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Rudolf Reiter1, Armin Nurkanović1, Jonathan Frey1,2 and Moritz Diehl1,2

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract— In recent years, nonlinear model predictive control
(NMPC) has been extensively used for solving automotive
motion control and planning tasks. In order to formulate
the NMPC problem, different coordinate systems can be used
with different advantages. We propose and compare formula-
tions for the NMPC related optimization problem, involving
a Cartesian and a Frenet coordinate frame (CCF/ FCF) in a
single nonlinear program (NLP). We specify costs and collision
avoidance constraints in the more advantageous coordinate
frame, derive appropriate formulations and compare different
obstacle constraints. With this approach, we exploit the simpler
formulation of opponent vehicle constraints in the CCF, as
well as road aligned costs and constraints related to the FCF.
Comparisons to other approaches in a simulation framework
highlight the advantages of the proposed approaches.

I. INTRODUCTION

Trajectory optimization with obstacle avoidance is a major
challenge of motion planning and control in autonomous
driving and racing. Trajectories need to be feasible to kin-
odynamic equations and avoid collisions with objects that
are often hard to predict. Collision avoidance and the related
generation of a reference trajectory or collision avoidance as
part of the controller, e.g., model predictive control (MPC),
is often formulated as a nonlinear discrete time-optimal
optimal control problem [1], [2], [3], [4]. Through a carefully
chosen nonlinear program (NLP) formulation and by means
of dedicated real-time optimization solvers [5], [6], the
problem can be solved efficiently. The transformation of the
dynamics into a road aligned coordinate frame (CF), namely
the Frenet CF (FCF), has shown many advantages, such
as the simplification of references and road boundaries [1],
[7], [8]. Nevertheless, the transformed coordinates also come
with the disadvantage of transformed geometric obstacle
shapes [9], cf. Sec. II-C. Typical convex geometric shapes,
such as boxes, ellipses or circles, are easier to describe
in the Cartesian reference CF and become nonconvex after
transformation into the FCF. The shapes of objects in both
frames are shown in Fig. 1. In nonlinear optimization,
”lifting” is a technique where the optimization problem is
formulated and solved in a higher dimensional space, which
offers advantages regarding convergence rates and region of
attraction [10]. The contribution of the presented paper is a
way to extend and lift the state space of the vehicle model
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Fig. 1. Simulated overtaking of the same maneuver in two CFs, namely
the Cartesian (top plot) and Frenet CF (bottom plot). Planned trajectories
with ∆t = 0.1s and snapshots every 0.7s of boundary box alignments.

by including both CFs and thereafter formulate constraints
and costs in the more appropriate CF. We show an increase
of overall performance due to the improved description of
the obstacle shapes with a variety of deterministic obstacle
avoidance formulations in simulation. Despite the increased
state dimensions, even the computation time can be lowered
compared to a pure FCF representation. Additionally, refer-
ences can be set in any of the two CFs, which allows for
flexible combination with planning modules that use either
CF, e.g., [11].
Related work: The effectiveness of NMPC using the FCF
related to automotive tasks was shown in numerous works
[1], [2], [7], [8], [11], [12], [13], [14], [15], [16], [17], [18].
None of them explicitly considers the shape transformation
of objects, which are rather over-approximated with convex
shapes in the FCF. Convex obstacle shapes in the Cartesian
CF (CCF) are considered in [19] with potential fields, in
[12], [20], [21] with covering circles and Euclidean distance
constraints, in [4], [22] with ellipses, in [23], [24] with sep-
arating hyperplanes and [6], [25] with a formulation related
to a conjunction of convex planes covering the obstacle. The
most prominent variants are compared within this paper in
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the Frenet and the lifted formulation. More importantly, the
shape fitting problem with transformed objects in the FCF
and an approach with surrogate representations in both CFs
was recently considered in a related way in [9]. However, [9]
focuses on different topics, as it deals with linear MPC and
does not consider dedicated obstacle formulations. Further-
more, it integrates an approximation of the transformation
itself into the model, i.e., and approximation of a DAE,
whereas in our formulation we provide a reduced index
formulation which constitutes an ODE (see Sec. II-D) or
eliminate algebraic variables directly. Another variant of
tracking along a reference path stems from [26] and was
extended to vehicles in [3] and [27]. It uses a method
called contouring control, which uses a state on a path-
length parameterized reference curve and an additional state
for its path position. Similarly to [9], it approximates the
transformation implicitly, which involves the approximation
of a bi-level optimization problem for finding the closest
point on the reference curve.
Contribution: This paper proposes novel NMPC formula-
tions that extend the state space to two CFs and allow for
an efficient handling of the occurring costs and constraints.
Thereby, the usually convex and simple obstacle shapes in the
Cartesian CF can be directly used in the NMPC formulation.
We show in simulation that we outperform the conventional
approach of over-approximation [15], [16], [17], [18] in
terms of computation time and performance. Furthermore,
the obstacle shapes are independent of the states and the
road (up to Euclidean transformations), which is not the
case in a conventional Frenet representation. Additionally, we
contribute with an extensive comparison of common obstacle
avoidance formulations in the proposed formulations.

