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lem in polynomial time for certain fixed parame-
ters, as well as one optimisation-based algorithm
that solves the problem efficiently in practice.

2. Preliminaries

2.1. Notation

We denote vectors by lower-case letters with an
arrow, e.g., ~v, matrices by underlined, upper-case
letters, e.g., M , vi is the i-th coordinate of ~v, and
Mij the (i, j)-th coordinate of M . ~0n and ~1n are n-
dimensional vectors of zeros and ones, respectively,
0n×m is the n × m zero matrix, and In×n is the

n-dimensional identity matrix. MT or ~vT indicates
the transpose and ~v ≤ ~w ⇔ vi ≤ wi ∀i = 1, ..., n.
U◦ is the topological interior of U and ∂U the
topological boundary of U . U\V denotes the set
of elements in U that are not in V . For points
~v1, ..., ~vk ∈ Rn, conv(~v1, ..., ~vk) is the convex hull
of these points. For a polytope P ⊂ Rn, we write
its dual polytope as P∆ [11, Definition 2.10., p.61].
We always assume that P∆ is embedded in Rn via
the canonical isomorphism between Rn and its dual
vector space (Rn)

∗
, so that we may write P∆ ⊆ Rn.

Decision and optimization problems are denoted
by upper-case letters, e.g., ZC. Algorithms are
written using the verbatim font, e.g., opt.

2.2. Set Representations

Let us, first, review some basic set representa-
tions. In the following, n is some arbitrary number
in N.

Definition 1. A polytope is a set P ⊆ Rn, that
can either be represented as

P =
{
~x ∈ Rn

∣∣∣H~x ≤ ~h} , (1)

for some matrix H ∈ Rs×n, a vector ~h ∈ Rs, and
s,m ∈ N, or that can represented as

P = conv(~v1, ..., ~vk), (2)

for some points ~v1, ..., ~vk ∈ Rn, and k ∈ N. Both
representations are equivalent, i.e. one can trans-
form one representation to the other and vice-versa
[11, Theorem 1.1, p. 29]. We call the matrix H

the halfspace matrix, ~h the halfspace coefficients,
and ~v1, ..., ~vk the vertices of P . The representa-
tions (1) and (2) of the polytope P are called the
H-representation and the V-representation, respec-
tively.

Definition 2. A zonotope is a set Z ⊂ Rn for
which there exists some m ∈ N, a matrix G ∈
Rn×m, and a vector ~c ∈ Rn such that

Z = 〈~c,G〉 :=
{
~c+G~β

∣∣∣~β ∈ [−1, 1]m
}
. (3)

The vector ~c is called the centre, matrix G is called
the generator matrix, and column vectors ~g1, ..., ~gm
of G are called the generators.

A zonotope Z is also a polytope, with halfspace
representation (H,~h), with H ∈ Rs×n for some s ≤
f [12, p. 238-239], where f is the number of facets
of the zonotope. A zonotope with m generators has
at most f := 2

(
m
n−1

)
facets. This bound is tight, i.e.,

for any m,n ∈ N there exists a zonotope with that
number of facets. We denote by halfspace(Z) the

operation that computes (H,~h) for a zonotope Z,
and by vertices(Z) the operation that computes
the vertices of Z [10, p. 128].

For later use, we define a norm that can be de-
fined for any bounded polytope P :

Definition 3. Let P ⊆ Rn be a bounded poly-
tope with halfspace matrix H ∈ Rs×n and coeffi-
cients ~h ∈ Rs satisfying hi 6= 0 for i = 1, ..., s. Let
~η1, ..., ~ηs be the row vectors of H. We call the func-
tion

SP :Rn → [0,∞)

~x 7→ max

{
0,
~ηT1 ~x

h1
, ...,

~ηTs ~x

hs

}
(4)

the polyhedral asymmetric norm of P .

Lemma 1. The function SP is an asymmetric
norm [13], [14], i.e., there holds:

1. Triangle inequality: SP (~x+~y) ≤ SP (~x)+SP (~y)
for ~x, ~y ∈ Rn.

2. For ~x ∈ Rn and a > 0, SP (a~x) = aSP (~x).

If P is symmetric such that SP (~x) = SP (−~x), the
function SP becomes an actual norm. Furthermore,
the unit ball of SP , i.e., the set of vectors ~x ∈ Rn
such that SP (~x) ≤ 1, corresponds to the polytope P .

3. The Zonotope Containment Problem

3.1. Solving the Point Containment Problem for
Zonotopes

We now turn our attention to the problem of
checking if a point ~p ∈ Rn lies in a zonotope
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Z = 〈~c,G〉 ⊂ Rn, with G ∈ Rn×m. By the defini-
tion in (3), it suffices to check whether there exists
a vector ~γ ∈ [−1, 1]m such that

~p = ~c+G~γ. (5)

This is equivalent to checking whether

1 ≥ ν(~p) := min
~γ∈Rm

‖γ‖∞, subject to G~γ = ~p− ~c.

