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Abstract

In this work, we propose a Disturbance Observer (DOB) with a low pass filter with a single tuning parameter. The DOB
can be added to a standard PI controller that is assumed to be controlling the system. Our DOB design can be applied to
delayed and non-minimum phase systems and is decoupled from the PI control design. We analyse the impact of the DOB
filter time constant in disturbance rejection performance, closed loop robustness and measurement noise amplification.
The case of First Order plus Time Delay has been studied leading to a set of figures that highlight the trade-offs between
those factors and can guide the designer. For arbitrary systems we propose simple rules and instructions for tuning the
single parameter of the DOB, taking into account the trade-off between performance, robustness and noise amplification.
Finally, we test our proposal experimentally in a real two-tank system setup.
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1. Introduction

In the scope of process industry, such as chemical, oil
and gas or refining, most of the processes run uninterrupt-
edly during long periods of time with the same reference
value or setpoint. Furthermore, these processes usually
suffer disturbances derived from other processes interac-
tion, weather conditions, sensor noises or faults; so dis-
turbance rejection is the major requisite for controllers.
The problem of automatic control is, in essence, that of
disturbance rejection [1].

Feedback controllers, specifically PI and PID controllers,
are the most common regulatory control algorithms in pro-
cess industry [2]. When using a feedback controller, dis-
turbance rejection can be addressed in several ways [3, 4].

Without adding any new element to the control struc-
ture, a passive strategy consists of selecting the proper
controller tuning for disturbance rejection. In that sense,
[5] and [6] propose tuning rules that improve disturbance
response; [7] exposes a robust design for PI synthesis; [8]
presents a pole placement technique that consists of avoid-
ing plateaus in frequency response from disturbance to out-
put, and [9]proposes an optimal PI tuning through genetic
algorithms. Furthermore, [10] proves that a PI itself can
act like a controller plus and observer in certain kind of
systems. If disturbances are measurable, a feed-forward
action can be added to directly correct its effect. The main
design rules can be reviewed in the recent works [11, 12].

On the other hand, an active strategy incorporates
some extra elements in the control structure whose task
is to estimate or observe the disturbance and, then, to
feed-forward the necessary control action for cancelling the

disturbance effect. The authors in [13] review different ob-
servers proposed over the years regarding its complexity,
dynamical structure, information required and implemen-
tation, while in the recent work [14], the authors com-
pare the observer based techniques among others. Active
Disturbance Rejection Control (ADRC) has emerged as
a popular technique since the end of the 90’s decade as
an alternative to feedback control [15, 16, 17, 18]. It is
a state feedback control that uses an Extended State Ob-
server (ESO) to estimate the disturbance. Some applica-
tions in power plants and chemical processes can be found
in [19, 20, 21, 22, 23]. This technique can also be applied
to multivariable processes [24, 25, 26] or systems with un-
stable or non-invertible dynamics [27, 28].

Other state space observer solutions are found in [29],
where the disturbance signal is changed by an equivalent
input disturbance (EID) in order to simplify the control
structure; in [30], the state estimation is performed by
a new set of filters; in [31], a tuning approach based on
bounded system norms is proposed; in [32], the technique
is extended to non-linear systems and, more recently, in
[33] and [34]. Other recent works are [35], where a FIR
architecture is used to estimate future states based on pre-
vious observations, or [36], where a disturbance estimation
iis used in a predictive controller.

The main disadvantage of ADRC is that its design
through a state observer requires complex algebraic op-
erations that require high control engineering knowledge,
and we consider that a handicap to become a mainstream
solution in industrial applications. On the contrary, the
success of standard feedback control structures like PI de-
rives from the ease of use, due to the few tuning parameters
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Figure 1: DOB control structure.

and the existence of standard implementation functions
in control devices (as Programmable Logic Controllers or
Distributed Control Systems).

Another solution is a Disturbance observer (DOB), that
is an additive structure whose aim is to estimate the distur-
bance and feed it forward to improve a standard feedback
control (see figure 1). It is thought to be implemented in
an input-output procedure and its design consists of in-
verting the process input-output transfer function model
to estimate the disturbance. To ensure a proper observer,
a filter (Q in the figure) is added so that the relative de-
gree of the inverted plant transfer function is not negative.
DOB is the base for the control structure proposed in this
work.

The design of the filter Q plays a main role in dis-
turbance rejection performance as well as in closed loop
robustness and measurement noise amplification. Many
references can be found in the literature about DOB con-
trol. However, from our point of view, they have some
drawbacks that we try to tackle, to ensure that it can be
applied to any kind of industrial process and that the de-
sign is straightforward enough to encourage every worker
in industry, not only control systems specialists, to use it.

When inverting the plant model, elements like time de-
lays and half-right zeros make the model inverse unstable
or non-realizable. In [37], model inversion is not contem-
plated. In [38, 39], authors do not include in the process
these above mentioned elements. [40] presents a novel con-
trol structure equivalent to a PI plus DOB but with only
a PI and a reference filter, but it is restricted to minimum-
phase systems. [41] presents a method that is suitable for
non-minimum-phase systems based in a filter in parallel
with the plant that makes the global set minimum-phase,
but this solution adds complexity to the DOB structure.

Some applications of DOB control can be found in [42,
43, 44, 45, 46], as a dual process simulator, a stirred tank
process, a heating system, a refrigeration system and a ball
balancer. In all of them, the design of the time constant of
the filter Q is chosen heuristically, with the only concern
of being small enough to guarantee an improvement on
disturbance rejection, or tuned in a trial and error method,
checking the results after.

The computation of optimal solutions regarding system
norms is the approach proposed in [47, 48, 49, 50, 51].
Although this strategy is more rigorous, it requires the
use of complex computer techniques to optimize system

standards, distancing them from the day-to-day operation
of an industrial plant by plant operators and engineers
with less control theory knowledge. This also happens
with adaptive DOB proposals, as [52] and [53], based in
ad hoc solutions more difficult to extend to other systems.

