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Abstract

In this paper, we consider coordinated movement of a network of vehicles consisting of a bounded number of malicious agents, that
is, vehicles must reach consensus in longitudinal position and a common predefined velocity. The motions of vehicles are modeled
by double-integrator dynamics and communications over the network are asynchronous with delays. Each normal vehicle updates
its states by utilizing the information it receives from vehicles in its vicinity. On the other hand, misbehaving vehicles make updates
arbitrarily and might threaten the consensus within the network by intentionally changing their moving direction or broadcasting
faulty information in their neighborhood. We propose an asynchronous updating strategy for normal vehicles, based on filtering
extreme values received from neighboring vehicles, to save them from being misguided by malicious vehicles. We show that there
exist topological constraints on the network in terms of graph robustness under which the vehicles resiliently achieve coordinated
movement. Numerical simulations are provided to evaluate the results.
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1. Introduction

Modern intelligent vehicles are not only used for driving but
are processors that can perform complicated tasks and connect
to their surroundings [1]. The advent of ever-growing Internet
of Vehicles, along with cloud services, enables vehicles to com-
municate important information which can potentially be used
for management of the networked vehicles or increasing the re-
liability of each vehicle’s estimation and control individually
[2, 3]. However, as the vehicles become more connected, they
become more prone to adversarial actions and cyber-attacks. To
this end, devising defense mechanisms, to increase the security
for both intra-vehicle networking and inter-vehicular communi-
cations, is of great importance [4, 5, 6, 7]. An efficient defense
mechanism must be able to prevent the attack as much as pos-
sible, detect the attack in case of happening, and satisfy a level
of resilience in performing tasks despite the existence of an at-
tack [8]. The focus of the current paper is the application of
resilience methods to a Cooperative Adaptive Cruise Control
(CACC) strategy (Fig. 1).

Vehicle-to-vehicle (V2V) communications can provide di-
rect data transfer which possess a much lower delay compared
to radars [9] and enable vehicles to move close together, while
collision avoidance algorithms and congestion control proto-
cols assist this strategy [10, 11, 12]. This will increase the
amount of road throughput and reduce the need for develop-
ing more road networks. Cooperative adaptive cruise control,
as one of the applications of V2V communications, is among
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Figure 1: Cooperative adaptive cruise control in a network of vehicles with
active and/or passive sensing systems, photo source (with some edits): US De-
partment of Transportation.

the widely used methods in controlling highway traffic systems
[13]. In this approach, vehicles tend to follow specific speeds
while maintaining a safe distance from each other and at the
same time consume as little space as possible in the highway
to facilitate the traffic flow [14]. Since wireless communica-
tion plays pivotal roles in CACC, we must make it resilient to
malicious actions [15]. Attack-resilient algorithms in CACC
context refer to a class of actions taken to bypass the attacker or
mitigate its effects in order to improve performance in vehicle
formation and velocity tracking. Similarly, in multi-agent sys-
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tems, various consensus setups have been widely studied in the
past decade [16, 17], where locally connected agents interact to
achieve agreement by reaching a common state. In this litera-
ture, resilient consensus expresses the situation where some of
the agents in the network take some actions to deceive the oth-
ers, are possibly crashed, or intentionally evade executing the
local state updating rule. These types of consensus problems
are frequently studied in the computer science field by design-
ing distributed control algorithms(see, e.g., [18]).

There are various techniques to relieve or counteract the ef-
fects of cyber attacks in multi-agent systems. In some solutions,
each agent identifies the adversarial agents of the network by
observing their information history – a sort of fault detection
and isolation strategy [19, 20, 21]. However, usually in these
techniques, each agent needs global knowledge of the network
such as topology, which is neither desirable in distributed algo-
rithms nor scalable. It is shown that to overcome the misbehav-
ing of f malicious vehicles, the topology is required to be at
least (2 f + 1)-connected [19, 21].

In another type of distributed algorithms for resilient con-
sensus, each agent utilizes a kind of filtering of the information
packets delivered from the agents in its neighborhood contain-
ing extreme or invalid values at each time step. This class of
algorithms are often called Mean Subsequence Reduced (MSR)
algorithms, which was firstly introduced in [22] and have been
extensively used in the literature of computer science [23, 24,
25, 18, 26, 27] as well as estimation and control [28, 29, 30, 31,
32]. With MSR-type algorithms, there is no need to know the
entire topology of the network; instead, a parameter f is con-
sidered to secure the consensus in the worst case scenario, in
which f is an upper bound for the number of malicious nodes.
That means there is no need that the agents know f accurately.
In fact, each node considers that there are at most f malicious
nodes within the neighborhood (or within the entire network).
These types of assumptions are common in the literature of ro-
bust control. In this literature, convergence of these algorithms
is guaranteed by some constraints on the topology. While the
traditional connectivity constraints are not enough for conver-
gence of these algorithms, as is stated in [32], graph robustness
has been recently used as a successful connectivity measure for
different consensus problems to ensure that a network achieves
agreement [33, 34].

