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Abstract

In a social network, individuals express their opinions on several interdependent topics, and
therefore the evolution of their opinions on these topics is also mutually dependent. In this
work, we propose a differential game model for the multi-dimensional opinion formation of a
social network whose population of agents interacts according to a communication graph. Each
individual’s opinion evolves according to an aggregation of disagreements between the agent’s
opinions and its graph neighbors on multiple interdependent topics exposed to an unknown
extraneous disturbance. For a social network with strategist agents, the opinions evolve over
time with respect to the minimization of a quadratic cost function that solely represents each
individual’s motives against the disturbance. We find the unique Nash/worst-case equilibrium
solution for the proposed differential game model of coupled multi-dimensional opinions un-
der an open-loop information structure. Moreover, we propose a distributed implementation
of the Nash/worst-case equilibrium solution. We examine the non-distributed and proposed
distributed open-loop Nash/worst-case strategies on a small social network with strategist
agents in a two-dimensional opinion space. Then we compare the evolved opinions based on
the Nash/worst-case strategy with the opinions corresponding to social optimality actions for
non-strategist agents.

Keywords: Game theory; Multi-dimensional opinion dynamics; Nash/worst-case equilib-
rium; Social networks

1 Introduction

Opinion dynamics in social networks has attracted a lot of attention in recent years from social
sciences and control theory [1, 2]. The extensive attention is due to the widespread applications in
business, finance, marketing, e-commerce, politics, group decision-making, pandemic spread [3, 4],
and so on. See [5, 6] for surveys of applications of opinion dynamics. Researchers are looking
for ideal mathematical models of interaction dynamics in a network of relationships to answer
the critical question of how opinions form. Several models in this regard have been proposed to
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explain certain behaviors in the formation of opinions. The well-known ones are the French-DeGroot
(FD) model [7], the Friedkin-Johnsen (FJ) model [8], the Hegselmann-Krause (HK) model [9], and
Deffuant-Weisbuch (DW) model [10]. The FD model of opinion dynamics addresses the emergence
of consensus in a connected network topology. The FJ model includes stubborn agents and results
in opinion diversity rather than consensus. In the HK model, the individuals are influenced by their
nearest neighbors, so opinion clustering emerges rather than polarization or consensus. In the DW
model, two randomly selected individuals take part in the opinion exchange business according to
a threshold, resulting in consensus for a large selection of the threshold or clustering otherwise.

The network of interactions is usually defined as a graph to capture the patterns of interac-
tions. In this context, the set of nodes represents the individuals, and each edge denotes a direct
interaction, e.g., opinion transmission, between two individuals. On a communication graph with
nonnegative weights assigned to its edges, the collaborative effort of all agents causes the network
to reach an opinion consensus [11]. Networks with antagonistic agent interactions modeled by
negative edge weights representing anticooperative behavior have also been studied [12, 13]. Mul-
tidimensional extensions of classical opinion dynamics models for multiple interdependent topics
have recently been a topic of interest. The discrete-time multidimensional FJ and DG extensions
are analyzed in [14] and their continuous-time counterparts with stubborn agents are presented
in [15]. A discrete-time multidimensional FJ model where each stubborn agent has a time-evolving
stubbornness level is studied in [16].

Previously, the classical opinion dynamics models considered social network agents as non-
strategist entities, where each agent simply updated its opinions according to attractive interac-
tions with its neighbors. However, when the agents of a social network become strategists, they
become decision-makers who are selfish and prioritize their own interests in achieving the network’s
opinion consensus. Strategist agents with self-interests show noncooperative behavior, and thus
opinion dynamics become a noncooperative multi-agent decision-making problem. In this problem,
the decisions that other strategists are making at the same time impact each agent’s opinion. For
dynamical agents under the game theory framework, each agent, as a player of the game, determines
her strategies in accordance with an individual optimization problem. Opinion dynamics in social
networks has been studied using game theory in the literature for the last two decades [17–21]. An
opinion formation game model for competition and bargaining among social network agents was
studied in [22]. For selfish agents who take actions independently, the Nash equilibrium applies,
and for agents who coordinate their behavior by negotiating their influence efforts, the Nash bar-
gaining solution applies. Using a game setting, the cost of disagreement at best-response dynamics
equilibrium was analyzed in [23] by comparing the cost at equilibrium with the social optimum.
The ratio of the worst equilibrium’s social cost to the optimal social cost as a measure of the price
of anarchy in networks with directed graphs was studied for its boundedness in [24]. Public opinion
evolution in the presence of conformity and manipulation behaviors via a game-theoretic approach
was investigated in [25]. Fast convergence with limited information exchange as a natural behavior
for selfish agents under a game-theoretic model for social networks was studied in [26]. A game
framework is used for optimal investment strategies for two competing camps, where the strategy of
each camp comprises how much to invest in each node in a social network in [27–29]. The problem
of competitive information spreading in the social network, e.g., see [30], as a zero-sum game that
admits a unique Nash equilibrium in pure strategies is analyzed in [31,32]. Cost function learning,
as opposed to the common assumption that the game players know each other’s cost function for
decision-making, is analyzed for memorized social networks in [33].

Recently, the differential game and its extension for large networks of agents, i.e., the mean-
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field game [34], were proven to provide models that are examined in a rigorous manner [35–39].
Differential games are one of the decentralized extensions of optimal control theory. Unlike in
optimal control, there are multiple cost functions in a different game to minimize simultaneously [40].
Each agent tries to minimize her cost function, which consists of the deviation of her opinion from
others (i.e., her graph neighbors) and her initial opinion as behavior characteristics expected from
selfish agents.

In this paper, we propose a differential game model for multi-dimensional opinion formation in
a social network on a communication graph. The proposed model is a multi-dimensional extension
to differential game models in [36–38] and additionally, an unknown disturbance is included in the
formulation. Furthermore, the proposed model is a differential game contribution to the current
literature in multi-dimensional coupled opinion dynamics studies [14, 41–44]. The agents commu-
nicate on several unrelated or interdependent topics on an information graph. The game relies
on the assumption that the players know each other’s cost functions for decision-making. Under
the noncooperative mode of play, we derive an explicit open-loop solution for the Nash/worst-case
equilibrium and its associated opinion formation trajectory. Additionally, we propose a distributed
implementation of the solution based on the information available to each agent. The proposed
game provides an analytical insight into the opinion dynamics of social networks via Nash equi-
librium. Consequently, the main contributions of this work are summarized as follows: First, a
differential model for multi-dimensional opinion dynamics on directed graphs is established. The
cost functions include a stubbornness term for each agent. Second, the game strategies for each
agent were found in an explicit expression derived by applying the necessary conditions for optimal-
ity using Pontryagin’s principle. Third, we propose a distributed implementation of game strategies
that each agent can execute only using information from her graph neighbors.