(6)
To solve this, we can introduce new variables and

constraints to transform (6) into a linear optimi-
sation problem that runs in polynomial time [15].
Specifically, we introduce an additional variable ω,
on which we impose the following constraints:

ω ≥ γi for i = 1, ...,m,

ω ≥ −γi for i = 1, ...,m.
(7)

It is not difficult to see that the minimal ω sat-
isfying these constraints corresponds to maxi |γi|.
Consequently, by combining the variables ω and ~γ
into one variable

~z =

(
ω
~γ

)
,

we may rewrite the minimisation in problem (6)
as the following linear program with complexity
O((m+ 1)3) [16]:

min
~z

[
1 ~0Tm

]
~z, s.t.


(
~0n G

)
~z = ~p− ~c,(

−~1m Im×m
−~1m −Im×m

)
~z ≤ ~02m.

(8)
The minimum ‖~γ‖∞ of problem (6) is then stored in
z1, whereas the minimiser ~γ = (γ1, ..., γm) is given
by z2, ..., zm+1.

For later use, let us state some equivalent prop-
erties involving ν(~p):

Lemma 2. Let Z be a zonotope centred at the ori-
gin with generator matrix G ∈ Rn×m, m ≥ n. Then
the following properties are equivalent:

1. G has rank n.

2. Z◦ 6= ∅, i.e. Z has a topological interior.

3. G is surjective.

4. ν is defined for all points in Rn. Furthermore,
ν is positive definite, i.e., for any ~v ∈ Rn there
holds

ν(~v) = 0⇔ ~v = ~0n. (9)

Proof. 1⇔ 3 is clear by definition. 3⇔ 2 follows
from the fact that Z has a topological interior if and
only if Z◦ is locally homeomorphic to Rn, which
holds if and only if G is surjective since m ≥ n.

Let us now show that 3 ⇔ 4. We begin by show-
ing that 3⇒ 4. Therefore, assume that G is surjec-
tive, which implies that ν is defined for all points
in Rn. If ~v = ~0n, we are searching for a ~γ such that

~v = ~0n = G~γ. (10)

Clearly, ~γ = ~0m is a solution and has the minimum
possible length w.r.t. the ∞-norm. Therefore,

ν(~v) = 0. (11)

It, therefore, remains to show that

~v 6= ~0n ⇒ ν(~v) 6= 0. (12)

Again, we are looking for a ~γ such that

~v = G~γ. (13)

Such a ~γ exists since G is surjective, and ~γ 6= ~0m
since G~0m = ~0n 6= ~v. Thus, ‖~γ‖∞ > 0 since ‖ · ‖∞
is a norm and is, therefore, positive definite. We
conclude that ν(~v) 6= 0.

We now show 4 ⇒ 3. Suppose, therefore, that
4 holds, but G is not surjective. Then, there is a
point ~p that has no preimage under G, and thus, for
which ν is not defined, contradicting our assump-
tion. Consequently, G needs to be surjective.

Zonotopes Z = 〈~c,G〉 for which G has rank n are
often referred to as non-degenerate.

3.2. Zonotope Norms

We can now define a special norm for any non-
degenerate zonotope:

Theorem 1. Let G ∈ Rn×m be a matrix of rank
n. Consider the function ν : Rn → [0,∞) defined
in (6). Then, ν is a norm on Rn.

Proof. By Lemma 2, if G has full rank, ν is well-
defined on Rn, and positive definite. The triangle
inequality ν(~v + ~w) ≤ ν(~v) + ν(~w) and the positive
homogeneity ν(a~v) = |a|ν(~v), for ~v, ~w ∈ Rn and a ∈
R, follow from the fact that the constraints on the
minimiser ~γ are linear and ‖ · ‖∞ is a norm.

Since this norm is handy in our context, we give it
a proper definition and notation:
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Definition 4. Let Z = 〈~c,G〉 be a non-degenerate
zonotope, and let ν be the function as defined
in Theorem 1 for the translated zonotope Z ′ =
〈~0n, G〉. We define the induced zonotope norm

‖~p‖Z := ν(~p), (14)

and call this norm the Z-norm.

We now discuss a few other properties of this norm:

Corollary 1. Let Z = 〈~c,G〉 be a non-degenerate
zonotope. For r > 0, define the ball BZr (~c) of radius
r centred at ~c as

BZr (~c) := {~x ∈ Rn|‖~x− ~c‖Z ≤ r}. (15)

Similarly, define the circle CZr (~c) = ∂BZr (~c) of ra-
dius r centred at ~c. Then,

BZ1 (~c) = Z, CZ1 (~c) = ∂Z. (16)

Proof. This follows directly from (6).

Remark 1. One might be tempted to think that the
unit circle CZ1 (~0n) is the image of ∂[−1, 1]m un-
der the linear map given by the matrix G. How-
ever, while G (∂[−1, 1]m) ⊇ CZ1 (~0n) always holds,
the converse is not necessarily true.