Our contributions in this paper are threefold:

• Modeling and formulation of resilient longitudinal co-
ordinated movement of autonomous vehicles: we use
resilient consensus notions introduced in computer sci-
ence literature [33] to solve a real world problem in multi-
vehicle coordinated movement. We consider longitudi-
nal cooperative cruise control in the presence of some
malicious vehicles in the network. Therefore, we as-
sume that the vehicles move in parallel or each vehicle
is equipped with a Collision Avoidance System (CAS)
to prevent colliding with its neighbors and can switch its
lane to overtake frontier vehicles if required. We use the
typical second-order dynamics to model each autonomous
vehicle within the network. Also, each vehicle makes up-

dates based on its current position and velocity and those
most recently received from its neighbors. The control
input of each vehicle is applied through its acceleration.

• Developing distributed algorithm and update rule for
each vehicle to reach agreement considering asynchrony
and delays in communications: We develop our dis-
tributed algorithms in an asynchronous setting, where each
normal vehicle may decide to update from time to time
with possibly delayed data packets received from the agents
in its neighborhood. This is a susceptible situation which
allows the malicious vehicles to take advantage and broad-
cast different information, including their states, in dif-
ferent time intervals to reachable vehicles or change their
movement quickly to appear in different states in perspec-
tive of the other vehicles. We suppose that the worst-case
scenario may happen, where the malicious vehicles have
global knowledge about the topology, updating times, the
transmitted data packets by normal vehicles, and even
delays of communications. On the other hand, the nor-
mal vehicles only have access to the data directly re-
ceived from their neighbors; thus they cannot predict ad-
versaries’ behavior.

• Analyzing the topology constraint required for the re-
silient cooperative cruise control: The proposed algo-
rithm and update rule cannot immediately lead to the suc-
cess of the resilient coordinated movement. There must
be specific constraints on the topology to guarantee the
convergence. We analyze these topology constraints based
on robustness notions developed in the literature.

The outline of this paper is as follows. In Section 2, we
introduce the preliminaries and problem setup. Our main re-
sults including the update rule, the filtering algorithm, and the
required topology constraints are presented in Section 3. We
show the effectiveness of our strategy by simulation examples
in Section 4. Finally, Section 5 concludes the paper.

2. Preliminaries

2.1. Graph Theory Notions

According to [16], we recall some preliminary concepts on
graphs. A digraph with n nodes (n > 1) is defined as G[k] =

(V[k],E[k]), k ∈ Z+, with the set of nodes V = {1, . . . , n} and
the set of edges E ⊆ V × V. We sometimes drop down the
step time k for the sake of simplicity. An incoming link from
node j to node i is denoted by ( j, i) ∈ E. The adjacency matrix
corresponding to G[k] is defined by A[k] ∈ Rn×n. A graph is
called complete if ∀i, j ∈ V, i , j : (i, j) ∈ E. For node i, the
set of its neighbors is denoted by Ni = { j|( j, i) ∈ E} and the
number of its neighbors, i.e. its degree, is denoted by di = |Ni|.

A path is a subset of nodesP = {i|(i+1, i) ∈ E, i = 1, . . . , p−
1, p > 1}. If there is a path between each pair of nodes in the
directed graph G, it is said to be strongly connected. The vertex
connectivity K(G) of the graph G is the minimum number of
nodes such that by removing them and all associated edges, the
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graph is not strongly connected anymore. Then, the graph is
said to be κ-connected if K(G) ≥ κ. A directed graph is said
to have a directed spanning tree if there exists a node in the
graph from which there is a path to every other node. Note that
we will use the terms node and vehicle interchangeably in this
paper.

Among connectivity measures of a graph, robustness is the
critical topological notion for the MSR-type algorithms to achieve
resilient consensus. Robust graphs were coined in [32] for the
analysis of resiliency of consensus in multi-agent systems against
cyber-attacks.

Definition 1. ((r, s)-robust) The digraph G = (V,E) is (r, s)-
robust (r, s < n) if for every pair of nonempty disjoint subsets
V1,V2 ⊂ V, at least one of the following conditions is satis-
fied:

1. Xr
V1

= V1,
2. Xr

V2
= V2,

3. |Xr
V1
| + |Xr

V2
| ≥ s,

where Xr
V`

is the set of all nodes in V` which have at least r
incoming edges from outside ofV`. In particular, graphs which
are (r, 1)-robust are called r-robust.

To have a better understanding of the notions of robustness,
refer to Appendix A.

2.2. Physics of the System
Consider a network of vehicles driving in a road whose

communications are through the directed graph G. Each ve-
hicle i ∈ V has a second-order dynamic system given by

ẋi(t) = vi(t), v̇i(t) = ui(t), i = 1, . . . , n, (1)

where xi(t) ∈ R and vi(t) ∈ R are the longitudinal position and
velocity of the ith vehicle, respectively, and ui(t) is its control
input at time t ≥ 0. The discrete form of the dynamic system
(1) with sampling period T is represented as

xi[k + 1] = xi[k] + Tvi[k] +
T 2

2
ui[k],

vi[k + 1] = vi[k] + Tui[k], i = 1, . . . , n,
(2)

where xi[k], vi[k], and ui[k] are, respectively, the position, the
velocity, and the control input of the ith vehicle at t = kT for
k ∈ Z+, where T is the sampling period [17].