The rest of the manuscript is organized as follows. In Section 2, some basic concepts in graph
theory and the linear quadratic differential game are presented. In Section 3, the game of opin-
ion formation is introduced. In Section 4, the explicit solution of the open-loop Nash/worst-case
equilibrium is derived, and in Section 5, its distributed implementation is discussed. Opinion for-
mation as social optimality is considered in Section 6. In Section 7, numerical simulation results
are demonstrated on a small social network with five agents. The state transition matrix is found
in explicit form by the spectral decomposition for the commutative linear time-varying systems
discussed in A. Finally, Section 8 is dedicated to the conclusions and future works.

2 Preliminaries and Notation

The differential game framework presented in this paper for opinion formation in networks on graphs
relies on some basic concepts in graph theory and the linear quadratic differential game that are
discussed in the following.

2.1 Graph theory

A directed graph is a pair G(V , E) where V is a finite set of vertices or nodes and E ⊆ {(i, j) : i, j ∈ V}
is a set of edges or arcs. Each edge (i, j) ∈ E represents an information flow from node i to node j

and is assigned a positive weight ωij > 0. The pair (i, i) represents a self-loop. The set of neighbors
of vertex i is defined by Ni = {j ∈ V : (i, j) or (j, i) ∈ E , j 6= i}. Graph G is connected if for every
pair of vertices (i, j) ∈ V × V , from i to j for all j ∈ V , j 6= i, there exists a path of (undirected)
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edges from E . Matrix D ∈ R
|V|×|E| is the incidence matrix of G where D’s uvth element is 1 if the

node u is the head of the edge v, −1 if the node u is the tail, and 0, otherwise.
An undirected graph is a pair G(V , E) where V is a finite set of vertices and E ⊆ {{i, j} : i, j ∈ V}

is a set of edges. Each edge {i, j} represents bidirectional information flow between node i and node
j. The set of neighbors of vertex i is defined by Ni = {j ∈ V : {i, j} ∈ E , j 6= i}. For an undirected
graph, when constructing D, the direction of the edges is arbitrary.

The graph Laplacian matrix is defined as

L = DWD⊤, (1)

where W = diag(· · · , ωij , · · · ) ∈ R
|E|×|E| ∀(i, j) ∈ E . In other words, the ijth entry of the Laplacian

matrix is -ωij, and its ith diagonal entry is
∑

j∈Ni
ωij . The Laplacian L is symmetric (L = L⊤),

positive semidefinite (PSD) (L ≥ 0), and satisfies the sum-of-squares property [45]

∑

{i,j}∈E

ωij‖yi − yj‖
2 = y⊤Ly, (2)

where y = [y1, · · · , yn]⊤ is a nonzero vector and ‖.‖ is the Euclidean norm. The nonzero eigenvalues
of Laplacian L have nonnegative real parts. A more compact notation for the matrix expression on
the right hand of (2) is ‖y‖2L. For any square matrix A, the compact form ‖y‖2A means ‖y‖2A = y⊤Ay.

The Kronecker product extends the dimension of a matrix [46]. The extended dimensional
incidence matrix D is defined as

D = Dn×|E| ⊗ Im×m =







d11Im×m · · · d1|E|Im×m

...
. . .

...
dn1Im×m · · · dn|E|Im×m






∈ R

nm×|E|m,

where D = [dij ], Im×m is the identity matrix of dimension m, and ⊗ demonstrates the Kronecker
product operator. According to the Kronecker product properties, (D⊗Im×m)⊤ = (D⊤⊗Im×m) =
D⊤.

The Laplacian matrix definition in (1) can be revisited as

L = (D ⊗ Im×m)W(D ⊗ Im×m)⊤ = DWD⊤,

where L is the extended dimensional Laplacian matrix, W = diag(· · · , ωij ,

· · · ) ∀{i, j} ∈ E is a block diagonal weighting matrix and ωij ∈ R
m×m.

2.2 Linear Quadratic Nash/Worst-Case Equilibria

Consider an N -player noncooperative linear-quadratic differential game with an unknown distur-
bance described by the following linear differential equation [47]

ẋ(t) = A(t)x(t) +

N
∑

i=1

Bi(t)ui(t) +

N
∑

i=1

B̟i
(t)̟i(t), x(0) = x0 (3)

where A(t) ∈ R
n×n, Bi(t) ∈ R

n×mi , B̟i
(t) ∈ R

n×ki , x(t) ∈ R
n×1 is the state vector, ui(t) ∈ R

mi×1

denotes the input control vector for player i, and ̟i(t) ∈ R
ki×1 is an extraneous input representing
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the unknown disturbance. We assume that this unknown disturbance is finite in the sense that
∫∞

0 ‖̟i(t)‖2 dt exists as a finite number (i.e. ̟i(t) is square integrable or ̟i(t) ∈ L
†
2.

Each player has a quadratic cost function

Ji =
1

2
x⊤(tf )Qix(tf ) +

1

2

∫ tf

0

(

u⊤
i (t)Riui(t)−̟⊤

i (t)R̟i
̟i(t)

)

dt, (4)

where Qi ∈ R
n×n, Ri ∈ R

mi×mi and R̟i
∈ R

ki×ki are positive definite for i = 1, · · · , N .
Due to the uncooperativeness assumption, a so-called set of Nash equilibrium actions is expected

to be played. By adopting a Nash/worst-case equilibrium, every player has no incentive to change
her policy given her worst-case expectations of the disturbance and the actions of other players.
Under open-loop information, a player’s policy will depend on information only from the beginning
of the game.

Let ÊNn denote the block-column matrix of N blocks of the identity matrix of dimension n

and Ēi,j be the block-column matrix of i blocks of zero matrices of dimension n except for block j

which is an identity matrix. diag(A)N also denotes the N ×N block diagonal matrix with diagonal
blocks A.

As mentioned in Corollary 3.2 in [47], the linear-quadratic differential game (3) and (4) is
rewritten as the 2n-player differential game

˙̄x(t) = ĀN (t)x̄(t) +

N
∑

i=1

B̄i(t)ui(t) +

N
∑

i=1

B̟̄i
(t)̟i(t), x̄(0) = x̄0, (5)

where player i tries to minimize with respect to ui(t) and player N + i tries to maximize with
respect to ̟i(t) the cost function

J̄i =
1

2
x̄⊤(tf )Q̄ix̄(tf ) +

1

2

∫ tf

0

(

u⊤
i (t)Riui(t)−̟⊤

i (t)R̟i
̟i(t)

)

dt, (6)

where x̄(t) = ÊNnx(t), B̄i(t) = ÊNnBi(t), B̟̄i
(t) = ĒN,iB̟i

(t), and Q̄i = ĒN,iQiĒ
⊤
N,i.

Nash/worst-case equilibria for the linear-quadratic differential game (5) and (6) are derived
using Pontryagin’s principle in terms of a nonsymmetric Riccati equation.

