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Abstract

In the analysis of consensus problems for multi-agent systems af-
fected by time delays, the delay margin for a given protocol is heavily
dependent on the communication topology being used. This document
aims to answer the question of what is the largest delay value under
which convergence to consensus is still possible even if the commu-
nication topology is not known. To answer this question we revisit
the concept of most exigent eigenvalue, applying it to two different
consensus protocols for agents driven by second order dynamics. We
show how the delay margin depends on the structure of the consensus
protocol and the communication topology, and arrive to a boundary
that guarantees consensus for any connected communication topology.
The switching topologies case is also studied and It is shown that for
one protocol the stability of the individual topologies is sufficient to
guarantee consensus in the switching case, whereas for the other one
it is not.

1 Introduction

The coordinated execution of a task by a team of multiple dynamic agents
almost always requires that a decision upon the value of a variable is reached.
If we talk about formation flight of multiple unmanned aerial vehicles, for
example, a common heading and a common speed must be selected. When
this common value is to be reached by local interactions among the agents of
the group a consensus problem appears. The work Vicsek [1] was one of the
earliest studies of the properties of such agreement problem, considering dis-
crete agents governed by first order dynamics. This work was later expanded
Jadbabaie [2] and others. It was the work of Olfati-Saber and Murray [3] the
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one to introduce the term consensus. They exhaustively studied the con-
ditions under which a control protocol leads a group of agents governed by
first order continuous dynamics to reach an agreement, including cases with
switching topologies and time delays. Many derivatives of this work have
appeared in the years since its publication, including the extension to sec-
ond order dynamics [4,5] with the inclusion of switching topologies [6], time
delays [7–14], or both [15–18]. A good overview of the current challenges
and results in this topic can be found in [19,20].

One of the most important contributions of [3] was to pinpoint the im-
portance that some results from algebraic graph theory have in the topic of
consensus. They showed that for the agents to reach an agreement upon the
average of the initial conditions, the graph that describes the communication
topology must be connected and balanced. Another important result is that
the time constant of the system, i.e., the time the agent need to reach con-
sensus, is related to the second smallest eigenvalue of the Laplacian matrix
of the graph, also known as the algebraic connectivity or the Fiedler eigen-
value [21]. They also show that when a time delay is present, the largest
eigenvalue of the Laplacian limits the tolerance of the system to a delay.
These results led to some works in which the weights of the communication
channels are designed such that a certain delay margin is attained [22–24].

Almost all works dealing with time delayed consensus problems, whether
they consider first or second order dynamic models, use control laws in which
the delay affects the information of the own state of each agent as well as the
state information coming from other agents. This so called self delay case
can be seen, for example, in the works [3, 7–14]. The consensus protocols
which share this structure are always described using the Laplacian matrix.
A different case in which the state of the agent is not affected by the delay,
and therefore the Laplacian matrix plays no role is presented in [25].

It was shown in [26], however, that consensus protocols with or without
self delay have a common structure which can be used to simplify its analy-
sis with respect to the time delay. This paper shows how the characteristic
equation of a consensus problem can be decomposed in factors of low order
(equal to the order of the dynamics of the individual agents) with a sim-
ilar structure. The factors differ only in a certain coefficient given by an
eigenvalue of a matrix related to the communication structure. In [25], the
authors take advantage of this property to perform an exhaustive analysis
of a protocol without self delay for a fixed communication topology. In that
paper the concept of most exigent eigenvalue, defined as the eigenvalue of
the matrix which creates the most restrictive stability boundary with respect
to the time delay, is introduced.

In the present paper, we aim to perform a similar analysis for a consensus
protocol with self delay. We show how the most exigent eigenvalue in that
case is the largest eigenvalue of the Laplacian matrix. We compare this to
our previous result for the case without self delay and show how it can be
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used to guarantee consensus under an unknown communication topology in
the presence of time delays. Furthermore, we study the switching topologies
case and show how the protocol with self delay is stable regardless of the
switching scheme, whereas the protocol with self delay can be destabilized
if the communication topologies switches in the correct pattern.

Although the term most exigent eigenvalue was first introduced by [25],
the work [3] already showed how there is one eigenvalue setting the most
restrictive delay boundary for a given communication topology, and [22]
extended this. These works, however, are focused on the case of agents with
first order dynamics, fact that separates them from the present article, in
which second order agents are considered.