Corollary 2. Let Z be a non-degenerate zonotope
centred at the origin. Then the Z-norm coincides
with the polyhedral norm of Z, i.e.,

∀~p ∈ Rn, ‖~p‖Z = SZ(~p). (17)

Proof. According to Lemma 1 and Corollary 1,
the two functions have the same unit ball Z, which
is symmetric around its centre since it is a zonotope.
Hence, SZ is symmetric around ~0n. From Lemma 1,
it follows that SZ is a norm. Since two norms that
have the same unit ball are equal, we have proven
the Corollary.

Remark 2. Corollary 2 is not true when Z is de-
generate. Indeed, in this case ‖ · ‖Z may not be
defined on all of Rn, unlike SZ . However, even in
that case, SZ is a norm, and can be used instead of
‖ · ‖Z to check whether a point ~p ∈ Rn lies in Z.

Corollary 3. Let Z be a non-degenerate zonotope.
Then the induced norm ‖ · ‖Z is equivalent to all
p-norms in Rn, thus ‖ · ‖Z is convex, Lipschitz-
continuous on Rn and differentiable almost every-
where.

Proof. All norms are convex, thus so is ‖ · ‖Z .
Since all norms on Rn are equivalent, ‖·‖Z is equiv-
alent to any of the p-norms, so that in particu-
lar ‖ · ‖Z ≤ C‖ · ‖2, with C depending only on n
and Z, proving that ‖ · ‖Z is Lipschitz-continuous.
Lipschitz-continuity implies differentiability almost
everywhere.

3.3. co-NP-Completeness of the Zonotope Contain-
ment Problem

We now turn to the more general zonotope con-
tainment problem: Given two zonotopes Z1 and Z2

in Rn, the goal is to check whether Z1 ⊆ Z2. To the
best knowledge of the authors, the only existing al-
gorithms solving this problem rely either on check-
ing containment for each vertex or facet of Z1 (see
[8]) or on an approximation algorithm (see [9, The-
orem 3]) that is based on a necessary but not suffi-
cient condition for containment to hold. The ques-
tion of whether a polynomial algorithm exists for
the zonotope containment problem remained unan-
swered in the literature.

The containment problem as defined above is a
decision problem (the zonotope is either contained
or not). To properly analyse the complexity of the
problem, it will prove to be useful to reformulate
it as an optimisation problem. To do so, note that
Z1 ⊆ Z2 if and only if every point ~x ∈ Z1 also be-
longs to Z2. Therefore, using the results we found
in section 3.1, we can reformulate the zonotope con-
tainment in the following way:

Input: Two zonotopes Z1 = 〈~c1, G1〉 and Z2 =
〈~c2, G2〉 in Rn with m1 and m2 generators, respec-
tively.

Question: Does it hold for every ~p ∈ Z1 that

‖~p− ~c2‖Z2 ≤ 1 ? (18)

We shall refer to this problem as ZC. It is in co-NP
since given a point ~p ∈ Z1, we can check in poly-
nomial time whether ‖~p − ~c2‖Z2

> 1 (i.e., whether
~p 6∈ Z2, implying that Z1 6⊆ Z2). To show that ZC
is co-NP-hard, it suffices to show that it is co-NP-
hard to estimate the value

d(Z1, Z2) := max
~p∈Z1

‖~p− ~c2‖Z2
, (19)

which is an optimization problem. In the case,
where Z1 is the hypercube ~c + r[−1, 1]n with ra-
dius r > 0 centred at the same point ~c1 = ~c2 =: ~c
as Z2, it follows that d(~c+ r[−1, 1]n, Z2) = 1 if and
only if the hypercube is contained in Z2 and touches
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its boundary. In this case, r > 0 gives the length of
the largest hypercube contained within Z2, mean-
ing that r is the inradius of Z2 w.r.t. the ∞-norm,
so that the inradius r∞(Z) of a zonotope Z = 〈~c,G〉
w.r.t. the ∞-norm is

r∞(Z) =
1

d(~c+ [−1,−1]n, Z)
. (20)

Thus, we turn towards the following problem, which
we refer to as INRAD∞:

Input: A zonotope Z ⊂ Rn, a positive number
k ∈ R+.

Question: Does r∞(Z) ≤ k hold?
If INRAD∞ is NP-hard, it implies that ZC

is co-NP-hard if Z1 is a hypercube, since
d(~c+ [−1,−1]n, Z) ≥ k if and only if r∞(Z) ≤ k.
Since hypercubes are special types of zonotopes, we
would have shown that the general zonotope con-
tainment problem ZC is co-NP-hard. To prove that
INRAD∞ is NP-hard, we first need some technical
lemmas:

Lemma 3. Let ~b ∈ Rn, H =
{
~x ∈ Rn

∣∣∣~bT~x ≤ 1
}

and suppose that H contains the origin. Then
the largest hypercube centred at the origin C =
r[−1, 1]n, r > 0 that is fully contained within H
has radius

r =
1

‖~b‖1
. (21)