LetG = diag(R1, · · · , Rn), which is invertible since Ri (i = 1, · · · , N) are, B(t) = [B̄1(t), · · · , B̄n(t)]
⊤,

B̃⊤(t) = diag(B⊤
1 (t), · · · , B⊤

n (t)), S̃(t) = BG−1B̃⊤(t) − diag(S̟i
), M̃(t) =

[

ĀN (t) −S̃(t)
−Q −Ā⊤

N (t)

]

,

S̃(t) = ÊNn[S1(t), · · · ,
SN (t)]− diag(S̟i

), Q = diag(Qi), Sj(t) = B⊤
j (t)R−1

j Bj(t), and S̟i
(t) = B⊤

̟i
(t)R−1

̟i
B̟i

(t).
In [47], it is shown that if the nonsymmetric Riccati differential equation

Ṗ (t) + Ā⊤
N (t)P (t) + P (t)ĀN (t)− P (t)S̃(t)P (t) = 0, P (tf ) = Q, (7)

has a solution on [0, tf ], the linear-quadratic differential game (3) and (4) has a unique Nash/worst-
case equilibrium for every initial state x0. The worst-case Nash equilibrium actions and correspond-
ing worst-case disturbances are given by the following

u(t) = −G−1B̃⊤(t)P (t)x̄(t),

̟i(t) = R−1
̟i

B⊤
̟i

(t)Pi(t)x̄(t),
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where u(t) = [u⊤
1 (t), · · · , u

⊤
N (t)]⊤, P⊤(t) = [P⊤

1 (t), · · · , P⊤
N (t)], Pi(t) ∈ R

n×nN . Moreover, the state
trajectory satisfies

˙̄x(t) = Acl(t)x̄(t), x̄(0) = x̄0,

where
Acl(t) = ĀN (t)−BG−1B̃⊤(t)P (t)x̄(t) + diag(S̟i

)P (t).

3 Game of Opinion Formation

Consider a social network of n (heterogeneous) agents indexed by 1 through n on a communication
graph G(V , E) communicating about m interdependent topics (m ∈ N > 1). The set of vertices
V = {1, · · · , n} corresponds to the set of agents. Each edge (i, j) ∈ E represents an opinion flow from
node i to node j and is assigned an interpersonal influences matrix Wij ∈ R

m×m with nonnegative
entries. Without a loss of generality, assume there are two interdependent topics (i.e., m = 2),

namely, topic p and topic q. The off-diagonal entry ω
pq
ij > 0 in Wij =

[

ω
pp
ij ω

pq
ij

ω
qp
ij ω

qq
ij

]

imposes a

coupling between topic p of agent i and topic q of agent j. Similarly, ωqp
ij > 0 relates to a coupling

between topic q of agent i and topic p of agent j. Their magnitude corresponds to the level of trust

accorded one agent in the opinion of the other agent. Wii =

[

ω
pp
ii 0
0 ω

qq
ii

]

is called the stubbornness

matrix for agent i, where its entries are the stubbornness coefficients. If agent i is not stubborn
about a topic, the corresponding diagonal entry for that topic becomes zero. Similarly, the off-
diagonal entries for topics that are not evolving in coupling by the opinion dynamics model are also
set to zero.

Assumption 1. The opinion network graph G for every topic is connected.

The connectivity of G means there exists at least one globally reachable node for every topic (a
root node of a spanning tree on the graph). In an opinion network on a connected communication
graph, each agent for every topic has at least one neighbor with whom they interact. Two agents
i and j are said to be graph neighbors if a topic in agent i is coupled to another topic or the same
topic in another agent j through a nonzero matrix Wij .

Let xi(t) ∈ R
m×1 denote the opinion vector of agent i ∈ V at time t > 0 which evolves in

continuous time according to the following dynamics [51]

ẋi(t) =
∑

j∈Ni

Wij(xj(t) − xi(t)). (8)

The meaning of this model is that each agent’s opinion on multiple interdependent topics evolves
according to the sum of disagreements between the opinions of each agent and its graph neighbors
on those topics.

Traditionally, an agent in a social graph is modeled as a node that simply aggregates the opin-
ions of other agents to update its own opinion according to a specified rule without strategically
influencing other agents’ opinions. In this study, we assume that every agent in the social net-
work graph G(V , E) strategically and directly influences the opinions of its neighboring agents on
the graph. Therefore, all agent interactions, restricted by the graph topology, are strategic. The
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agents decide on their influence efforts, i.e., find strategies under a noncooperative game frame-
work, by minimizing a personal cost function that consists of opinion disagreement costs with their
neighborhood and their own initial opinions (i.e., stubbornness costs).

For optimization purposes for strategizing agents in a social network, let the vector ui(t) ∈ R
d×1

denote the agent’s control or influence, and the input ̟i(t) be an extraneous input representing an
unknown disturbance influencing the system (̟i(t) ∈ L2). Then, the dynamics (8) becomes

ẋi(t) =
∑

j∈Ni

Wij(xj(t)− xi(t)) + biui(t) + ξi̟i(t). (9)

Here, bi ∈ R
m×d and ξi ∈ R

m×d represent the dependency structure of multiple-control inputs. bi’s
entries denote the level of trust of agent i ∈ V in the declared opinion or her actions (influence
efforts). ξi models the disturbance’s internal structure from the point of view of agent i ∈ V .

Let us define the following finite time horizon quadratic cost for agent i ∈ V to minimize in
t ∈ [0, tf ] in order to determine her actions

Ji =
1

2
‖xi(tf )− xi(0)‖

2
Wii

+
1

2

∑

j∈Ni

‖xi(tf )− xj(tf )‖
2
Wij

+

1

2

∫ tf

0

(

‖ui(t)‖
2
Ri

− ‖̟i(t)‖
2
R̟i

)

dt, (10)

where Ri ∈ R
d×d and R̟i

∈ R
d×d are symmetric positive definite, and tf is the terminal time.

Matrix R̟i
models the agent’s expectation about the severity of the disturbance ξi̟i(t). Agents

who expect insignificant disturbances choose large R̟i
[47]. A finite terminal time refers to situa-

tions where the attitudes of social groups are analyzed in a limited amount of time, like during a
political or advertising campaign with an end date.

The cost function in (10) has three terms. The first term is a weighted difference between the
terminal opinions vector xi(tf ) and the initial opinions vector xi(0) (or the agent’s prejudices).
Agents with prejudices (i.e., xi(0) 6= 0) are stubborn, thus this term reflects the agent’s stubborn-
ness. The second term is a weighted sum of differences between the terminal opinions vector xi(tf )
and the terminal opinions vector xj(tf ) for each neighboring j ∈ Ni according to the communication
graph G. The last term is the weighted control or influence effort made during the entire opinion
formation process, considering his expectations of the disturbance.

The proposed cost function in this paper unifies the graph definition of a network with a control
effort in a multi-dimensional opinion space exposed to disturbances. By adopting it, each agent
is trying to minimize their disagreement with their initial opinions and with the opinions of their
neighbors at the terminal time with the least influence effort during the whole process of opinion
formation. By moving toward their neighbors’ opinions, players can prevent additional costs from
being incurred by their neighbors [23]. Therefore, opinion formation behavior is characterized by
minimizing the cost function at equilibrium. To that end, we like to find a control policy that
minimizes the cost of disagreement with the least effort against a worst-case assumption of the
disturbance.