Another important aspect to consider is that, when we
feed back a signal from the process output, we introduce
the sensor measurement noise in the loop, affecting the ac-
tuator behaviour. Closed-loop control has this drawback,
and the inclusion of the DOB worsens this situation. In
[54] and [55], the authors consider a trade-off between dis-
turbance rejection performance and robustness by starting
with a relatively fast filter and then slowing it to achieve
smoothness, but noise amplification is not considered. [56]
and [57] do not consider noise effect for the filter tuning ei-
ther. On the contrary, [58] considers noise effect in the de-
sign of the filter and deals with the elements of the process
model whose inverse lead to an unstable or non-realizable
system. However, it does not consider closed loop robust-
ness. These control structures are aimed to improve the
behaviour under disturbances, but its presence affects also
to the amplification from measurement noise to actuator
activity and to the final closed-loop robustness, that differs
from standard feed-back control. Other references that re-
fer to this trade-off are [59, 60, 61, 62, 63].

Considering this state of the art, in this work we pro-
pose a DOB control structure that is added to a standard
PI control, with the following features:

� The DOB requires a model of the plant and includes
a low pass filter with a single tuning parameter.

� We provide simple tuning rules for this single tuning
parameter that take into account the trade-offs be-
tween three indicators: disturbance rejection perfor-
mance, closed-loop robustness and impact of noise
in the control action activity. Trade-off plots are
also provided to help the designer to achieve a given
trade-off for simple widely used models.

� It is suitable for non-minimum-phase systems, and
processes with time delay.

� The DOB design is decoupled from the PI controller
design and we quantify the new behaviour perfor-
mance with our DOB in relative terms w.r.t the orig-
inal behaviour with just a PI controller. There is no
need to modify the existing PI controller to improve
disturbance rejection with our proposal.

As we will see later, low values of the filter time con-
stant lead to better disturbance rejection but poorer ro-
bustness and more noise amplification from sensor to ac-
tuator. This study is inspired in [64], which shows a sim-
ilar trade-off behaviour in PI control. In this work, our
approach is not to find the best estimation of the distur-
bance but to find the best signal to feed forward in order to
fulfil some requirements in terms of these three indicators.
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The authors have previously studied disturbance estima-
tion in the work [65], but no feed-forward was included in
the analysis, which is only focused on optimal disturbance
estimation.

We show that this trade-off depends also on the process
dynamics. In particular, we analyse this dependency with
the normalized time delay for FOTD systems (normalized
time delay is in the range between 0 and 1). We present
trade-off plots that can be used for tuning purposes for
FOTD systems, starting from the process dynamics and
the targets on performance, robustness and noise amplifi-
cation.

The article is structured as follows. Section 2 exposes
the problem statement and the objectives of the work.
In Section 3 we explain the disturbance observer (DOB)
structure. Section 4 shows some examples on simulated
plants, comparing the performance between them, while
in section 5 we present the trade-off plots and a test in
a batch of process models commonly used in literature.
Section 6 gives the tuning guidelines and some implemen-
tation instructions for practitioners. Section 7 includes an
experimental example in a real two-tank system recreated
in the laboratory. Finally we report the conclusions on
section 8.

2. Problem Statement

Let us consider a LTI process G(s) with an input u(s),
an output y(s), and affected by a non measured input dis-
turbance d(s).

y(s) = G(s)(u(s) + d(s)). (1)

The measured output ym(s) contains a noise signal n(s),
so that

ym(s) = y(s) + n(s). (2)

A feedback controller computes the control action uc(s) as

uc(s) = C(s)e(s), e(s) = r(s)− ym(s), (3)

where r(s) is the reference signal, C(s) is the controller
transfer function and e(s), the measured tracking error.

In this work we consider that the controller is a PI
control defined as

uc(t) = Kp

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ

)
, (4)

uc(s)

e(s)
= C(s) = Kp

(
1 +

1

Ti s

)
= Kp +

Ki

s
(5)

where Kp is the proportional gain, Ti the integral time

and Ki =
Kp

Ti
the integral gain. We assume that the con-

troller is previously tuned and implemented through stan-
dard functions that include anti-windup, bumpless trans-
fer and offset options, i.e., is implemented through the

periodical computation (each Ts seconds) of the following
equations

e = r − ym (6)

I = I + Ts e (7)

uc = Kp e+Ki I (8)

u = saturate(uc + uf ) (9)

I =

{
I if u = uc + uf

I +AW otherwise
(10)

where the signals refer to their value at the sampling in-
stant, I is the integral term of the tracking error, uc refers
to the pure PI computation, uf refers to the offset value,
and u refers to the finally applied control action. The
term AW refers to any applicable anti-windup or bump-
less transfer technique (as AW = −Ts e or AW = Kt(u−
uc − uf ), with Kt the anti-windup gain, see [66, 67]). The
function “saturate” indicates that we apply the minimum
or maximum available value for u if uc+uf is out of those
bounds.

We assume in this work that we have a PI control run-
ning on the system that has available an offset signal to ap-
ply any convenient value. This can be used, for instance to
help initializations, or to apply feed-forward control from
measured disturbances. This is a common situation in in-
dustry. In this work we will propose to use that signal uf

to improve the behaviour under disturbances through the
use of a disturbance observer. We assume that the con-
troller has been already tuned and is working on the plant.
This work assumes a PI controller, but the study for PID
control can be easily extended, and the general results are
still valid.

When we do not have any offset signal, the system
input is thus given by the control action, u(s) = uc(s) and
behaves in closed loop as

u(s) =
C(s)r(s)−G(s)C(s)d(s)− C(s)n(s)

1 +G(s)C(s)
.(11)

e(s) =
r(s)−G(s)d(s) +G(s)C(s)n(s)

1 +G(s)C(s)
. (12)

With the assumed PI controller with C(s) = Kp +
Ki

s ,
we can state that the controlled process has the follow-
ing performance indices w.r.t. robustness, reference track-
ing, disturbance rejection, and noise effect on the control
action. For further comparisons, we define the following
indicators regarding each index:

A. Performance versus reference

A1. Steady state error under step reference.

lim
s→0

1

1 +G(s)C(s)
= 0

A2. Integral error (IE) under step reference.

lim
s→0

1

1 +G(s)C(s)

1

s
=

1

KiG(0)
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B. Performance versus disturbance

B1. Steady state error under step disturbance.

lim
s→0

−G(s)

1 +G(s)C(s)
= 0

B2. Integral error (IE) under step disturbance.∣∣∣∣ lims→0

−G(s)

1 +G(s)C(s)

1

s

∣∣∣∣ = 1

Ki

B3. Integral error (IE) under ramp disturbance.

lim
s→0

C(s)

1 +G(s)C(s)

1

s2
= ∞

C. Robustness: Maximum peak of the sensitivity func-
tion S(s) given by Ms = maxω |S(jω)|, where S(s)
is defined as ([68])

S(s) =
dT (s)/T (s)

dG(s)/G(s)
, T (s) =

y(s)

r(s)
. (13)

From (1) and (11),

T0(s) =
C(s)G(s)

1 + C(s)G(s)
, (14)

S0(s) =
1

1 + C(s)G(s)
, (15)

Ms,0 = max
ω

|S0(jω)| . (16)

Note that we denote with subindex 0 the original val-
ues with a PI control (before adding our proposal).

