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Abstract— We present a formulation for both implicit and
explicit dual model predictive control for a steel recycling
process. The process consists in the production of new steel by
choosing a combination of several different steel scraps with
unknown pollutant content. The pollutant content can only be
measured after a scrap combination is molten, allowing for
inference on the pollutants in the different scrap heaps. The
production cost should be minimized while ensuring high qual-
ity of the product through constraining the maximum amount
of pollutant. The dual control formulation allows to achieve the
optimal explore-exploit trade-off between uncertainty reduction
and cost minimization for the examined problem. Specifically,
the dual effect is obtained by considering the dependence of
the future pollutant uncertainties on the scrap selection in
the predictions. The implicit formulation promotes uncertainty
reduction indirectly via the impact of active constraints on the
objective, while the explicit formulation adds a heuristic cost
on uncertainty to encourage active exploration. We compare
the formulations by numerical simulations of a simplified but
representative industrial steel recycling process. The results
demonstrate the superiority of the two dual formulations with
respect to a robustified but non-dual formulation.

I. INTRODUCTION

Model-based control approaches such as model predictive
control (MPC) [1] use a model of the controlled system
to compute appropriate control inputs. By operating in a
closed-loop framework they are able to react to uncertainties
and model-plant mismatch. However, standard, i.e., nominal
MPC has no model of the uncertainty. Feedback is applied
based on the current state estimate independent of its quality.
Further, in the absence of additional measures, it will often
plan trajectories right on the boundary of the feasible set,
such that a slight perturbation can lead to constraint violation.
Approaches such as stochastic or robust MPC (SMPC resp.
RMPC) try to solve this problem by explicitly taking into
account the uncertainty of the model predictions [1]–[4].
However, typically this model of uncertainty is static in the
sense that they are not aware how uncertainty can be reduced
by learning about the system. The field of dual control [5]
considers that controls can be used to achieve two competing
aims, in what is often referred to as explore-exploit trade-off:
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exploiting the already available information to (greedily) ad-
vance the original control objective, or exploring the system
by exciting it in such a way that new information is efficiently
obtained. Model-based approaches can be made aware of
this possibility of uncertainty reduction by including an
estimator model and planning over the corresponding closed-
loop policies [6]. As this problem is generally intractable,
only approximations can be solved. If the approximation
maintains the relevant dual control aspects it is considered
implicit dual control. Otherwise additional measures need
to be taken, such as a heuristic cost term on uncertainty or
random control perturbations ensuring sufficient excitation,
in what is considered explicit dual control [7]. An excellent
survey on dual MPC can be found in [8].

Steel is mainly produced using one of two methods:
Blast Furnace (BF) or Electric Arc Furnace (EAF). The
former uses iron ore and cooked coal as raw materials,
while the latter melts steel scrap with electrical current.
Steel manufacturing accounts for around 25% of industrial
greenhouse gas emissions [9], and steelmaking from scrap
in an EAF generates one-third of the emissions associated
with steelmaking in a BF [10]. Therefore, further reliance
on steel scrap recycling and green electric energy is funda-
mental to achieve a sustainable steel production. Nonetheless
steelmaking via EAF presents challenges. In fact when steel
scraps are molten, we obtain low concentrations of residual
elements which are not intentionally added during the steel
production cycle and are difficult to remove. These residual
elements may harm the steel properties. As showed in [11],
steel production from scrap will become even more difficult
in the future, as the content of residual elements is likely
to increase if less steel is produced from iron ore. In this
work we limit our concern to copper which is a residual
element widely spread in mechanical and electrical waste
and is known to cause surface defects during hot rolling
processes [12], thus limiting the applicability of recycled
steel. For all these reasons having a method that monitors
the residual elements and selects the scrap to melt according
to the steel to be produced has paramount importance.