II. VEHICLE MODELS

In order to formulate our NMPC problem, we use a
rear-axis referenced kinematic vehicle model [1], [7]. It
comprises three states that are related to the CF which we
write as xc. Particularly, we use xc,C = [x y ϕ]> ∈ R3

for the Cartesian states and xc,F = [s n α]> ∈ R3

for the Frenet states. We use the Cartesian (earth) position
states x, y and the heading angle ϕ. Similarly, in the FCF
we use position states s and n, together with the difference
angle α, which are all related to a reference curve. The other
states x¬c = [v δ]> ∈ R2 are needed for both, CCF and
FCF, where v is the absolute value of the velocity at the
rear axis and δ is the steering angle. For the full CCF model
we use the state xC = [xc,C> x¬c>]> and for the FCF
model we use the state xF = [xc,F> x¬c>]>. We assume
a rear-wheel drive force F d as input, which includes the
acceleration and braking force. We simplify that the braking
force of the front wheel acts in the direction of the rear-
wheel, thus we include it in the force F d. This approximation
is valid for small steering angles, since the projection of
the front wheel force F d,front on the rear-wheel reference
is given by F d,front cos(δ). The most prominent resistance
forces for wind Fwind(v, ϕ) = cairvrel(v, ϕ)2 and the rolling
resistance F roll = crollsign(v) are included, with the total

resistance force F res(v, ϕ) = Fwind(v, ϕ) + crollsign(v).
The air drag depends on the vehicle speed v in relation to
the wind speed vwind with the air friction parameter cair.
The rolling resistance is proportional to sign(v) by the
constant croll. We drop the sign function, since we only
consider strictly positive speeds. We model the relative speed
related to the air drag, which we assume constant and known,
by vrel(v, ϕ) = v + vwind cos(ϕ − ϕwind), where ϕwind

is the angle of the direction the wind asserts force and ϕ
is the heading of the vehicle in the CCF. In most works
(e.g., [3], [7]) the influence of external wind is ignored,
since its influence might be small, unpredictable or absent
in experimental indoor setups. Nevertheless, we include it,
since it demonstrates an influence that can be easily modeled
in the FCF, but is difficult to model in the FCF.
The input of our model is given by u = [F d r]> ∈ R2,
where r = dδ

dt denotes the steering rate. The dynamics of the
coordinate unrelated states are written as

ẋ¬c = f¬c(x¬c, u, ϕ) =

[
1
m (F d + Fwind(v, ϕ)− F res(v))

r

]
,

(1)
where m denotes the vehicle mass. The lateral acceleration
alat(x

¬c) at the rear wheel axis is given by

alat(x
¬c) =

v2 tan(δ)

l
, (2)

where l = lf + lr is the total wheelbase length of the vehicle.

