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Abstract

In this paper we review known minimax results with applications in
game theory and show that these results are easy consequences of the
first minimax result for a two person zero sum game with finite strategy
sets published by von Neumann i828. Among these results are the
well known minimax theorems of Wald, Ville and Kneser and their gen-
eralizations due to Kakutani, Ky-Fan,0Kig, Neumann and Gwinner-
Oettli. Actually it is shown that these results form an equivalent chain
and this chain includes the strong separation result in finite dimensional
spaces between two disjoint closed convex sets of which one is com-
pact. To show these implications the authors only use simple properties
of compact sets and the well-known Weierstrass Lebesgue lemma.

1 Introduction.

Let A and B be nonempty sets anfl: A x B — R a given function. A
minimax result is a theorem which asserts that

maxge 4 Minge g f(a,b) = minge g maxgea f(a,b). N

In case min and/or max are not attained the min and/or max in the above ex-
pressions are replaced by inf and/or sup. The first minimax result was proved
in a famous paper by von Neumann (cf.[23])1i#28 for A and B unit sim-
plices in finite dimensional vector spaces ghdlffine in both variables. In this
paper it was also shown why such a result is of importance in game theory.
After the break-through of linear programming the key role of relation (1) was
also recognized in optimization theory. Therefore a lot of papers appeared in



the literature aftett 928 verifying the equality expressed by relation (1) under
different conditions on the setsand B and the functiory. One might say that

the conditions of von Neumann were generalized during therfagears and

a nice overview of most of those generalizations is given in [29]. A careful re-
view shows that the majority of these minimax results were either established
by applying the Hahn Banach or a fixed point theorem. Although some of the
minimax results considered in this paper are also proved initially by a fixed
point argument we will only consider the most well known minimax results
proven by a Hahn-Banach type argument. To start with this overview the min-
imax results needed in game theory assumed that thelsatg B represented
sets of probability measures with finite support and the funcfiovas taken

to be affine in both variables. Later on, the condition on the funcfiavas
weakened and more general sdteand B were considered. As already ob-
served, these results turned out to be useful in optimization theory and were
derived by means of short or long proofs using a version of the Hahn Banach
theorem in either finite or infinite dimensional vector spaces. With the famous
minimax result in game theory proved by von Neumannd@8 (cf.[23]) as

a starting point we will show in this paper that several of these so-called gen-
eralizations published in the literature can be derived from each other using
only elementary observations about compact sets and continuous functions on
compact sets. Before introducing this chain of equivalent minimax results we
need the following notation. Lef(A) denote the set of probability measures
on A with finite support. Ife, represents the one-point probability measure
concentrated on this means by definition that € F(A) if and only if there
exists some finite sdu, ...,a,} C A and a sequencg, 1 < i < n satisfying

A= Zi:l Ai€a, Zizl XN =1land); >0,1<i<n. 2)
If the setA is given by{a4, ..., a,, } then it is clear that
FA) ={\: 1= Zizl )\ieai,zizl ANi=1,A>01<i<n}. (3)

Moreover, the setF>(A) C F(A) denotes the set of two-point probability
measures od. This means thak belongs taF»(A) if and only if

A= )\16a1 + (1 — )\1)6a2 (4)

with a;, 1 < ¢ < 2 different elements off and0 < A\; < 1 arbitrarily chosen
Finally, for each0 < o < 1 the setF; ,(A) represents the set of two point
probability measures with; = « in relation (4). Also on the seB similar
spaces of probability measures with finite support are introduced. Within game



theory any element aF (A), respectivelyF(B) represents a so-called mixed
strategy of playen, respectively playeg (cf.[1], [26]) and to measure the
payoff using those mixed strategies one needs to extend the so-called payoff
function f to the Cartesian product of the s¢f6A) andF(B). The extension

fe: F(A) x F(B) — Ris defined by

Je(A p) = Z:Zl Z;n:l i f (ai, by) 5)

with A as in relation (2) ang = Z}"Zl fj€p; - TO startin a chronological order

we first mention the famous bilinear minimax result in game theory for finite
setsA and B due to von Neumann and published1i928 (cf.[23]). Actually

in this paper a more general minimax result was verifiedffapntinuous,A
and B unit simplices in finite dimensional vector spaces gnguasiconcave
on A and quasiconvex oB. This more general result was later extended using
fixed point arguments by von Neumann (cf.[24]), Nikaido (cf.[12]) and Sion
(cf.[22]). However, most authors only mentioned the special bilinear case as
the main result of von Neumann and this is probably due to the fact that in the
book of von Neumann and Morgenstern (cf.[25]) the authors only mentioned
this particular bilinear case.

Theorem 1 If A and B are finite sets then it follows that

max e 7(A) Miyer(p) fe(A, 1) = min,er(p) maxyer(a) fe(A, p).

The next minimax result due to Ville (cf.[19]) and publishedl#88 is a
generalization of Theorem 1 and serves as an important tool in infinite antago-
nistic game theory (cf.[26]).

Theorem 2 If A and B are compact sets in metric spaces and the function
f: A x B — Ris continuous then it follows that

super(a) inf e (B) fe(A, 1) = inf e 7By SUPrcr(a) fe(A, 1)

In 1941 Kakutani (cf.[28]) proved the following minimax theorem arising
from his famous generalization of the Brouwer fixed point theorem.

Theorem 3 If A and B are compact convex sets in normed linear spaces and
the functionf : A x B — R is continuous and — f(a,b) is concave inA

for everyb € B andb — f(a,b) is convex inB for everya € A then it follows
that

maxXge 4 Minge g f(a,b) = minge p maxqea f(a,b).