By concatenating the states of all agents into a vector x(t) = [x⊤
1 (t), · · · ,

x⊤
n (t)]

⊤, the state equation with a given initial state is given by

ẋ(t) = −Lx(t) +
n
∑

i=1

Biui(t) +

n
∑

i=1

B̟i
̟i(t), x(0) = x0, (11)
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where L = DWD⊤, and W = diag(· · · ,Wij , · · · ) ∀(i, j) ∈ E , Bi = [0, · · · , b⊤i ,
· · · , 0]⊤, B̟i

= [0, · · · , ξ⊤i , · · · , 0]⊤.
According to the sum-of-squares property of graph Laplacian, Ji can be expressed as

Ji =
1

2
‖x(tf )− x0‖

2
Fi

+
1

2
‖x(tf )‖

2
Li

+
1

2

∫ tf

0

(

‖ui(t)‖
2
Ri

− ‖̟i(t)‖
2
R̟i

)

dt, (12)

where Fi = diag(0, · · · ,Wii, · · · , 0), Li = DWiD⊤, and Wi = diag(0, · · · ,Wij

, · · · , 0) ∀j ∈ Ni.
The cost function (12) and the dynamics (11) pose a differential game problem [52]. This

category of problems is very promising for modeling and analyzing conflict situations in networked
systems of self-interested dynamical agents. In the context of a differential game, each agent of the
network is referred to as a player and thereby the game of opinion formation in (12) and (11) has
n players. In this context, each player seeks the control ui(t) that minimizes her cost function Ji
subject to the game state equation with the given initial state in (11). In other words, the players in
the game seek to minimize their cost functions in order to find their control or influence strategies
ui(t) while their opinions evolve according to the differential equation (11).

The behavior of self-interested players in the game of opinion formation is best reflected via
noncooperative game theory. Under the framework of noncooperative games, the players can not
make binding agreements, and therefore, the solution (i.e., the Nash equilibrium) has to be self-
enforcing, meaning that once it is agreed upon, nobody has the incentive to deviate from [53]. In
the next section, we derive the open-loop Nash/worst-case equilibrium solution for the game of
coupled multi-dimensional opinion formation in terms of (12) and (11).

4 Nash/Worst-case Equilibrium Solution

A Nash equilibrium is a strategy combination of all players in the game with the property that
no one can gain a lower cost by unilaterally deviating from it. The open-loop Nash equilibrium is
defined as a set of admissible actions (u∗

1, · · · , u
∗
n) if for all admissible (u1, · · · , un) the inequalities

Ji(u
∗
1, · · · , u

∗
i−1, u

∗
i , u

∗
i+1, · · · , u

∗
n) ≤ Ji(u

∗
1, · · · , u

∗
i−1, ui, u

∗
i+1, · · · , u

∗
n) hold for i ∈ {1, · · · , n} where

ui ∈ Γi and Γi = {ui(t, x0)|t ∈ [0, tf ]} is the admissible strategy set for player i. The noncooperative
linear quadratic differential game and the unique Nash equilibrium associated with it are discussed
thoroughly in [52].

Assume that for every strategy combination (u1, · · · , un) there exists a worst-case disturbance
ˆ̟ i(u1, · · · , un) from the point of view of player i, i.e., Ji

(

u1, · · · , un, ˆ̟ i(u1, · · · , un)
)

≥ Ji
(

u1, · · · , un, ̟
)

holds for each ̟ and i ∈ {1, · · · , n}. Then, a Nash/worst-case equilibrium is defined as a set of
admissible actions (u∗

1, · · · , u
∗
n) that the inequalities Ji

(

u∗
1, · · · , u

∗
n, ˆ̟ i(u

∗
1, · · · , u

∗
n)
)

≤ Ji
(

u∗
1, · · · , u

∗
i−1, ui, u

∗
i+1, · · · , u

∗
n, ˆ̟ i(u

∗
1, · · · , u

∗
i−1, ui, u

∗
i+1, · · · , u

∗
n)
)

hold for i ∈ {1, · · · , n} where
ui ∈ Γi.

As presented in Subsection 2.2, the linear quadratic differential game (11) and (12) converts to
the nonsymmetric Riccati differential equation problem (7). Since solving (7) analytically is difficult,
its approximate solution has to be obtained by numerical methods. Thereby, the Nash/worst-case
equilibrium actions ui(t) and their corresponding worst-case disturbances ̟i(t) in Subsection 2.2
could only be approximated.

In the following, we present the open-loop Nash/worst-case equilibrium solution for the under-
lying game of opinion formation. The solution is an explicit expression derived by applying the
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necessary conditions for optimality using Pontryagin’s principle. Before we begin, we present the
following assumptions and lemmas.

Lemma 1. Let X+ and R(X) denote the Moore-Penrose inverse and the range, respectively, of
a real matrix X. For nonnegative definite (or positive semidefinite) X ∈ R

n×n and Y ∈ R
n×n,

X
L

� Y means X is below Y with respect to the Loewner partial ordering. X
L

� Y holds if and only
if R(X) ⊆ R(Y ) and µmax(Y

+X) ≤ 1, where µmax(.) denotes the maximum eigenvalue of a matrix.

The proof can be found in [48]. X
L

� Y is equivalent to Y −X being nonnegative definite for
two nonnegative definite matrices X and Y [49].

Assumption 2. BiR
−1
i B⊤

i

L

� B̟i
R−1

̟i
B⊤

̟i
.

Lemma 2. Let Φ(tf , t) denote the state-transition matrix for −L (and since −L is time-invariant,
Φ(tf , t) = e−(tf−t)L). Matrix

H(tf ) = I −
n
∑

i=1

(

Ψi(tf , 0)(Fi + Li)
)

, (13)

where

Ψi(tf , 0) =

∫ tf

0

Φ(tf , τ)
(

B̟i
R−1

̟i
B⊤

̟i
−BiR

−1
i B⊤

i

)

Φ⊤(tf , τ) dτ , (14)

is nonsingular if Assumption 2 holds.

Proof. Firstly, the eigenvalues of Fi + Li have nonnegative real parts. This is because i) the
nonzero eigenvalues of Laplacian Li and Li have nonnegative real parts, and ii) the eigenvalues of
nonnegative diagonal matrix Wii and diagonal Fi are real nonnegative. Secondly, the eigenvalues
of Ψi(tf , 0) defined in (14) are real and nonnegative. Let us rewrite (14) as Ψi(tf , 0) = Ψi1(tf , 0)−
Ψi2(tf , 0) where

Ψi1(tf , 0) =

∫ tf

0

Φ(tf , τ)B̟i
R−1

̟i
B⊤

̟i
Φ⊤(tf , τ) dτ ,

Ψi2(tf , 0) =

∫ tf

0

Φ(tf , τ)BiR
−1
i B⊤

i Φ⊤(tf , τ) dτ .