2.3. Problem Setup
In this paper, we investigate the coordinated movement of

networked vehicles in the sense that they reach a same fixed
velocity asymptotically leading to a formation with a predefined
(safe) inter-vehicular distance: xi[k] − x j[k] → δi j, vi[k] → r
as k → ∞, ∀i, j ∈ V, where δi j is the desired relative position
of node i with respect to j and r is the desired velocity of the
networked vehicles which is assumed to be known for all. We
intentionally defined δi j as a distributed parameter because of
two reasons: i) we aimed to minimum the global information
known by the agents in the network, ii) it gives the vehicles the

opportunity to set the inter-vehicular distances based on their
size and sensing systems. For example, it would be safer for
two trucks to have a longer relative distance.

In this work, we investigate the case where some vehicles
misbehave because of damage, disturbances, or various cyber
attacks. Note that we focus on the consequences of such attacks
or failures in consensus of the network, not the source of attacks
(or failures). For example, some malicious vehicles might in-
tentionally send false data to their neighbors in the network or,
alternatively, some vehicles might suddenly crash and lose their
control. In other words, nature of failures makes no difference
in our problem setup. In order to formulate the problem, we
elaborate on some notions regarding the communications in the
network and consensus in the presence of malicious vehicles.

There are two possible situations in which malicious vehi-
cles might deceive the normal vehicles and prevent them from
reaching consensus based on their equipment (refer to Fig. 1),
described below:

i) Vehicles use an active sensing system: they can estimate
the state of their neighbors on their own (for example us-
ing their 3D camera or LiDAR system.

ii) Vehicles use a passive sensing system: they trust the in-
formation they receive from their neighbors (for example
using their GPS receiver or wireless communication sys-
tem which are susceptible to cyber attacks).

In the first case, malicious vehicles can intentionally change
their moving direction or oscillate by avoiding any prescribed
update rule and choosing arbitrary control inputs. Accordingly,
all normal vehicles are supposed to follow. In the second case,
malicious vehicles can arbitrarily broadcast any information in
their neighborhood to deceive their neighbors. Note that the
dynamics for all vehicles still remain the same as (2).

Accordingly, we divide the vehicles into two groups of ma-
licious and normal vehicles as follows.

Definition 2. (Malicious and Normal Vehicles) Vehicle i is called
malicious if it can evade following any prescribed algorithm for
updating its control input or broadcast false state feedback to
its neighbors. The malicious vehicles are assumed to be om-
niscient, i.e. they have full knowledge of the topology, updat-
ing times, the transmitted data packets by normal vehicles, and
even delays for all communication links and all k ≥ 0 – this
is a reasonable assumption as it takes the worst case scenarios.
Otherwise, it is called normal. The set of malicious vehicles is
denoted byM ⊂ V.

Furthermore, we assume that the number of malicious ve-
hicles, all over the network or at least in the neighborhood of
each normal vehicle, is upper bounded.

Definition 3. ( f -total Malicious Model) The network is f -total
malicious if the number of malicious vehicles in the whole net-
work is at most f .

Definition 4. ( f -local Malicious Model) The network is f -local
malicious if the number of malicious vehicles in the neighbor-
hood of each normal vehicle i is bounded by f , i.e., |Ni ∩M| ≤

f , i ∈ V/M.
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Now, we formally define the concept of resilient coordi-
nated movement for the proposed network of vehicles as fol-
lows.

Definition 5. (Resilient Coordinated Movement) For any possi-
ble set of malicious vehicles and their arbitrarily chosen inputs,
the network of normal vehicles is said to achieve resilient coor-
dinated movement if it holds that x j[k] − xi[k]→ δi j, vi[k]→ r
as k → ∞, ∀i, j ∈ V \M, where δi j is a predefined (safe) inter-
vehicular distance between the nodes i and j and r is the desired
velocity of the networked normal vehicles.

In practice, the parameter δi j can be properly set by the CAS
of each vehicle to keep a safe distance with the other vehicles
in the ego lane avoiding any collision. Furthermore, the vehi-
cles might not have synchronous and delay-free communica-
tions with all the neighbors simultaneously. Thus, the solution
must be robust against both delays and asynchrony which are
very important in real world applications.

Finally, the main problem which we consider in this paper
is as follows:

Problem 1. Under the f -total / f -local malicious model, find
a condition on the network topology so that the normal vehi-
cles reach the resilient coordinated movement using an asyn-
chronous update rule.

3. Main Results

In this section, we propose the update rule and MSR-type
algorithm by which the normal vehicles are able to reach the
coordinated movement in the presence of misbehaving vehicles.
We present the updating strategy compatible with communica-
tion delays and asynchrony. Therefore, the vehicles are allowed
to update occasionally using delayed data packets. Note that the
updating strategies that are developed here must be enhanced
with the constraints on the topology of the network which will
be discussed in the next section.

3.1. Update Rule

We modified the algorithm and update rule proposed in [30]
to ADP-MSR (Asynchronous Double-integrator Position-based
Mean Subsequence Reduced), which suits the problem of re-
silient coordinated movement. Each normal vehicle distribu-
tively uses the relative position to its neighbors and its own ve-
locity as the feedback.