It is important to highlight that, when it comes to the stability anal-
ysis of consensus systems with respect to time delays, almost all the pre-
vious works rely on Lyapunov–Krasovskii- or Razhumikin-based method-
ologies [5, 7, 8, 15, 27, 28] or a generalized Nyquist criterion [11, 12]. All of
these treatments provide only sufficient conditions on the delays to achieve
asymptotic stability. They only produce very conservative results, leading
to stability bounds for very small delays.

As a different way to analyze the consensus problem with respect to the
delay, a methodology for the analysis of consensus protocols with single and
multiple, rationally independent time delays was introduced in [26,29]. This
earlier work is based on the combination of a factorization procedure and the
deployment of the Cluster Treatment of Characteristic Roots methodology
[30–32], which provides exact, exhaustive and explicit stability regions in
the domain of the delays.

The paper is organized as follows. Section 2 presents the two consensus
protocols under study and some brief results regarding their stability analy-
sis. Section 3 presents the results on the concept of most exigent eigenvalue
for both protocols and Section 4 studies the switching topologies case. Some
conclusions and directions for future work are presented in Section 5. In the
rest of the paper, scalars are represented by lowercase italic letters (k, λ, τ),
vectors by lowercase bold letters (x) and matrices by uppercase boldface
letters (A,Λ).

2 Consensus Protocols and Stability Analysis

In this work we consider a set of n one dimensional agents driven by second
order dynamics1 of the form ẍi(t) = ui(t), i = 1, 2 . . . , n. The control
input ui(t) is computed based on the state of agent number i as well as
the state of some of its peers, known as the informers of i. The set of

1This double integrator model is considered instead of a more general dynamic model
to simplify the stability analysis with respect to the delay. An example of such stability
analysis for a more general dynamic system can be found in [33].
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informers of agent i is denoted as Ni, and its cardinality, i.e., the number
of informers of agent i, is denoted as δi. For this study we consider that
the communication is bi-directional, i.e., i ∈ Nj ⇔ j ∈ Ni. This means
that the network can be represented by an undirected graph. The adjacency
matrix of this graph, denoted as AΓ = [aij ], is defined such that aik =
aki = 1 when agents i and j share a communication link and aik = aki = 0
otherwise. The diagonal elements of AΓ are considered to be zero. The
degree matrix of the communication topology is a diagonal matrix ∆ with
its i-th diagonal element equal to the degree of agent i. The Laplacian matrix
of the communication topology is defined as L = ∆−A, and the weighted
adjacency matrix is C = ∆−1AΓ. We also assume that the communication
among agents is corrupted by a time delay τ , which is constant and uniform
across the network.

The uniformity assumption for the communication delay is a common
one in the field of consensus and is based on the fact that members of the
multi-agent systems under consideration are identical and have therefore
similarly limited bandwidths in their sensing or communication capabili-
ties. Cases in which a subset of the agents or even each individual agent
had their own time delay could still be considered, but some mathematical
simplifications could not be used in that case, making the stability analysis
prohibitively complex.

In this work we study two different control actions that can be used
by the agents in order to reach consensus. The first one was introduced
in [25,26] and is given as

ui (t) =k1

∑
j∈Ni

(
xj (t− τ)

δi

)
− xi (t)


+k2

∑
j∈Ni

(
ẋj (t− τ)

δi

)
− ẋi (t)

 ,
(1)

whereas the second one, studied in [7], is

ui (t) =k1

∑
j∈Ni

(xj (t− τ)− xi (t− τ))


+k2

∑
j∈Ni

(ẋj (t− τ)− ẋi (t− τ))

 .
(2)

In equations (1) and (2) k1 and k2 are positive control gains selected by
the user. For τ = 0 both protocols guarantee consensus provided that the
communication topology is connected. Connectivity is therefore assumed as
granted for the rest of the paper.
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The main difference between protocols (1) and (2) lies in the presence of
the so called self delay. In (1), agent i uses the delayed information coming
from its informers and compares it to its own current state. In (2) the delay
is present in the state of agent i as well as in the state of the informers. This
structural difference has some implications in the dynamics of the group, a
fact that is presented in the following paragraphs.

