
Solving the fixed rank convex quadratic maximization in binary

variables by a parallel zonotope construction algorithm∗

J.-A. Ferrez, K. Fukuda†, Th.M. Liebling

Institute of Mathematics

Swiss Federal Institute of Technology, Lausanne, Switzerland

October 25, 2002; Revised April 29, 2004

Abstract

We address the weighted max-cut problem, or equivalently the problem of maximizing a
quadratic form in n binary variables. If the underlying (symmetric) matrix is positive semi-
definite of fixed rank d, then the problem can be reduced to searching the extreme points of a
zonotope, thus becoming of polynomial complexity in O(nd−1). Reverse search is an efficient and
practical means for enumerating the cells of a regular hyperplane arrangement, or equivalently,
the extreme points of a zonotope. We present an enhanced version of reverse search of significantly
reduced computational complexity that uses ray shooting and is well suited for parallel computa-
tion. Furthermore, a neighborhood zonotope edge following descent heuristic can be devised. We
report preliminary computational experiments of a parallel implementation of our algorithms.

1 Introduction

The unconstrained quadratic maximization problem in zero-one variables (abbreviated by 01QP)

max f(x) = xT Qx

subject to x ∈ {0, 1}n,

where Q is an n × n rational symmetric matrix, is a classical NP-hard combinatorial optimization
problem. It is well known that the weighted max-cut problem can be considered as a special case. In
fact, there are simple polynomial reductions between the weighted max-cut problem and the 01QP.
This interesting result, due to [16], will be reviewed in Section 2.

The 01QP problem remains NP-hard even when Q is positive definite or when it is indefinite of
rank two [15]. If a linear term is added to the objective function, the problem remains NP-hard even
when Q is negative definite. Well known polynomial cases are, for instance, when (a) the matrix Q is
of rank one, in which case the solution can be found by inspection, (b) Q has nonnegative off-diagonal
elements [19], and (c) the graph underlying the associated max-cut problem is series parallel [3].

Recently, a new polynomially solvable case [1] has been found. This case, that we call the fixed-
rank convex (FRC) case, is when Q is positive semidefinite and of fixed rank d. This result, which
will be reviewed in Section 3, reduces the search space of 2n 0/1 feasible solutions to that of O(nd−1)
restricted 0/1 solutions by a geometric transformation. More precisely these restricted solutions are

∗An earlier version of this paper was titled “Cuts, Zonotopes and Arrangements.”
†Also affiliated with Institute for Operations Research and Institute of Theoretical Computer Science, Swiss Federal

Institute of Technology, Zurich, Switzerland.

1



the extreme points of a d-dimensional affine image of the unit n-dimensional hypercube. This object
is known as a zonotope.

One main purpose of the present article is to investigate the practical impact of this reduction
and applicable algorithms. In particular, we propose a more efficient modification of the reverse
search algorithm [2] for generating all extreme points of a given zonotope in R

d, and we study the
performance of a straightforward implementation using the C language. Some of the largest instances
we could solve on standard Unix workstations are randomly generated rank 3 cases with n = 250 and
rank 4 cases with n = 70. It should be observed that randomly generated cases are in some sense
hardest for the enumeration of extreme points, since they are known to attain (with probability one)
the maximum size of output.

While we are not aware of any specific applications of low rank FRC 01QP problems, we strongly
hope that the exact solutions our algorithm can compute will be useful. As a simple application of
the present work, we propose to test heuristic or approximation algorithms with these instances and
evaluate their actual performances. In fact, we have tested a new heuristic algorithm and obtained
some interesting results, see Section 5. A similar study can be conducted in the future to compare the
guaranteed performance and the actual performance of approximation algorithms with a performance
guarantee. The randomized algorithm of Goemans and Williamson [14] for the maximum cut problem
is an obvious candidate for such a study.

As we will see in the following sections, any instance of 01QP can be interpreted as an instance of
the weighted max-cut problem, and also as an instance of the maximum weighted induced subgraph
problem.

2 01QP and MaxCut

There are various ways to relate 01QP to NP -hard combinatorial optimization problems over graphs.
The most natural way is by rewriting the objective function f(x) = xT Qx over x ∈ {0, 1}n as

xT Qx =
∑

i,j

qij xi xj =
∑

i6=j:xi=xj=1

2 qij +
∑

i:xi=1

qii. (2.1)

Let G be the simple complete graph of order n with node weights qii (i ∈ N = {1, . . . , n}) and edge
weights 2 qij (i 6= j). Then 01QP can be simply interpreted as the problem of finding a maximum
weight node-induced subgraph G(S) of G (S ⊆ N) where the weight of a subgraph is defined as
the sum of the weights of edges and the weights of nodes in the subgraph. This problem, known
as the maximum weight induced subgraph problem with both node and edge weights, has interesting
applications, e.g. see [4, 7].

In this section, we present how 01QP can be related to other (more) well known problems
in graphs, namely, the maximum-weight cut problem and the maximum weight induced subgraph
problem (without node weights). The transformations are less evident.