We consider a scrapyard where the scrap is divided into
heaps according to their provenience such as automotive or
rail industry and their characteristics such as stainless steel,
high or low alloy steel scrap. The aim is to produce steel,
which has a maximum content of copper allowed, with the
cheapest scrap mix so as to minimize the cost associated
with raw materials. However, given the dimension of the
heaps and heterogeneity of the scrap it is not possible to
know exactly the copper content in each heap. Therefore, we
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assume to have statistical knowledge of each heap and can
refine this knowledge during the production process. Indeed,
once it is decided how much scrap is picked from each heap,
the scraps are molten and a measurement of the copper
content in the product can be taken. The explore-exploit
trade-off arises in this scrap selection problem because on
the one hand we would like to exploit the current knowledge
to achieve the cheapest possible scrap combination, favoring
a repetition of previously tried successful selections. On the
other hand changing the scrap mix allows us to improve
our knowledge via exploration and possibly leads to a more
economical selection in the long run.

Related work: A similar (non-square root based) MPC
formulation is proposed in [13], but for a deterministic linear
system and with the constraint affected by a state- and
control-dependent linear random process. The dual MPC
formulations proposed in [14] and [15] deal with discrete
and time-invariant linear systems with deterministic state but
output parametrized by an uncertain parameter. Although
our model can be rewritten in their framework, they con-
sider output tracking problems and explicitly account for
the parameter uncertainty in the cost function. In Belief-
space planning [16] an estimator model is used to predict
future estimation uncertainty but without considering uncer-
tain constraints. In [17] the authors introduce a formulation
for perception-aware MPC of a quadcopter, but without
modelling uncertainty explicitly and instead using cost terms
and constraints to keep the nominal state in regions with good
observability.

Contribution: In this paper we introduce an implicit and
explicit dual MPC formulation for a steel recycling process.
The advantages of the proposed formulations against non-
dual approaches are demonstrated in numerical experiments.
The simulation is based on fictitious numbers and reduced in
dimension for clarity of exposition, but otherwise realistic to
how it could be used on a real plant. The process is modelled
as an autonomous linear system where the state is estimated
with a Kalman filter. System control and dual effect occur
when the augmented state formed by the state estimate and
its covariance is predicted, since the covariance is directly
affected by the scrap selection. A QR-factorization based
square-root Kalman filter update improves the numerical
stability and ensures positive-semidefinitness of the predicted
covariance matrices as compared to a standard Kalman filter.

Outline: In Sec. II we introduce the model of the problem
together with the nominal and robustified formulation. In
Sec. III we present the dual formulations and, eventually,
in Sec. IV we compare the formulations by numerical
simulations of a simplified steel recycling process.

II. NOMINAL AND ROBUST FORMULATION

We model the steelmaking process as an autonomous
discrete time linear system where time index t = 0, . . . , T
denotes the casts’ sequence. The model is given by{

xt+1 = xt + wt

yt = u>t xt + vt
, t = 0, . . . , T, (1)

where the state xt ∈ Rnx represents the copper content
in each heap of scrap, the output yt ∈ Rny contains the
measured copper content in the produced steel. The output
is a linear combination of the state weighted by the controlled
variable ut ∈ Rnx which corresponds to the amount of scrap
picked from each heap. State and output are corrupted by
normally distributed and i.i.d. disturbances wt ∼ N (0, Q)
and vt ∼ N (0, R) respectively, where N (µ,Σ) denotes the
normal distribution with mean µ and covariance Σ.

In the considered set-up the system state xt is not acces-
sible, therefore a state observer is needed to compute a state
estimate x̂t, we assume that the initial state x0 is normally
distributed N (x̂0, P0) with covariance P0 � 0. Despite the
linear system in itself is autonomous, when we consider
the estimated state x̂t augmented by its covariance Pt, the
control variable ut directly affects Pt via the estimator
update, therefore obtaining a controlled system.

A. Optimal scrap selection problem – Nominal formulation

We assume that every scrap has a certain price pi, i =
1, . . . , nx and the concentration of copper, i.e., the pollutant,
in the final steel yt is upper bounded by a value ymax.
Therefore we aim to minimize the cost of the steel produced
in the cast t by selecting the cheapest mix of scraps ut which
fulfills the limitation on yt.