D. Noise effect: direct gain from the sensor noise n(s)
to the control action u(s) (assuming high frequency
noises):

An,0 =

∣∣∣∣ lims→∞
−C(s)

1 +G(s)C(s)

∣∣∣∣ = C(∞) = Kp,

that can also be seen as a measure of the control
effort.

The objectives of this paper are:

� To develop a disturbance observer (DOB) to improve
disturbance rejection, as an additive structure for
a PI controller that has been already designed and
implemented.

� To offer easy tuning and implementation rules based
in previous indicators.

� To develop trade-off plots that show the relationship
between robustness, disturbance rejection and actu-
ator activity due to measurement noise as a guide
for the designer.
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Figure 2: Proposed control scheme. DOB, composed by Cu and Cy ,
is shadowed in gray.

The improvement in disturbance rejection is understood
as the kind of disturbance signals that the new controller
can cancel, we do not refer to improving the disturbance
behaviour for the same kind of disturbances or to speeding
up the controller for reference tracking, that would be a
task for the PI designer. Our proposal tries to take profit of
the offset signal generally available in standard PI control
and the integrated saturation and anti-windup mechanism.

3. Disturbance Observer structure

In this section, we explain the proposed Disturbance
Observer (DOB) and we describe the steps followed to end
up with its particular structure. The control action u(s),
which is the input of the process, consists of two terms,

u(s) = uc(s) + uf (s), (17)

being uc(s) the pure PI controller output and uf (s), the
DOB output that we feed-forward and that can be imple-
mented through the offset term in standard PI implemen-
tation.

The proposed DOB inputs are the resulting process
input u (after PI, DOB and saturation operation) and the
measured output ym. The DOB output, uf (s), is defined
by

uf (s) = Cu(s)u(s) + Cy(s)ym(s), (18)

being Cu(s) and Cy(s) two transfer functions detailed later.
Ideally, we would like to feed-forward the current distur-
bance signal for perfect disturbance rejection. However,
this is not measured and it can only be estimated. Per-
fect estimation requires to invert G, which results in a
non-proper transfer function. Estimation approaches can
also lead to potential model errors that can compromise
the performance and robustness of the controller. Our ap-
proach is not to find the best estimation of the disturbance
but to find the best signal to feed-forward in order to ful-
fil some requirements in terms of controller performance
against disturbances, robustness and noise effect.

Figure 2 shows the complete control scheme proposed,
where we can see the integration of the PI controller C
and the DOB, which consists of Cu and Cy

1.

1One must understand that after the summation node uc + uf

there would be the saturation function, that would also affect the
integral term in the C block. The figure only indicates the linear
behaviour for stability analysis.
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If we define the characteristic polynomial of the closed
loop as

D(s) = 1 +G(s)C(s)− Cu(s)−G(s)Cy(s), (19)

the tracking error and control action response are given by

u(s) =
1

D(s)
[C(s)r(s)

−G(s)(C(s)− Cy(s))d(s)

−(C(s)− Cy(s))n(s)] , (20)

e(s) =
1

D(s)
[(1− Cu(s)− Cy(s)G(s))r(s)

−G(s)(1− Cu(s))d(s)

+G(s)(C(s)− Cy(s))n(s)] . (21)

where e = r−y is the tracking error (and not the measured
error em).

3.1. Objectives and requirements

We look for the DOB to fulfill the next objectives re-
lated with previous section indicators:

A. To keep performance versus reference.

A1. To keep the steady state error under step refer-
ence at zero,

lim
s→0

1− Cu(s)− Cy(s)G(s)

D(s)
= 0,

A2. To keep the Integral error (IE) under step ref-
erence,

lim
s→0

1− Cu(s)− Cy(s)G(s)

D(s)

1

s
=

1

KiG(0)
,

B. To improve performance versus disturbances (step
and ramp-like).

B1. To keep steady state error under step distur-
bances at zero,

lim
s→0

−G(s)(1− Cu(s))

D(s)
= 0,

B2. To improve the Integral error (IE) under step
disturbances,∣∣∣∣ lims→0

−G(s)(1− Cu(s))

D(s)

1

s

∣∣∣∣ ≤ 1

Ki
.

B3. To improve the Integral error (IE) under ramp
disturbances,∣∣∣∣ lims→0

−G(s)(1− Cu(s))

D(s)

1

s2

∣∣∣∣ < ∞.

C. To ensure a certain degree of robustness,

Ms< γ1.

D. To ensure a certain noise amplification limitation
from sensor noise to control action,

An =

∣∣∣∣ lims→∞
−C(s) + Cy(s)

D(s)

∣∣∣∣ < γ2.

This may be interpreted as a performance measure of
the impact of noise on actuator activity (this could
be also addressed through other similar indices as
the Total Variation [69]).

Besides, we require stable and realizable transfer func-
tions, so Cu and Cy must be causal.