Despite the structural differences, it was shown in [26] that the char-
acteristic equations of both protocols can be expressed as a product of n
second order factors. This factorization property stems from the fact that
both protocols can be represented in state space as

ẋ (t) = (In ⊗ F1) x (t) + (M⊗ F2) x (t− τ) , (3)

with x = [x1 ẋ1 x2 ẋ2 · · ·xn ẋn]T , In being the identity matrix of order n and
⊗ the Kronecker product. The matrices F1,2 depend on the particular pro-
tocol and the control gains, whereas the matrix M depends on the protocol
and the communication topology. For (1) we have

F1 =

[
0 1

−k1 −k2

]
F2 =

[
0 0
k1 k2

]
M = ∆−1AΓ = C,

(4)

whereas for (2)

F1 =

[
0 1
0 0

]
F2 =

[
0 0
k1 k2

]
M = AΓ −∆ = −L.

(5)

Since we are considering undirected graphs, the matrix M of each pro-
tocol is always diagonalizable and its eigenvalues are always real. This is
because the weighted adjacency matrix C is a symmetrizable matrix [34]
and the Laplacian L is symmetric. As proposed in [26], we take advantage
of this fact to define the state transformation ξ =

(
T−1 ⊗ I2

)
x, where T is

the matrix that diagonalizes M, i.e, T−1MT = Λ with Λ being diagonal.
Under this transformation, the dynamics of the system in (3) are expressed
as

ξ̇ (t) = (In ⊗ F1) ξ (t) + (Λ⊗ F2) ξ (t− τ) . (6)

Given that Λ is a diagonal matrix, the system (6) can be seen as a set of n
decoupled second order systems, each one of the form[

ξ̇i(t)

ξ̈i(t)

]
= F1

[
ξi(t)

ξ̇i(t)

]
+ λiF2

[
ξi(t− τ)

ξ̇i(t− τ)

]
i = 1, 2, . . . , n, (7)

in which λi, i = 1, 2 . . . , n, are the eigenvalues of the matrix M correspond-
ing to each protocol, which, as stated before, are all real. Furthermore, since
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C is a hollow stochastic matrix [35], Gershgorin’s circle theorem [36] guaran-
tees that |λi| ≤ 1 for protocol (1); whereas λi ≤ 0 for protocol (2), because
the eigenvalues of the Laplacian are always nonnegative [37].

The characteristic equation of the whole system can be expressed as the
product of the characteristic equation of the individual subsystems in (6).
That is, the stability of the system is determined by the roots an equation
expressed as the product of n second order factors

CE (s, τ) =
n∏
i=1

qi (s, k1, k2, τ, λi) =

n∏
i=1

det
(
sI2 − F1 − λiF2e

−τ s). (8)

Each one of the subsystems in (7) or, equivalently, each one of the factors
in (8), corresponds to the dynamics of a certain linear combination of the
positions of the agents in the group. These are the states denoted by ξi(t).

Remark: Complex conjugate eigenvalues could appear if the communi-
cation between agents is not bi-directional, as assumed here. In this case
the, factorization property has to be extended to include factors of order
higher thank the dynamics of the individual agents, as presented in [38].

Since we are assuming that the topology is connected, a special eigen-
value is present in each protocol. This eigenvalue corresponds to an eigen-
vector of M in which all the elements are equal. Without loss of generality,
we denote this eigenvalue as λ1. For (1) the special eigenvalue is λ1 = 1,
whereas for protocol (2) it is λ1 = 0. The factor of (8) generated by λ1

dictates the dynamics of the group decision value. That is, if all the other
factors are stable the agents reach consensus and move together in a trajec-
tory dictated by the dynamics of this factor. We call it the centroid factor.
The other n − 1 factors define whether the agents reach an agreement or
not, and they are called the disagreement factors.

It was shown in [25] that for protocol (1) the group decision value is
dictated by a weighted average, defined as

ξ1 (t) =

∑n
i=1 δixi(t)∑n
i=1 δi

, (9)

for which the dynamics is given by

s2 + (k2s+ k1) (1− eτ s) = 0. (10)

Notice that (10) has a root at s = 0 for any value of τ . This means that this
factor is at best marginally stable, which implies that consensus, if reached,
will be at a constant position with zero velocity.
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For protocol (2), on the other hand, previous works [7, 39] showed that
the agents reach an average consensus given by

ξ1 (t) =

∑n
i=1 xi(t)

n
, (11)

with dynamics
s2 = 0. (12)

Equation (12) has two roots at the origin, which do not depend on the delay.
This indicates that protocol (2), when it is stable, guides the agents towards
a constant velocity with linearly increasing position.