A first simple formulation of the scrap selection problem
is given by

PNOM :

min
u0

p>u0 (2a)

s.t. u>0 x̂0 ≤ ymax, (2b)
umin ≤ u0 ≤ umax, (2c)

1>u0 = 1, (2d)

where x̂0 is the state estimate at the current time instant
t obtained from a Kalman filter. Note that this formulation
is not accounting for uncertainty on the state. Thus, if x̂0
is a wrong guess of x0, constraint (2b) might be violated
by the real state x0. As in this formulation the state is
not affected by the controls, there is no reason to have a
prediction horizon. Finally, note that the dynamics (1) plays a
role only in closed-loop control. Indeed, we apply the optimal
u0 to the process and measure the corresponding y0. Then,
we feed these two quantities to a Kalman filter and update
our estimate of x̂0. We will discuss the closed-loop scheme
at the end of Section III.

B. Robust formulation

Considering the covariance P of the state estimate x̂,
we can take into account its level of uncertainty. Thus, we
can require constraint (2b) to hold with at least a certain
probability, resulting in the chance constraint

Px∼N (x̂,P )(u
> x ≤ ymax) ≥ 1− ε, (3)

with ε > 0 being the maximal allowed probability of
constraint violation. Since x is normally distributed, the non-
noisy output u>x follows a normal distribution as well with



u>x ∼ N (u>x̂, u>Pu). Therefore, we can write the chance
constraint as

u> x̂+ γ(ε)
√
u>Pu ≤ ymax, (4)

where the coefficient γ(ε) = Φ−1(1− ε) controls the safety
backoff from the constraint and can be computed from the
inverse cumulative distribution function Φ−1 of the standard
normal distribution such that the amount of backoff corre-
sponds to the specified probability 1 − ε. In the following,
we drop the explicit dependency of γ on ε. We also refer
to this constraint as robustified because for a fixed value
of γ it corresponds to a robust constraint where a bounded
distribution of the state is assumed, with support given by the
ellipsoidal level line of the normal distribution corresponding
to the chosen value of γ. The resulting robustified scrap
selection problem can be formulated as a Second Order Cone
Program (SOCP) [18]:

PROB :

min
u0

p>u0 (5a)

s.t. u>0 x̂0 + γ
√
u>0 P0u0 ≤ ymax, (5b)

umin ≤ u0 ≤ umax, (5c)

1>u0 = 1. (5d)

As in the nominal case, there is no prediction horizon, since
the influence of the scrap selection on future uncertainty is
not modelled.

III. DUAL FORMULATIONS

In this section we illustrate the dependency of the state
estimate covariance on the scrap selection and how the dual
effect is obtained from the covariance predictions.

A. Implicit dual formulation

Consider the Kalman filter propagation of the state esti-
mate covariance, the future covariance is directly affected by
ut, then we can manipulate future uncertainty. Hence, it is
meaningful to consider a prediction horizon k = 0, . . . , N for
the optimal scrap selection problem where the propagation
of the state estimate covariance anticipate feedback for u.
Since the chance constraint needs to hold when taking
the measurement, i.e., without taking into account the new
information, the predicted covariance Pk := Pk|k−1 is the
relevant one. The resulting optimization problem is given by

min
u0,...,uN ,
P1,...,PN ,

K0,...,KN−1

N∑
k=0

p>uk (6a)

s.t.

Pk+1 = ψ(uk,Kk, Pk), k = 0, . . . , N − 1, (6b)

Kk = Pkuk(u>k Pkuk +R)−1, k = 0, . . . , N − 1, (6c)

u>k x̂0 + γ
√
u>k Pkuk ≤ ymax, k = 0, . . . , N, (6d)

umin ≤ uk ≤ umax, k = 0, . . . , N, (6e)

1>uk = 1, k = 0, . . . , N, (6f)

where Kk are the Kalman gains and function ψ denotes the
covariance propagation

ψ(uk,Kk, Pk) =

= (I −Kku
>
k )Pk(I −Kku

>
k )> +KkRK

>
k +Q.