3.2. Structure proposal

Let us consider the process transfer function in the
form

G(s) =
K

∏m
i=1(1 + βis)

∏n
i=1(1− δis)e

−Ts

sk
∏p

i=1(1 + τis)
, (22)

where k = 1 if the system has an integrator and k = 0 if
not, and where βi, δi > 0. K stands for the static gain
(without the integrator, in that case), −1/βi are the half-
left zeros in the complex plane and 1/δi, the half-right
ones. T is the time delay of the system, and −1/τi are the
poles in G(s), both stable and unstable. If the system has
complex poles, one must interpret that there would be a
couple of conjugate values in τi. Let us now express the
transfer function as

G(s) = KGI(s)GN (s), (23)

where

GI(s) =

∏m
i=1(1 + βis)

sk
∏p

i=1(1 + τis)
, (24)

GN (s) =

n∏
i=1

(1− δis)e
−Ts, (25)

in order to conveniently consider the terms whose inverse
leads to a stable system (GI(s)) and the terms which not
(GN (s)). GN (s) also includes the delay, as one cannot
implement its inverse. With the aim of simplicity in design
and implementation, we propose then

Cu(s) =
GN (s)

(1 + α s)d
, (26)

Cy(s) =
−G−1

I (s)

K(1 + α s)d
, (27)

where α is the tuning parameter and where d = p+ k −m
is the relative degree of GI(s). By including the filter
terms (1 + α s)d in the denominator we ensure that Cy(s)
is proper. Assuming that the transfer function G(s) is
strictly proper (as usually in real systems), d > 0. Then,
the relative degree of Cu(s) is positive and thus Cu(s) is
proper too. Note that the proposed structure fulfills

Cu(s) + Cy(s)G(s) = 0, (28)
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which, considering (19), implies

D(s) = 1 +G(s)C(s), (29)

i.e., the characteristic polynomial of the closed loop (19) is
not altered w.r.t. the original one shown in (11) and (12)
and, therefore, the stability of the closed-loop system with
our proposal is guaranteed.

The filtering term (1+α s)d in (26) and (27) could also
be chosen, generally, as any stable polynomial of order d.
This would lead to more degrees of freedom in the design
that can also lead to better performance. However, in this
work, we focus on simplicity both on design and imple-
mentation that ease the use of this technique and, thus,
we determine design laws with just one tuning parameter.

3.3. Structure properties

The choice of the proposed structure fulfils the next
properties regarding above mentioned indicators:

A. Applying equation (21), with equations (22) to (27),
we see that

e(s)

r(s)
=

1

1 +G(s)C(s)
, (30)

which coincides with the transfer function in the
original PI control. Therefore,

T (s) =
y(s)

r(s)
=

C(s)G(s)

1 +G(s)C(s)
= T0(s), (31)

so we keep the reference tracking behavior, i.e., in-
dicators A1 and A2.

B. B1. We keep null steady state error under step dis-
turbance.

B2. From (20), we prove that the IE under step dis-
turbances in absolute value now is zero, i.e.,∣∣∣∣∣∣ lims→0

s
−G(s)

(
1− GN (s)

(1+α s)d

)
1 +G(s)C(s)

1

s

∣∣∣∣∣∣ = 0. (32)

Since the static gain of the transfer function
GN (s) is unitary (i.e., GN (0) = 1), the pre-
vious limit is zero. This implies that we will
obtain oscillatory behaviour under step distur-
bances. This is one of the implications of hav-
ing two mechanisms for the rejection of distur-
bances (the integral term of the PI control plus
the DOB term).

B3. Previous indicator also implies the ability to re-
ject ramp disturbances in steady state, unlike
the original feedback controller. This is one of
the main advantages of having two mechanisms

for disturbance rejection. The integral error un-
der ramp disturbances is now finite and is given
by∣∣∣∣∣∣ lims→0

s
−G(s)

(
1− GN (s)

(1+α s)d

)
1 +G(s)C(s)

1

s2

∣∣∣∣∣∣ = dα+ T +
∑

δi
Ki

,

(33)

being d the relative degree ofGI(s). The perfor-
mance in rejecting ramp disturbances depends
on the tuning parameter α as well as the pro-
cess dynamics and the PI controller gainKi (as-
sumed to be previously tuned depending on the
process model or through experimental proce-
dures).

C. The sensitivity function of the whole control struc-
ture including the DOB, considering (13) and (28),
becomes

S(s) =
1− Cu(s)

1 + C(s)G(s)
= S0(s)(1− Cu(s)). (34)

The resulting sensitivity function differs from the
one in the original PI control structure since the
numerator includes the term 1 − Cu(s). According
with (26), the sensitivity function will depend on the
non-invertible terms of G(s), which are the time de-
lay T , and the half-right zeros in the complex plane
δi. We can state that the sensitivity peak fulfils

Ms = max
ω

|S(jω)| ≤ Ms,0 ·max
ω

|1− Cu(jω)| , (35)

and, therefore, (1−Cu(s)) is the term that can worsen
the new robustness. We will see later that robustness
with DOB worsens more for long time delays.

D. Due to the feed-forward of a signal which depends
on measurement noise, the noise effect in the con-
trol action gets higher. The amplification for high
frequency noises is now given by

An =

∣∣∣∣∣∣ lims→∞

−C(s)− G−1
I (s)

(1+α s)d

1 +G(s)C(s)

∣∣∣∣∣∣ = Kp +

∏
τi∏

βi αd
.

(36)
Therefore, the noise amplification depends on the
tuning parameter α as well as on the process dy-
namics and PI tuning.

3.4. Proposal summary

In summary, we propose a Disturbance Observer (DOB),
which can be added to a currently installed and configured
feedback controller, composed of two transfer functions,

Cu(s) =
GN (s)

(1 + α s)d
, Cy(s) =

−G−1
I (s)

K(1 + α s)d
.

The properties of this structure are:
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A. Closed loop reference tracking behaviour is not mod-
ified w.r.t. PI control when we incorporate the DOB
to the control structure.

B. DOB modifies the performance on disturbance re-
jection. It cancels the IE under step disturbances,
but we will obtain oscillatory responses. It allows us
to reject ramp disturbances in steady state, and the
behaviour depends on the tuning parameter α.

C. It has a negative impact on closed-loop robustness,
which also depends on the tuning parameter α.

D. It also has a negative impact on measurement noise
amplification and, again, this depends on the tuning
parameter α.

Disturbance rejection performance improves as α de-
creases, but robustness and noise amplification worsens if
α decreases. Therefore, the tuning of α implies a trade-off
between these indicators. We have also shown how the im-
pact of the proposed DOB in the closed-loop performance
against disturbances, robustness, and noise amplification
does not only depend on the tuning parameter α but it
also depends on the current process dynamics (see (33)).

In the next section, we will illustrate this through some
examples.