To develop the update rule for coordinated movement, first
we use a change of variables as follows:

xi[k] = pi[k] + kTr

vi[k] = qi[k] + r,
(3)

where, pi[k] and qi[k] are the transformed variables and r is
the desired velocity of the networked vehicles based on Def. 5.

Substituting the new variables into the dynamic system (2), we
have:

pi[k + 1] = pi[k] + Tqi[k] +
T 2

2
ui[k]

qi[k + 1] = qi[k] + Tui[k].
(4)

Interestingly, the form of the transformed dynamic system (4)
is the same as (2). Based on Theorem 4.2 in [30], the system
dynamic (2) asymptotically reaches consensus (in the sense that
limk→∞ x j[k] − xi[k] = δi j) in a network with communication
delays and asynchrony with the control input:

ui[k] =
∑
j∈Ni

ai j[k]
(
x j[k − τi j[k]] − xi[k] − δi j

)
− αivi[k].

Equivalently, the transformed dynamic system (4) asymp-
totically reaches consensus (in the sense that limk→∞ p j[k] −
pi[k] = δi j, qi[k] → 0 as k → ∞, ∀i, j ∈ V) in a network with
communication delays and asynchrony with the control input:

ui[k] =
∑
j∈Ni

ai j[k]
(
p j[k − τi j[k]] − pi[k] − δi j

)
− αiqi[k], (5)

where ai j[k] is the (i, j) entry of the adjacency matrix A[k] ∈
Rn×n associated with G , τi j[k] ∈ Z+ denotes the time delay cor-
responding to the edge ( j, i) at time k and αi is a positive scalar.
For the sake of simplicity, p j[k − τi j[k]] − pi[k] is called the
relative position of vehicle j to vehicle i in the rest of the paper.
Recalling the variable change of (3), from the viewpoint of ve-
hicle i, the most recent information regarding vehicle j at time
k is the position of j at time k − τi j[k] relative to its own cur-
rent position. While the communications delays are assumed to
have the common upper bound τ, they can be different at each
edge and even time varying defined as

0 ≤ τi j[k] ≤ τ, ( j, i) ∈ E, k ∈ Z+. (6)

Using transformation (3), the expressions of limk→∞ p j[k]−
pi[k] = δi j and limk→∞ qi[k] = 0, can be transformed to the
expressions of limk→∞ x j[k] − xi[k] = δi j and limk→∞ vi[k] =

r, ∀i, j ∈ V \ M which represent what we called “resilient
coordinated movement” in Definition 5.

According to (5) and (6), note that each normal vehicle re-
ceives the position value of its neighbors at least once in τ time
steps, but possibly in an asynchronous manner. Also, vehicle i
uses its own velocity without delay in the update rule. The value
of τ is not required to be known to the vehicles as it is not uti-
lized in the update rule.

We also emphasize that, in fully asynchronous settings, ve-
hicles must also be facilitated with their own clocks [35]. How-
ever, we consider the so-called partially asynchronous updating
setting in this paper. This is a common term in the literature
for those update protocols with both delay and different update
times [36] and in fact contains some level of synchrony mean-
ing that all vehicles use the same clock. Considering delays in
communicated data packets to address partial asynchrony has
been studied in [37, 38, 35].
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The malicious vehicles are assumed to be omniscient, i.e.
they have full knowledge of the topology, updating times, the
transmitted data packets by normal vehicles, and even delays
τi j[k] for all communications and for k ≥ 0. The malicious ve-
hicles can take advantage of this knowledge to make deceiving
back and forth movements or broadcast faulty data packets to
confound and prevent the normal vehicles to reach consensus.
However, any misbehavior by malicious vehicles might only
make the convergence time longer and cannot affect the main
outcome of our method, i.e. prevent the vehicles from reaching
consensus.

The ADP-MSR algorithm which is executed by each vehi-
cle at each time step k is outlined in Algorithm 1. The simplicity
of this algorithm is its main feature. Each normal vehicle dis-
regards the misleading information – extreme values – received
from its neighbors by neglecting the incoming edges from those
suspicious neighbors. Then, the remaining edges determine the
underlying graph G[k]. In this algorithm, there is no need to
know the entire topology of the network; instead, we consider a
parameter f to secure the consensus in the worst case scenario,
in which f is an upper bound for the number of malicious ve-
hicles. That means the normal vehicles do not need to know f
accurately. In fact, each vehicle considers that there are at most
f malicious nodes within the neighborhood (or within the entire
network). Note that these types of assumptions are common in
the literature of robust control.

Theorem 1. Under the f -total malicious model, the network
of vehicles with second-order dynamics utilizing the control
input (5) and the ADP-MSR algorithm comes to resilient co-
ordinated movement with an exponential convergence rate, if
the underlying graph is (2 f + 1)-robust, and if it comes to re-
silient coordinated movement, the underlying graph is at least
( f + 1, f + 1)-robust.