A. CCF vehicle model

Using simple kinematic relations, the dynamics of the
Cartesian states can be written as

ẋc,C = f c,C(xC, u) =

v cos(ϕ)
v sin(ϕ)
v
l tan(δ)

 . (3)

The full five-state Cartesian vehicle model is given by

ẋC =

[
f c,C(xC, u)
f¬c(x¬c, u, ϕ)

]
. (4)

B. FCF vehicle model

Since in usual vehicle motion control tasks, the vehicle
moves mainly close to a reference curve γ : R→ R2, i.e.,
the street center line, the transformation into a curvilin-
ear CF is a natural choice. The reference curve γ(σ) =
[γx(σ) γy(σ)]> is parameterized by its path length σ
and can be fully described by one initial transforma-
tion offset γ(σ0), an initial orientation ϕ0 and the curva-
ture κ(σ) = dϕγ

dσ along its path. We use ϕγ(σ) for the tangent
angle in each point of the curve. As part of the Frenet
transformation, we project the Cartesian vehicle reference
point pveh ∈ R2 on the closest point in the Euclidean distance
of the reference curve with

s∗(pveh) = arg min
σ

∥∥pveh − γ(σ)
∥∥2

2
. (5)

W.l.o.g., we always set the initial reference point of the
transformation to zero. The position s on the curve is used
as longitudinal FCF state. The vector (pveh − γ(s∗)) is
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Fig. 2. State relations between Cartesian and FCF

difference of the closest point on the curve to the vehicle.
By using the 90 degree rotation matrix R90 and projection
to the normal unit vector of the curve en = R90γ′(s∗),
we obtain the Frenet state n = (pveh − γ(s∗))>en. The
third Frenet state α relates the tangent angle of the curve
to the heading of the vehicle with α = ϕ − ϕγ(s∗). The
relations of the transformation are shown in Fig. 2. We write
the transformation of a Cartesian state xc,C = [x y ϕ]>

to a Frenet state xc,F = [s n α]> by means of the
transformation

xc,F = Fγ(xc,C) =

 s∗

(pveh − γ(s∗))>en
ϕγ(s∗)− ϕ

 , (6)

and its inverse by

xc,C = Fγ−1(xc,F) =

γx(s)− n sin(ϕγ(s))
γy(s) + n cos(ϕγ(s))

ϕγ(s)− α

 . (7)

The existence and uniqueness of the transformation is guar-
anteed under mild assumptions which are discussed in detail
in [7]. As shown in [1], we obtain the ODE for the kinematic
motion in the FCF as

ẋc,F = f c,F(xF, u) =


v cos(α)
1−nκ(s)

v sin(α)
v
l tan(δ)− κ(s)v cos(α)

1−nκ(s)

 . (8)

The Cartesian state ϕ is needed in order to formulate the
wind disturbance. It is not available in the FCF, conse-
quently it needs to be computed by evaluating the tangent
angle ϕγ(s) of the current position s on the reference
curve γ(σ). This can be approximated by a spline func-
tion ϕ̂γ(s) that is computed for the road layout. It yields
a spline approximation for the heading angle with ϕ̂(s, α) =
ϕ̂γ(s)+α. The full FCF vehicle model is consequently given
by the five state model

ẋF =

[
f c,F(xF, u)
f¬c(x¬c, u, ϕ̂)

]
. (9)

Feature CCF FCF

reference definition 7 3

boundary constraints 7 3

obstacle specification 3 7

disturbance specification 3 7

TABLE I
COMPARISON OF THE TWO MODEL REPRESENTATIONS

C. Model comparison

As indicated in Sec. I, the CF models have different
advantages when used in a NMPC formulation, see Tab. I
for an overview. The definition of road boundaries and the
reference curve, which are often center-lane-aligned curves
are straight forward to define in the FCF, but hard to define
in the CCF. However, the obstacle definition in the FCF is
cumbersome due to several reasons. Despite convex obstacle
shapes in the CCF, safety cannot be guaranteed when using
SQP to solve the NMPC problem with the Frenet model.
Convex obstacle shapes cannot be guaranteed to be convex,
if transformed into the FCF. This fact can be seen from
the following example. Consider a straight line, which is a
convex set, and a circular road. Let the line intersect the road
at coordinates γ(σ1) = [x1 y1]> and γ(σ2) = [x1 y1]>.
The transformed Frenet states n1, n2 are zero in either point.
At σ3 ∈ (σ1, σ2) the transformed state n3 6= 0, thus the
transformed set is not convex. By considering Lemma II.1 it
can be shown that convex obstacles are guaranteed to be a
subset of the linearized constraints within an SQP iteration,
thus safely over-approximated.