The weighted maxcut problem

Finding a cut of maximum weight in a graph with weighted edges is a well known NP -hard combi-
natorial optimization problem [13]. This problem, also known as weighted maxcut can be stated
as follows. An instance of the problem is a graph G = (N,E) along with an edge weight function
c ∈ R

E . The task is to find a partition {N1, N2} of node set N that maximizes the sum of the weights
of the edges having exactly one end node in N1. The maximum cardinality cut (or simply maxcut)
problem is the special case where all edge weights are equal to one. Note that the graphs considered
here are simple, i.e. loopless and without multiple edges sharing the same end nodes. In such cases a

2



problem instance can be described by an n × n symmetric matrix C, where element cij denotes one
half of the weight of edge {i, j}, cij = 0 if {i, j} is a non edge or if i = j. Note also that we consider
the trivial partition {N, ∅} as a cut, since it simplifies our discussion below. However this is not an
essential condition for the validity of the key theorem to be given here.

The following result, first presented by Hammer in 1965 [16], has been rediscovered and applied by
many authors in the sequel, see e.g. [3], and it establishes the close relationship between weighted

maxcut and 01QP. For completeness, the proof is given here.

Theorem 2.1 The unconstrained binary quadratic optimization problem 01QP and the weighted

maxcut problem are equivalent in that:

1. For every instance of 01QP with n binary variables one can construct a weighted graph on n+1
nodes N = {0, 1, . . . , n}, such that there is an order preserving bijection between the (weighted)
cuts on that graph and the solutions of 01QP.

2. For every instance of weighted maxcut on a graph G with n nodes it is possible to construct
an instance of 01QP with n binary variables, such that that there is an order preserving
bijection between the weighted cuts and the solutions of 01QP.

Proof.

1. Without loss of generality, let the objective function of 01QP be given as f(x) = xT Qx + bT x,
where Q is an n × n symmetric matrix with zero diagonals and b ∈ R

n. With the change of
variables x = (y + e)/2 : y ∈ {−1, 1}n, where e = (1, . . . , 1)T , the objective function can be
rewritten as

f(x) ≡ φ(y) =
1

4
(y + e)T Q(y + e) +

1

2
bT (y + e) (2.2)

=
1

4
yT Qy +

1

2
(Qe + b)T y +

1

4
eT Qe +

1

2
bT e

= yT Q̃y + b̃T y + c̃.

Herein Q̃ = 1
4Q, b̃ = 1

2(Qe + b) and c̃ = 1
4eT Qe + 1

2bT e.

Now define vector sT = (s0, . . . , sn) = (1, yT ) and the (n + 1) × (n + 1) symmetric matrix W
with zero diagonals as follows

W =

[

0 1
2 b̃T

1
2 b̃ Q̃

]

.

Since si ∈ {−1, 1}, we can write

φ(y) − c ≡ sT Ws =
∑

i,j:si=sj

wij −
∑

i,j:si=−sj

wij (2.3)

= −2
∑

i,j:si=−sj

wij +
∑

i,j

wij

= −2
∑

si=−sj

wij + const.

We see that φ(y) is equal –up to a constant– to the weight of a cut in a graph on n + 1 nodes
with edge weights −wij, which concludes the proof of claim 1.

3



2. Now, consider a graph G = (N,E) on n nodes N = {1, . . . , n} and let edge {i, j} have weight
2qij as given by the symmetric matrix Q = (qij) with zero diagonals. Any cut can be described
by a vector y ∈ {1,−1}n and its weight is given by κ(y) = 1

2(eT Qe−yT Qy). Using the bijection
y = 2x − e with x ∈ {0, 1}n we get

κ(y) ≡ f(x) = −
1

2
(2x − e)T Q(2x − e) +

1

2
eT Qe

= −2xT Qx + 2eT Qx −
1

2
eT Qe +

1

2
eT Qe

= −2xT Qx + 2eT Qx, (2.4)

which shows the claim.

The Maximum Weight Induced Subgraph Problem

Equations (2.4) have a nice graphical interpretation. Note first that each instance of 01QP can be
seen as finding a maximum weight induced subgraph of a given graph. Transforming a weighted

maxcut instance on graph G = (N,E) with node set N = {1, . . . , n} and weight matrix C to one of
01QP, can be thought of constructing a graph G̃ = (N ∪ {0}, E ∪ E0) as follows. Make a copy of G
and give its edges weights corresponding to −2C. Add an extra node {0} and draw an edge joining it
to each node of G, give these edges the weights to be found in the corresponding components of Ce.
There is an order preserving bijection between the induced subgraphs in G̃ containing node {0} and
the cuts in G. See Figure 2.1.

� �

�

c13

c12

c23

y1 = -1 y2 = 1 

y3 = 1

1 2

x1 = 0

3

0

-2c13

-2c12

-2c23

c13+c12

c12+c23

c13+c23

x2 = 1

x3 = 1

x0 = 1

Figure 2.1: The transformation from maxcut to inducedsubgraph.

