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Vertical Airborne Wind Energy Farms with High Power Density per

Ground Area based on Multi-Aircraft Systems

Jochem De Schutter1, Jakob Harzer1, Moritz Diehl1,2

Abstract— This paper proposes and simulates vertical air-
borne wind energy (AWE) farms based on multi-aircraft sys-
tems with high power density (PD) per ground area. These
farms consist of many independently ground located systems
that are flying at the same inclination angle, but with different
tether lengths, such that all aircraft fly in a large planar
elliptical area that is vertical to the tethers. The individual
systems are assigned non-overlapping flight cylinders depending
on the wind direction. Detailed calculations that take into
account Betz’ limit, assuming a cubically averaged wind power
density of 7 m/s, give a potential yearly average PD of 43
MW/km2. A conventional wind farm with typical packing
density would yield a PD of 2.4 MW/km2 in the same wind field.
More refined simulations using optimal control result in a more
modest PD of 6 MW/km2 for practically recommended flight
trajectories. This PD can already be achieved with small-scale
aircraft with a wing span of 5.5 m. The simulations additionally
show that the achievable PD is more than an order of magnitude
higher than for a single-aircraft AWE system with the same
wing span.

I. INTRODUCTION

Because of the abundant availability of wind and solar

energy resources, in principle only a tiny fraction of the

earth’s surface area would suffice to generate all of human-

ity’s energy needs. Nevertheless the power density (PD) per

ground surface area of wind and solar power technologies

is still a relevant quantity, since the infrastructure costs

of renewable energy farms, such as grid connection and

installation logistics, scale proportionally with the farm area.

The power density of existing wind power farms is estimated

to be around PD = 2 MW/km2. For solar PV farms we have

a PD of around 10 MW/km2 [1].

Airborne wind energy (AWE) is an upcoming renewable

energy technology which aims at harvesting the steady and

strong high-altitude winds that cannot be reached by conven-

tional wind technology, at only a fraction of the resources.

AWE developers mainly consider single-aircraft AWE sys-

tems (S-AWES), which are based on the principle of one

tethered aircraft flying fast crosswind maneuvres. However,

S-AWES are subject to several limitations that impede the

technology to increase PD with respect to conventional wind.

First, S-AWES are characterized by high tether drag

dissipation losses. These losses are inversely proportional to
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Fig. 1: Top and side view of a vertical M-AWES wind farm

with N = 30, θe = 40◦, d/D = 0.16 and lmin/D = 0.42.

the aircraft size, which is why large and heavy (and thus,

costly) aircraft are needed to achieve the efficiency needed

for a high PD. Second, large aircraft come with an inherently

large turning radius, which corresponds to a large trajectory

footprint on the ground. Therefore, a very dense geometric

spacing of units - possibly with shared airspace - needs to

be achieved for high PD. Third, since the maximum tether

length is limited due to the drag losses, S-AWES in park

configuration would all operate at similar altitudes, which,

in combination with close geometric spacing, would lead to

large losses due to wake interaction [2].

To overcome these limitations, this work proposes (and

simulates) the concept of vertical AWE farms based on multi-
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aircraft AWE systems (M-AWES), as depicted in Fig 1. In

M-AWES, two or more aircraft fly very tight loops around

a shared, quasi-stationary main tether [3]. Therefore, M-

AWES are very efficient even for small aircraft size while

using airspace more effectively resulting in a lower trajectory

footprint on the ground. The proposed vertical M-AWES

farm layout additionally exploits the fact that M-AWES can

fly at arbitrarily high locations above the ground, so that

they can operate at distinct locations in the sky, thereby

avoiding wake interaction. A somewhat similar idea based

on networked rotary AWE systems was proposed (but not

simulated) in [4].

The remainder of this text is structured as follows. Section

II describes the vertical M-AWES park concept and deter-

mines an upper PD limit based on a simplified analysis.

Section III states the system model used in the simulation

study while Section IV proposes an optimal control problem

(OCP) formulation to compute PD-optimal power cycles.

Section V describes the numerical results of a case study,

where we compute PD-optimal orbits for both S- and M-

AWES, for a small and moderate aircraft size, and where

we investigate the trade-off between PD and wing area

efficiency. Section VI discusses the main conclusions and

gives suggestions for future research.