Lemma II.1. Regard the set C = {x ∈ Rn | g(x) ≥ 0}
and Clin(x∗) = {x ∈ Rn | g(x∗) +∇g(x∗)>(x− x∗) ≥ 0}.
Suppose that the function g : Rn → R is convex, then C ⊆
Clin(x∗) for any x∗.

Proof. Due to convexity, g(x∗) +∇g(x∗)>(x− x∗) ≤ g(x)
and therefore, it follows that C ⊆ Clin.

Nonconvex obstacles are not safely over-approximated
within SQP algorithms. Another problem that arises with ob-
jects in the FCF is the dependence of the shape on the state.
Consequently, if the obstacle constraints are defined along a
discretized time horizon, at each time step i = 0, . . . , N ,
the shape has to be transformed separately, cf. Fig.1. In
typical applications this could lead to N transformations
for each obstacle in every NMPC iteration, followed by
a convexification (e.g., bounding boxes, convex polygons,
covering circles) in order to guarantee safety. Alternatively,
an over-approximation could be used to capture all possible
transformed shapes. However, this would lead to a striking
conservatism, especially for long vehicles and low curve
radii.

D. Overview of CF lifting formulations

As outlined in Sec. II-C, it is beneficial to have states of
both CFs in the NLP formulation in order to simplify the



constraints. Several different ways of including both CFs are
possible and a summary is given in Tab.II. First, we can
choose the main CF ODE and introduce the states related
to the other CF as algebraic variables that are determined
by the main CF and obtain a differential algebraic equation
(DAE) of index 1. We could either have a CCF based DAE

ẋC = fC(xC, u)

0 = xc,F −Fγ(xc,C)
(10)

or a FCF based DAE

ẋF = fF(xF, xc,C, u)

0 = xc,C −Fγ−1(xc,F).
(11)

The inverse transformation Fγ−1 is computationally cheap,
since it just needs explicit function evaluations, whereas the
forward transformation Fγ requires solving an NLP as in (5),
resulting in a computationally expensive bi-level problem
in the final MPC formulation. Therefore, we choose the
FCF of (11) as a basis and exclude CCF formulations (10)
from further comparisons. The DAE of index 1 (Lifted DAE
Frenet) is a possible way to formulate the problem and was
similarly used in [9] for a linearized model. Another pos-
sible formulation (Direct Elimination Frenet) is to directly
eliminate the algebraic variables in (11) by using the inverse
Frenet transformation in the nonlinear constraint formulation.
If the objective includes Cartesian states with quadratic costs
and lifted constraints, the direct elimination would lead to
a nonlinear objective and constraints. Alternatively, we can
perform an index reduction of (11), which is obtained by
differentiation of the algebraic constraint, leading to

ẋc,F = f c,F(xc,F, u) (12a)

0 = ẋc,C − ∂Fγ−1(xc,F)

∂xc,F
f c,F(xc,F, u), (12b)

and xc,C(0) := Fγ−1(xc,F). (12c)

Detailed computation (not presented here) shows the equiv-
alence of (12b) to

ẋc,C = f c,C(xc,C, u) (13)

This approach in (12) or (13) (Lifted ODE Frenet) results in
redundant states in both CFs, which are coupled through the
inputs and the initial state. We do not consider formulations
based on the CCF ODE, since it involves the challenging
bi-level problem to obtain FCF states