Proof. The largest hypercube contained in H
touches the boundary ~bT~x = 1 of H, thus at least
one vertex r~v of C touches the boundary of H,
where ~v ∈ {−1, 1}n. This translates to the con-
dition

r~bT~v = 1. (22)

Since by assumption r ≥ 0 is the minimal radius s.t.
(22) holds, we can check (22) for each ~v ∈ {−1, 1}n
and choose the one for which r has the smallest
value, which can be formulated as

r = min
~v∈{−1,1}n

1

|~bT~v|
=

1

max~v∈{−1,1}n |~bT~v|
. (23)

The Lemma then follows from

max
~v∈{−1,1}n

|~bT~v| = ‖~b‖1. (24)

Lemma 4. Let the polytope P ⊂ Rn be bounded,
non-degenerate (i.e., with non-empty topological in-
terior), centrally symmetric around the origin and
let P∆ be its dual polytope. The circumradius

R1(P ) of P w.r.t. the 1-norm and the inradius
r∞(P∆) of P∆ w.r.t. the ∞-norm are reciprocal:

R1(P ) =
1

r∞(P∆)
. (25)

Proof. Let P = conv(~v1, ..., ~vN ) be a V -
representation of P . Since the 1-norm is a convex
function, its maximum over a polytope is attained
at one of its vertices. Since P contains the origin,
the dual P∆ of P is given as [11, Theorem 2.11.
(vi), p.62]

P∆ =
{
~x ∈ Rn

∣∣~vTi ~x ≤ 1, i = 1, ..., N
}
. (26)

P∆ is also centrally symmetric, so the inradius of
P∆ w.r.t. the ∞-norm is the radius r∞(P∆) of the
largest hypercube r∞(P∆)[−1, 1]n that is entirely
contained in P∆. For each halfspace Hi = {~x ∈
Rn|~vTi ~x ≤ 1}, we know from Lemma 3 that this
radius can be at most

ri :=
1

‖~vi‖1
. (27)

Therefore, r∞(P∆) = mini ri, which means that

r∞(P∆) = min
i

1

‖~vi‖1
=

1

maxi ‖~vi‖1
=

1

R1(P )
.

(28)

We now turn towards the main construction re-
quired for proving that computing r∞(Z) is NP-
hard, closely following [17, Theorem 2.11., p.229].
The main idea is to construct a zonotope that has
the same inradius w.r.t. the ∞-norm as the dual
polytope of a given parallelotope. Since computing
the circumradius of a parallelotope is NP-hard (see
[18, Theorem 3.5, p.20]), using Lemma 4 implies
that r∞(Z) is NP-hard to compute as well.

Let ~z1, ..., ~zn be linearly independent vectors in
Rn spanning a parallelotope Π. With ~vi = ~zi and
~vn+i = −~zi for i = 1, ..., n, let V be the matrix
whose rows are the vectors ~vj so that we can write
Π as

Π =

n∑
i=1

[−1, 1]~zi =
{
~x ∈ Rn

∣∣∣V ~x ≤ ~1} . (29)

Since Π contains the origin, the polar dual Π∆ of
Π is given by conv(~v1, ..., ~v2n) [11, Theorem 2.11.
(vii), p.62]. We also make use of the fact that the
circumradius R∞(Π) of Π w.r.t. the∞-norm can be
computed in polynomial time (see [19, Proposition
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2.2, p.16]). By the equivalence of the norms ‖ · ‖1
and ‖ · ‖∞, we have that

R1(Π) = max
i
‖~vi‖1 ≤ max

i
n‖~vi‖∞ = nR∞(Π).

(30)
We then define

α :=
1

2n2

1

R∞(Π)
. (31)

By using (30) on (31) we deduce

α ≤ 1

2n

1

R1(Π)
=
r∞(Π∆)

2n
. (32)

We now have the necessary tools to construct
the zonotope used to prove the NP-hardness of
INRAD∞:

Z∗ =

2n∑
i=1

[0, 1](~vi + α~en+1). (33)

This is a zonotope (see also [20, Equation (9.2),
p. 167]) with generators ~gi := 1

2 (~vi + α~en+1) and
centre ~c := nα~en+1. Furthermore, as proven in [17,
p.230], it contains an embedding of Π∆ in Rn+1:

Π∆ × [α, (2n− 1)α] ⊂ Z∗. (34)

Lemma 5. The inclusion (34) is tight in the sense
that Π∆ × [α, (2n− 1)α] touches the boundary of
Z∗:

Π∆ × {α} = Z∗ ∩ (Rn × {α}). (35)

More generally, for β ∈ [0, α], it holds that

β

α
Π∆ × {β} = Z∗ ∩ (Rn × {β}), (36)

where β
αΠ∆ is to be understood as the set one ob-

tains by scaling each element of Π∆ by β
α .