3 Fixed rank convex case, zonotopes and duality

Fixed rank convex 01QP

The recent paper [1] shows that when the matrix Q is positive semidefinite and of fixed rank, the
01QP problem can be solved in polynomial time, assuming that the eigenvectors of Q are also known.
More precisely, we assume that Q is given as the product Q = V T V , where V is a d × n matrix. We
consider d is fixed. We shall call this problem a fixed-rank convex 01QP problem or simply FRC
01QP problem.

As discussed in the previous section, 01QP has a direct interpretation as the maximum weight
induced subgraph problem with both node and edge weights. In the special case of FRC 01QP, one

4



can easily see how edge weights and node weights are constructed. Namely, the edge weights are
2 (vi, vj) for all i 6= j and the node weights are (vi, vi) for all i. Here vj (j = 1 . . . n) denotes the jth
column vector of V and (·, ·) denotes the inner product to two vectors.

We shall review the basic techniques used in [1] to prove the polynomiality. First we rewrite the
01QP problem.

max f(x) = xT Qx = xT V T V x =

d
∑

i=1

(vi, x)2 = ‖V x‖2 (3.5)

subject to x ∈ {0, 1}n

where vi is the transpose of the ith row of V for i = 1, . . . , d and ‖ · ‖ the Euclidean norm. Consider
the linear map R

n → R
d : z = V x. The image of the hypercube [0, 1]n under this map is a convex

polytope Z, known as a zonotope. Notice that for every extreme point z̃ of Z there exists an extreme
point x̃ of [0, 1]n, i.e. a point x̃ ∈ {0, 1}n, such that z̃ = V x̃. For the optimal value f ∗ of (3.5) one
has

f∗ = max
{

‖V x‖2 : x ∈ {0, 1}n
}

= max
{

‖V x‖2 : x ∈ [0, 1]n
}

= max
{

‖z‖2 : z ∈ Z
}

,

where the equality in the second line is a direct consequence of the convexity of the Euclidean
norm ‖ · ‖. The last expression is a maximization of a convex function of z over the convex set Z and
follows from the definition. Therefore the maximum is attained at some extreme point z̃ of Z. Let
us denote by ext(Z) the set of extreme points of the zonotope Z.

f∗ = max
{

‖z‖2 : z ∈ Z
}

= max
z∈ext(Z)

‖z‖2. (3.6)

The FRC 01QP problem (3.5) is thus reduced to the enumeration of extreme points of the zonotope
Z in R

d. Z is the Minkowski sum of the n closed line segments [0, vj ] for j = 1, . . . , n. The vectors vj

are called the generators of the zonotope. Figure 3.2 shows small examples in rank d = 3 and the
number of generators n = 5 and 10. In general, each edge of a zonotope is parallel to some generator
segment [0, vj ], and in particular when the generators are in general position (like in our examples),
each edge is a translation of some segment [0, vj ]. Note that the associated FRC 01QP problems are
equivalent to the Euclidean norm maximization problems over these zonotopes.

x

y

z

x
y

z

Figure 3.2: 3 dimensional zonotopes with 5 and 10 generators.

The exact upper bound of the number of extreme points of a zonotope is a classical result in
discrete geometry. It is important to remark that many of the combinatorial results on zonotopes

5



were formulated and proved in the dual setting of hyperplane arrangements. We shall discuss this
duality later in this section which enables us to “see” zonotopes better in some sense. Let us denote
by f0(P ) the number of extreme points of a convex polytope P .

Theorem 3.1 ([6, 20]) Let Z be a d-dimensional zonotope with n generators (n ≥ d). Then we
have f0(Z) ≤ 2 Σd−1

i=0

(

n−1
i

)

. Furthermore, the equality is satisfied when the generators are in general
position.

The theorem immediately implies that f0(Z) = O(nd−1) and thus, the number of extreme points
is polynomially bounded as d is fixed. The polynomial solvability of the FRC 01QP problem follows
directly from the existence of an efficient algorithm (see [9, 8]) to generate all extreme points of
Z. Again, the original algorithm [9] is designed for arrangements and needs to be dualized for our
purpose.

Theorem 3.2 For d ≥ 3, there is an O(nd−1) time algorithm to generate all extreme points of a d
dimensional zonotope given by n rational generators.

Corollary 3.3 The FRC 01QP problem is polynomially solvable.

Unfortunately, the algorithm that attains the optimal time complexity may not be very practical.
It relies on a so-called “incremental” strategy, that is, to solve the problem inductively: at kth
stage (k ≤ n), it maintains the list of extreme points of a subproblem with (k − 1) generators and
updates the list with one additional generator. The critical disadvantage of this method is its memory
requirement. It has to store all the extreme points in memory. This means we use the storage of size
O(nd−1). Furthermore, the algorithm might be too complicated to implement: it stores not only the
extreme points but also all faces and their incidences. For the details, see [8].