III. OBSTACLE AVOIDANCE FORMULATIONS

Different formulations for obstacle avoidance constraints
are used in NMPC and visualized in Fig.3. We assume that
rectangles represent the real vehicle shapes. Often simple ge-
ometric covering shapes (circles [28] or ellipses [4], [22]) and
related distance functions are used. Alternatively, covering
polygons and restrictions on edges or vertices (hyperplanes)
are formulated, [6], [23], [25]. Furthermore, the boundaries
can be deflected in order to integrate the obstacle into the
boundary constraints [1]. The later approach is not within

a) b) c)

d) e) f) hθncirc = 3

Fig. 3. Schematic drawing of obstacle constraints. (a: ellipse CCF, b:
covering circles CCF, c: separating hyperplanes CCF, d: ellipse FCF, e:
covering circles FCF, f: separating hyperplanes FCF)

the scope of this work, due to the generally different formu-
lations that for instance, include a combinatorial planner for
choosing the passing side [29]. We compare the formulation
of obstacle avoidance constraints by an ellipse [4], covering
circles [12], [28] and separating hyperplanes [23]. We also
implemented a formulation introduced in [6], which we refer
to as set-vertices-exclusion, but which poorly converged in
our experiments. We assume a rectangular shape of the
vehicles with the rear/front chassis length lch = lr,ch + lf,ch
related to the vehicle CG and chassis width wch. When we
considering the over-approximated area to evaluate which
constraint formulations is superior, the separating hyperplane
do not increase the obstacle size, whereas circles and ellipses
add additional unoccupied area.

A. Obstacle approximation by an ellipse

The distance between a circle and an ellipse can be
computed explicitly, while computing the distance between
two ellipses is more involved. Thus, we cover the ego car
with a circle. The main axes a, b of an ellipse covering a
rectangle are computed by a = 1√

2
(lf,ch + lr,ch) and b =

1√
2
wch. Increasing this by the ego radius rego leads to

the extended ellipse matrix D = diag([a+ rego, b+ rego]).
With the rotation matrix R(xc,opp) ∈ R2×2 and a trans-
lation vector t(xc,opp) ∈ R2 related to the orientation
and position of the obstacle vehicle, we can formulate the
collision avoidance constraint with the matrix Σ(xc,opp) =
R(xc,opp)DR(xc,opp)> via the feasible set

Pell(xc,opp) =
{
xc ∈ R3

∣∣∣ ‖xc − t(xc,opp)‖2Σ−1(xc,opp) ≥ 1
}
.

(14)

B. Obstacle approximation by covering circles

We use the union of a set of circles to contain the set of
the vehicle shape [12], [20], [28]. For lch ≥ wch, the number
of covering circles ncirc must be larger than d lchwch

e and have
a radius r{ego,opp} of wch

1√
2

. For each combination of the
ncirc,ego and ncirc,opp circles a distance constraint must be
satisfied, leading to ncirc,egoncirc,opp inequality constraints.
The covering circle center points are computed according to
[20], which gives us a function pi : R3 → R2 for the circle
center i that computes the center positions pi = pi(xc,C)
from the states xc,C. With ∆r = rego + ropp and x := xc,C,



Formulation
ODE
CF

Obstacle
CF

Cost
CF

nx nz
Practical
Relevance

Issues

Conventional Frenet Frenet Frenet Frenet 5 0 yes nonconvex state-depenent obstacle shapes
usually over-approximated [15], [16], [17], [18]

Direct Elimination Frenet Frenet Cartesian Frenet 5 0 yes additional nonlinearities (objective, constraints)
Lifted ODE Frenet Frenet Cartesian Frenet 8 0 yes redundant states
DAE Frenet Frenet Cartesian Frenet 5 3 no bad convergence in our experiments
Conventional Cartesian Cartesian Cartesian Cartesian 5 0 no nonconvex boundary constraints [3]
Cartesian with Frenet States Cartesian Cartesian Frenet {5, 8} {0, 3} yes Difficult bi-level problem. Approximations, e.g. [3]

TABLE II
COMPARISON OF CF FORMULATIONS IN NMPC. BOLD TYPED FORMULATIONS ARE COMPARED IN THIS PAPER.

we write the free set as

Pcirc(xopp) =

{
x ∈ R3

∣∣ ∥∥pi(x)− pj(xopp)
∥∥

2
≥ ∆r,

for 1 ≤ i ≤ ncirc,ego, 1 ≤ j ≤ ncirc,opp

} (15)

C. Obstacle approximation by separating hyperplanes

When formulating collision avoidance with separating
hyperplanes, we optimize for a feasible solution of the
parameters θ ∈ R3 of a hyperplane hθ(p). The pa-
rameterized hyperplane needs to separate all (four) ver-
tices p

{ego,opp}
i (xc{ego,opp}) of either vehicle’s bounding

box. We write the feasible region using the related hyper-
plane existence problem with points p̄{.}> = [p{.}> 1] as

Php(xopp) =
{
x ∈ R3, θ ∈ R3

∣∣∣ θ2
1 + θ2

2 = 1,

θ>p̄ego
i (x) ≤ 0, θ>p̄opp

i (xopp) ≥ 0, ∀i = 0, . . . , 3
}
.