For the agents to reach consensus using protocol (1) n− 1 disagreement
factors of the form

qi (s, k1, k2, τ, λi) = s2 + (k2s+ k1)
(
1− λie−τ s

)
= 0, (13)

with i = 2, 3, . . . , n, must be stable. When protocol (2) is used, the n − 1
disagreement factors have the form2:

qi (s, k1, k2, τ, λi) = s2 + λi (k2s− k1) e−τ s = 0. (14)

Factors (13) and (14) are stable for τ = 0. As τ increases, the character-
istic roots of the factors move in the complex plane until the delay reaches a
critical value for which a root crosses to the right of the complex plane, intro-
ducing instability. The Cluster Treatment of Characteristic Roots Paradigm
(CTCR), introduced in [40], is used to detect these destabilizing crossings.
In order to limit the length of this paper, the details of the deployment of
CTCR to the factors of the form (13) and (14) are left out. They were
already presented in [25] and [39]. We only state here the final results.

For factors of the form (13), the first destabilizing root crosses at a
frequency

ω2 = k1 −
µ

2
k2

2 +

√
ρ

2
, (15)

with
µ = 1− λ2

i , and ρ =
(
µk2

2 − 2k1

)2 − 4k2
1µ, (16)

and this crossing occurs at a delay value which depends on the sign of λi

τ =
1

ω

(
arctan

(
−k2ω

3

k2
1 + ω2 (D2 − P )

))
for λi > 0,

τ =
1

ω

(
arctan

(
−k2ω

3

k2
1 + ω2 (D2 − P )

)
+ π

)
for λi < 0.

(17)

2Notice that a change in the sign of λi has been introduced in (14). This is to use the
eigenvalues of L, which are all positive, and not those of −L.
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For protocol (2), the expressions for the crossing frequency and delay are

ω2 =
k2

2λ
2
i +

√
k4

2λ
4
i + 4k2

1λ
2
i

2
, (18)

τ =
1

ω
arctan

(
k2ω

k1

)
. (19)

The stability analysis technique presented in [26] departs from the knowl-
edge of the communication topology. From here, the eigenvalues of the
weighted adjacency or the the Laplacian matrix are found and the stabil-
ity region in the parametric domain (k1, k2, τ) is obtained for each factor.
These regions are then intersected to find the combinations of parameters
which make the complete system stable.

In the next section, we show that an a priori knowledge of the commu-
nication topology is not needed to find a delay bound.

3 The most Exigent Eigenvalue

Section 2 showed that each eigenvalue of M introduces a stability boundary.
However, there is always one eigenvalue that introduces the most restrictive
of these boundaries with respect to the time delay, defining therefore the
global stability region. This eigenvalue is declared the most exigent eigen-
value. This section formally defines this concept, first introduced in [25] for
a second order protocol, and declares which eigenvalue is the most exigent
for protocols (1) and (2).

Definition 1 For a group of agents interacting under any of the consensus
protocols defined in (1) or (2), the most exigent eigenvalue is the eigen-
value of the corresponding M matrix that generates the particular factor
qi (s, k1, k2, τ, λi) in the characteristic equation (8) which introduces the
smallest destabilizing crossing as τ increases starting from 0, for a fixed set
of k1 and k2 values.

Remark: When unidirectional communications are considered and com-
plex conjugate eigenvalues appear, the factors of order higher than the dy-
namics of the individual agents may present more than one stability crossing
for a single parametric combination. A most exigent eigenvalue is hard to de-
fine in this case, and the discussions are therefore limited to the bi-directional
communications case assumed here.

Lemma 1 For the consensus protocol without self-delay defined by (1), the
most exigent eigenvalue is the smallest eigenvalue of the weighted adjacency
matrix C.

Proof: The proof was presented in [25]. �
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Lemma 2 For the consensus protocol with self-delay defined by (2), the
most exigent eigenvalue is the largest eigenvalue of the Laplacian matrix L.