4. Numerical FOTD examples

In this section we detail the behavior of the proposed
DOB with different numerical examples in First Order plus
Time Delay (FOTD) systems,

G(s) =
K

1 + τ s
e−Ts. (37)

This allows us to simplify the process dynamics considera-
tions by using the normalized time delay, which is the time
delay divided by the sum of the lag and the time delay, i.e.,
T

T+τ , and which is in the range between 0 and 1.
According to (26) and (27), the DOB in case of FOTD

processes reduces to

Cu(s) =
e−Ts

(1 + α s)
, (38)

Cy(s) = − 1 + τ s

K(1 + α s)
. (39)

4.1. Implications of the DOB

We can obtain for this FOTD which is the implication
of using DOB. In the one hand we have the benefit of in-
cluding it to improve disturbance rejection against ramps
and, for lower values of α, we also have better step distur-
bance rejection. On the other hand, we have that including
the DOB may worsen the robustness as indicated in (35)
and may amplify the measurement noise by adding a term
τ/α (see (36)). Figure 3 shows the values of the effect on

robustness and noise amplification as a function of α and
the normalized time delay. We see that the robustness
worsening is negligible (i.e. the values of |1 − Cu(jω)|∞
are near 1) when using high values of α or if the delay is
low, and the noise amplification increment is low (i.e. τ/α
is low) if α is high or the delay is high. In order to better
understand this trade-offs, in the next subsection we com-
bine these results with the use of the PI controller that is
adequate for each process.
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Figure 3: Trade-off plots. Bound on relative robustness and noise
amplification.

4.2. Batch of plants and controllers
We consider three plants with normalized time delays

of 0.05, 0.2 and 0.9, which is the time delay divided by
the sum of the lag and the time delay. For easing the
comparison, all the plants simulated fulfill (T + τ) = 100.

We have tested also two different PI controllers for each
plant: one tuned with an initial sensitivity peak Ms,0 =
1.2, which is a robust and conservative value typically used
in industrial applications where robustness is a main requi-
site, and another one withMs,0 = 2, which is an aggressive
but still reasonable value. For comparison reasons, the PI
controllers have been tuned with the following rule

max Ki subject to : Ms,0 = Ms,d

being Ms,0 the sensitivity peak with the PI controller, and
Ms,d the desired value. With this in mind, the controller
is the one that minimizes the IE under step disturbance,
and the one that minimizes the steady state error under
ramp disturbances.

For each of the mentioned plants and PI controllers
combination, we have simulated the response with and
without the DOB proposed in the paper, considering a
value for α that is 100%, 10% and 1% of the process (T+τ).

Tables 1 and 2 summarize the different scenarios tested
in this section, where Kp is the proportional gain and Ti

the integral time of the PI controller, as defined in (4).

Table 1: Numerical examples, PI with Ms,0=1.2

Plant G(s) Kp Ti DOB tuning

1 1
1+95se

−5s 3.3 35.2 No DOB,
α = 100,
α = 10,
α = 1.

2 1
1+80se

−20s 0.71 57.9

3 1
1+10se

−90s 0.13 48.9
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Table 2: Numerical examples, PI with Ms,0=2.

Plant G(s) Kp Ti DOB tuning

1 1
1+95se

−5s 11 19.9 No DOB,
α = 100,
α = 10,
α = 1.

2 1
1+80se

−20s 2.16 41

3 1
1+10se

−90s 0.31 36.1

To analyse the performance achieved in each case, we
consider the indicators mentioned throughout the work.
Since the behaviour under references remains unaltered
(indicator A) and since the IE under step disturbances
(indicator B2) has been proven to be null, we use a dif-
ferent set of indicators on step disturbance rejection. The
complete list of indicators is then the following:

B2-I. Integral of Absolute Error (IAE) versus step distur-
bances,

IAE = lim
t→∞

∫ t

0

|em(τ)|dτ.

B2-II. Integral of Squared Error (ISE) versus step distur-
bances,

ISE = lim
t→∞

∫ t

0

e2m(τ)dτ.

B2-III. Integral of Time-weighted Absolute Error (ITAE)
versus step disturbances,

ITAE = lim
t→∞

∫ t

0

τ |em(τ)|dτ.

B2-IV. Maximum absolute value of the error versus step dis-
turbances,

emax = max
t

|em(t)|. (40)

B2-V. Total variation of the control action versus step dis-
turbances,

TV = lim
t→∞

∫ t

0

∣∣∣∣du(τ)dτ

∣∣∣∣ dτ. (41)

B3. Integral Error (IE) under ramp disturbances,

IE =
α+ T

Ki

C. Sensitivity Peak (Ms),

Ms = max
ω

S(jω), (42)

where S(s) is the sensitivity function (34).

D. High-frequency noise amplification (An), which con-
sidering (36) becomes

An = Kp +
τ

α
. (43)

4.3. Disturbance rejection

Figure 4 shows the time response of the measured track-
ing error e(s) under step and ramp disturbances d(s). We
have simulated a unitary step disturbance followed by a
0.01 slope ramp disturbance. In processes with low time
delay, the improvement that we can achieve using DOB
control w.r.t. standard PI control is higher than in pro-
cesses with high time delay. This effect is even more no-
ticeable with low values in α. Moreover, as the time de-
lay becomes more significant, the error response presents
a big overshoot, which can be undesirable. We can also
notice that, if the PI controller has a more conservative
tuning (designed with a lower sensitivity peak Ms,0) and
we include the proposed DOB, we achieve better results in
performance indicators. However, if the PI controller has
an aggressive tuning and the time delay is high, by adding
our DOB we can even worsen the disturbance rejection be-
haviour when reducing α (see Plant 3 for Ms,0 = 2). This
is the case where we have to be careful using the DOB. In
tables 3 and 4, we can check the numerical results for the
considered indices under step disturbance. IAE0, ISE0,
ITAE0, emax,0 and TV0 refer to the indices obtained us-
ing only the PI controller (without the DOB), while IAE,
ISE, ITAE, emax and TV refer to those obtained when
we add the DOB. We show the ratios between them in
the tables, so a value lower than 1 means that we have
improved the result and a value higher than 1 means that
we have worsen it. We can also see how, by including the
DOB, we are able to reject ramp disturbances and this
rejection is better for lower values of α (see (33)).