(7)

Recall that Q and R are the covariance of the state and output
noise respectively. Note that the chance-constraint (6d) is
enforced with respect to x̂0 since due to the model the
expectation of the state remains constant throughout the
horizon. Since the propagation of Pk+1 depends on uk, the
optimization problem (6) can act on the backoff term in con-
straint (6d). Therefore, the incentive to reduce the uncertainty
depends exclusively on the reduction of the backoff and the
exploration incentive increases with the horizon length as
a longer horizon allows for more exploitation. Intuitively,
if the horizon has length N = 1, there is no chance to
explore because the optimization problem can only exploit
the available information for selecting the scrap. On the other
hand, if the prediction horizon is sufficiently long, it can be
worthwhile to take non-greedy actions that reduce the future
uncertainty. Thus, the formulation (6) is not only statically
uncertainty-aware but it is also able to deliberately reduce
future uncertainty. It is a strongly nonlinear and nonconvex
optimization problem that can be solved with a NLP solver.

Even though in (7) we update the covariance matrix
according to the Joseph form, which retains positive defi-
niteness and symmetry of the covariance matrix [19], this
is not guaranteed during the optimization solver iterations,
resulting in possible numerical difficulties. It is possible to
overcome this issue by considering the propagation of the
square root factors of the covariance matrix, as shown in the
following.

B. Square root covariance propagation

Following the square root covariance filtering algorithm
introduced in [20] it is possible to propagate the covariance
matrix just using the corresponding square root matrices.
Given a positive definite matrix A � 0, a square-root factor
will be defined as any matrix, Ar, such that A = Ar>Ar. In
general, square root factors are not unique. They can be made
unique by imposing specific properties such as symmetry
or triangular structure. In our case the latter is preferred,
therefore in the following any Ar denotes the upper triangular
factor.

Denote the upper triangular decomposition of the matrices
P0, Q,R as P r

0 , Q
r, Rr. Then for k = 0, . . . , N − 1 we can

propagate P r
k by a QR decomposition [20] as follows Rr 0

P r
kuk P r

k

0 Qr

 = QF
k

S
r
k PkukS

−r
k

0 P r
k+1

0 0

 , (8)

where QF
k is an orthogonal matrix and Sr

k denotes the
square root factor of the observer innovation covariance
Sk = u>k Pkuk + R = Sr>

k Sr
k. Then, (8) defines a function

ψQR such that

P r
k+1 = ψQR(uk, P

r
k). (9)



Moreover, it is possible to operate only with the square root
factors of the covariance matrix to preserve their condition
number throughout the prediction horizon of problem (6).
Therefore, the term

√
u>k Pkuk in constraint (6d) is restated

as √
(P r

kuk)>(P r
kuk) = ‖P r

kuk‖2. (10)

Finally, the optimal scrap selection problem (6) can be
equivalently stated as PIMPL:

min
u0, . . . , uN

N∑
k=0

p>uk (11a)

s.t.

u>k x̂0 + γ‖P̃ r
k(u)uk‖2 ≤ ymax, k = 0, . . . , N, (11b)

umin ≤ uk ≤ umax, k = 0, . . . , N, (11c)

1>uk = 1, k = 0, . . . , N, (11d)

where P̃ r
0 corresponds to the Cholesky decomposition of P0,

u = (u0, . . . , uN ) and P̃ r
k+1(u) = ψQR(P̃ r

k(u), uk), k =
0, . . . , N − 1. In contrast to the formulation (6), here the
covariance propagation is not expressed as constraints but is
computed externally as function of the controls u.

C. Explicit dual formulation

By adding a heuristic cost on uncertainty it is possible
to encourage exploration even more than via the implicit
incentive provided by the backoffs in (11b). This new term
is weighted in the cost function by a hyperparameter α
that regulates the explore-exploit trade-off. Therefore, the
explicit dual formulation PEXPL share the same constraints
of formulation (11) but its cost function is given by

N∑
k=0

p>uk + αTr(P̃ r
k(u)>P̃ r

k(u)), (12)

where α ≥ 0 is the hyperparameter that tunes the exploration
incentive. Adding the trace of the covariance matrix to the
cost function allows us to evenly minimize uncertainty along
all directions. Note that for α = 0 we recover the cost
function (11a) of the implicit dual MPC problem.