Proof. Since (35) follows from (36) for β = α, it
suffices to show (36). Let β ∈ [0, α].
Claim: β

αΠ∆ × {β} ⊆ Z∗ ∩ (Rn × {β})
Let ~x =

∑2n
i=1 λi

β
α~vi + β~en+1 ∈ β

αΠ∆×{β}, with∑2n
i=1 λi = 1 and λi ≥ 0 for i = 1, ..., 2n. For

µi := β
αλi we have that µi ∈ [0, 1] for i = 1, ..., 2n,

and since 1 =
∑2n
i=1 λi we may write

~x =

2n∑
i=1

λi
β

α
~vi +

2n∑
i=1

λiβ~en+1 =

2n∑
i=1

µi(~vi + α~en+1),

(37)

which shows that ~x ∈ Z∗. Since ~x ∈ Rn × {β}, we
have proven that β

αΠ∆ × {β} ⊆ Z∗ ∩ (Rn × {β}).
Claim: β

αΠ∆ × {β} ⊇ Z∗ ∩ (Rn × {β})
Let ~x =

∑2n
i=1 µi(~vi +α~en+1) ∈ Z∗ for µi ∈ [0, 1],

i = 1, ..., 2n be such that ~xT~en+1 = β, which im-
plies that

∑2n
i=1 µiα = β. With λi = α

βµi, we have∑2n
i=1 λi = 1 and ~x =

∑2n
i=1 λi~vi + β~en+1 ∈ β

αΠ∆ ×
{β}, showing that β

αΠ∆ × {β} ⊇ Z∗ ∩ (Rn × {β}).

Let C be the maximal hypercube centred around ~c
that is entirely contained within Z∗. By definition,
C has radius r∞(Z∗). For our next results, we refer
to |~eTn+1(~p1 − ~p2)| for two points ~p1, ~p2 ∈ Rn+1 as
the height distance of these two points.

Lemma 6. There is a vertex ~q of C that touches
the boundary of Z∗, and for which ~qT~en+1 ∈ [0, α].

Proof. A point ~x = (~s, t) ∈ Z∗ must lie in exactly
one of the following zones of Z∗, see also Figure 1:

I) The (topological) interior of Π∆×[α, (2n−1)α],

II) ‖~s‖∞ > r∞(Π∆),

III) ‖~s‖∞ ≤ r∞(Π∆) and t ∈ [(2n− 1)α, 2nα],

IV) ‖~s‖∞ ≤ r∞(Π∆) and t ∈ [0, α].

By definition (31) of α, it follows that

(2n− 2)α =
2n− 2

2n
r∞(Π∆) ≤ r∞(Π∆), (38)

i.e., the height of Π∆× [α, (2n− 1)α] w.r.t. ~en+1 is
smaller than r∞(Π∆). Since C is the largest hyper-
cube in Z∗ centred at ~c, at least one of its vertices

~en+1

Rn
~0n

Z∗

Π∆ × [α, (2n− 1)α]

~c

C

~qIV

III

I III II

Figure 1: A two-dimensional projection of Z∗. The dotted
line represents the embedded Π∆× [α, (2n−1)α], the dashed
one the hypercube C, and the numbers I, II, III, and IV refer
to the zones described in the proof of Lemma 6. If α is small
enough such that the height of Π∆× [α, (2n−1)α] is smaller
than its width, C is guaranteed to touch ∂Z∗ at a point ~q of
height smaller than α.

6



must touch the boundary of Z∗ and, thus, must lie
outside the interior of Π∆× [α, (2n−1)α], meaning
that it must have a height distance from ~c larger
than the height of Π∆ × [α, (2n − 1)α]. Since C
is symmetric, this means that each of its vertices
must have the same height distance to the centre,
implying that every vertex of C must lie outside the
interior of Π∆ × [α, (2n− 1)α], i.e., outside zone I.
Then, since (34) is tight in the sense discussed in
Lemma 5, we conclude that

r∞(Z∗) ≤ min{r∞(Π∆), (2n− 2)α}, (39)

which, due to (38) and (39), means that

r∞(Z∗) ≤ r∞(Π∆). (40)

Therefore, if there was a vertex ~q = (~s, t) of C in
zone II, i.e., such that ‖~s‖∞ > r∞(Π∆), it would
follow by the definition of the∞-norm that ‖~q‖∞ >
r∞(Π∆), contradicting the fact that any vertex of C
must have norm r∞(Z∗) ≤ r∞(Π∆). Consequently,
‖~s‖∞ ≤ r∞(Π∆) must hold. Now, assume ~q = (~s, t)
is a vertex of C that touches the boundary of Z∗.
If ~q is in zone III, i.e., t ∈ [(2n − 1)α, 2nα], then
mirroring ~q w.r.t. the centre ~c is again a vertex ~q ′

of C due to the symmetry of hypercubes, and now,
~q ′T~en+1 ∈ [0, α]. The point ~q ′ also touches the
boundary of Z∗ because of the symmetry of Z∗.
Thus, in any case, we can find a vertex of C that
touches the boundary of Z∗ in zone IV, i.e., that
has height distance from the origin smaller than α.