Figure 6 shows the frequency response of the tracking
error e(s) due to disturbance d(s). In Plant 1 (low time
delay), the DOB reduces the magnitude in the whole fre-
quency spectrum as the value of α decreases. As long as
the time delay increases (in Plant 2 and specially in Plant
3), disturbance rejection is still better in low frequencies
for low values of α (lower magnitude in the figure) but the
response for higher frequencies gets worse, so the use of
lower values of α is less appropriate. This effect is more
pronounced if the PI controller has a more aggressive tun-
ing (higher Ms,0).

4.4. Robustness

Figure 7 shows the frequency response of the sensitivity
function S(s), as defined in (16) and (34) for the cases with
and without the DOB. The sensitivity peak Ms, which in-
dicates the robustness of the closed loop, is the maximum
of this function; we have marked it in the figure. Generally,
including DOB increases Ms w.r.t. to using only PI con-
trol. We cannot assume a strictly increasing dependency
between α and Ms (see cases with Ms,0 = 2 in figure 7).

4.5. Noise amplification

Figure 8 shows the frequency response of the control
action u(s) due to the measurement noise n(s). In the
three plants, independently of the process time delay, the
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Figure 4: Numerical example. Disturbance to step plus ramp error time response.
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Figure 5: Numerical example. Control action time response under step plus ramp disturbance.

high frequency noise amplification increases as we reduce
the value of α (noise amplification is less pronounced if
the time delay is higher). For systems with higher time de-
lay, the frequency response presents wrinkles, which means
that the noise amplification is lower for certain particular
frequencies. The increase in noise amplification as a func-
tion of α is similar for all the plants and controllers, but
the absolute value of noise amplification depends on the
proportional gain of the considered PI controller, that de-
fines the noise amplification for the case without DOB,
see (36) and (43).

Table 3: Numerical examples results Ms,0 = 1.2
T

T+τ
α

T+τ
IAE
IAE0

ISE
ISE0

ITAE
ITAE0

emax
emax,0

An
An,0

TV
TV0

1 1.2 0.727 2.426 0.86 1.3 1.16

0.05 0.1 0.41 0.155 0.46 0.526 4 1.26

0.01 0.174 0.035 0.173 0.335 31 1.09

1 0.856 0.504 1.27 0.8 2.135 1.44

0.2 0.1 0.321 0.117 0.327 0.555 12.35 1.43

0.01 0.227 0.064 0.222 0.477 114.5 1.32

1 0.728 0.62 0.78 1 1.99 1.47

0.9 0.1 0.527 0.475 0.443 1 10.89 1.69

0.01 0.488 0.44 0.401 1 100 1.69

Table 4: Numerical examples results Ms,0 = 2
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Figure 6: Numerical example. Disturbance to error frequency response.
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Figure 7: Numerical example. Sensitivity function frequency response (Ms, i.e. function maximum, marked)

T
T+τ

α
T+τ

IAE
IAE0

ISE
ISE0

ITAE
ITAE0

emax
emax,0

An
An,0

TV
TV0

1 1.573 0.983 4.71 0.968 1.1 1.08

0.05 0.1 1.02 0.737 1.29 0.819 2.02 1.53

0.01 0.588 0.293 0.656 0.6256 11.17 1.54

1 1.361 0.996 1.99 0.931 1.4 1.28

0.2 0.1 0.861 0.576 1.03 0.768 4.95 1.65

0.01 0.642 0.345 0.724 0.681 40.5 1.44

1 1.51 1.42 1.99 1 1.33 1.86

0.9 0.1 1.48 1.48 1.87 1 4.29 2.50

0.01 1.4 1.36 1.73 1 33.9 2.5

Finally, we test in plant 1 with the PI controller de-
signed with Ms,0 = 1.2 the use of the DOB when the
disturbance is a random walk, to show the effectiveness

in more realistic scenarios. We show in figure 9 the dis-
turbance signal, the output and the control action when
controlling only with the PI, and when adding the DOB.
We show in table 5 performance indices IAE, ISE, ITAE,
emax and TV in relative terms w.r.t. to standard PI con-
trol, showing the improvement with the proposed approach
at the cost of some increase in the control effort, that is
acceptable in the cases α

T+τ equal to 1 and 0.1. The great
improvements in the case of α

T+τ = 0.01 are at the cost of
a bigger control effort.

Table 5: Numerical example results under random walk disturbance.
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Figure 8: Numerical example. Noise to control action frequency response.

α
T+τ

IAE
IAE0

ISE
ISE0

ITAE
ITAE0

emax
emax,0

TV
TV0

1 0.9198 0.6894 0.9855 0.6480 1.1858

0.1 0.4202 0.1474 0.4358 0.4028 1.8554

0.01 0.2038 0.0334 0.2008 0.2065 4.1887

5. Trade-off analysis

5.1. FOTD trade-off plots

In this section we extend the analysis of the previous
section to all the possible FOTD processes, with normal-
ized time delays in the range [0, 1]. We show the effect
of process dynamics and the tuning of the parameter α,
which we have tested in the range [0.01, 100], on distur-
bance rejection, robustness and noise amplification.

We compare the behavior of the system including the
proposed DOB with the original PI control structure, with
its PI tuned to achieve an original sensitivity peak Ms,0

with the maximum value of Ki. Since the behavior with
DOB depends on α, process dynamics and also the original
sensitivity peak, three-dimensional trade-offs are required
to get full insight. To avoid this, we assume three different
values for the original sensitivity peak Ms,0, covering the
reasonable range between 1.2 and 2. All the results in
the trade-off plots are relative to the indicators obtained
without the DOB. Thus, a value greater than 1 indicates
an increase of that indicator when including the DOB, and
a value lower than 1, a decrease with respect to the original
PI control structure without the DOB.

Figure 10 collects the trade-off plots. The cases ana-
lyzed in Section 4 are highlighted with marks. Main con-
clusions about these figures can be summarized in the fol-
lowing points:

� For the same value of α/(T + τ), generally the in-
dicators related with performance (IAE, ISE and
ITAE) improve more when the PI running on the
plant has a lower sensitivity peak Ms,0 than when
the PI presents a higher sensitivity peak.