Both Ψi1(tf , 0) and Ψi2(tf , 0) are positive definite (see Theorem 12.6.18. in [50]) as well as sym-
metric (see Fact 3.7.2.in [50]). According to Assumption 2, Ψi(tf , 0) is positive semidefinite. Thus,
its eigenvalues are real and nonnegative. According to its spectrum property, the eigenvalues of the
product Ψi(tf , 0)(Fi+Li) are the eigenvalue products between Ψi(tf , 0) and Fi+Li and hence have
nonnegative real parts. Finally, the eigenvalues of H(tf ) have positive real parts, and the existence
of H−1(tf ) is concluded.

Remark 1. For the case when Nash/worst-case equilibrium reduces to Nash equilibrium, in (14)
B̟i

R−1
̟i

B⊤
̟i

= 0, and the nonsingularity of H(tf ) is obvious from Lemma 2 without Assumption 2.
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Theorem 1. The opinion formation as the n-player noncooperative differential game in (11) and
(12) admits a unique open-loop Nash/worst-case equilibrium. The unique Nash/worst-case actions,
corresponding worst-case disturbances, as well as the associated state trajectory are given by

ui(t) = −R−1
i B⊤

i Φ⊤(tf , t)
[

(Fi + Li)H
−1(tf )G(tf )− Fi

]

x0, (15)

̟i(t) = R−1
̟i

B⊤
̟i

Φ⊤(tf , t)
[

(Fi + Li)H
−1(tf )G(tf )− Fi

]

x0, (16)

x(t) =
(

Φ(t, 0) + Ψ(t, 0)
[

(F + P )H−1(tf )G(tf )− F
])

x0, (17)

where

H(tf ) = I −Ψ(tf , 0)(F + P ), (18)

G(tf ) = Φ(tf , 0)−Ψ(tf , 0)F, (19)

Ψ(tf , 0) = [Ψ1(tf , 0), · · · ,Ψn(tf , 0)], (20)

F = [F⊤
1 , · · · , F⊤

n ]⊤, (21)

P = [L⊤
1 , · · · ,L

⊤
n ]

⊤. (22)

Proof. The Hamiltonian for every i ∈ V is defined as

Hi =
1

2
‖ui(t)‖

2
Ri

−
1

2
‖̟(t)‖2R̟i

+

λ⊤
i (t)

(

− Lx(t) +
n
∑

i=1

Biui(t) +

n
∑

i=1

B̟i
̟i(t)

)

,

where λi(t) is a co-state vector. According to Pontryagin’s principle, the necessary conditions for
optimality are

∂Hi

∂ui

= 0,
∂Hi

∂̟i

= 0, λ̇i(t) = −
∂Hi

∂x
.

Equivalently,

ui(t) = −R−1
i B⊤

i λi(t), (23)

̟i(t) = R−1
̟i

B⊤
̟i

λi(t), (24)

λ̇i(t) = Lλi(t), (25)

subject to the terminal condition

λi(tf ) = (Fi + Li)x(tf )− Fix0. (26)

The solution of (25) is
λi(t) = Φ(tf , t)λi(tf ). (27)

Substituting this solution in (23) and (24) yield

ui(t) = −R−1
i B⊤

i Φ(tf , t)λi(tf ), (28)
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̟i(t) = R−1
̟i

B⊤
̟i

Φ(tf , t)λi(tf ). (29)

Substituting (28) and (29) in the state dynamics equation, we get

ẋ(t) = −Lx(t) +
n
∑

i=1

(

B̟i
R−1

̟i
B⊤

̟i
−BiR

−1
i B⊤

i

)

Φ(tf , t)λi(tf ). (30)

Equation (30) has a solution at tf as follows

x(tf ) = Φ(tf , 0)x0 +Ψ(tf , 0)λ(tf ), (31)

with Ψ(tf , 0) given in (20). Stacking (26) for i = 1, · · · , n yields







λ1(tf )
...

λn(tf )






=







(F1 + L1)x(tf )
...

(Fn + Ln)x(tf )






−







F1x0

...
Fnx0






. (32)

For the sake of notational simplicity, (32) is shown as

λ(tf ) = (F + P )x(tf )− Fx0, (33)

with F and L defined in (21) and (22), respectively, and λ(tf ) = [λ⊤
1 (tf ), · · · ,

λ⊤
n (tf )]

⊤. Substituting λ(tf ) from (33) then into x(tf ) in (31) yields

x(tf ) = Φ(tf , 0)x0 +Ψ(tf , 0)(F + P )x(tf )−Ψ(tf , 0)Fx0,

or alternatively,
(

I −Ψ(tf , 0)(F + P )
)

x(tf ) =
(

Φ(tf , 0)−Ψ(tf , 0)F
)

x0. (34)

Therefore, the game has an open-loop Nash equilibrium for any initial state x0 if and only if
(34) is satisfied for any arbitrary final state x(tf ). If so, the equilibrium actions are unique and
exist for all t ∈ [0, tf ]. Otherwise, the game does not have a unique open-loop Nash equilibrium for
every initial state x0.

Using the notation H(tf ) and G(tf ) in (18) and (19), respectively, we can rewrite (34) as

x(tf ) = H−1(tf )G(tf )x0. (35)

Finally, by substituting (35) into (26) and re-substituting (26) in (23) and (24), we obtain (15)
and (16), respectively.

The solution of (30) at t is given by

x(t) = Φ(t, 0)x0 +Ψ(t, 0)λ(tf ).

Substituting λ(tf ) from (33) and then re-submitting x(tf ) from (35), we have

x(t) = Φ(t, 0)x0 +Ψ(t, 0)(F + P )x(tf )−Ψ(t, 0)Fx0

= Φ(t, 0)x0 +Ψ(t, 0)(F + P )H−1(tf )G(tf )x0 −Ψ(t, 0)Fx0,

or in its final form (17). This concludes the proof.
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From Theorem 1, it is obvious that the unique Nash/worst-case equilibrium actions and their
corresponding worst-case disturbances exist if and only if H(tf ) in (13) has an inverse.

Let M = (Fi + Li)H
−1(tf )G(tf )− Fi. So,

ui(t) = −R−1
i B⊤

i Φ⊤(tf , t)Mx0,

̟i(t) = R−1
̟i

B⊤
̟i

Φ⊤(tf , t)Mx0.