Theorem 2. INRAD∞ is NP-hard.

Proof. Let Z∗ and C be as described above, and
~q a vertex as described in Lemma 6. Since it is a
vertex of C, it can be expressed as

~q = ~c+ r∞(Z∗)
(
~σT −1

)T
, (41)

where ~σ is some point ~σ ∈ {−1, 1}n. Therefore,
the height of ~q is ~qT~en+1 = ~cT~en+1 − r∞(Z∗) =
nα− r∞(Z∗). Now, for β = nα− r∞(Z∗) consider
the point ~p ∈ β

αΠ∆ given as ~qT =
(
~pT qn+1

)
(i.e.,

~p corresponds to the first n coordinates of ~q), which
exists thanks to (36). It has to lie on the boundary
of β

αΠ∆ since ~q is on the boundary of Z∗, and since

the boundary of Z∗ ∩ (Rn × {β}) and β
αΠ∆ × {β}

coincide because of (36). From (41), it also follows
that ~p is the vertex of a hypercube centred at the
origin, corresponding to the scaled lower face of the

hypercube C, which is, therefore, contained entirely
within β

αΠ∆ since

C ∩ (Rn × {β}) ⊆ Z∗ ∩ (Rn × {β}) =
β

α
Π∆ × {β}.

(42)
Therefore, ~p is a vertex of a hypercube entirely
contained within β

αΠ∆, that touches the boundary
β
α∂Π∆. Consequently, the hypercube in question
is the largest hypercube centred around the origin
entirely contained within β

αΠ∆, meaning that

β

α
r∞(Π∆) = ‖~p‖∞

⇔ r∞(Π∆) =
αr∞(Z∗)

nα− r∞(Z∗)
,

(43)

where we used the fact that ‖~σ‖∞ = 1. We finally
conclude that using Lemma 4, there holds

R1(Π) =
nα− r∞(Z∗)

αr∞(Z∗)
. (44)

The function

f(x) =
nα− x
αx

(45)

is smooth and strictly decreasing for x > 0 and,
thus, is bijective onto its image for x > 0. There-
fore, we infer using (44) that to check whether
R1(Π) ≥ k for some k > 0 is equivalent to check
whether r∞(Z∗) ≤ nα

αk−1 . Since checking whether
R1(Π) ≥ k is NP-hard by [18, Theorem 3.5, p.20],
it follows that INRAD∞ is also NP-hard.

Corollary 4. ZC is co-NP-complete.

As previously mentioned, [7] showed that the con-
tainment problem is actually solvable in polynomial
time w.r.t. the number of facets f1 and f2 of Z1

and Z2. However, the true computational load of
the problem is not necessarily reflected by this fact:
Since the number of facets of a zonotope can grow
exponentially w.r.t. the number of generators, it is
usually costly to store the facets of a zonotope as
opposed to storing the generators. In that regard,
Corollary 4 shows that the high computational cost
that arises in practice for the zonotope containment
problem can essentially not be efficiently reduced by
considering a simpler representation for zonotopes.

4. Algorithms for the Zonotope Contain-
ment Problem

Let Z1 and Z2 be zonotopes in Rn with m1 and
m2 generators, respectively. As we have seen, the
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zonotope containment problem is in general co-NP-
complete. However, if one of the quantities m1,m2

or n remains fixed and we consider scalability w.r.t.
the other two, one can indeed find algorithms that
run in polynomial time.

Fixed m1

If m1 is fixed, Z1 has a fixed upper bound of
2m1 vertices. For each of these, we can compute
its distance to ~c2 w.r.t. the Z2-norm, which can be
done in polynomial time (see Algorithm 1). Z1 ⊆
Z2 if and only if there is no vertex with a norm
larger than one. We call this procedure venum.

Algorithm 1 Vertex enumeration (venum)

Input: Zonotopes Z1 = 〈~c1, G1〉 and Z2 = 〈~c2, G2〉.
Output: True if Z1 ⊆ Z2, False otherwise.

V ← vertices(Z1)
for ~v ∈ V do

if ‖~v − ~c2‖Z2 > 1 then
return False

end if
end for
return True

Fixed m2

Z2 has at most 2
(
m2

n−1

)
facets. Since the poly-

hedral norm can be computed in polynomial time
w.r.t. the number of facets of Z2, using the algo-
rithm in [13, p. 269], we can solve ZC in polynomial
time w.r.t. the number of facets of Z2 as demon-
strated in Algorithm 2. We refer to this algorithm
as polymax. For fixed m2, the number of facets
is bounded for varying n, since for n > m2, the
zonotope becomes degenerate, which implies that
polymax has polynomial runtime. Note that the
bulk of the computation time for polymax comes
from the computation of the halfspace representa-
tion of Z2, not the actual norm-maximisation.

Fixed n

If n is fixed, we use the same method as for the
case where m2 is fixed, except that the number of
facets can be bounded as

2

(
m2

n− 1

)
≤ 2

(
em2

n− 1

)n−1

, (46)

where e is Euler’s number. Therefore, the number
of facets increases at most as mn−1

2 , which is poly-
nomial in m2 since n is fixed.