� The sensitivity peak after including the DOB, Ms,
increases as the normalized time delay T/(T + τ) of
the process is higher. This effect is more evident if
the PI has a lower sensitivity peak.

� For the same value of α/(T + τ), noise is amplified
more if the PI is tuned with a lower sensitivity peak.

� Good compromises of all the indicators can be achieved
when the tuning parameter relative to dynamics, α/(T+
τ), is in the interval [0.01,1]. Two aspects to consider
are that we need to be more conservative (not very
low values of α) if the normalized time delay is high,
because then the sensitivity peak increases more, and
that we need to be aware of the measurement noise
if we tune α with a very low value.

Generally, in process industry we find PI controllers
with very conservative tuning and processes with slow dy-
namics and low normalized time delay. From previous con-
clusions, this is the case where the DOB has more advan-
tages because we can achieve better performance and the
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Figure 9: Numerical example. Rejection of a random walk.

sensitivity peak worsening is negligible. This is why we
find it suitable to be used in these industries.

5.2. Processes test batch

We have also analyzed the behavior, in terms of the
above mentioned indicators, of the proposed DOB ap-
plied to the batch of processes proposed in [70], consider-
ing representative ones encountered in the process indus-
try. These include integrating, lag-dominant and delay-
dominant processes. The complete list of the processes
tested is the following:

P1(s) =
e−s

1 + τs
,

τ = 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.3, 1.5,

2, 4, 6, 8, 10, 20, 50, 100, 200, 500, 1000

P2(s) =
e−s

(1 + τs)2
,

τ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.3,

1.5, 2, 4, 6, 8, 10, 20, 50, 100, 200, 500, 1000

P3(s) =
1

(1 + s)(1 + τs)2
,

τ = 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 2, 5, 10

P4(s) =
1

(1 + s)n
,

n = 3, 4, 5, 6, 7, 8

P5(s) =
1

(1 + s)(1 + τs)(1 + τ2s)(1 + τ3s)
,

τ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

P6(s) =
1

s(1 + sτ)
e−sT , τ + T = 1,

T = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1

P7(s) =
1

(1 + τ1s)(1 + τ2s)
e−sT , τ2 + T = 1,

τ1 = 1, 2, 5, 10

T = 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1

P8(s) =
1− δs

(1 + s)3
,

δ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1

P9(s) =
1

(1 + s)((τs)2 + 1.4τs+ 1)
,

τ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

For each of the 134 processes in the previous list, we
have tuned an optimum PI controller by maximizing Ki

subject to a sensitivity peak Ms,0 = 1.2. Then, we have
tested the step disturbance error response in the system
with only the PI controller (getting the indices IAE0,
ISE0 and ITAE0) and also including the proposed DOB
(getting the indices IAE, ISE and ITAE). We have
tried two different tuning strategies for the DOB param-
eter α. The first one looks for a noise amplification that
is twice the original noise amplification without the DOB
(An/An,0 = 2), which is a more conservative approach in
terms of resulting robustness. The second strategy is more
aggressive, looking for a noise amplification ten times big-
ger (An/An,0 = 10).

Figures 11 and 12 show the ratio between the perfor-
mance indices obtained with and without the DOB (ex-
cept Ms, that is an absolute value). A ratio lower than 1
means that the DOB gets better results than the original
PI controlled system.

Generally, DOB improves disturbance rejection for any
of the previous processes. The only exception is ITAE,
which can increase if the tuning of the DOB is not aggres-
sive enough (An/An,0 = 2, which implies higher values of
α). As expected, when we use the more aggressive tuning
(An/An,0 = 10), disturbance rejection performance (IAE,
ISE, ITAE) gets better. As we have seen along the arti-
cle, higher improvement in disturbance rejection implies a
deterioration in robustness and noise amplification.

In summary, in this section we have shown how the
proposed DOB, when properly tuned, is suitable for all
kind of processes found in industry.
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Figure 10: Trade-off plots. Black marks refer to Section 4 examples: ▲ Plant 1, ■ Plant 2, • Plant 3. White mark ◦ refers to experimental
example in Section 7.
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An/An,0 = 2.

6. Implementation instructions

This section details the steps to follow for the imple-
mentation and proper tuning of the proposed DOB. Our
objectives are the following:

� To minimize the disturbance effect.

� To ensure a degree of noise amplification with respect
to the initial noise amplification without the DOB,

An

An,0
≤ b1. (44)

� To ensure a closed loop sensitivity peak (Ms), which
will be higher compared with the sensitivity peak
without the additive structure (Ms,0),

Ms ≤ b2. (45)

For that, we propose these steps:

1. First, we need a process model as (22). Modeling is
out of the scope of these work but many methods
can be found in the literature.

2. In case the PI controller is not already tuned or run-
ning on the plant, we propose an optimal design by
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Figure 12: Performance ratio indices for the processes test batch,
An/An,0 = 10.

maximizing Ki subject to a sensitivity peak in closed
loop equal to Ms,0. Reasonable values of Ms,0 are in
the range [1.2, 2]. A higher sensitivity peak gives a
more aggressive controller.

3. The design that guarantees the noise amplification
b1 in (36) and (44) is given with the following value
for the tuning parameter α:

α =

( ∏
τi∏

βiKp(b1 − 1)

)1/d

. (46)

Note that for a given process, disturbance rejection
with the DOB is better when we let the noise ampli-
fication to be higher. This is shown in figure 10 and
it is also appreciable if we compare figures 11 and
12.

4. Then, we set Cu and Cy with the structure defined
in (26) and (27).

5. Afterwards, we must analyze the closed loop sensi-
tivity peak Ms,

Ms = max
ω

|S(jω)| ,

where S is defined in (34). If Ms > b2, we should go
back to the step 3 and reduce b1, iterating until we
reach Ms ≤ b2.
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If we want to tune the parameter α to achieve a desired
disturbance rejection performance (as IAE, ISE, ITAE or
emax for step disturbances, or IE for ramp disturbances),
the procedure is straightforward: simply start with an ar-
bitrary intermediate value of α, compute the performance,
and iterate through α until the desired performance is
achieved (reducing α if the performance is not fulfilled,
and increasing it if the performance in fulfilled in excess).
This procedure is not computationally costly, as the iter-
ation is unidimensional and there is a monotonous inverse
relation between performance and α, and can be solved in
the tenths of a second in a normal computer.