Additionally, assume that Ri = R⊤
i and R̟i

= R⊤
̟i

. Thus, (R−1
i )⊤ = (R⊤

i )
−1 = R−1

i .
The worst-case expected costs by player i are

Ji =
1

2

∫ tf

0

(

u
⊤

i (t)Riui(t)−̟
⊤

i (t)R̟i
̟i(t)

)

dt

= −

1

2
x
⊤

0 M
⊤

∫ tf

0

Φ(tf , t)
(

B̟i
R

−1

̟i
B

⊤

̟i
−BiR

−1

i B
⊤

i

)

Φ⊤(tf , t) dtMx0

= −

1

2
x
⊤

0 M
⊤Ψi(tf , 0)Mx0.

The terminal opinion formation error for player i is

Ei =
1

2
‖xi(tf )− xi(0)‖

2
Wii

+
1

2

∑

j∈Ni

‖xi(tf )− xj(tf )‖
2
Wij

=
1

2
‖x(tf )− x0‖

2
Fi

+
1

2
‖x(tf )‖

2
Li
. (36)

5 Distributed Implementation of Game Strategies

It is obvious from (15), (16), and (17) that the Nash/worst-case actions, their corresponding worst-
case disturbances, and state trajectory require the vector x0 from all players or nodes in the com-
munication graph. Consequently, control actions (15) and (16) are compatible only with a fully
connected communication graph where each agent has access to global information. A complete
graph resembles a social network in which each agent knows all other agents and communicates
with them. In practice, since each agent usually does not know all the other agents, the graph is
incomplete. In such a network, each player has access to her immediate neighbors’ information in
the opinion network’s communication graph and does not share her information with non-neighbor
agents. Therefore, the distributed implementation of control actions (15) and (16) is necessary for
incomplete graphs. Moreover, distributed control policies that could be implemented only with
information from neighboring nodes have several advantages, such as reliability, scalability, and
flexibility [54]. However, (15) and (16) are incapable of being executed with the distributed infor-
mation.

In the following, we propose a distributed implementation of (15) and (16), which each agent
can execute only with information from her graph neighbors. Inspired by the Nash strategy design
approach in a distributed manner for UAV (unmanned aerial vehicle) formation control in [55], for
each agent i, we propose the following state estimator

ˆ̇xi(t) =δi

{

(

e⊤i Φ(tf , 0)ei − e⊤i Ψi(tf , 0)eiWii

)

xi(0)

− x̂i(t) + e⊤i Ψi(tf , 0)ei
∑

j∈Ni

Wij(x̂j(t)− x̂i(t))

}

, (37)
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where δi is a positive scalar and ei = [0m×m, · · · , Im×m, · · · , 0m×m]⊤.

Theorem 2. If each agent i for all i ∈ V updates its state estimate x̂i(t) according to (37), then

lim
t→∞

x̂(t) = x(tf ) (38)

where x̂(t) = [x̂⊤
1 (t), · · · , x̂

⊤
n (t)]

⊤.

Proof. Stacking (37) from 1 to n yields

ˆ̇x(t) = ∆

(

(

Φ(tf , 0)−Ψ(tf , 0)F
)

x0 −
(

I −
n
∑

i=1

(

Ψi(tf , 0)(Fi + Li)
)

)

x̂(t)

)

= ∆
((

Φ(tf , 0)−Ψ(tf , 0)F
)

x0 − (I −Ψ(tf , 0)(F + P ))x̂(t)
)

= ∆
((

Φ(tf , 0)−Ψ(tf , 0)F
)

x0 −H(tf )x̂(t)
)

(39)

where ∆ = diag(g1, · · · , gn)⊗ Im×m.
Using the notation H(tf ), (34) can be rewritten as

H(tf )x(tf ) =
(

Φ(tf , 0)−Ψ(tf , 0)F
)

x0. (40)

Substituting the left side from (40) into (39), we have

ˆ̇x(t) = −∆H(tf ) (x̂(t)− x(tf )) (41)

As shown in Lemma 2, all the eigenvalues of matrix H(tf ) have positive real parts, and thus matrix
−∆H(tf ) is Hurwitz. Therefore, the linear system in (41) is asymptotically stable, and x̂(t) will
converge to x(tf ) at t → ∞.

Using the distributed state estimator (37), each agent i ∈ V can adopt the following distributed
strategy

ûi(t) = −R−1
i B⊤

i

(

Wii(x̂i(t)− xi(0)) +
∑

j∈Ni

Wij(x̂j(t)− x̂i(t))
)

, (42)

and its corresponding distributed worst-case disturbance is

ˆ̟ i(t) = R−1
̟i

B⊤
̟i

(

Wii(x̂i(t)− xi(0)) +
∑

j∈Ni

Wij(x̂j(t)− x̂i(t))
)

. (43)

All agents will eventually converge to the open-loop Nash/worst-case strategy, its corresponding
disturbance, and state trajectory with the arbitrary convergence speed determined by δi if they
adopt distributed implementation (42), (43), and (37). Notice that each agent requires only her
own initial state and state estimates and the state estimates of her graph neighbors, which can be
acquired at the beginning of the game.

The terminal opinion formation error for player i when adopting distributed strategies is

Êi =
1

2
‖x̂i(tf )− xi(0)‖

2
Wii

+
1

2

∑

j∈Ni

‖x̂i(tf )− x̂j(tf )‖
2
Wij

=
1

2
‖x̂(tf )− x0‖

2
Fi

+
1

2
‖x̂(tf )‖

2
Li
. (44)
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6 Social Optimality

In the game of multi-dimensional opinion formation on the communication graph G(V , E), each
player by minimizing the individual (local) cost function attains the locally optimal Nash equilib-
rium. However, the game equilibrium in general does not correspond to the global social optimum,
which minimizes the sum of all players’ costs. The global network dynamics can be rewritten as

ẋ(t) = −Lx(t) +Bu(t) +B̟̟(t), x(0) = x0, (45)

whereB = [B1, · · · , Bn], u(t) = [u⊤
1 (t), · · · , u

⊤
n (t)]

⊤, B̟ = [B̟1
, · · · , B̟n

], and̟(t) = [̟⊤
1 (t), · · · , ̟

⊤
n (t)]

⊤.
Social optimality utilizes an identical global objective (e.g., a cost function to minimize) as the opin-
ion formation objective by simply adding all the individual players’ interests together. Therefore,
the social optimality problem is associated with a social network with non-strategist agents in which
individuals do not wish to execute their personal strategies but rather prefer to commit to the whole
network’s common objective. The global cost function becomes

J =

n
∑

i=1

Ji,

or equivalently

J =
1

2
‖x(tf )− x0‖

2
F̄
+

1

2
‖x(tf )‖

2
L +

1

2

∫ tf

0

(

‖u(t)‖2R − ‖̟(t)‖2R̟

)

dt, (46)

where F̄ = diag(W11, · · · ,Wnn), R = diag(R1, · · · , Rn), and R̟ = diag(R̟1
,

· · · , R̟n
). The global cost function in (46) is known to all i ∈ V and is minimized with respect to

(45).

Theorem 3. The socially optimal actions and their corresponding worst-case disturbances for opin-
ion formation as a result of the optimal control problem in (45) and (46) are

u(t) = −R−1B⊤Φ⊤(tf , t)
[

(F̄ + L)H̄−1(tf )Ḡ(tf )− F̄
]

x0, (47)

̟(t) = R−1
̟ B⊤

̟Φ⊤(tf , t)
[

(F̄ + L)H̄−1(tf )Ḡ(tf )− F̄
]

x0, (48)

where

H̄(tf ) = I − Ψ̄(tf , 0)(F̄ + L),

Ḡ(tf ) = Φ(tf , 0)− Ψ̄(tf , 0)F̄ ,

Ψ̄(tf , 0) =

∫ tf

0

Φ(tf , τ)
(

B̟R−1
̟ B⊤

̟ −BR−1B⊤
)

Φ⊤(tf , τ) dτ .