(16)

With the constraint θ2
1+θ2

2 = 1 for the hyperplane parameters
we avoid a degenerate solution.

IV. NMPC FORMULATION

The aim of the NMPC is to plan a feasible trajectory
of a vehicle to drive on a road with bounded curvature
on a reference lane parallel to the center line and with a
desired reference speed. Furthermore, the NMPC must avoid
static and dynamic obstacles. As motivated in Sec. II-D, we
use two variants of an FCF-based ODE to obtain Cartesian
states, i.e. the direct elimination and lifted ODE formulation
and compare it to the conventional formulation with over-
approximation, such as shown in [16], [17]. First, we define
the costs and constraints.

1) General costs & constraints: Some constraints are
unrelated to the CF, such as the lower and upper bounds
for states x¬c and inputs u. For control costs u>Ru, we
use the positive semi-definite weight matrix R ∈ R2×2.

2) FCF related costs & constraints: State costs are related
to FCF states, since there is no practical advantage of includ-
ing CCF state costs. A cost related to a desired reference path
parallel to the road center line is accounted for by a square
penalty of the deviation of the Frenet lateral coordinate n to

its reference nref . For a reference speed vref , a square penalty
with positive weight ws, as well as a penalty on precomputed
longitudinal reference positions sref,i = ŝ0 +i∆tvref is used,
with the measured state ŝ0 and sampling time ∆t. Since
we assume a road with constant width, boundary constraints
simplify in the FCF to box constraints for an upper bound n
and a lower bound n.

3) CCF related costs & constraints: We use the colli-
sion avoidance formulations, which could be one out of
O = {ell, circ,hp} in the CCF, thus have the constraint
xc,C ∈ P{ell,circ,hp}. FCF costs are defined via the positive
weight matrix Q = diag(q) with the weight vector q ∈ R5

and the reference states in xF
ref . We use a terminal cost QN =

diag(qN ) with the weight vector qN ∈ R5 after N discrete
time steps.

4) Direct elimination NMPC formulation: With the direct
formulation, we can directly use the inverse transforma-
tion xc,C = Fγ−1(xc,F) to eliminate the Cartesian states in
the constraint formulation. Thus we have less states, but
”more” nonlinear constraints. We discretize the continuous
trajectory with N − 1 control intervals and use direct mul-
tiple shooting [30] with one step of an RK4 integration
function ΦF(xF, u,∆t) for the ODE in (9) and the NLP
formulation

min
xF0 ,...,x

F
N ,

u0,...,uN−1
θ1,...,θnopp

N−1∑
k=0

‖uk‖2R +
∥∥∥xFk − xFref,k∥∥∥2

Q
+
∥∥∥xFN − xFref,N∥∥∥2

QN

s.t. xF0 = x̄F0 ,

xFi+1 = ΦF(xFi , ui,∆t), i = 0, . . . , N − 1,

u ≤ ui ≤ u, i = 0, . . . , N − 1,

xF ≤ xFi ≤ xF, i = 0, . . . , N,

xc,C ≤ Fγ−1(xc,F) ≤ xc,C,i = 0, . . . , N,

alat ≤ aFlat(xi) ≤ alat, i = 0, . . . , N,

vN ≤ v̄N ,
Fγ−1(xc,F) ∈ P(xc,opp,ji , θj), i = 0, . . . , N − 1,

j = 1, . . . , nopp.
(17)