Proof: We prove this following the same path used in [25] to prove Lemma
1. We show that the following statements are true when we consider ω > 0:

(a) ω is a monotonic one to one function of λ and dω/dλ > 0.

(b) τ is a monotonic function of ω and dτ/dω > 0.

(c) τ is a monotonic function of λ and dτ/dλ < 0.

In order to prove (a), we use ω2 = γ and consider (18) for two different
λ, recasting the equations as

γ2 − (k2λ1)2 γ − (k1λ1)2 = 0, (20a)

γ2 − (k2λ2)2 γ − (k1λ2)2 = 0. (20b)

If this two polynomial equations have a common root, the Sylvester resultant
matrix

R =


1 − (k2λ1)2 − (k1λ1)2 0

0 1 − (k2λ1)2 − (k1λ1)2

1 − (k2λ2)2 − (k1λ2)2 0

0 1 − (k2λ2)2 − (k1λ2)2

 (21)

must be singular. We have that det (M) = k4
2(λ2

1 − λ2
2)2, which can be zero

if and only if λ1 = λ2. Therefore, γ is a one to one function of λ. Since
ω =
√
γ, the first part of (a) is proven.

By using implicit differentiation, we see from (20a) that

dγ

dλ
=

(k2λ)2

2γ
, (22)

and combining (22) with dω/dγ = 1/(2
√
γ) we have

dω

dλ
=
dω

dγ

dγ

dλ
=

(k2λ)2

4γ3/2
=

(k2λ)2

4ω3
> 0, (23)

which proves the second part of (a).
To prove part (b), we consider (19) and take its derivative with respect

to ω
dτ

dω
=

k2/k1

ω

(
1 +

(
k2ω
k1

)2
) − 1

ω2
arctan

(
k2ω

k1

)
. (24)

We are interested in showing that dτ/dω < 0. By multiplying (24) times ω2

we obtain the following inequality

k2ω
k1

1 +
(
k2ω
k1

)2 − arctan

(
k2ω

k1

)
< 0. (25)
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Figure 1: Plot of f(θ) = 1
2 sin(2θ)− θ for 0 ≤ θ ≤ π/2.

Using the substitution k2ω
k1

= tan(θ), valid for 0 < θ < π/2, we transform
(25) into

tan θ

1 + tan2 θ
− θ < 0, (26)

which can be simplified as

1

2
sin (2θ)− θ < 0. (27)

Figure 1 presents a plot of the left hand member of (27), which clearly shows
that the inequality is true in the interval of interest. This proves part (b):
dτ/dω < 0.

Finally, statement (c) is a direct conclusion of (a) and (b). Since τ is a
monotonic function of ω and ω a monotonic function of λ, using the chain
rule we observe that

dτ

dλ
=
dτ

dω

dω

dλ
< 0, (28)

which implies that the largest value of λ always invites the minimum τ , and
therefore the most restrictive stability boundary. This completes the proof
of lemma 2. �

The knowledge of which eigenvalue creates the most restrictive value im-
plies that one does not need to know under which communication topology
the agents are operating in order to guarantee stability with respect to the
delay. Let us consider a group of agents operating under protocol (1). Ac-
cording to Lemma 1, the most exigent eigenvalue is the smallest eigenvalue of
the weighted adjacency matrix of the communication topology under which
the agents are operating. But this eigenvalue is lower bounded: it can never
be smaller than −1. This implies that the stability boundary defined by
(17) for λ = −1 is the most restrictive for any possible topology. Figure
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Figure 2: Absolute stability boundary in (k1, k2, τ) domain for a group
of agents operating under protocol (1) with an unknown communication
topology. Parametric selections below the surface guarantee stability and
convergence to consensus.

2 shows a plot of this boundary in the tree dimensional domain (k1, k2, τ).
Selecting a parametric combination below this surface guarantees that the
agents reach consensus regardless of the topology under which they are oper-
ating, provided that connectivity is present. This is also independent from
the number of agents.