II. VERTICAL M-AWES PARKS

The vertical M-AWES parks proposed in this work are

circular and consist of many independently ground located

M-AWES that are all flying at the same tether inclination

angle θe, but with different tether lengths, depending on the

wind direction, such that all systems fly in a large planar

elliptical area that is vertical to the tethers, as shown in Fig 1.

The individual systems are assigned non-overlapping “op-

eration cylinders” that depend on the wind direction and cor-

respond to a circular ground area. Otherwise, the individual

systems are completely independent and can e.g. be started

and landed independently. Each system might be located on

a small tower of e.g. 5 m height in order to minimize its

impact on the usability of the ground area for agriculture.

The distance from one system to all others on the ground is

lower bounded by the maximum diameter d of each system’s

ground area circle. The optimal circle packing density of N
circles in a large circle of diameter D depends on N and is

assumed to be ρcircle = 70% here. Thus, from now on we

assume that

N
πd2

4
= ρcircle

πD2

4
(1)

which means that we choose to build altogether N =
ρcircleD

2/d2 individual units in the park. This abstracts from

the individual system’s size d and number N , such that we

only need to remember the packing loss factor ρcircle.
Together, the systems form a large inclined elliptical area

in the sky, and all wings fly in this elliptical area. The area

is perpendicular to the tethers, and thus forms an ellipse

with a maximum width that is equal to D, but a minimum

width of D sin θe. The M-AWES are assumed to be able

to fly ellipses with approximately this aspect ratio so the

circle packing from the ground can be mapped by an affine

transformation to the ellipse packing in the sky. The elliptical

area forms an angle of θe with the vertical, and thus, the

effective area of this “actuation ellipse” is again reduced by

a factor cos θe resulting in a height of the inclined ellipse of

only D cos θe sin θe.
The shortest tether length lmin defines the location of the

lowest point of the ellipse, which is located lmin sin θe above

the ground and lmin cos θe downwind, extending the ground

boundaries of the wind park. This causes an extended park

diameter D+2lmin cos θe, defining a circle above which the

AWE systems can fly. This virtual area enlargement does

not lead to increased infrastructure costs and is therefore

neglected.

We assume that the M-AWES wing area is adapted to

reach the Betz limit η = 16/27 on the available flight area

assigned to each individual system. The overall power of the

wind park is then proportional to its ground area, but affected

by a variety of losses:

• the circle packing loss ρcircle = 70%;

• the geometric area reduction efficiency that reaches a

maximum value of cos θ̄e sin θ̄e = 0.5 for θ̄e = 45◦;

• the Betz factor η = 16/27;

leading altogether to an effective loss of

ηtot = η cos θ̄e sin θ̄eρcircle = 0.3ρcircle = 21% . (2)

The maximum power density is then given by

PDmax =
1

2
ηtotρairv

3. (3)

For example, for a wind speed of v = 7 m/s and ρair =
1.2 kg/m

3
this results in a PDmax of 43 MW/km2.

To obtain an estimate for a conventional wind energy farm

operating in the same wind field, we assume operation at

Betz’ limit and a circular packing with a distance of at least 6

rotor diameters between the systems. There are no geometric

area reduction losses, resulting in a total efficiency ηtot =
1.2% and a PDmax of 2.4 MW/km2 when wake losses are

ignored. This PD is a factor 17 lower than the potential PD

of the vertical M-AWES farm.

III. SYSTEM MODEL

To make a more realistic assessment, we will compute

detailed, PD-optimal orbits for individual S- and M-AWES

in this work. We consider “lift-mode” AWE systems, where

power is produced in a periodic fashion: first, the tether is

reeled out at high tension, driving a winch at the ground

station. Then, tether is reeled back in again at low tension,

resulting in a net positive energy gain. This section presents

the M-AWES dynamics used in the optimal control prob-

lem formulation in Section IV and introduces an averaged

induction model to account for the Betz losses.

A. Multi-aircraft dynamics

In the following simulations, we use the multi-aircraft

model structure and model parameters described in [5].