7. Experimental example

This section presents an example using the proposed
DOB with different tunings in a real process, depicted in
the figure 13. The system consists of two water tanks. The
pump P-1 boosts water from the feed tank to the other,
through a pipeline where the valve V-1 can regulate the
flow. The pump has a driver so we can regulate its speed.
The higher tank has a level transducer, L-1. There is a
drain pipeline with a valve, V-2, to return water to the
feed tank. At the end of this pipeline there is a connection,
C-1, which reduces the flow. This has been configured in
the laboratory for the test.

Figure 13: Process for DOB testing

This process is a SISO system where the input u is the
duty cycle of the pulse-width modulated signal applied to
the DC regulator which drives the pump, in the range
[0, 100] %. The applied voltage to the pump is then

Vpump =
u

100
Vcc, (47)

being Vcc the voltage of the DC regulator. Initially, that
voltage is set to Vcc = 15 V. The output y is the tank level
L-1, in the range [0, 50] cm. A PI controller is configured
to control the tank level y, using u as the control action.
Valve V-1 is initially fully open and the connection C-1

is properly installed. Valve V-2 position is used as the
disturbance during the test, so we will modify it along the
experiment.

First, we have identified the system model, which is

Gm(s) =
1.98

1 + 80.3s
e−3.2s, (48)

with time measured in seconds.
With that model, we have tuned two PI controllers

maximizing Ki and with sensitivity peaks (Ms,0) of 1.2
and 2 respectively (C1 and C2).

Then, we have also set our DOB with Cu(s) and Cy(s)
as

Cu(s) =
e−3.2s

(1 + α s)
, (49)

Cy(s) = − 1 + 80.3 s

1.98(1 + α s)
. (50)

Our process model has a normalized time delay T/(T+
τ) = 0.038. Figure 10 can give us insight of the properties
of the control system with the DOB in terms of disturbance
rejection, robustness and noise amplification, for a given
value of α and considering the normalized time delay.

We have tested the system response against step and
ramp disturbance types using the two designed PI con-
trollers. The experimented disturbance d(t) (V-2 valve
position) is shown in figure 14. We have repeated the test
considering different values for the tuning parameter α:
100%, 10% and 1% of the process T + τ value. Table 6
summarizes the different experimented configurations.

Table 6: Experimental tests summary

PI Ms,0 Kp Ti DOB tuning

C1 1.2 2.2 24.6 No DOB, α = 83.5,
α = 8.35, α = 0.835.C2 2 6.6 10.9

Figure 14 shows the error response against the experi-
mented disturbance introduced in V-2 valve position. Fig-
ure 15 shows the control action in each case. We can see
how disturbance rejection gets more effective as we de-
crease α. However, this amplifies the noise effect in the
control action and reduces the system robustness (the con-
trol action has a small oscillatory behavior for lower values
of α).

The experimental results show that the behavior is the
one expected from the numerical analysis and the trade-off
plots. Table 7 show the theoretical result expected accord-
ing to Figure 10 compared with the measured experimental
results. As we expected, a lower value of α in our DOB
leads to an improvement in the disturbance rejection, but
it implies a higher measurement noise amplification and
oscillations in the actuator (i.e., more control effort). The
slight differences that one observes in some of the metrics
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Figure 14: Experimental test. Disturbance effect on the process
output.

are due to several factors: the presence of other distur-
bances in the real process different than the one caused
through the valve, the influence of the measurement noise
or the duration of the experiment. Furthermore, the theo-
retical expected metrics are based on a model that can be
slightly different from the identified one.

8. Conclusions

In this work, we have presented a Disturbance Ob-
server (DOB) structure appropriate for LTI models, in-
cluding those with non-minimum phase zeros and time
delays (that would make the process inverse unstable or
non-realizable). The proposed DOB structure deals with
this problem by avoiding the inversion of these elements.
We study in detail how the DOB tuning parameter, i.e. the
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Figure 15: Experimental test. Disturbance effect on the control ac-
tion.

time constant of the DOB filter, affects the closed loop
behaviour. For this, we consider as indicators the dis-
turbance rejection performance (IAE, ISE, ITAE and
emax), closed loop robustness (sensitivity peak Ms) and
noise amplification (the factor compared with the feed-
back controller noise amplification). Previous indicators
present a trade-off, so that a better achievement on one of
them implies lower capabilities in the others, which makes
DOB tuning not straightforward. In order to give insight
about the mentioned trade-off, we have presented trade-off
plots for the First Order plus Time Delay (FOTD) case,
where we can see how process dynamics and DOB tuning
affect those indicators. Furthermore, we have also stud-
ied the behaviour of the DOB applied to a benchmark of
processes representative in the process industry with two
different DOB tuning strategies. We propose simple DOB
tuning rules based on this trade-off, as well as instructions
for practitioners interested in the implementation. Last,
we have tested the DOB structure proposed in a laboratory
recreation of a two-tank system, showing experimental re-
sults that match the theoretical ones.

One the contributions of the DOB structure proposed
in this paper, is that it can be implemented in a plant with
an already running PI controller. Other contributions are
the simplicity of the DOB tuning rules; its considerations
regarding disturbance rejection performance, closed loop
robustness and noise amplification, and the detailed study
of the mentioned trade-offs.
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PI α IAE
IAE0

ISE
ISE0

ITAE
ITAE0

emax
emax,0

TV
TV0

Theo. Exp. Theo. Exp. Theo. Exp. Theo. Exp. Exp.

83.5 1.297 1.1 0.785 0.728 2.97 1.81 0.886 0.795 1.18

C1 8.35 0.477 0.444 0.199 0.179 0.557 0.487 0.562 0.466 1.69

0.835 0.184 0.178 0.039 0.036 0.183 0.16 0.342 0.258 6.04

83.5 1.682 1.31 0.983 0.963 6.66 2.35 0.976 1.06 1.11

C2 8.35 1.09 1.00 0.785 0.639 1.46 1.26 0.849 0.71 1.58

0.835 0.623 0.589 0.32 0.248 0.732 0.71 0.646 0.463 3.99

Table 7: Comparison of theoretical vs experimental results
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