D. Closed-loop scheme

We are interested in solving the optimal scrap selection
problems (2), (5), (11) and (11) with cost function (12) for
every cast t = 0, . . . , T − 1. We apply to the plant only
the first element of solution vector ut := u?0 following the
receding horizon principle. Once the cast t is completed we
can measure the copper concentration yt and feed both ut
and yt to the Kalman filter routine. In this way, we update
the latest predictions of x̂t+1, Pt+1, needed to solve the
optimization problem at the next time step t + 1. A block
scheme for the closed-loop simulation is depicted in Fig. 1.

Optimal Scrap
Selection
Problem

Plant

Kalman filter

Fig. 1. Closed loop block scheme.

TABLE I
SIMULATION PARAMETERS USED IN SEC. IV

Name Symbol Value

True initial state x0 (0.07, 0.13, 0.17)

Initial state covariance P0 diag(10−4, 10−3, 10−3)

State noise covariance Q 10−7 · I
Output noise covariance R 2 · 10−6

Scrap prices p (2, 1, 1)

Max copper allowed ymax 0.12

Max constraint violation ε 2.55%

Max constraint violation γ(ε) 2

Control constraints [umin, umax] [0, 1]

Exploration hyperparameter α 100

Prediction horizon N 15

Simulation length T 20

IV. NUMERICAL EXAMPLES

In this section, we compare the closed-loop trajectories of
the problem formulations stated in Sec. II-III. First, we show
an example for each formulation and then, since we have an
uncertain system, we assess the general closed-loop behavior
by sampling many different uncertainty realizations.

The four formulations share the same parameters and
initialization, which are collected in Table I. The true initial
state of the system x0 is always the same, but we assume
imperfect knowledge of it. In consequence the initial state
estimate x̂0 varies, e.g., because of a different history, and is
sampled as x̂0 ∼ N (x0, P0). The choice of the scrap prices
p is motivated by the fact that the first scrap has higher cost
since its copper content is lower in terms of mean value and
uncertainty compared to the other two. Moreover, we sup-
pose that each heap can supply an infinite amount of scrap,
so that we will not run out of a scrap during the closed-loop
simulation. The choice of the exploration hyperparameter α
will be discussed at the end of the Section. The simulations
are carried out using Python, the optimization problems are
formulated using CasADi [21] and solved via IPOPT [22].

In the following we refer to the formulations (2), (5), (11)
and (11) with cost function (12) as nominal, robust, implicit
dual and explicit dual formulation, respectively.

The letters A,B,C encode the name of the scrap, therefore
x = (xA, xB, xC), x̂ = (x̂A, x̂B, x̂C) and u = (uA, uB, uC).
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Fig. 2. Selected example – nominal formulation

A. Selected example

The four formulations share the initial estimated state
x̂0 = (0.0695, 0.1639, 0.1469) and the same realization of
the two disturbances wt, vt, t = 0, . . . , T − 1. Figures
from 2 to 5 contain the results of the closed-loop simulation.
Specifically, the first one depicts the state, i.e., the copper
content of each heap as percentage by weight, the dashed
lines are the true state while the solid lines are the estimated
state. The shaded area corresponds to the 1σ standard devi-
ation of x̂. The second plot represents the control, i.e., the
selected mass fraction of each scrap. The third plot pictures
the constraint on the maximum copper allowed in the final
steel. This plot shows the possible constraint violations and,
for the uncertainty-aware formulations, the magnitude of the
backoff.