The system dynamics model all six degrees-of-freedom of



the aircraft in the system. The tethers are assumed to be

straight and inelastic, which is a good assumption when

tether tension is high. The dynamics are expressed in non-

minimal coordinates and summarized by the implicit DAE

F (ẋ(t), x(t), u(t), z(t), θ, a) = 0 (4)

and consistency conditions C(x(t)) = 0.

The system variables consist first of the state vector x ∈
R

nx . The control vector u ∈ R
nu consists of the aircraft

aileron, elevator and rudder deflection rates as well as the

tether reeling acceleration. The algebraic state z ∈ R
nz

consists of the Lagrange multipliers related to the constraints

that define the interlinkage of aircraft and tethers. The

system parameters θ ∈ R
nθ represent parameters that can

be optimized over, such as the main tether diameter and, in

the M-AWES case, the secondary tether length and diameter.

The variable a ∈ R is the average induction factor that will

be explained in Section III-B.

For the sake of brevity, we refer the reader to [5] for

a complete and formal description of the system variables,

dynamics, aerodynamic forces, consistency conditions, etc.

Here we only explicitly discuss those model components

relevant for the wind power availability. We model the wind

shear in a simplified way with a power law approximation:

u∞(z) = uref

(

z

zref

)cf

, (5)

with u∞(z) the freestream velocity at altitude z and uref

the reference wind speed measured at altitude zref = 100 m,

with cf = 0.15 a surface friction coefficient typical for flat,

open terrain.

The atmospheric density drop with altitude is modeled

using the international standard atmosphere model [6]:

ρ(z) := ρ0

(

T0 − TLz

T0

)

g
TLR

−1

, (6)

where R is the universal gas constant. The parameters T0

and ρ0 are the temperature and air density at sea level, and

TL is the temperature lapse rate.

The model is based on a validated, small aircraft model

with wing span bref = 5.5 m, mass mref = 36.5 kg and

inertia tensor Jref given in [7]. In order to be able to evaluate

the dynamics also for larger wing spans b, we utilize the

following mass upscaling formula:

m = mref

(

b

bref

)κ

, and J = Jref

(

b

bref

)κ+2

, (7)

with upscaling exponent κ = 2.4.

B. Induction model

State-of-the-art induction models for AWE are typically a

variation of Betz’ analysis for conventional wind turbines,

thus based on a steady-state analysis [8], [9]. However,

detailed wind field simulations [2] show that for lift-mode

AWE systems, induction is inherently time-dependent: at the

beginning of the reel-out phase, induction starts to build up,

reaching its peak when transitioning into the reel-in phase,

after which it starts to decline. When the power cycle re-

starts, the wind is almost “fresh” again.

While the induction model proposed in [10] accounts for

the dynamic variability of the aircraft trajectories over a

power cycle, it still assumes an instantaneous build-up of

induction. Therefore, in this work, we propose the following

model, based on a momentum balance applied to averaged

flight quantities.

We first compute the annular swept area for each aircraft

k ∈ K, with K the index set of all aircraft in the system. We

integrate over the reel-out phase the norm of the aircraft’s

flight speed q̇ multiplied with the wing span, weighted with

the local dynamic pressure:

As,k :=

Tro
∫

0

1

2
ρ(qz,k(t))u

2
∞(qz,k(t))b‖q̇k(t)‖dt , (8)

where, by including the dynamic pressure inside the integral,

we account for variability of wind speed and air density

along the trajectory. The parameter Tro is the reel-out phase

duration, and qz,k is the vertical position component of

aircraft k.

We assume that the force acting on this annulus is the main

tether force, and that during the reel-in phase, this force is

zero. The average tether force over one power cycle of period

T is then given by:

F̄t :=
1

T

Tro
∫

0

Ft(t)dt , (9)

with the expression of the main tether force Ft(t) in [5].

Momentum conservation applied to these average quanti-

ties then gives an algebraic equation for the average induction

factor a, i.e.:

F̄t = 4a(1− a)
∑

k∈K

As,k .

The apparent wind speed that each aircraft k experiences is

then given by

ua,k := (1− a)u∞(qz,k)ex − q̇ (10)

with ex :=
[

1 0 0
]⊤

the unit vector in the x-direction.