There is an alternate algorithm to solve the enumeration problem which is time and space efficient,
highly parallelizable, and very easy to implement. We shall describe this method, based on the
reverse search scheme by Avis and Fukuda [2], in the next section. Our preliminary computational
experiments of this algorithm will be reported in Section 5. Since this algorithm is better understood
in the dual setting, we first review the duality.

Duality

For the zonotope Z = Z(V ) generated by the columns of V , we define the associated central arrange-
ment A = A(V ) of n hyperplanes in R

d, each having a vj as its normal vector:

A(V ) = {h0
j : j = 1, 2, . . . , n} (3.7)

where h0
j = {y ∈ R

d : (vj , y) = 0} for j = 1, 2, . . . , n. It is useful to consider the arrangement as

oriented, that is, we have the positive and the negative sides of each hyperplane: h+
j = {y ∈ R

d :

(vj , y) > 0} and h−
j = {y ∈ R

d : (vj , y) < 0}.
The extreme points of Z correspond one-to-one to the regions (d-dimensional faces) of the ar-

rangement, and the facets of Z to the lines (1-dimensional faces) of the arrangement, see Figure 3.3.
More generally, there is an order reversing bijection between the face posets of the two objects. To
see this, first we define the location vector σ(c) ∈ {+, 0,−}n of c ∈ R

d

σ(c)j =











+ if c ∈ h+
j

0 if c ∈ h0
j

− if c ∈ h−
j .

(3.8)

6



See Figure 3.3, where the arrangement is shown as its intersection with a sphere. A face of A is the
set Fc = {y ∈ R

d : σ(y) = σ(c)} for some c ∈ R
d. By this definition each face F of the arrangement

A is a relatively open set and uniquely represented by its sign vector, namely, the location vector
σF = σ(c) of any point c in F .

Z

v3

v4

v1

v2

1

2

3

4

+-

+
-

+
-

+ -

(-, +, - , -)

(0, +, -, -)

(+, +, -, -)

Figure 3.3: A zonotope and the associated 3-dimensional arrangement.

Now for each c ∈ R
d, define a face Kc of the cube K = [0, 1]n by

Kc = {x ∈ [0, 1]n : xj = 1 for all j such that (c, vj) > 0 and

xj = 0 for all j such that (c, vj) < 0}.

Finally, we denote by Zc the image of Kc under the linear map given by the matrix V .

Zc = V · Kc = {y ∈ R
d : y = V x, x ∈ Kc}.

It is easy to see that Zc is a face of the zonotope Z and every face of Z is of this form. Also,
the extreme points of Zc are all possible sums of vj ’s such that the summands include all vi with
(c, vi) > 0 and some vk’s with (c, vk) = 0. In particular, Zc consists of a single point (i.e. Zc is
0-dimensional) if there is no index k such that (c, vk) = 0.

Now there is a close relation between Fc and Zc. First of all both sets are invariant over all c
with the same sign σ(c). Thus, by abuse of notation, we might write Fσ(c) and Zσ(c). Now let σ be

any realizable sign, i.e. of form σ(c) for some c ∈ R
d. Then, one can verify that Fσ is the set of

vectors c for which Zσ is the set of maximizers of the linear function (c, y) over Z. The closure of Fc

is sometimes called the normal cone of Z at face Zc, and the collection of them the normal fan of Z.
The discussion above leads to the duality of zonotopes and arrangements, see Figure 3.4. (For a

formal proof, see e.g. [21, Section 7.3].)

Theorem 3.4 (Duality) There is an order reversing bijection between the poset of nonempty faces
of Z(V ) and the face poset of the arrangement A(V ). Namely, the correspondence Zσ ↔ Fσ for all
realizable signs σ induces such a map.

One important consequence of this theorem is the one-to-one correspondence between the ex-
treme points of Z and the cells (d dimensional faces) of A. Each cell F corresponds to an extreme
point z =

∑

{vj : σF
j = +, j = 1, . . . , n} of the zonotope Z. For example, in Figure 3.3, the cell

7



Z

Figure 3.4: Duality of a zonotope and the associated arrangement (shown as a cut section with the
unit sphere).

of sign (+,+,−,−) (respectively (−,+,−,−)) is associated with the extreme point z = v1 + v2 (re-
spectively v2). Furthermore, two extreme points in Z are adjacent in Z if and only if the associated
cells are adjacent (i.e. sharing a (d − 1) face). Under certain regularity assumptions to be discussed
in the next section, two cells are adjacent if and only if their sign vectors are different in exactly one
component.

4 Cell enumeration of an arrangement

Consider the central arrangement A(V ) of n hyperplanes in R
d given by a d × n matrix V . We

denote by C = C(V ) the set of sign vectors of cells of the arrangement. Whenever there is no
ambiguity, we identify the cells and their sign vectors. The purpose of this section is to present a
new practical algorithm for computing C. Because the arrangement A(V ) is central, we only need to
generate one half of the sign vectors. A natural way to ignore a half is to look at a cut section of this
arrangement with a fixed hyperplane h not containing the origin. By selecting a parallel translation
of the last hyperplane as h, we obtain a cut section that is a general (Euclidean) arrangement of n−1
hyperplanes in R

d−1. For example, Figure 4.5 illustrates a cut section with the 5th hyperplane of
a central arrangement of 5 hyperplanes in R

3. Each cell is represented by a sign vector of length 4
rather than 5 because the 5th component is the same for all, either + or −.