Fig. 2 shows the resulting closed-loop trajectory obtained
with the nominal formulation. One can notice that at t = 1,
the state estimate x̂C has recovered the true value xC. At
this step, x̂C is greater than x̂B, thus the scrap selection
picks only scrap A and B. This scrap combination strongly
excites the Kalman filter block in closed loop, leading to very
accurate prediction of the states at time t = 2. The accurate
estimate of x̂B leads to increased use of scrap B and reduced
use of scrap A to achieve the minimal cost. This formulation
achieves the lowest cost among the ones presented, namely
23.86, but ignores constraint violations, as can be seen in the
third plot of Fig. 2 where the constraint on the maximum
copper content allowed is exceeded.

Fig. 3 is obtained adopting the robust formulation to solve
the scrap selection problem. Despite being an uncertainty-
aware formulation, it does not know how to actively reduce
uncertainty, since there is no explicit dependence of the scrap
selection on the state estimate covariance. From t = 2 the
scrap mix is kept constant for the rest of the simulation. This
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Fig. 3. Selected example – robust formulation

does not bring new information to the Kalman filter block,
resulting in a state estimate x̂ far from the true value x and
large uncertainty on x̂B and x̂C. In the end, this leads to a
greater cost of the closed-loop trajectory. Yet, from the third
plot, one can notice that a backoff is always kept from ymax

which avoids constraint violations.
Fig. 4 depicts the closed-loop trajectory attained with the

implicit dual formulation. One can see that until t = 4, scrap
B is barely selected. Also, uC is greater than uB until the
mean of the estimate x̂C is smaller than x̂B. However, a
small uB is picked which is enough to excite the Kalman
filter in closed loop such that at t = 5 we have the opposite
situation, x̂B smaller than x̂C. At this time step, a greater uB
is selected because this formulation embeds the notion that
the scrap selection can reduce the uncertainty on the future
estimates leading to lower cost. The greater use of uB has
further distinguished x̂B and x̂C and reduced the uncertainty
on the former. The scrap selection at steps t = 6, 7, 8 further
increases the mass uB while reducing uA and eliminating
uC. From t = 8 the scrap mix is the same until the end of
the simulation. Eventually, the exploration embedded in the
problem formulation improves the closed-loop performance
compared to the robust formulation. This form of exploration
is cautious since the realized y is always below the prescribed
limit ymax, and it involves exclusively the directions where
reducing uncertainty leads to lower cost. The first plot of
Fig. 4 shows the main drawback of this approach. In fact
exploration is triggered only when x̂B gets smaller than x̂C
and dependent on the Kalman filter block in closed loop.
This happens because the formulation only plans an open-
loop control trajectory instead of a policy. In consequence, it
does not know that the scrap selection will be adapted after
new knowledge is acquired. Instead, with respect to the cost,
it only plans with the currently estimated mean. Note that if
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Fig. 4. Selected example – implicit dual formulation

the initial state estimates are further apart, we may need too
many casts to meet the condition that triggers exploration,
leading to high-cost trajectories similar to the ones obtained
with the robust formulation.

Finally, Fig. 5 shows the results achieved by the explicit
dual formulation, where exploration is promoted by the
additional minimization term in the cost function (12). This
formulation reduces the uncertainty in every direction earlier
than the previous approach, because it provides scrap combi-
nations which excite more the Kalman filter. Indeed, already
in the scrap mix of step t = 0, this formulation chooses
a bigger uB than the implicit dual formulation. Moreover,
once uncertainties on x̂ are reduced, the second term of
cost function (12) becomes negligible compared to the first
one. Thus, the explicit dual formulation doesn’t perform
any other exploration actions which may increase the cost
of the closed-loop trajectories. This leads to the minimum
cost among the uncertainty aware formulations without any
constraint violation with a value of 24.92, followed by the
implicit dual formulation with 25.42 and the robust one with
29.03.

B. Extensive comparison

Since the performance of each formulation depends on
the disturbance and initial state realizations, we run Ns =
1000 different simulations, where the adopted parameters
are the same as described at the beginning of this section.
The closed-loop trajectories, obtained by applying the four
different formulations, share the same disturbance and initial
state realization.