In order to perform a similar analysis for protocol (2), we need to consider
an upperbound for the eigenvalues of the Laplacian of a graph. The first and
most conservative of such bounds was presented in [41], and is states that
the eigenvalues of the Laplacian of a connected graph are always less than
or equal to twice the largest vertex degree of the graph, i.e., λ ≤ 2 maxi δi.
Some other authors have presented less conservative bounds [42,43], but they
require to have an extra knowledge of the structure of the graph. Without
any a priori knowledge of the structure of the communication topology,
using the bound given by [41] is the safest approach.

For a group of n agents the highest possible degree is, of course, n − 1.
One could then consider λ = 2 (n− 1) as the upperbound for the most
exigent eigenvalue. However, reference [41] states that the upperbound is
reached when the graph is bipartite3 and regular4. The highest possible
degree for a bipartite graph with n vertices is n/2, and therefore the highest
Laplacian eigenvalue is given by λ = n. This is indeed supported by the

3A graph is bipartite if its vertices can be separated in two sets such that no vertex is
adjacent to another member of its set [37].

4A graph is regular if all vertices have the same index, i.e., δi = δj for every i, j ∈ [1, n]
[37]
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results presented by [42,43].
Since the largest and most exigent Laplacian eigenvalue is dependent on

the number of agents, so is the delay margin for a team operating under
protocol (2). Figure 3(a) shows the absolute stability boundary for a case
with 6 agents, whereas Fig. 3(b) shows it for a group of 10 agents. Although
the difference is not too pronounced, it is possible to see that the boundary
is more restricted for larger groups. From an intuitive point of view, this
makes sense, because with more communication channels the negative effect
of the delay is increased.

The main driver of this increased effect of the delay is the fact that as the
degree of the agents grow, so are the Gershgorin circles for the Laplacian
matrix growing. With increasing agents and more connections, the most
exigent eigenvalue for this protocol grows and the delay margin decreases.
To avoid this, the matrix could be scaled by n. Protocol (1), for example,
includes this scaling in its definition, when the position and velocity values
of the informers are averaged, and therefore its most exigent eigenvalue is
well bounded.

4 Switching Topologies

Section 3 shows that we can find a parametric combination such that proto-
cols (1) and (2) guarantee consensus regardless of the topology under which
the agents are communicating, provided that it is connected. In this section,
we focus our attention to the case in which the topologies are switching, and
check if by stabilizing all the possible communication topologies the stability
of the switching system is guaranteed.

Let us now assume that the communication topology is not fixed, but it
switches among a set of m different topologies, described by the weighted
adjacency matrices Ci and the Laplacians Li, with i = 1, 2, . . . , m. Each
one of these m topologies is assumed to be connected. The switching instants
will be denoted as 0 < ts1 < ts2 < . . .. There is no assumption on the order
of switching.

We revisit now the state space formulation (3). In order to obtain a
factorized characteristic equation, we used a state transformation defined
by the diagonalization of matrix M. If T−1MT = Λ, where Λ is a diagonal
matrix, the state transformation is defined as ξ(t) =

(
T−1 ⊗ I2

)
x(t). The

new state vector ξ(t) can be seen as the concatenation of n state vectors[
ξi(t) ξ̇i(t)

]T
, i = 1, 2, . . . , n, each one corresponding to a subsystem with

dynamics [
ξ̇i(t)

ξ̈i(t)

]
= F1

[
ξi(t)

ξ̇i(t)

]
+ λiF2

[
ξi(t− τ)

ξ̇i(t− τ)

]
. (29)

The characteristic equation of each subsystem of the form (29) corre-
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Figure 3: Absolute stability boundary in (k1, k2, τ) domain for groups of
6 (a) and 10 (b) agents operating under protocol (2) with an unknown
communication topology. Parametric selections below the surfaces guarantee
stability and convergence to consensus.
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sponds to one factor qi (s, k1, k2, τ, λi) in the global characteristic equation
(8). For i = 1 we have the system that creates the centroid factor, and it
is therefore called the centroid subsystem. We refer to other subsystems in
(7) (for i = 2, 2, . . . , n) as the disagreement subsystems. The disagreement
vector is now defined as a vector containing the state of all the disagreement
subsystems

ξd(t) =
[
ξ2(t) ξ̇2(t) ξ3(t) ξ̇3(t) · · · ξn(t) ξ̇n(t)

]
. (30)

The transformed state vector can be seen as the vector sum of the state
of the centroid subsystem and the norm of the disagreement vector, and
therefore

‖ξ(t)‖2 = ‖ξ1(t)‖2 + ‖ξd(t)‖
2 . (31)

For a group of agents operating under a fixed communication topology, a
parametric selection within the boundary defined by the most exigent eigen-
value guarantees that all the disagreement subsystems are stable, implying
that the norms of their states decrease exponentially with time. The dis-
agreement vector follows this behavior, its norm decreases until consensus
is reached. This is formally stated in the following Lemma.