Algorithm 2 Maximal polyhedral norm
(polymax), see also [13, p.269]

Input: Zonotopes Z1 = 〈~c1, G1〉 and Z2 = 〈~c2, G2〉.
Output: True if Z1 ⊆ Z2, False otherwise.

(H,~h)← halfspace(Z2)
~η1, ..., ~ηs row vectors of H
~g1, ..., ~gm1 column vectors of G1

for i = 1, ..., s do
for j = 1, ...,m1 do

xj ←

{
1, if

~νTi ~gj
hi
≥ 0

−1, otherwise
end for
if ‖~x− ~c2‖Z2 > 1 then

return False
end if

end for
return True

Optimisation Algorithm

While venum and polymax work well and are typ-
ically fast if either m1 or the number of facets of Z2

is low, these algorithms are each tailored for a spe-
cific case, i.e., a certain quantity that remains fixed.
There is another method of solving the zonotope
containment problem that does not require any as-
sumptions to work well, even though, it is compa-
rably slow for low n,m1,m2.

Indeed, we can solve the containment problem by
computing d(Z1, Z2) as defined in (19). Since the
maximum of a convex function over a polytope is
reached at one of its vertices, and since ‖ · ‖Z2

is
convex by Corollary 3, we can compute d(Z1, Z2)
by maximizing the following function:

f(~x) = ‖G2~x+ ~c1 − ~c2‖Z2 , s.t. ~x ∈ {−1, 1}m1 .
(47)

In this study, maximising f(~p) was done with the
MATLAB function surrogateopt, which evaluates
the function on random points to construct a sur-
rogate function that is then used to find a max-
imum. This solver is guaranteed to converge to
a global maximum [21], however there is no clear
stopping criterion other than the maximum number
of function evaluations that have been performed,
or checking whether the algorithm has found a point
~p such that f(~p) > 1. As a consequence, this al-
gorithm is efficient in particular for showing that
Z1 6⊆ Z2, since the algorithm is guaranteed to ter-
minate in that case. In this study, we set the maxi-
mum number N of function evaluations to 500. We
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refer to this algorithm as opt.

5. Experimental Results

5.1. Runtime Comparison

Experimental results for the runtime of each
method described in section 4 are shown in Fig-
ures 2-4, along with the runtime of the algorithm
from [9, Theorem 1.], which we denote by st, and
that returns an approximative result. In Figure 5,
the performance of opt is compared to that of st
on cases where m1 = m2 = 2n. All computations
have been performed in MATLAB on an Intel Core
i7-8650U CPU @1.9GHz with 24GB memory.

For any choice of m1, m2, and n, each algorithm
was tested on 100 zonotope pairs Z1 = 〈~c1, G1〉,
Z2 = 〈~c2, G2〉 that were generated randomly using
two different methods, forming two groups of 50
zonotope pairs each. For both groups, the entries
of the generator matrices G1 and G2 were sampled
uniformly in [−1, 1]. For pairs of group 1, G1 and
G2 were then scaled in such a way that R∞(Z1) =
0.1 and R∞(Z2) = 1, with R∞ defined as in section
3.3. The centre ~c2 of Z2 was chosen to be the origin,
whereas the centre ~c1 of Z1 was sampled uniformly
in [−0.1, 0.1]n. In group 2, the centres of both Z1

and Z2 were chosen to be the origin, and G1 and
G2 were scaled such that R∞(Z1) = R∞(Z2) = 1.
Note that pairs in group 1 are more likely to satisfy
the containment problem, i.e., Z1 ⊆ Z2 is more
likely to happen, while for pairs in group 2, Z1 6⊆ Z2

is more likely. Specifically, for all zonotope pairs

0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

0 20 40 60 80 100 120 140 160 180 200

0

2

4

6

Figure 2: While all three algorithms increase for larger m2,
the computation time remains linear in m2 if m1 is fixed.

that we tested for Figures 2-4, all pairs in group
2 satisfied Z1 6⊆ Z2, and all pairs in group 1 with
m2 > 8 + n satisfied Z1 ⊆ Z2. Furthermore, note
that both st and opt gave the correct solution to
the containment problem for all these pairs.

In each of the Figures 2-5, the graph on the top
shows the worst-case runtime for group 1, whereas
the graph on the bottom shows the worst-case run-
time for group 2. Note that the scaling of the y-axis
differs for both groups. In Figure 2, one can see that
opt is as fast as venum for group 1, but faster for
group 2. For low dimensions, opt is typically slower
than polymax, but this changes for higher dimen-
sions, in particular for pairs in group 2, as can be
seen in Figure 4.