First, we focus on the share of constraint violations
obtained with the four formulations. This metric is computed
by considering each point of each simulation independently.
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Fig. 5. Selected example - explicit dual formulation

Therefore, the share of constraint violations is computed as:

1

Ns · T

[
Ns−1∑
k=0

T−1∑
t=0

I>0(yk,t − ymax)

]
, (13)

where I>0 denotes the indicator function that takes value
1 if its argument is positive and 0 otherwise. Results are
collected in Table II. The nominal formulation is not aware
about uncertainty and places the mean estimate ŷ always
exactly on the constraint. Thus it is violated in about 50%
of the cases. Instead, for the other formulations, violations
happen on average 2.2 − 2.4% of the time, corresponding
to the chosen allowed constraint violation probability of ε '
2.55%.

Secondly, we take into account the cost of the closed-
loop trajectories obtained with the different formulations.
In Table II, we report the empirical mean of the cost
distribution. One can see that the nominal formulation leads
to minimum cost, the robust formulation to the highest cost
and the two dual formulations have similar cost which are in
between the other two. In Fig. 6 we plot for each formulation
the empirical PDF overlapped by a portion of the total
realizations, specifically 15% of the points. The nominal and
implicit dual formulations share a similar PDF where a cloud
of points is far from the mean. These realizations correspond
to the scenarios where the scrap selection u cannot drive the
state estimate x̂ close to the true state x, leading to bad
performance. However, these scenarios are few compared to
the ones realized using the robust formulation. The latter has
very scattered realizations leading to unreliable performance
in terms of cost. Finally, the explicit dual formulation is
outperforming the others in terms of reliability. In fact the
cost PDF does not have long tails resulting in very consistent
behavior.

Finally, we want to motivate why the hyperparameter in



TABLE II
PERFORMANCE OF THE CLOSED-LOOP TRAJECTORIES

Empirical mean Nominal Robust Impl. dual Expl. dual

Constraint viol. 50.92% 2.43% 2.34% 2.18%
Cost 23.76 25.84 24.80 24.63

nominal robust implicit explicit

formulation

23

25

27

29

31

co
st

Fig. 6. Extensive comparison – Cost of the closed-loop trajectories
The colored dots correspond to a portion of the total realizations and their
scattering along the x-axis is to improve visualization. The shaded gray
areas are the empirical probability density functions computed using all the
available realizations.

the explicit dual formulation is set to α = 100. We compare
five different values of α ∈ {0, 1, 10, 100, 1000}. The share
of constraint violation and the corresponding distributions
are very similar and therefore we focus on the cost. The
results are collected in Table III. We can see that the mean
of the empirical PDF obtained with α = 100 achieves the
minimum value and allows a more compact distribution of
the cost with 99% of the points below 25.53 as shown in
the second column. Also note that once the weight is set
sufficiently large, i.e., α = 10, the results are very insensitive
to the choice of α.

In this work we have focused only on copper, but it is
straightforward to extend the approach to multiple residual
elements.

V. CONCLUSIONS

In this paper we have presented a formulation for both
implicit and explicit dual model predictive control for a steel
recycling process. The process model allows for exact predic-
tions of the state estimate uncertainty with a Kalman filter,
leading to an uncertainty-aware and dual formulation. The
implicit formulation indirectly tackles the explore-exploit

TABLE III
COMPARING DIFFERENT α IN THE EXPLICIT DUAL FORMULATION

α 1 10 100 1000

Cost
Mean 25.07 24.85 24.94 25.31
Quantile 0.99 30.80 26.23 25.80 26.11

trade-off while in the explicit formulation one should balance
the trade-off by tuning one hyperparameter. The numerical
simulations of the steel recycling process show that dual
formulations outperform the uncertainty aware robust formu-
lation in terms of cost of the closed-loop trajectories while
achieving the same prescribed probability of constraint satis-
faction. Specifically, the explicit dual formulation provides a
more consistent closed-loop behavior than the implicit dual
formulation, and proves to be insensitive to the choice of the
hyperparameter once it is set large enough.
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