Similar to the steady-state models proposed in [8] and [9],

this induction model assumes that both flight annulus and

tether force are perpendicular to the wind speed vector. This

is a crude assumption, given that the main tether elevation

angle is intrinsically non-zero. Nevertheless, this averaged

approach gives a first-order account of the time-dependency

of the induction for lift-mode systems, which is necessary in

particular for lift-mode orbits with short reel-out phases.

By adding the values As,k in the M-AWES case, we

assume that the swept areas of the different aircraft do not

overlap. To avoid double-counting, a no-overlap condition

will be enforced as a constraint in the optimal control

problem. For S-AWES, we will check a posteriori that the

swept area does not self-overlap.



IV. PROBLEM FORMULATION

This section discusses the path constraints used for the

simulations in this work, and introduces a constraint which

expresses the available flight cylinder as a function of the

radius of the corresponding circular ground area. Then, this

section presents a periodic OCP formulation to compute PD-

optimal power cycles based on the dynamics presented in the

previous section.

A. Flight envelope

Path constraints need to be enforced along the trajectory,

to avoid flight envelope violations and to preserve structural

integrity of the airframes and the tethers. More concretely,

we impose the following constraints:

• Tether stress should not exceed the material yield stress

with a safety factor 3.

• The tether force should be strictly positive to avoid

tether sag and to preserve model validity.

• Aircraft roll and pitch angles should be smaller than

90◦ to avoid collision with the tether. Note that for

real-world trajectories, a larger safety factor would be

appropriate.

• The angle-of-attack and side-slip angle of all aircraft

are bounded to avoid stall and preserve model validity.

• The aileron, elevator and rudder control surfaces and

their rates are bounded.

• The aircraft should remain above the ground with a

safety distance of 100 m.

• The tether length is bounded from above by a value

lt,max = 700 m. For the M-AWES, this constraint is

active at the end of the reel-out phase.

• The induction factor a should be positive and smaller

than 0.5 to avoid flow acceleration or reversal.

We refer the reader to [5] for those numerical bound values

not mentioned explicitly in this text.

B. Cylindrical flight constraint

A central feature of vertical M-AWES parks is that each

system is assigned an individual, tilted flight cylinder. The

intersection of this flight cylinder with the ground gives a

circular area with radius R (= d/2). The flight cylinder has

an ellipsoidal cross-section with a major axis length R and a

minor axis length R sin θe, with θe the elevation angle of the

cylinder. This elevation angle is included as an optimization

variable.

We express the flight cylinder constraint for all aircraft in

the system in the following way. Note that for M-AWES,

the constraint is also imposed on the juncture node between

main tether and secondary tethers. First, we rotate the aircraft

position into the ellipsoidal cylinder frame:

q̂y,k := qy,k (11)

q̂z,k := qz,k cos(θe)− qk,x sin(θe) . (12)

Then, we define the constraining ellipse axes as

R̂y := R− b/2 (13)

R̂z := R sin θe − b/2 , (14)

which ensures that the entire wing with span b remains in

the ellipse. The constraint then reads as

q̂2z,k

R̂2
z

+
q̂2y,k

R̂2
y

≤ 1 . (15)

These flight constraints, together with the constraints men-

tioned Section IV-A are summarized by the expression

h(x(t), u(t), z(t), θ, a) ≥ 0.

In the M-AWES case, we need to ensure that the swept

areas of the two connected aircraft do not overlap during the

reel-out phase, to preserve model validity. For the purposes

of this work, we therefore propose to pre-structure the M-

AWES OCP so that the solution consists of one single loop:

half a loop for the reel-out phase, and half a loop for the reel-

in phase. During the reel-out phase, each aircraft is assigned

one half of the flight cylinder. During the reel-in phase, the

two aircraft switch flight regions.

Formally, we express the no-overlap constraint for aircraft

k as

hno,k(x, θe, φ0) := q̂z,k cos(φ0)− q̂y,k sin(φ0) . (16)

The angle φ0 rotates the intersecting half-plane that divides

the flight cylinder in two and can be chosen freely by the

optimizer.

For a dual-aircraft system, with aircraft nodes k ∈ K =
{2, 3}, the no-overlap condition for the two aircraft is com-

bined with a phase-fixing constraint on the tether reel-out

speed l̇t:

hno(x, θe, φ0) :=





hno,2(x, θe, φ0)
−hno,3(x, θe, φ0)

l̇t



 . (17)

This constraint is greater or smaller than zero depending

on the phase.The constraints mentioned in this section are

summarized by the expression h(x(t), u(t), z(t), θ, a) ≥ 0.