There are several different algorithms for the cell enumeration for a general arrangement. As
remarked in the previous section, the incremental algorithm [9] is theoretically optimal for fixed d.
However, it requires space as large as the output size and is quite hard to implement as well. There
is a reverse search algorithm [2] which is memory efficient (i.e. its space complexity is polynomially
bounded by the input size). Its time complexity is not optimal for the worst case output but it runs
in time polynomial in both input size and output size which might be considered reasonable. More
precisely, the time complexity is O(n d LP(n, d) |C|), where LP(n, d) is the time to solve an LP
with n inequalities in d variables. The LP is polynomially solvable and one can replace LP(n, d) with
any realizable polynomial complexity if one wishes.

We shall present here a modification of the reverse search algorithm with an improved complexity.

Theorem 4.1 There is a reverse search algorithm of time complexity
O(n LP(n, d) |C|) and space complexity O(n d) that computes C = C(V ) for any given rational d×n
matrix V .

8



1

2

3

4

++++

+−++

+++−

++−−

++−+

−+−+

−−−+
−−++

−−+−

+−+−

Figure 4.5: A cut section of a 3-dimensional central arrangement.

Because the notion of reverse search is well-known, it is sufficient to define two key functions that
determine a reverse search algorithm. These are a finite local search function f and an adjacency
oracle function Adj . An adjacency oracle defines implicitly a graph G on the set C as its vertex set
by returning the set of neighbor cells of any given cell. A local search function maps any cell in C
to an adjacent cell. A local search is called finite if there exists a special cell c∗ ∈ C such that for
any c 6= c∗, there is a positive integer k such that f k(c) = c∗. Once a finite local search f is fixed, we
have a uniquely defined directed tree Tf rooted at c∗ with edge set {(c, f(c))|c ∈ C \ {c∗}} spanning
all elements in C. The reverse search algorithm is a procedure to visit all members of C by tracing
the spanning tree Tf from the “optimal” element c∗, relying only on the two functions f and Adj .

There is a natural graph structure underlying the arrangement. This is exactly what we use
for our adjacency oracle. For the local search, there are multiple choices. Before presenting these
functions formally, we assume the following regularity condition for V which can be readily satisfied
by a simple transformation.

Assumption (Regularity) The matrix V has no zero columns and has no two columns that are
multiples of each other.

Note that if two columns are nonzero multiples of each other, they determine the same hyperplane
in the arrangement, and one can be removed without changing the combinatorial structure of the
arrangement. The original sign vectors can be easily obtained from the sign vectors of the simplified
arrangement.

To define an adjacency oracle, let c be any cell in C. We call an index j ∈ {1, . . . , n} flippable
in c if cj 6= 0 and the vector obtained from c by reversing the jth sign is again a cell. Our adjacency
oracle Adj (c, j) is defined to return this new cell if j is flippable, and NULL otherwise, for j =
1, 2, . . . , n. The obvious upper bound of the maximum degree of a vertex is n. Clearly one LP of size
(n − 1) × (d − 1) is sufficient to decide whether j is flippable at any given cell c.

To define a local search function, let c∗ be any cell in C that is known at the beginning of
computation. To find one cell is easy: for example by selecting an arbitrary point in R

d and checking
its signature. The probability that an arbitrary point lies on any hyperplane is zero. Without loss
of generality, we may assume c∗ is the vector of all +’s. For this, we might have to replace some
columns by their negatives. Such operations preserve the arrangement.

Now, for any c ∈ C \ {c∗}, we must define an easily computable next cell c′ which is adjacent to
c and is “closer” to the goal c∗. Any such systematic rule will define f (i.e. f(c) = c′). It is easy to

9



show under the Regularity Assumption that any cell c different from c∗ has a flippable index j such
that cj = −. Thus, flipping such an index leads us closer to c∗.

The paper [2] uses a minimum index rule to determine c′, that is, c′ = f(c) is the cell obtained
from c by the smallest index flip. The smallest index flip can be computed by solving at most n
linear programs (LPs) of order n × d.

Our modification will reduce this complexity to that of solving only one LP of the same size.
The key idea is to use ray shooting. For this, we need two points, one interior point p∗ of the goal
cell c∗ and one interior point p of a cell c, see Figure 4.6. Now, shoot a ray from p to p∗. It will hit
all hyperplanes separating c and c∗. We select the first hyperplane hit by the ray. In case of a tie,
we employ the standard symbolic perturbation to resolve it. In Figure 4.6, the hyperplane number 2
is the one we select. This gives us a way to move to a neighbor of c. It is important to note that the
interior point we select for each cell must be uniquely defined. One way to satisfy this is to use the
following LP to find an interior of a cell. We assume that the cell is represented by a linear inequality
system: A y ≤ b where A is a (m − 1) × (d − 1) matrix.

max y0

subject to A y + e y0 ≤ b
y0 ≤ K

where e is the vector of all 1’s and K is any positive number to make the LP bounded. By using any
deterministic algorithm, we will find a unique solution to this LP that is an interior point of the cell.