Lemma 3 For a set of agents operating under a fixed communication topol-
ogy, the norm of the disagreement vector is always decaying when the para-
metric selection is such that the stability of the disagreement subsystems is
guaranteed.

Proof: Let the state of each disagreement subsystem be ξi(t) = [ξi(t) ξ̇i(t)]
T ,

i = 2, 3, . . . n. Given that every disagreement subsystem is stable, the
Lyapunov-Krasowskii approach [44] allows the construction of a Lyapunov
function of the form Vi = ξi(t)

T ξi(t) = ‖ξi(t)‖
2 for which V̇i(t) < 0. Since

the derivative of the norm of the individual disagreement subsystems is
negative definite, these norms are decreasing monotonically. The norm of
the full disagreement vector

‖ξd(t)‖ =

√√√√ n∑
i=2

‖ξi(t)‖ (32)

is therefore also monotonically decreasing. �
Lemma 3 guarantees that for tsi < t < tsi+1 , i.e., between two switching

instants, the norm of the disagreement vector decays and the agents tend to
converge into consensus. The end results depends then from what happens
right at the switching instants. The following subsections describe what
happens in the case of each protocol.

14



1

2

3

4

5

6

(a)

1 2 3

456

(b)

Figure 4: Two different connected topologies for six agents.

4.1 Protocol (1)

For a group of agents operating under protocol (1), the group decision value,
presented in (9), is topology dependent because the degrees of the agents are
in general different for each topology. If the topology switches the agents
try to arrive to a different decision value, i.e., a jump in the norm of the

centroid vector
[
ξ1(t) ξ̇1(t)

]T
occurs. This also causes a jump in the norm of

the disagreement vector ξd(t) at the switching instant, due to (31). Because
of the unknown nature of the transformation matrix, there is no way to
guarantee that the jumps are bounded. This behavior may induce instability,
even when the system is switching among stable topologies.

To better illustrate this idea, consider a group of six agents operating
under protocol (1) and switching among the two different communication
topologies depicted in Fig. 4. With a parametric setting of (k1, k2, τ) =
(5, 0.2, 0.06) we guarantee stability for each individual topology. We defined
the switching pattern by means of a periodic signal with period T = 1.4 s
and a duty cycle α, such that during α% of the period the agents commu-
nicate according to the topology depicted in Fig. 4(a), and according to the
topology in Fig.4(b) during the rest of it.

Figure 5 depicts the time evolution of the positions of the agents (Fig. 5(a)),
the topology dependent weighted centroid (Fig. 5(b)), and the norm of the
disagreement vector for a case in which α = 10. It is clear that, despite the
jumps on the value of the weighted centroid, the agents reach consensus.

By changing only the duty cycle of the switching signal to α = 60 com-
pletely different results are obtained. Figure 6 shows how the positions of
the agents, the weighted centroid, and the norm of the disagreement vector
evolve under this conditions.

This example shows that when a multi-agent system operates under pro-
tocol (1) and switching topologies, it is not possible to guarantee stability in
the general case. The conditions under which the switching system is stable
or unstable remain as an open question for further study.
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Figure 5: Behavior of six agents operating under protocol (1) and switching
stably among the two communication topologies of Fig.4. a) Positions of the
agents. b) position of the weighted centroid. c) Norm of the disagreement
vector.
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Figure 6: Behavior of six agents operating under protocol (1) and switching
unstably among the two communication topologies of Fig.4. a) Positions of
the agents. b) position of the weighted centroid. c) Norm of the disagree-
ment vector.
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4.2 Protocol (2)

For protocol (2) the following lemma proves the most important point.

Lemma 4 For a group of agents interacting under protocol (2) the norm
of the disagreement vector is continuous at the switching instant.