C. Optimal control problem

We can now directly compute periodic flight trajectories

that optimize the power density, by solving the following

periodic OCP:

min
x(·),u(·),z(·)
θ,a,Tro,Tri

R,θe,φ0

−
1

T

T
∫

0

ρcircle
P (t)

πR2
dt

s.t. F (ẋ(t), x(t), u(t), z(t), θ) = 0, ∀t ∈ [0, T ],

h(x(t), u(t), z(t), θ, a) ≥ 0, ∀t ∈ [0, T ],

hno(x(t), θe, φ0) ≥ 0, ∀t ∈ [0, Tro],

−hno(x(t), θe, φ0) ≥ 0, ∀t ∈ (Tro, T ],

x(0)− x(T ) = 0,

F̄t − 4a(1− a)
∑

k∈K

As,k = 0,

where the overall time T is defined as the sum of the reel-

out time and the reel-in time, which are free optimization

variables: T := Tro + Tri. The initial and final state of the

trajectory are free, but must be equal. The cost function is



chosen so as to maximize the average power output divided

by the circular ground area occupied by the system. This PD

is multiplied with ρcircle to account for packing losses.

The M-AWES OCP is discretized using direct collocation

with 40 intervals, and Radau polynomials of degree 4. For

S-AWES, the no-overlap conditions in (17) are omitted, but

the phase-fixing constraint is retained. Since the optimal time

period is larger for this problem, we increase the number of

collocation intervals to 100.

The NLP is formulated in Python using the open-source

AWE optimal control framework AWEbox [11], which builds

on the symbolic framework for algorithmic differentation and

nonlinear optimization CasADi [12]. AWEbox solves the

NLP with IPOPT [13] and the linear solver MA57 [14].

V. NUMERICAL RESULTS

This section presents and discusses PD-optimal periodic

orbits for M-AWES and S-AWES, both for a small and

moderate aircraft size. In a second step, periodic orbits for

each variant are computed for a range of fixed values for

the ground circle radius R, in order to investigate the trade-

off between power density and wing area efficiency. We

conclude with a critical discussion of the obtained results

in the light of the modeling assumptions.

A. Optimal power density solutions

The periodic OCP is solved for both a S-AWES and a M-

AWES with two aircraft. First we use the small wing span

(b = 5.5 m) of the original aircraft model. Then we do the

same for an upscaled version of the same model (b = 26
m). Table I summarizes the optimal results for the different

variants. All of the results have a similar optimal elevation

angle θ∗e ≈ 40◦. This is close to the theoretically optimal

value of 45◦ obtained in Section II.

Fig. 2 shows the optimal trajectories for the small-size

S-AWES and M-AWES. The S-AWES has a rather large

optimal ground circle radius R∗ = 46.5 m, and very low

power output because of the large tether drag losses. Hence

the power density is also impractically low (0.2 MW/km2).

The optimal radius for the M-AWES is a factor 2.5 smaller,

at a value only slightly larger than three wing spans. The

dual-aircraft configuration thus allows the system to fly

extremely tight circles. Combined with the efficiency gain

due to reduced tether drag and the increased flying altitude,

this results in a power density that is 35 times higher (7.3

MW/km2) than for S-AWES. Optimizing for power density

drives this system to make very efficient use of the available

airspace: the optimal induction factor a∗ = 0.21 is close

to the theoretically optimal value of 1/3. For the S-AWES,

induction is almost negligible.

Fig. 3 shows the optimal trajectories for the moderate-

size S-AWES and M-AWES. The S-AWES solution improves

on two fronts compared to the small-size results. First,

since the relative tether drag contribution to the total system

drag decreases with increasing aircraft size, the moderate-

size system is more efficient and flies at a higher altitude,

resulting in a significantly higher power output. Second,
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Fig. 2: PD-optimal flight trajectories in ellipsoidal coordi-

nates for b = 5.5 m, with θ∗e ≈ 40◦.
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]
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Fig. 3: PD-optimal flight trajectories in ellipsoidal coordi-

nates for b = 26.0 m, with θ∗e ≈ 40◦.

for a more than four times larger aircraft, the ground area

radius only increases by a factor of 2.5, the induction factor

increases by a factor of 5, and the PD (1.7 MW/km2)

increases by a factor larger than 6.