1

2

3

4

1

2

3

4

p*

p

Figure 4.6: Ray shooting and the associated directed tree.

With the ray shooting local search f , we only need to solve one LP to evaluate it, since p∗ can be
computed at the beginning and stored through the course of the algorithm. By applying Theorem
2.4 in [2], we immediately obtain Theorem 4.1.

10



Finally, the resulting reverse search algorithm can be written as follows. Here, we must set
δ = n − 1. The algorithm generates all cells with positive last component.

procedure CellEnumeration(Adj ,δ,c∗,f);
c := c∗; j := 0; (* j: neighbor counter *)
repeat

while j < δ do
j := j + 1;
next := Adj (c, j);
if next 6= NULL then

if f(next) = c then (* reverse traverse *)
c := next; j := 0

endif
endif

endwhile;
if c 6= c∗ then (* forward traverse *)

c′ := c; c := f(c);
j := 0; repeat j := j + 1 until Adj(c, j) = c′ (* restore j *)

endif
until c = c∗ and j = δ.

The while loop in the pseudocode above is to traverse the directed tree Tf against its orientation as
deep as possible (i.e. depth-first manner). The subsequent if-block is executed whenever no deeper
reverse traverse is possible, and it simply backtracks (i.e. traverses the tree in the forward direction)
by applying the local search function f once. In order to avoid visiting the same cell twice, the last
line of the if-block recovers the adjacency index j that was set at the last loop of the while loop
executed for the current cell c.

5 Computational experiments

Early computational experiments for the FRC 01QP problem were performed using the ZRAM
library [18] for the reverse search framework. The implementation effort reduces to providing the
adjacency oracle and the local seearch function given in the previous section. As discussed, these
components are built around basic computational geometry and linear optimization elements. More
specifically, two basic functions are needed, the linear programming solving and the ray shooting
operation. Our implementation uses these two functions implemented in Fukuda’s cddlib library
[11]. ZRAM then takes care of the reverse search mechanism, and provides efficient parallelization
at no additional cost. Since all cddlib functions can be compliled with both floating-point and GMP
rational (exact) arithmetics, our code called rs tope can also run in these arithmetics.

We generated a range of problems in dimensions 3, 4, 5 and 6 with 10 to 250 constraints using the
following approach. Given parameters s0 and r > 0 (in addition to n and d), our algorithm returns
the columns vj ∈ R

d (for j = 1, . . . , n) of the d×n matrix V . The s0 parameter represents a seed for
the Bratley-Fox random generator [5]. Vectors vj are first randomly generated on the d-dimensional
unit sphere, and then scaled such that their norm is r. To be able to perform rational arithmetics,
each component of vi is rounded to a neighboring integer value. The last step of the algorithm is to
check the non-collinearity for each pair of vectors. If that test fails, the instance is rejected and the
algorithm is applied with a new s0 seed value. The solutions to the random instances used in our
experiments as well as the C source code rs tope.c are available publicly in [10, 12].

11



Number of cells and computation time

Table 1 and figure 5.7 show the number of cells, total computation time and computation time per
cell for various small and medium problems. The values confirm the theoretical result for the number
of cells (see theorem 3.1 above). The computation times were obtained using both processors of a
400 MHz dual-Pentium II PC running Linux. They should be used to compare the effort required
to solve different problems, but their absolute value should not be given too much importance as
various elements (code optimization, processor type and frequency, parallel computing) have great
influence thereon.

d = 3 d = 4
n #cell total [s] per cell [ms] #cell total [s] per cell [ms]

10 92 0.151 1.644 260 0.772 2.969
15 212 0.600 2.832 940 4.748 5.051
20 382 1.338 3.504 2320 14.640 6.310
25 602 2.861 4.754 4650 37.705 8.108
30 872 5.880 6.743 8180 84.987 10.389
35 1192 8.911 7.475 13160 170.672 12.969
40 1562 15.069 9.647 19840 310.114 15.630
45 1982 22.575 11.390 28470 519.803 18.257
50 2452 34.608 14.114 39300 861.008 21.908
55 2970 51.347 17.288 52580 1344.746 25.575
60 3540 68.050 19.223 68560 2044.175 29.815
65 4160 92.898 22.331 87490 2932.053 33.513
70 4830 130.317 26.980 109620 4163.190 37.978
80 6320 209.855 33.204
90 8010 329.875 41.182

100 9900 494.050 49.904
125 15496 1149.165 74.158
150 22344 2427.069 108.623
175 30432 4453.112 146.330
200 39780 7673.705 192.904
225 50372 12004.451 238.316
250 62210 18295.080 294.086

d = 5 d = 6
n #cell total [s] per cell [ms] #cell total [s] per cell [ms]

10 512 2.090 4.082 764 3.762 4.924
15 2942 16.654 5.660 6946 66.424 9.562
20 10072 79.546 7.897 33328 479.358 14.383
25 25902 314.498 12.141 110910 1974.542 17.803
30 55682 840.123 15.087 293192 6511.729 22.209
35 105912 1950.940 18.420
40 184342 4198.192 22.773

Table 1: Number of cells, total computation time and time per cell for some small to medium
problems.