Decision variables θ1, . . . , θnopp , where
θj = [θ0

j , . . . , θ
N
j ] ∈ R3×N are only used for the separating



hyperplanes formulation.
5) Lifted ODE NMPC formulation: In this formulation

we use the extended state xd = [xF> xc,C>]> and
the extended ODE (13). The additional states increase the
size of the state-space to eight in our case, where three
states stem from either CF and additional two states are
CF independent states. In this formulation we use the RK4
integration function Φd(xd, u,∆t) of dynamics (13). We can
write the final NLP for the lifted ODE formulation as

min
xd
0 ,...,x

d
N ,

u0,...,uN−1

θ1,...,θnopp

N−1∑
k=0

‖uk‖2R+
∥∥xF

k − xF
ref,k

∥∥2

Q
+
∥∥xF

N − xF
ref,N

∥∥2

QN

s.t. xd
0 = x̄d

0 ,

xd
i+1 = Φd(xd

i , ui,∆t), i = 0, . . . , N − 1,

u ≤ ui ≤ u, i = 0, . . . , N − 1,

xd ≤ xd
i ≤ xd, i = 0, . . . , N,

alat ≤ alat(x
d
i ) ≤ alat,i = 0, . . . , N,

vN ≤ v̄N ,
xc,C
i ∈ P(xc,opp,j

i , θj), i = 0, . . . , N − 1,

j = 1, . . . , nopp.
(18)

V. NUMERICAL EXPERIMENTS

In order to evaluate the performance of the proposed ap-
proach, we simulate two randomized scenarios that constitute
three non-ego vehicles in front of the ego vehicle with a
lower cruise speed. The scenario is simulated for 20 seconds,
where usually three overtakes are possible. In total, 500
full simulation runs are evaluated for each scenario type.
We record the solution times of the NMPC and the final
driven distance after the simulation ended, which we take as
a performance indicator. We use different types of obstacles,
particularly long ones in the dimensions of a truck (truck-
sized), as well as short ones resembling normal cars (car-
sized). We make several simplifications in order to avoid
performance influences of sources unrelated to our formu-
lation. Firstly, there is no model-plant mismatch, i.e., the
simulation framework and the NLP use the same kinematic
vehicle model and discretization. Secondly, the ego NMPC
has access to the planned trajectories of the other vehicles in
order to avoid an influence of prediction errors. Finally, we
model non-ego participants to be non-interactive. They aim
at driving along a reference line parallel to the center line.
The simulations were run on an Alienware m-15 Notebook
with an Intel Core i7-8550 CPU (1.8 GHz). The parameters
for the environment and the NMPC are shown in Tab. III and
Tab. IV, respectively. We use the NLP solver acados [5]
with HPIPM [31], RTI iterations and a partial condensing
horizon of N

2 . We use obstacle constraint formulations of
Sec. III. Besides the different obstacle dimensions, the pro-
posed NMPC formulations convetional, direct elimination
and lifted ODE were evaluated with the different obstacle
formulations of Sec. III. We use the ellipse (”EL”), the
n covering circles (”Cn”) and the separating hyperplane

Module Name Variable Value

Road road bounds2 n, n ±8.5
curvature1 κ [90.05, 0.05]
wind speed vwind 20
wind direction ϕwind 0

Ego vehicle length wheelbase lr, lf 1.7
length chassis lr,ch, lf,ch 2
width chassis wch 1.9
mass m 1160
lateral acc. bound alat, alat ±5
input bounds u, u ±[10kN, 0.39]
velocity bound v 40

steering angle bound δ, δ ±0.3

starting position1 xc,F0 [0, 95, 0]-
[0, 5, 0]

reference speed vref 40

Opp. vehicles length wheelbase2 lr, lf 10
length chassis2 lr,ch, lf,ch 13
width chassis2 wch 4
mass2 m 3000
input bounds2 u [30kN, 0.39]
input bounds2 u [945kN, 90.39]
starting position1 i si0 50(i+ 1)

ni0 [95, 5]
reference speed vref 15

TABLE III
ENVIRONMENT PARAMETERS.1 RANDOMIZED WITH UNIFORM

DISTRIBUTION.2 PARAMETERS ONLY DIFFER IN LONG VEHICLE

SCENARIO. THE PARAMETERS ARE EQUAL FOR ALL VEHICLES, IF NOT

NOTED EXPLICITLY. WE USE SI UNITS, IF NOT STATED EXPLICITLY.