Proof. (Sufficiency) The proof is similar to what is presented
in Theorem 4.2 of [33]. The proof there is presented for the
position consensus of the original dynamic system (1). Here,
the dynamic system is replaced with (4) and the result is valid
for p[k] and q[k], i.e. p j[k] − pi[k] → δi j, qi[k] → 0, ∀i, j ∈
V\M as k → ∞. Equivalently, according to (3), x j[k]−xi[k]→
δi j, vi[k] → r as k → ∞, ∀i, j ∈ V \ M. Thus, all the normal
vehicles asymptotically reach a same velocity of r and meet
a formation with the distributed inter-vehicular distance of δi j,
which is the resilient coordinated movement.

(Necessity) We consider the synchronous networks without
communication delays as the proof of necessity is also valid for
the more general case of partially asynchronous networks with
communication delays. Contradiction is used for the proof.
Suppose that the network is not ( f + 1, f + 1)-robust. Then,
there are nonempty disjoint setsV1,V2 ⊂ V such that none of
the conditions 1–3 in Definition 1 are held, i.e.

1. |X f +1
V1
| < |V1|,

2. |X f +1
V2
| < |V2|,

3. |X f +1
V1
| + |X

f +1
V2
| ≤ f ,

Algorithm 1: ADP-MSR
At each step time k,
if vehicle i decides to make an update then

for j ∈ Ni
The vehicle i calculates

p j[k − τi j[k]] − pi[k] − δi j based on the most
recent position values.

end
Vehicle i sorts the calculated values from the

largest to the smallest.
if there are less than f vehicles that

p j[k − τi j[k]] − pi[k] − δi j ≥ 0 then
The normal vehicle i ignores the incoming

edges from those vehicles.
else

The normal vehicle i ignores the incoming
edges of f vehicles, which have the largest
relative position values.

end
if there are less than f vehicles that

p j[k − τi j[k]] − pi[k] − δi j ≤ 0 then
The normal vehicle i ignores the incoming

edges from those vehicles.
else

The normal vehicle i ignores the incoming
edges of f vehicles, which have the smallest
relative position values.

end
Vehicle i applies the control input (5) by the

substitution ai j[k] = 0 for edges ( j, i) which are
ignored.

else
Vehicle i applies the control (5) where the position
values of its neighbors remain the same as time
step k − 1.

end
Result: ui[k]

where by the definitionX f +1
V1

andX f +1
V2

are the subsets ofV1 and
V2 whose their nodes have at least f + 1 incoming links. We
assume that pi[0] = a, ∀i ∈ V1 and p j[0] = b, ∀ j ∈ V2, where
a < b. Let p`[0] = c, where a ≤ c ≤ b, ∀` ∈ V \ (V1 ∪ V2).
We also assume that qi[0] = 0, ∀i ∈ V. From condition 3, we
have |X f +1

V1
| + |X

f +1
V2
| ≤ f . Also, we suppose that all vehicles

in X f +1
V1

and X f +1
V2

are malicious and hold on to the constant
values. Therefore, since the condition 1 and 2 are not held, i.e.
|X

f +1
V1
| < |V1| and |X f +1

V2
| < |V2|, we can conclude that there

exist at least one normal vehicle in V1 and one normal vehicle
in V2 which have f or fewer incoming neighbors outside of
their own sets as they are not in X f +1

V1
and X f +1

V2
. Consequently,

these normal vehicles in V1 and V2 update based only on the
values insideV1 andV2 by removing the values received from
outside of their sets. This makes their values unchanged at a and
b. Thus, the normal vehicles do not come into agreement.

In our problem setup, we aim to find topological conditions
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G1

G3G2

G4

Figure 2: A 2 f -robust network in which vehicles fail to reach coordinated
movement with partial asynchrony and delayed information (each vehicle in
this figure is representative for a set of f vehicles that are strongly connected).
Note that the focus of this paper is on the longitudinal motion of vehicles.

that for any set of malicious nodes and any malicious behavior,
resilient coordinated movement is achieved. For example, what
we proved in the necessary condition is that for any topological
condition less restrictive than a ( f + 1, f + 1)-robust, there is
a set of malicious nodes or behaviors that fail the normal vehi-
cles to achieve the resilient coordinated movement. To elabo-
rate more on this, consider a spanning tree which is the neces-
sary condition for the resilient consensus if the malicious nodes
take no misleading behavior regardless of the delayed and asyn-
chronous communications. However, the malicious vehicles
will have more freedom to deceive more normal vehicles in a
network with communication delays and asynchrony. So, the
necessary condition for the synchronous case (( f + 1, f + 1)-
robustness) is also a necessary condition for the asynchronous
case.

Also, note that authors in [33] have considered the case
where all normal agents agree on their positions and then stop.
This paper pushes the previous research one step forward in the
sense that the positions and velocities of the networked agents
reach consensus simultaneously – the problem whose solution
was non-trivial after [33].

Furthermore, in Theorem 1, we observe a gap between the
sufficiency and the necessity conditions. This point is illustrated
by a 2 f -robust graph in Fig. 2, which is not resilient to f totally
bounded adversarial vehicles as we will discuss in what follows.

This graph is composed of four subgraphs Gi, i = 1, . . . , 4,
and each of them is a complete graph – each vehicle in this
figure is representative for a set of f vehicles that are strongly
connected. The graph G1 consists of 4 f vehicles and the rest
have f vehicles. Each vehicle in G4 has incoming links from
2 f vehicles of G1. Every vehicle in G3 has f links from G1 and
f links from G4. Likewise, each vehicle of G2 has f link from
G1 and f incoming links from G4.