12



10

100

1000

10000

100000

1e+06

10 20 30 40 70 100

Number of cells

[n]

d=6
d=5
d=4
d=3

0.1

1

10

100

1000

10000

10 20 30 40 70 100

Total computation time in seconds

[n]

d=6
d=5
d=4
d=3

1

10

100

10 20 30 40 70 100

Computation time in miliseconds per cell

[n]

d=6
d=5
d=4
d=3

Figure 5.7: Number of cells, total computation time and time per cell for some small to medium
problems.

13



Speedup of the parallel computation

Table 2 shows computation times for various numbers of processors and the speedup, defined as the
ratio between the time on 1 processor and the time on p processors. Up to 8 processors were used,
provided by two quadri-processors Intel Pentium-based machines.

#proc n200d3 n30d6
time [s] speedup eff. [%] time [s] speedup eff. [%]

1 11616.53 — — 10242.47 — —
2 5928.98 1.95 97.96 5143.86 1.99 99.56
3 4131.63 2.81 93.72 3460.82 2.95 98.65
4 3279.41 3.54 88.55 2611.68 3.92 98.04
5 2579.75 4.50 90.05 2122.89 4.82 96.49
6 2194.18 5.29 88.23 1784.35 5.74 95.66
7 1925.32 6.03 86.19 1540.64 6.64 94.97
8 1703.90 6.81 85.22 1348.56 7.59 94.93

Table 2: Computation time and speedup on 1 to 8 processors.

As can be seen, one instance scales much better than the other. This is due to the total number of
cells to be generated, 39780 for n200d3 and 293192 for n30d6. With more cells, it is possible to keep
a better load balance on all processors, as can be seen in table 3 where the number of cells found by
each of the 8 processors is reported. The obvious conclusion is that parallel computing works better
for very large problems, which is precisely what we want.

proc no n200d3 n30d6
#cell % #cell %

1 4870 12.242 38184 13.023
2 6138 15.429 36144 12.327
3 4568 11.483 38054 12.979
4 4494 11.297 34214 11.669
5 5206 13.087 35802 12.211
6 5134 12.906 36728 12.526
7 4686 11.779 37246 12.703
8 4684 11.774 36820 12.558

Table 3: Workload balance on 8 processors. For each problem, the largest part is shown in bold and
the smallest in italics.

Floating point vs. rational arithmetics

On very large cases, we ran into numerical problems due to the intrinsic imprecision of floating point
computation, a very common problem in computational geometry. Switching to rational arithmetics
(using the GMP library in our case) provided robust computations at the cost of heavily degraded
performances, as can be seen in table 4:

14



input size comp. time [s]
d n #cell floating point rational ratio

3 20 382 1.338 18.561 13.86
4 20 2320 14.640 254.177 17.36
5 20 10072 79.546 1581.368 19.88
6 20 33328 479.358 13146.854 27.43

Table 4: Comparison of floating point and rational arithmetics for small problems. Floating point
computations usually fail on very large problems due to rounding errors.

For all the cases we ran, the floating point computation either succeeds, returning the same
results as the rational computation, or fails with an explicit error message such as the detection of
an infeasible LP when looking for an interior point for a cell.

As expected, the slowdown ratio grows with the dimension of the problem, as the size of the
rational numbers involved also increases. Furthermore, this is confirmed by the fact that the size n
of the largest problem solvable in floating point decreases as the dimension d increases.

A heuristic method derived from the RS

By taking the adjacency oracle and minimization direction out of the reverse search framework, we
obtained a randomized heuristic that works as follows: choose an initial cell at random (as we did to
define the minimization direction) and repeatedly use the adjacency oracle to move to an adjacent
cell as long as one improving the current solution is found. If none is found, we are in a local optimum
and stop, without any indication on the quality of the solution.

Table 5 reports the results we have obtained with this method for some of the test problems.
Out of 10 runs, between 5 and 9 found the optimal solution, with average paths length between the
random initial cell and the optimal cell ranging between 5 and 20 hops, growing with problem size.
It should be noted, though, that the value of local optima can be quite different from the optimal
value, but this is balanced by the high proportion of successful searches.

The random nature of this heuristic makes it tedious to report computation times. They are
however always several orders of magnitude smaller than the (deterministic) complete reverse search
times reported in table 1.

input size #successes average maximum gap to optimum
d n (over 10 runs) path length of the worst solution

3 10 9 4.3 70.3%
3 30 8 9.2 68.7%
3 50 6 15.8 39.1%
3 70 8 19.2 62.8%

4 30 5 8.1 5.5%
5 30 9 10.3 37.2%
6 30 7 12.7 66.8%

Table 5: Measured behavior of the heuristic method (seven instances, ten runs each).