Name Variable Value

nodes / disc. time N / ∆t 40/ 0.1

terminal velocity vN 15

state weights q [1, 500, 103, 103, 104]∆t

terminal state weights qN [10, 90, 100, 10, 10]

control weights R diag([10−3, 2 · 106])∆t

TABLE IV
PARAMETERS FOR MPC IN SI UNITS.

(”HP”) formulation. In Fig V the computation times and
the maximum achieved progress of the randomized scenarios
are shown. Clearly, final progress after overtaking in the
truck-sized scenario is increased in the proposed formula-
tion significantly due to the more accurate representation
of the obstacle shape. For car-sized vehicles the extended
states do not yield a prominent advantage, since here the
Frenet transformation does not deform the obstacles vastly.
The maximum progress is nearly equal for both proposed
approaches, since the obstacle constraint formulations based
on Cartesian states is equal. A striking difference between the
two proposed formulations can be seen in the computation
times, shown detailed in Tab. V. While the lifted ODE
formulation even decreases the average computation time
for nearly all obstacle formulations, the direct elimination
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Fig. 4. Box-plot comparison of the MPC solution timings for each real-
time iteration and the final progress after 20 seconds for different obstacle
formulations for truck- and car-sized vehicles.

formulation increases the computation time by around 30%.
Remarkably, the ellipsoidal obstacle formulation in the pro-
posed lifted ODE formulation outperforms all other obstacle
formulations in both, the computation time, as well as the
performance measured in the average progress after over-
taking, which highlights the advantage of the formulation.
Contrary to our expectations, the separating hyperplane for-
mulation shows weaker performance in computation time and
average progress. In theory, separating hyperplanes should be
more accurate in capturing the obstacle shape, nevertheless,
due to the disadvantageous linearizations within the SQP
iterations, the shape is not captured well. This might be
mainly due to the nonconvex and nonlinear constraint in (16).
A rendered resulting simulation in both CFs can be found

on the website https://rudolfreiter.github.io/
obstacle_avoidance/

Computation times (ms) for truck-sized obstacles
Conventional Direct Elimination Lifted ODE

EL 1.5± 0.4 1.9± 0.2 28.9% 1.4± 0.3 −6.6%
C5 7.2± 1.9 7.6± 1.7 5.5% 7.2± 1.8 −0.0%
C7 14.0± 3.2 14.0± 2.8 −0.1% 13.9± 2.9 −0.4%
HP 7.5± 1.5 7.5± 1.5 −0.1% 7.4± 1.7 −1.6%

car-sized obstacles

EL 1.5± 0.5 2.0± 0.4 29.6% 1.4± 0.4 −5.7%
C1 1.4± 0.4 1.9± 0.4 34.0% 1.4± 0.4 −3.5%
C3 3.6± 1.1 4.0± 1.0 12.4% 3.6± 1.1 0.6%
HP 8.0± 2.3 7.9± 1.9 −0.6% 7.7± 2.0 −4.0%

TABLE V
MEAN AND STANDARD DEVIATION OF COMPUTATION TIMES FOR

DIFFERENT SCENARIOS, OBSTACLE FORMULATIONS AND LIFTING

FORMULATIONS. ADDITIONALLY, THE DIFFERENCE IN PERCENT TO THE

CONVENTIONAL FORMULATION IS GIVEN.

VI. CONCLUSIONS

We have presented two novel FCF-based formulations of
MPC for vehicles that include states of the CCF in order
to gain numerical advantages. Simulated evaluations and
several wide-spread obstacle constraint formulations show
that the proposed approaches are capable of representing
the obstacle shapes more suitably and that with the lifted
ODE formulation even the computation time was decreased.
Furthermore, our evaluations show that an ellipsoidal ob-
stacle representation outperforms all other obstacle formula-
tions in computation time. In conclusion, we state that the
combination of the ellipsoidal obstacle constraint formulation
and the lifted ODE formulation yields superior results in all
categories.
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