Note that the minimum degree for a 2 f -robust graph is 2 f .
However for this graph, the minimum degree of the vehicles is
2 f + 1 or greater. This is an important point for the following
reason. If a normal vehicle has only 2 f neighbors, it will keep
its current state since it might ignore all of the values received
from its neighbors under the ADP-MSR algorithm. It is clear
that coordinated movement cannot take place if this happens for

more than two vehicles in the network. The following proposi-
tion formally states our claim.

Proposition 1. There exists a 2 f -robust network with the min-
imum degree 2 f + 1 under which normal vehicles might not
reach resilient consensus by the ADP-MSR algorithm.

Proof. We suppose that the network in Fig. 2 is both 2 f -robust
and ( f + 1, f + 1)-robust, but resilient coordinated movement
cannot be achieved under the ADP-MSR. Assume that all vehi-
cles in G2 are malicious. We show a scenario in which by the
ADP-MSR algorithm, the position values of the vehicles in G3
and G4 never concur.

Note that G1 is 2 f -robust because of Lemma 1 (v) (see Ap-
pendix A). By (iv) of this lemma, the graph obtained by adding
G2 is still 2 f -robust, since there are 2 f edges from G1. Simi-
larly, adding G3 and G4 and the required edges based on (iv) of
Lemma 1 also keeps the graph to be 2 f -robust.

We assume vehicles have the following initial states for k =

0 and the prior τ steps:

pi[0] = a −
δi`

2
, qi[0] = 0,∀i ∈ V3,

p`[0] = b +
δi`

2
, q`[0] = 0,∀` ∈ V2,

ph[0] = c, qh[0] = 0,∀h ∈ V1,

where a − δi`
2 < c < b +

δi`
2 .

Also, the malicious vehicles set the following values as their
states:

p j[2m] = a −
δi`

2
, p j[2m + 1] = b +

δi`

2
,∀ j ∈ V4

and the time delays are chosen by the following scenario:

τi j[2m + 1] = 1,∀ j ∈ V2, i ∈ V3, ( j, i) ∈ E,
τ` j[2m + 1] = 0,∀ j ∈ V2, ` ∈ V2, ( j, `) ∈ E,
τi j[2m] = 0,
τ` j[2m] = 1,

where m ∈ Z+. All other links have no delay. Then, to the
vehicles in G3, the malicious vehicles appear to be stationary at
the state value a− δi`

2 and to the vehicles in G4 at the state value
b +

δi`
2 .

By executing the ADP-MSR at k = 0, the vehicles in G3
will remove the position values of all neighbors in G1 since
a − δi`

2 < c. Thus, for i ∈ V3, pi[1] = a − δi`
2 . At k = 1, the

same happens for the vehicles ` ∈ V4 and they stay at b +
δi`
2 .

Since the vehicles in G3 are not affected by any vehicles with
state values larger than a − δi`

2 , they remain at their state value
for all future steps. The same holds among the normal vehicles
in the network, therefore, pi[k] = a − δi`

2 and p`[k] = b +
δi`
2 for

all i ∈ V3 and ` ∈ V4. This shows failure in agreement of all
vehicles as limk→∞ p`[k] − pi[k] = δi` + (b − a) , δi`.

3.2. Further Discussions and Results
Here, we provide some extensions to the discussions and

results so far proposed in the paper.
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Figure 3: A graph that is (2, 2)-robust but not 3-robust.

First, note that only the number of malicious vehicles in
each normal vehicle’s neighborhood plays a role in the proof of
Theorem 1. Therefore, the result is also valid for the f -local
malicious model leading to the following corollary.

Corollary 1. Consider the network of vehicles with second-
order dynamics using the control input proposed in (5) and the
ADP-MSR algorithm. The network achieves resilient coordi-
nated movement under the f -local malicious model if the un-
derlying graph is (2 f + 1)-robust.

Note that the results in this paper are all valid for the second-
order networks whose underlying graphs are fixed, i.e. with
time-invariant E. In [31], for the first-order synchronous vehicle
networks, there is a natural extension for the time-varying G[k]
and based on thatG[k] = (V,E[k]) is enough to be ( f +1, f +1)-
robust at each time k. The same condition is valid here, again
for second-order synchronous networks. However, the assump-
tion on robustness of the graph at each time k is quite conserva-
tive and might bring difficulties in practice. Here, we would like
to state a new relaxed condition for the partially asynchronous
time-varying networks. The following definition has a key role
for this purpose:

Definition 6. (Jointly r-robust) The time-varying graph G[k] =

(V,E[k]) is jointly r-robust if there exists a fixed ` such that the
union of G[k] over each consecutive ` steps is r-robust.

In a time-varying network, each normal vehicle i can use the
outdated links from τ time steps back whenever some informa-
tion is not available. Thus, the sufficient condition is obtained
with the following additional assumptions:

` ≤ τ. (7)

By the above discussions, the sufficient condition is presented
as below.