For the M-AWES, the ground radius increases with a

factor 5, but the large aircraft size also reduces the impact of

the secondary tether drag, which is why the power density

increases slightly to 8.4 MW/km2, which is still almost a

factor 5 larger than for the moderate-size S-AWES.

Note that while in the envisioned vertical wind farms, M-

AWES need an individual flight cylinder to avoid collisions,

this need not be the case for S-AWES. In fact, S-AWES

can be packed closer together than done in this work, even

with overlapping flight cones when synchronized properly,

as proposed in [15]. From this perspective, the obtained PD

results are too pessimistic.

However, the model used in this work neglects wake

interaction effects within the farm, which is a good as-

sumption for a vertical M-AWES farm, but not for densely

and horizontally packed S-AWES, in particular as they grow

larger. The induction factors obtained in this study are small

(< 0.05) but they might still have a non-negligible effect on

the power output of downstream systems. In this sense, the

proposed packing densities might not be overly conservative.



TABLE I: PD-optimal (A-D) and practically recommended

(E) solution parameters and outputs.

Label System b [m] a [-] R [m] PD [ MW
km2 ] P̄ [kW]

A S-AWES 5.5 0.01 46.5 0.2 2.0
B M-AWES 5.5 0.21 18.4 7.3 11.0
C S-AWES 26.0 0.05 116.8 1.7 107.0
D M-AWES 26.0 0.09 96.0 8.4 347.6

E M-AWES 5.5 0.13 30.4 5.9 24.5

B. Trade-off between ground and wing area

Optimizing for power density results in a suboptimal

solution in terms of average power output for a given wing

area P̄S := P̄ /(|K|S), with S the aerodynamic surface of a

single aircraft in the system. In practice, a trade-off between

these two objectives needs to be found: for a given power

output, we want to both minimize the trajectory footprint and

the required wing area.

Starting from the PD-optimal solution, the Pareto front

between PD and P̄S is constructed by re-solving the OCP

for fixed and increasing values of R. Fig 4 shows the result

of this parametric sweep for all variants. After a certain value

of R, the P̄S-optimal solution is reached and the cylindrical

flight constraint becomes inactive for all larger R.

For increasing R, all system variants are able to increase

power output in two ways. First, the systems fly at lower,

more power-optimal elevation angles, down to a value θe ≈
25◦ for all variants. The larger value of R compensates the

minor ellipse axis reduction with sin θe. Second, the systems

fly trajectories with a larger harvesting area, which results in

a lower induction factor but overall in a net increase in power.

The M-AWES power output increases by a factor up to

2.9 for the small-size system and by up to a factor of 1.7 for

the moderate-size system, at the cost reducing the PD with a

factor of 2.6 in both cases. A good compromise for the small-

size system might be PD ≈ 6 MW/km2 and P̄S ≈ 4 kW/m2,

marked by the label “E” in Fig. 4 and summarized in Table I.

Interestingly, the small-size M-AWES completely dominates

the moderate-size S-AWES by a large margin. M-AWES

based on small aircraft can thus be efficiently deployed both

as a single unit for small-scale applications, as well as in

AWE farms for utility-scale electricity generation.

VI. CONCLUSION

In this paper we proposed vertical M-AWES farms with

high PD per ground area. We determined the theoretical

potential of these farms and computed and compared detailed

PD-optimal flight trajectories for both M-AWES and S-

AWES of different sizes. The achieved PD of the rec-

ommended small-size M-AWES design “E” is significantly

lower than the theoretical estimate, by a factor of 7. A big

loss factor is the fact that the optimal flight annulus only

covers part of the elliptical cross-section, and thus does

not exploit the total available harvesting area. Future work

should explore M-AWES trajectories that use more area of

the elliptical cylinders in order to achieve power densities

that are closer to what is theoretically possible.
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Fig. 4: Pareto efficiency front between power density and

power per wing area for small- and moderate-size S-AWES

and M-AWES.
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