Proof: Since the Laplacian matrix L is symmetric, the diagonalization
T−1MT = Λ is performed using an orthogonal matrix T, for which T−1 =
TT . When an orthogonal matrix multiplies a vector, the norm of the vector
remains unchanged. Consider then a switch between two different topolo-
gies, described by Laplacians L1 and L2 which are diagonalized by orthog-
onal matrices T1 and T2. The transformed vectors before and after the
change in topology are given by

ξ(1)(t) =
(
TT

1 ⊗ I2

)
x(t), (33a)

ξ(2)(t) =
(
TT

2 ⊗ I2

)
x(t). (33b)

Given that the agents are not changing their positions or velocities when
the communication topology changes, ‖x(t)‖ is the same in both equations
(33). Now, considering that TT ⊗ I2 is an orthogonal matrix, we have that∥∥∥ξ(1)(t)

∥∥∥ = ‖x(t)‖ =
∥∥∥ξ(2)(t)

∥∥∥ . (34)

As stated in (11), for agents operating under protocol (2) the state of the
centroid subsystem is always equal to the average of the positions of the
agents. Since the positions are not changing, their average does not change
either, therefore ∥∥∥ξ(1)

1 (t)
∥∥∥ =

∥∥∥ξ(2)
1 (t)

∥∥∥ . (35)

Considering (31), (34) and (35) imply that the disagreement vector ξd is
continuous at the switching instants. �

We can now state the final result regarding the stability of a group of
agents operating under protocol (2) and switching topologies.

Lemma 5 If the parametric selection is such that every individual topol-
ogy leads to consensus, a group of agents operating under protocol (2) and
individual topologies always reaches consensus, regardless of the switching
scheme.

Proof: in order to reach consensus, the norm of the disagreement vector
should tend to zero. Lemma 3 show that this norm decays between switching
instants. Lemma 4 shows that it does not change at switching instants. we
can conclude that the norm of the disagreement vector is always decreasing,
and therefore the agents reach consensus. �
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Remark: This result is equivalent to that found by Olfati-Saber and
Murray in [3] for the case of protocols with first order agents. We presented
here a non-trivial extension to the case of consensus for second order systems.

The implication of Lemma 5 is that if a multi-agent system operating un-
der protocol (2) switches among stable communication topologies, it reaches
consensus regardless of the switching scheme. In this situation, the most ex-
igent eigenvalue is very useful. It allows the designer to select a proper set
of parameters which guarantees consensus without knowing the topologies
or the switching scheme.

An example of this is presented in Fig. 7. It shows the results of a
simulation in which six agents operate under protocol (2) and switch among
the two topologies of Fig. 4. The switching is again periodic, and the period
and duty cycle are the same as in the unstable example of Fig. 6. The
parameters are selected below the corresponding surface in Fig. 3(a). Notice
that Fig. 7(c) shows a smooth trace, confirming the results of Lemma 2.

5 Conclusions

This paper studies two consensus protocols for groups of agents driven by
second order dynamics and affected by communication time delays. The
agents are assumed to be operating under an bidirectional scheme, such
that the communication topology is described by an undirected graph. The
relation between the eigenvalues of a matrix associated to such graph and
the maximum delay value for which the agents are able to reach consensus
is studied in detail for both cases.

It is shown that for one of the protocols there is a possibility of defining
a stability boundary that guarantees convergence to consensus even without
knowing the number of agents. For the other protocol, the knowledge of the
number of agents suffices to define a stability boundary which guarantees
consensus for any connected topology under which the agents could be op-
erating. The eigenvalue that defines the most restrictive boundary in each
case is called the most exigent eigenvalue.

The switching topologies case is also taken under consideration. It is
shown that while for one of the protocols the stability can be guaranteed
regardless of the switching scheme, for the other one this is not the case and
some switching schemes may lead to instability.

Further questions on this topic are related to another concept introduced
in [25]: the most critical eigenvalue. The question to be answered in this
case is: what is the parametric combination (k1, k2, τ) which guarantees the
fastest convergence to consensus?

The codes used to create the examples of the paper are publicly available
in https://bit.ly/37pF6Eo, or can be requested via email to the authors.
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Figure 7: Behavior of six agents operating under protocol (2) and switching
stably among the two communication topologies of Fig.4. a) Positions of the
agents. b) position of the weighted centroid. c) Norm of the disagreement
vector.
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