Corollary 2. Under the f -total/ f -local malicious model, the
time-varying network of vehicles with second-order dynamics
utilizing control input (5) and ADP-MSR algorithm achieves
resilient coordinated movement, if the underlying graph is jointly
(2 f + 1)-robust under condition (7).

Now, we discuss the relation between the graph properties
proposed here for the resilient coordinated movement problem

and those used in standard consensus problems without any ma-
licious agents [39, 40, 35, 41]. In this paper, it is assumed that
the number of adversarial vehicles is upper bounded by f . By
removing all edges connected to malicious vehicles, we can ob-
tain a subgraph of G consisting of only the normal vehicles.
By (vi) of Lemma 1 (see Appendix A), this network becomes
(1, f + 1)-robust. Now, the obtained graph has a spanning tree
according to (iv) of the same lemma. We know that consen-
sus can be achieved under such a graph. It is also interesting
that the sufficient condition in Corollary 2 is consistent with the
consensus condition on time-varying networks known as hav-
ing jointly spanning tree [42].

It is further noted that [23, 43, 22, 31, 26, 27] consider the
so-called omissive faults, where malicious nodes can deny mak-
ing any transmissions. Therefore, the normal vehicle i would
wait to receive the position values of at least di − f neigh-
bors before making an update. It should be noted that omissive
faults can also be tolerated by the MSR-type algorithms. The
malicious vehicles knowing that the normal vehicles apply the
ADP-MSR algorithm might attempt to make this kind of attack
to cause denial of information for filtering the received values in
Algorithm 1. In such cases, if vehicle i does not receive the data
packets from mi[k] incoming neighbors at time k, then the pa-
rameter of the ADP-MSR for that vehicle can be changed from
2 f to 2( f −mi[k]) assuming that vehicle i is aware of di[k]. The
topology analysis remains mostly the same.

Besides, the ADP-MSR algorithms for f -total malicious
models are resilient against another type of adversaries studied
in [44]. There, the adversarial agents can extend the network by
adding extra links. However, this does not change the value of
f in the network. For example, in our problem, this can happen
in a highway when some additional vehicles are passing by the
connected vehicles network. However, note that the situation is
subtly different in the case with the f -local model. Adding an
extra link might increase the number of malicious vehicles in a
neighborhood of some normal vehicles. Accordingly, the vehi-
cles must know which links are newly created so as to remove
them along with the edges ignored in the ADP-MSR algorithm.

4. Numerical Example

Suppose a network of vehicles connected together on the
network illustrated in Fig. 3 with partially asynchronous de-
layed settings. This graph is (2, 2)-robust (refer to Appendix
A for more discussion). This network is considered to contain
only one malicious vehicle, i.e. f = 1. The sampling period
is set to be T = 0.01. Note that we set δi j = 0 in this ex-
ample, thus the vehicles come to consensus in parallel lanes
with no relative longitudinal distances. Also, remember that we
only consider longitudinal motion of the vehicles. Therefore,
in this example, we assume that they move in parallel or each
vehicle utilizes a CAS to overtake frontier vehicles if required.
We consider two different scenarios to show the effectiveness
of our method in the presence of active and passive sensing
systems. In both scenarios, four normal vehicles periodically
make updates within each 12 time steps with various timings.
Specifically, vehicles 1, 2, 3, and 5 make updates at time steps
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Figure 4: Position-time history of vehicles under (2, 2)-robust graph - coordi-
nated movement failed.
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Figure 5: Velocity-time history of vehicles under (2, 2)-robust graph - coordi-
nated movement failed.

k = 12` + 6, 12` + 9, 12` + 11, 12` + 4 for ` ∈ Z+, respectively.
We assume that at these time steps, their updates are made with-
out any delays. However, each vehicle deals with nonuniform
time-varying delays (τ = 11) since the normal vehicles do not
receive new information at other time steps.

Setting 1: All the normal vehicles are assumed to have pas-
sive sensing systems, e.g. GPS receiver, for navigation. Thus,
the malicious vehicle can misbehave them by easily sending in-
correct information to them instead of its actual position and
velocity, and is free to move in its own way. It can be even
stopped somewhere on the road and broadcast its false infor-
mation.

To simulate this scenario, the initial states of the vehicles
are given by

[
xT [0] vT [0]

]
=

[
4 250 150 8 0 50 70 70 60 10

]
.

The parameters αi in (5) are evaluated as α1 = α5 = 2 and α2 =

α3 = 3. The desired target velocity of the network of vehicles
is set as r = 100. In this network, the malicious vehicle 4
misguide the normal ones and divide them into multiple groups
to prevent them from coming to a single agreement. To this end,
vehicle 4 incorrectly send its positions as: x4[2k] = 2 + kTr and
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Figure 6: Position-time history of vehicles under 3-robust graph - coordinated
movement succeeded.
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Figure 7: Velocity-time history of vehicles under 3-robust graph - coordinated
movement succeeded.

x4[2k + 1] = 200 for all k ≥ 0. Figs. 4 and 5 illustrate the time
history of the positions and velocities of the normal vehicles.
As expected, the positions of the normal vehicles do not reach
consensus although the underlying network is (2, 2)-robust, as
a necessary condition. In fact, the ADP-MSR cannot stop the
malicious vehicle from misguiding the normal vehicles. Fig. 4
indicates that in fact vehicles are divided into two groups and
move with a relative distance because of the malicious behavior
of vehicle 4, sending the false data to the normal vehicles.