Furthermore, the associated state trajectory is given by

x(t) =
(

Φ(t, 0) + Ψ̄(t, 0)
[

(F̄ + L)H̄−1(tf )Ḡ(tf )− F̄
])

x0. (49)

Proof. Applying Pontryagin’s principle, the optimal control problem in (45) and (46) converts to
the following boundary value problem

ẋ(t) = −Lx(t) +
(

B̟R−1
̟ B⊤

̟ −BR−1B⊤
)

λ̄(t), x(0) = x0,

˙̄λ(t) = Lλ̄(t), λ̄(tf ) =
(

F̄ + L
)

x(tf )− F̄x0.
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Along with that, we have

u(t) = −R−1B⊤λ̄(t),

̟(t) = R−1
̟ B⊤

̟λ̄(t).

The solution for ˙̄λ(t) is λ̄(t) = Φ(tf , t)λ̄(tf ). Substituting this solution in the equation for ẋ(t),
and solving it for tf , we get

x(tf ) = Φ(tf , 0)x0 + Ψ̄(tf , 0)λ̄(tf ).

Substituting λ̄(tf ) into x(tf ) above yields

x(tf ) = Φ(tf , 0)x0 + Ψ̄(tf , 0)(F̄ + L)x(tf )− Ψ̄(tf , 0)F̄x0,

or,

(

I − Ψ̄(tf , 0)(F̄ + L)
)

x(tf ) =
(

Φ(tf , 0)− Ψ̄(tf , 0)F̄
)

x0.

Using the notation H̄(tf ) and Ḡ(tf ), and by appropriate substitutions similar to the proof in
Theorem 1, we obtain (47) and (48) as well as (49).

Under socially optimal actions, the total terminal opinion formation error is given by

Eo =
1

2

∑

i∈V

‖xi(tf )− xi(0)‖
2
Wii

+
1

2

∑

{i,j}∈E

‖xi(tf )− xj(tf )‖
2
Wij

=
1

2
‖x(tf )− x0‖

2
F̄
+

1

2
‖x(tf )‖

2
L. (50)

7 Numerical Analysis

For the numerical analysis of the proposed game optimization model, we consider a small social
network with five agents (i.e., n = 5) in a two-dimensional opinion space (i.e., m = 2). The
underlying social graph topology is adapted from [51]. This example graph was used to analyze
opinion formation with the non-stubborn non-strategist agent model on a time-invariant undirected
social graph. We consider this graph with directed edges.

The social graph topology is given in Fig. 1 and the initial opinions of agents and the in-
terpersonal influence matrices from [51] are as x1(0) = [1, 2]⊤, x2(0) = [2, 4]⊤, x3(0) = [3, 1]⊤,
x4(0) = [4, 3]⊤, and x5(0) = [5, 6]⊤, W12 = W13 = W23 = W34 = W45 = I2×2. Note that all the
weights of the above matrices are considered nonnegative; while zero denotes no coupling, a nonzero
weight shows a positive coupling between the associated topics from two agents. This choice of in-
terpersonal influence matrices means that the agents communicate on several unrelated topics on
the information graph. As we expected and as seen from Fig. 2(a), a consensus of final opinions
about the average opinion in the network for the non-stubborn non-strategist agent model (8) was
reached at a horizon length of tf = 10. To examine the evolution of opinions on interdependent

topics, we choose W12 = W13 = W23 = W34 = W45 =

[

1 1
1 1

]

, so for all neighboring agents, both

topics are fully coupled. Fig. 2(b) shows that only agents 1 and 5 reach a consensus on both topics.
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Figure 1: Underlying communication graph topology for numerical analysis.
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(a) Wij = I2×2, i = 1, · · · , 5, j ∈ Ni
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Figure 2: Opinion trajectories associated with the non-stubborn non-strategist agent model (8) prior to
optimization. (a) A consensus of final opinions about the average opinion in the network was reached. (b)
Only agents 1 and 5 reached a consensus.

We continue the numerical analysis with the proposed game optimization model to investigate
the impact of differential game optimization on opinion trajectories when the agents are strategists
and non-stubborn (i.e., Wii = 0 for all i), and then when they are stubborn (i.e., Wii = I2×2 for all
i). Note that for a time-varying graph, L(t) satisfies the commutative condition, i.e., L(t)L(τ) =
L(τ)L(t) for all t and τ in [0, tf ]. Therefore, the state transition matrix Φ(tf , t) is found in explicit
form by the spectral decomposition given in (52) in A. Let bi = ξi = I2×2, Ri = riI2×2 and
R̟i

= r̟i
I2×2, (r̟i

6= ri) for i ∈ {1, · · · , 5}, then

Ψi(tf , 0) = (r̟i
− ri)

∫ tf

0

Φ(tf , t)Φ
⊤(tf , t) dt.

The outcome of the game optimization problem can be quantified by the results presented in
Theorem 1 and their distributed counterparts in Section 5. Fig. 3 shows the evolution of the opinions
associated with the game strategies as well as their distributed counterparts for the parameter
selection of ri = 2, r̟i

= 2, and δi = 1. Although the distributed estimated opinion trajectories
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at the beginning are far from the opinion trajectories corresponding to the game strategies, they
converge near the middle point of the horizon length.

Let all agents expect significant disturbances and thereby choose a smaller r̟i
. In Fig. 4, we

re-illustrate the results for r̟i
= 0.5. Compared to Fig. 3 where r̟i

= 2, we observe that only for
stubborn agents with unrelated topics (Wii = I2×2,Wij = I2×2), their opinion trajectories change.
Therefore, the decisions of stubborn agents on unrelated topics are affected the most by the changes
in disturbance expectations.
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(c) Wii = I2×2,Wij = I2×2, r̟i
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(d) Wii = I2×2,Wij = [1 1; 1 1], r̟i
= 2

Figure 3: Opinion trajectories associated with the game strategies and their distributed counterparts
(shown with dashed lines). (a) non-stubborn agents with unrelated topics; (b) non-stubborn agents with
fully coupled topics; (c) stubborn agents with unrelated topics; (d) stubborn agents with fully coupled
topics.

The results of applying the socially optimal actions presented in Theorem 3 are shown in Fig. 5.
For non-stubborn agents, their opinion trajectories under the game strategies and social optimal
actions overlap, while for stubborn agents, they are similar. Agent 5 has the least communication
with other agents, and only its final opinion slightly differs when under game strategies and socially
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(d) Wii = I2×2,Wij = [1 1; 1 1], r̟i
= 0.5

Figure 4: Opinion trajectories associated with the game strategies and their distributed counterparts with
disturbances r̟i

= 0.5 for i = 1, · · · , 5.

optimal actions.
To see whether the changes in the stubbornness of stubborn agents affect their opinion trajec-

tories associated with game strategies and socially optimal actions, we show both trajectories for
highly stubborn agents with the stubbornness of Wii = 10I2×2 for i = 1, · · · , 5 in Figure 6. We
observe that at the beginning and end of the horizon length, both trajectories are very close, but
the rest of the time they get a little far from each other.