If m1 = m2 = 2n, both the number of vertices
and the number of facets of Z1 and Z2 can grow ex-
ponentially w.r.t. n. Therefore, this setting can be
used to compare the overall scalability of all algo-
rithms. For example, polymax completely failed to
produce results for n > 10 on our machine, because
the algorithm would have required at least 10-fold
the amount of memory we had available, i.e., about
800 GB. venum on the other hand does not have
such a high memory cost, yet as a trade-off, has a
long computation time, e.g., already 120 s for n = 6
as opposed to less than 20 s for opt in the worst
case. Finally, st performs better than opt for pairs
in group 1, but performs worse for pairs in group 2.

We conclude that, for large n, m1, and m2, st
can easily confirm whether Z1 ⊆ Z2, whereas opt

2 4 6 8 10 12 14 16 18
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15

2 4 6 8 10 12 14 16 18

0

1

2

3

4

Figure 3: If m2 is fixed, one can see that after a “bump”
for polymax, the runtime quickly falls off as expected. The
height of this bump increases exponentially w.r.t. m2.
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Figure 4: When n is fixed, the runtime of polymax is polyno-
mial of order O(mn−1

2 ) according to (46). A comparison to
opt shows that polymax initially performs much better but
will eventually perform worse for large m2.

is better suited to show Z1 6⊆ Z2. Thus, a general
strategy to solve the containment problem would
be to run both algorithms in parallel. Since opt

is guaranteed to converge to the correct solution,
given enough iterations, if both methods fail one
can run opt again with a larger maximum number
of function evaluations, until it yields a satisfactory
result.

5.2. Accuracy of the Optimisation Approach

To conclude this section, we investigate the accu-
racy of opt compared to that of st. As mentioned
above, both the accuracy and runtime of opt de-
pend on the maximal number N of function evalua-
tions that the solver surrogateopt performs. Since
N is a constant that is set a-priori, the runtime of
opt scales polynomially w.r.t. n, m1, and m2, since
the function to be evaluated is ‖ · ‖Z2

, which can
be computed in polynomial time. The algorithm
st can also be evaluated in polynomial time, but
does not have a parameter that one can adapt to
increase the accuracy of the result. The precision
of st is therefore fixed, in contrast to opt, which
can achieve an arbitrary precision, at the cost of a
longer runtime. Using the loss function defined in
[9, Section IV.A.], we can compare the precision of
opt for N = 500 to that of st. The loss is defined
as

loss =
|λexact − λmethod|

λexact
, (48)

0 5 10 15 20 25 30 35 40
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200

0 5 10 15 20 25 30 35 40

0

50

100
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Figure 5: When m1 = m2 = 2n, comparing opt to st shows
that st performs better when Z1 ⊆ Z2, whereas opt per-
forms better when Z1 6⊆ Z2.

2 4 6 8 10 12 14

0

0.2

0.4

0.6

2 4 6 8 10 12 14

0

0.01

0.02

Figure 6: The graph on the top shows the worst-case loss
of st and opt, whereas the graph on the bottom shows the
mean loss, as well as the standard deviation over all 10000
zonotope pairs for the case N = 500. While opt is less
accurate for higher dimensions, the error is of the same order
of magnitude as for st on average.

where λexact is the maximum scaling factor such
that

λexactZ1 ⊆ Z2, (49)

which can be determined using either Algorithm 1
or Algorithm 2, and λmethod is the maximum scaling
factor for which the specified method outputs that
λmethodZ1 ⊆ Z2 holds. This loss was computed for
10000 zonotope pairs in dimensions n = 2, ..., 15.
For each zonotope, the number of generators was
uniformly sampled between n and n + 5, and the
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entries of the generator matrix were uniformly sam-
pled in [−1, 1], similarly to [9]. The results are
shown in Figure 6. One can observe that the overall
precision is similar to the one of st, but deteriorates
for higher dimensions. This can be counteracted by
increasing the number of function evaluations N ,
for example by making N depend on n, m1, or m2.

6. Conclusions

We have presented a fast and exact algorithm to
decide whether a point belongs to a zonotope. By
extrapolating this idea, we have shown that any
non-degenerate zonotope induces a norm on Rn,
which can be used to describe points on the bound-
ary of the zonotope, thereby providing information
about its topology. This norm was then used for an
optimisation problem that could be demonstrated
to be co-NP-complete and that is equivalent to the
zonotope containment problem, thus, answering the
question in [9] of whether the zonotope containment
problem is co-NP-complete. Since similar problems
(see [22]) are even APX-hard, it would be inter-
esting to further investigate whether the zonotope
containment problem can be approximated in poly-
nomial time, or whether such an approximation can
only have limited accuracy.

We have also provided several algorithms to solve
the zonotope containment problem, even though
these eventually scale exponentially in general.
Two of them were tailored for specific situations to
prove that the problem can be solved in polynomial
time if certain conditions are met, whereas the last
one has proven to be efficient in higher dimensions
for disproving containment, managing to solve cases
that were infeasible in practice until now. Since
this algorithm is based on non-linear global opti-
misation, it would also be of interest to compare
different solvers, e.g., that are specialised for non-
smooth and Lipschitz-continuous functions.
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