Next, we obtain a 3-robust graph (which is 2 f + 1-robust in
this case) by adding enough edges. As illustrated in Fig. 6 and
7, the same simulation with the complete graph with 5 nodes
(the only 3-robust graph with 5 nodes) verifies the sufficient
condition of Theorem 1 for the partially asynchronous setting.

Setting 2: Normal vehicles 2 and 3 are assumed to have ac-
tive sensing systems and vehicles 1 and 5 are assumed to have
passive sensing systems for navigation. As a result, the mali-
cious vehicle faces a more challenging situation rather than the
first setting1. If the malicious vehicle wants to misguide vehi-

1Note that more complicated situations in which actions and reactions of the
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Figure 8: Position-time history of vehicles under (2, 2)-robust graph - coordi-
nated movement failed even when vehicles 2 and 3 have active sensing systems.

cles 2 and 3, it has to appear around them. However, as vehicles
1 and 5 each has a passive sensing system, the malicious vehicle
can still use broadcasting false information to avoid them reach-
ing consensus with the other two vehicles. As shown in Fig. 8,
the malicious vehicle can affect the consensus and misguide the
vehicles into two groups even when 2 of the vehicles have ac-
tive sensing systems. On the other hand, as shown in Fig. 9, the
sufficient graph condition, (2 f + 1)-robustness, guarantee the
longitudinal coordinated movement of the vehicles. It is clear
that the cyber attack for the malicious vehicle could be more
difficult (yet possible) if all the vehicles are equipped with ac-
tive sensing systems. Theoretically, the malicious vehicle can-
not prevent consensus even if all the vehicles are equipped with
active sensing systems. However, finding a practical scenario
for this case would be tricky.

In this setting, the initial states of the vehicles are given
by

[
xT [0] vT [0]

]
=

[
100 400 500 10 0 50 70 70 60 10

]
. The

parameters αi in (5) are evaluated as α1 = α5 = 2 and α2 =

α3 = 10. Also, vehicle 4 incorrectly send its positions to vehicle
1 and 5 as: x4[2k + 1] = 200 for all k ≥ 0, while it moves closer
to vehicle 2 and 3 most of the time and appears as: x4[k] =

0.1k + 5
√

k.

5. Conclusion

In this paper, we studied the problem of resilient coordi-
nated movement of a network of connected vehicles with second-
order longitudinal dynamics, where the number of malicious
vehicles in the network is bounded by a parameter f , known
to the vehicles. We have proposed a distributive strategy for
the normal vehicles to achieve resilient consensus on their po-
sitions with a safe inter-vehicular distance and a predefined tar-
get velocity. The necessary and sufficient graph conditions are
respectively ( f + 1, f + 1)-robustness and (2 f + 1)-robustness
for resilient coordinated movement of the network of vehicles

normal and malicious vehicles are taken into account are out of scope of this
paper. Game theoretic approaches will address them.

Figure 9: Position-time history of vehicles under 3-robust graph - coordinated
movement succeeded. Vehicles 2 and 3 have active sensing systems.

under the f -total malicious model. Each vehicle performs the
proposed update rule and ADP-MSR algorithm to achieve the
agreement with an exponential convergence rate. Communica-
tions in the network are partially asynchronous with bounded
delays.

Future research trend can be possibly investigations in the
following two main directions: i) considering 2D coordinated
movement of connected vehicles and develop appropriate up-
dating algorithms, ii) finding a necessary and sufficient topol-
ogy condition for the convergence.

Appendix A.

To have a better understanding of (r, s)-robust graphs [45],
the following lemma is presented.

Lemma 1. For an (r, s)-robust graph G, the followings hold:

(i) G is (r′, s′)-robust, where 0 ≤ r′ ≤ r and 1 ≤ s′ ≤ s, and
in particular, it is r-robust.

(ii) G is (r − 1, s + 1)-robust.
(iii) G is at least r-connected, but an r-connected graph is not

necessarily r-robust.
(iv) G has a directed spanning tree.
(v) r ≤ dn/2e. Also, ifG is a complete graph, then it is (r′, s)-

robust for all 0 < r′ ≤ dn/2e and 1 ≤ s ≤ n.
(vi) The graph G′ = (V,E0) is (r − w, s)-robust, when G′ is

formed by removing at most w edges from neighbors of
each node inV, where w < r.

(vii) The graph G′ = (V ∪ {v0},E ∪ E0), where v0 is a node
added to G and E0 is the edge set related to v0, is r-robust
if dv0 ≥ r + s − 1.

Moreover, a graph is (r, s)-robust if it is (r + s − 1)-robust.

Generally, it is clear that (r, s)-robustness is more restrictive
than r-robustness. The 5 nodes graph in Fig. 3 can be shown to
be (2, 2)-robust, but not 3-robust. From computational point
of view, checking robustness properties is difficult since the
problem needs combinatorial calculations. However, tending
the size of random graphs to infinity makes them robust [46].
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