Furthermore, to quantify the performance of the game strategies against their distributed coun-
terparts and the socially optimal actions, we utilize the terminal opinion formation errors that
correspond to each. The terminal opinion formation error for agent i under the game strategies
and their distributed counterparts are calculated from (36) and (44), respectively. Under socially
optimal actions, the total terminal opinion formation error is given by (50). The terminal opinion
formation errors under the game strategies (Ei), their distributed counterparts (Êi), and the so-
cially optimal actions (Eo) for tf = 10 are summarized in Tables 1-4. From these tables, we see that
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Figure 5: Opinion trajectories associated with socially optimal actions (shown with a dash-dotted line)
versus opinion trajectories associated with game strategies.

the errors under the game strategies and the errors under their distributed counterparts are very
close to each other, and they are less than the errors under the socially optimal actions. In addition,
the errors for stubborn agents are much higher than for non-stubborn agents. Although the socially
optimal action approach has nearly the same performance as the game strategy approach and its
distributed counterpart approach in terms of terminal opinion formation errors, it has significant
drawbacks that make it undesirable. As it is apparent from (47), each agent has to acquire the
complete information of all other agents and their initial state vector. On the contrary, the agents
can implement the counterparts of game strategies distributedly. In addition, social optimality
does not allow individual agents to be strategists, who are decision-makers prioritizing their own
interests.
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Figure 6: Opinion trajectories associated with game strategies and socially optimal actions for highly
stubborn agents.

Table 1: Terminal opinion formation errors for non-stubborn (Wii = 02×2) agents on unrelated topics
(Wij = I2×2)

i Ei Êi Eo

1 7.4116 × 10−6 7.4229 × 10−6 5.5011 × 10−5

2 7.4116 × 10−6 7.4206 × 10−6 5.5011 × 10−5

3 5.9987 × 10−5 6.0077 × 10−5 5.5011 × 10−5

4 6.5443 × 10−5 6.5548 × 10−5 5.5011 × 10−5

5 2.0279 × 10−5 2.0314 × 10−5 5.5011 × 10−5

8 Conclusions

In this study, a differential game model of opinion formation in social networks has been proposed.
The evolution of the opinions of self-interested people in social groups formed through friendships
in real life served as the model’s inspiration. The game problem has been solved for an open-loop
information Nash equilibrium solution. Moreover, a distributed implementation of the solution
has been proposed where the game strategies and the associated opinion trajectory for each player
solely depend on the information from the neighboring players. The model was used to examine the
opinion formation of a small opinion network with five agents. A natural extension to the proposed
model can be a time-varying graph topology with antagonistic agent interactions.
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Table 2: Terminal opinion formation errors non-stubborn agents (Wii = 02×2) on fully coupled topics
(Wij = [1 1; 1 1])

i Ei Êi Eo

1 4.5838 × 10−10 5.8660 × 10−10 3.4023 × 10−9

2 4.5839 × 10−10 5.5744 × 10−10 3.4023 × 10−9

3 3.7100 × 10−9 4.7495 × 10−9 3.4023 × 10−9

4 4.0475 × 10−9 5.2724 × 10−9 3.4023 × 10−9

5 1.2542 × 10−9 1.6661 × 10−9 3.4023 × 10−9

Table 3: Terminal opinion formation errors for stubborn (Wii = I2×2) agents on unrelated topics (Wij =
I2×2)

i Ei Êi Eo

1 0.2602 0.2602 1.4263
2 0.1645 0.1645 1.4263
3 0.6474 0.6474 1.4263
4 0.7448 0.7448 1.4263
5 0.6275 0.6275 1.4263

A Commutative linear time-varying systems

Consider the linear time-varying differential state space systems described by

ẋ(t) = A(t)x(t), x(t0) = x0, (51)

where x(t) is the state vector, A(t) is a time-varying matrix, and x0 is an initial condition. The
solution of (51) is given by

x(t) = Φ(t, t0)x0,

where Φ(t, t0) denotes the state-transition matrix of A(t) and satisfies

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I.

In general, the state-transition matrix for time-varying systems is not available in explicit form.
For a special class of linear time-varying systems above, A(t) commute with A(τ) for all t and τ .
For these systems, the unique state-transition matrix is explicitly available in the exponential form
given below

Φ(t, t0) = exp (

∫ t

t0

A(τ)dτ).

Under the similarity transformation, the expression for the state-transition matrix further simplifies
as

Φ(t, t0) = P (t) exp (

∫ t

t0

Λ(τ)dτ)P−1(t),

where Λ(t) is a diagonal matrix and P (t) is a nonsingular modal matrix P (t) [56].
A more effective way of calculation of Φ(t, t0) is using the concept of an extended eigenvalue

and extended eigenvector introduced in [57]. Let the scalar µ(t) be an extended eigenvalue and e(t)
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Table 4: Terminal opinion formation errors for stubborn (Wii = I2×2) agents on fully coupled topics
(Wij = [1 1; 1 1])

i Ei Êi Eo

1 0.2307 0.2307 1.1261
2 0.0251 0.0251 1.1261
3 0.3882 0.3882 1.1261
4 0.5265 0.5265 1.1261
5 0.6037 0.6037 1.1261

be its corresponding extended eigenvector and the pair {µ(t), e(t)} is called the extended eigenpair
of A(t). Then, the spectral decomposition of the state-transition matrix is explicitly given by

Φ(t, t0) =
∑

i

exp
(

∫ t

t0

µi(τ)dτ
)

ei(t)r
⊤
i (t0), (52)

where r⊤i (t) is the reciprocal basis of e(t), i.e.,

r⊤i (t)ej(t) =

{

0 i 6= j,

1 i = j.

For a commutative A(t) its extended eigenvectors are constant [58] and its extended eigenpair are
determined by the auxiliary equations

det
(

µ(t)I −A(t)
)

= 0,
(

µ(t)I −A(t)
)

e = 0.

When A is time-invariant and all of its eigenvalues have negative real parts, (51) becomes
asymptotically stable. For a time-varying A(t), (51) is said to be asymptotically stable if and only
if x(t) starting from any finite initial state x0 is bounded and x(t) → 0 as t → ∞. The asymptotic
stability of (51) can be characterized in terms of its extended eigenpairs as quoted below from
Theorem 3 in [58]. Define

Ωi = ‖ exp
(

∫ t

t0

µi(τ)dτ
)

ei(t)‖,

for each extended eigenpair {µ(t), e(t)} of A(t). If for every {µi(t), ei(t)}, Ωi ≤ Ξ for all t ≥ t0 and
Ξ < ∞, then x(t) is bounded, and Ωi → 0 as t → ∞, the time varying system (51) is asymptotically
stable.
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