15



6 Concluding Remarks

As we observed in Section 3, every rank d FRC 01QP problem is equivalent to the Euclidean
norm maximization over a d-dimensional zonotope. One might suspect that a simplex-method-type
algorithm works for the latter problem which traces the graph of a zonotope by moving from an
extreme point to an adjacent one with larger Euclidean norm until it cannot find any better neighbor.
Actually this algorithm is essentially the same as the heuristic algorithm presented in Section 5.

Figure 6.8 shows the norm-oriented graph of a 3 dimensional zonotope with 10 generators,
where the orientation shows the augmenting direction of the Euclidean norm. This is a randomly
generated instance and it has three sinks. We have observed that having multiple sinks is highly
likely in randomly generated instances. Using the geometry of zonotopes, for any fixed k > 0, one
can construct a zonotope for which the ratio of the largest norm and the smallest norm of sinks is
at least k. This shows that the dumb local search algorithm finding one sink cannot guarantee its
performance. It will be of great interest if we can analyze the expected behavior of any randomized
algorithm.

Another interesting problem is to study the length of a monotone path from any given extreme
point to a local optimum (i.e. sink). As we observed by our heuristics in Figure 5, randomized
paths tend to be very short relative to the total number of of extreme points. On the other hand,
the paper [17] shows the existence of a function defined on the extreme points of the 0/1 d-cube for
which the length of the greedy (i.e. maximum improvement) path from the minimum valued vertex
to the maximum valued vertex is of exponential length. Understanding the norm-oriented graph of
a zonotope is a challenging subject of our future research.

x

y

z

Global
optimum

Figure 6.8: The three sinks of the norm-oriented graph of a 3-zonotope.

References

[1] K. Allemand, K. Fukuda, Th. M. Liebling, and E. Steiner. A polynomial case of unconstrained
zero-one quadratic optimization. Mathematical Programming, Ser. A, 91:49–52, 2001.

[2] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathematics, 65:21–
46, 1996.

16



[3] F. Barahona. A solvable case of quadratic 0-1 programming. Discrete Applied Mathematics,
13:23–26, 1986.

[4] F. Barahona. On the computational complexity of Ising spin glass models. Journal of Physics
A: Mathematical, nuclear and general, 15:3241–3253, 1982.

[5] P. Bratley and B. Fox and L. Schrage. A guide to simulation. Springer-Verlag, 1987.

[6] R. C. Buck. Partion of space. Amer. Math. Monthly, 50:541–544, 1943.

[7] C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt and G. Rinaldi. Exact ground states
of two-dimensional ±J Ising spin glasses. Journal of Statistical Pysics, 80:487–496, 1995.

[8] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1987.

[9] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and hyper-
planes with applications. SIAM J. Comput., 15:341–363, 1986.

[10] J.A. Ferrez, K. Fukuda and T.M. Liebling,. Solutions to random instances
of the 01QP obtained by the parallel zonotope construction code rs tope.c.
http://www.cs.mcgill.ca/˜fukuda/download/cutzono solutions.tar.gz.

[11] K. Fukuda. cddlib reference manual, cddlib Version 092b. Swiss Federal Institute of Technology,
Lausanne and Zurich, Switzerland, 2002.

[12] K. Fukuda and J.A. Ferrez,. Implementations of LP-based reverse search al-
gorithms for the zonotope construction and the fixed-rank convex quadratic
maximization in binary variables using the ZRAM and the cddlib libraries.
http://www.cs.mcgill.ca/˜fukuda/download/mink/RS TOPE020713.tar.gz.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman, 1979.

[14] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach., 42(6):1115–
1145, 1995.

[15] P. L. Hammer, P. Hansen, P. M. Pardalos, and D. J. Rader. Maximizing the product of two
linear functions in 0-1 variables. Research report, RUTCOR, Rutgers University, 1997. available
from http://rutcor.rutgers.edu/˜rrr/1997.html.

[16] P. L. Ivănescu (Hammer). Some network flow problems solved with pseudo-boolean program-
ming. Operations Research, 13:388–399, 1965.

[17] P. L. Hammer, B. Simeone, Th. M. Liebling and D. de Werra. From linear separability to
unimodality: A hierarchy of pseudo-boolean functions. SIAM J. Disc. Math., 1:174–184, 1988.

[18] A. Marzetta. ZRAM homepage. http://www.cs.unb.ca/profs/bremner/zram/.

[19] J. C. Picard and H. D. Ratliff. Minimum cuts and related problems. Networks, 5:357–370, 1974.

[20] T. Zaslavsky. Facing up to arrangements: face-count formulas for partitions of space by hy-
perplanes, volume 1(1): No. 154 MR 50 of Mem. Amer. Math. Soc. American Mathematical
Society, 1975.

[21] G. M. Ziegler. Lectures on polytopes. Graduate Texts in Mathematics 152. Springer-Verlag,
1994.

17