Another generalization of Theorem 1 due to Wald (cf.[3]) and published
in 1945 is given by the next result. This result plays a fundamental role in the
theory of statistical decision functions (cf.[4]).

Theorem 4 If A is an arbitrary nonempty set an® is a finite set then it
follows that

SUP e (4) Ml eF(B) fe(A, 1) = minge 7By SUpxer(a) fe(A, 1)

In 1952 Kneser (cf.[10]) proved in a two page note a very general minimax
result useful in game theory. Its proof is ingenious and very elementary and
uses only some simple computations and the well-known result that any upper
semicontinuous function attains its maximum on a compact set (Weierstrass-
Lebesgue lemma).

Theorem 5 If A is a nonempty convex, compact subset of a topological vector
space andB is a nonempty convex subset of a vector space and the function
f: Ax B — R is affine in both variables and upper semicontinuousidior
everyb € B then it follows that

maxXge 4 infpep f(a,b) = infpe p maxgea f(a,b). (6)

One year later, in953, generalizing the proof and result of Kneser, Ky
Fan (cf.[20]) published his celebrated minimax result. To show his result Ky
Fan introduced the following class of functions. As in [31] and [32] we call
this class of functions the class of Ky Fan convex (Ky Fan concave) functions.
In the literature (see for example [6]) these functions are also called convexlike
(concavelike).

Definition 6 The functionf : A x B — R is called Ky Fan concave oA if
for every\ € F,(A) there exists som&, € A satisfying

fe(A &) < f(ao, b)

for everyb € B. The functionf : A x B — R is called Ky Fan convex oB if
for everyu € F»(B) there exists somig) € B satisfying

fe(ea, 1) = f(a,bo)

for everya € A. Finally, the functionf : A x B — R is called Ky Fan
concave-convex oA x B if f is Ky Fan concave orl and Ky Fan convex on
B.



By induction it is easy to show that one can replace in the above defi-
nition F2(A) and F»(B) by F(A) and F(B). Although rather technical the
above concept has a clear interpretation in game theory. It means that the pay-
off function f has the property that any arbitrary mixed strategy is dominated
by a pure strategy. Eliminating the linear structure in Kneser’s proof Ky Fan
(cf.[20]) showed the following result.

Theorem 7 If A is a compact subset of a topological space and the function
f+ Ax B — Ris Ky Fan concave-convex ohx B and upper semicontinuous
on A for everyb € B then it follows that

max,e 4 infpep f(a,b) = infye p maxqec 4 f(a,b).

Unaware of Ky-Fan’s more general minimax result Peck and Dulmage
(cf.[27]) proved in1957 the following minimax result. It is curious to note
that also Peck and Dulmage generalized the proof of Kneser.

Theorem 8 If A is a nonempty compact convex subset of a topological vector
space andB is a nonempty convex subset of a vector space and the function
f: Ax B — Ris concave-convex oA x B and upper semicontinuous ch

for everyb € B then it follows that

maXge 4 infpep f(av b) = infye p Maxgea f<a7 b)-

Several years after the publication of Ky Fan’s minimax theoremmi
(cf.[11]) showed in1968 under the same topological conditions the result of
Ky Fan for a larger class of functions. To prove this resuhi§ introduced the
following class of functions. As in [31] and [32] we call this class of functions
the class of Knig convex (Knig concave) functions. In the literature (see for
example [6]) these functions are also caltedoncavelike §-convexlike).

Definition 9 The functionf : A x B — R is called Konig concave o if
there exists som@ < « < 1 such that for every € F; ,(A) there exists some
ag € A satisfying

fe()\; 6b) < f(aUv b)

for everyb € B. The functionf : A x B — R is called Konig convex o3
if there exists some < 3 < 1 such that for every. € F, 3(B) there exists
somehy € B satisfying

fe(€as 1) = f(a, bo)

for everya € A. Finally, the functionf : A x B — R is called Konig concave-
convex oA x B if f is Konig concave oM and Konig convex orB.
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The above definition means that the payoff functibmas the property
that one can find som@é < « < 1 such that any two-point mixed strategy
with probability o of selecting one action is dominated by a pure strategy.
Using the same topological conditions as in Theorenonil (cf.[11]) proved
relation (6) for the larger class ofdfig concave-convex functions by means of
a version of the Hahn Banach theorem due to Mazur-Orlicz ( see Thelotem
of [30]). Actually Konig proved relation (6) for the class ofokig concave-
convex functions ol x B with o = 8 = % but observed in a remark at
the end of his paper that the same proof can also be given for an arbitrary
0 < a< land0 < g < 1. The result of Knig was again generalized in
1977 to a more general class of functions by Neumann (cf.[21]),980 by
Fuchssteiner and #hig (cf.[5]) and in1986 by Jeyakumar (cf.[33]). To list
their result we need to introduce the class of closely concave-closely convex
functions. For an explanation of the name for these functions the reader should
consult [14].

Definition 10 The functionf : A x B — R is called closely concave a# if
for everye > 0 and \ € F»(A) there exists som&) € A satisfying

fe(M &) < flap,b) +¢€

for everyb € B. The functionf : A x B — R is called closely convex oA if
for everye > 0 andu € F,(B) there exists somig € B satisfying

fe(ﬁaau) > f((l, bO) — €

for everya € A. Finally, the functionf : Ax B — Ris called closely concave-
closely convex onl x B if f is closely concave od and closely convex on
B.

Actually Fuchssteiner andig introduced the class of functioris A x
B — R having the next property: there exists soine a < 1 such that for
every\ € F2 ,(A) and every > 0 one can find some, € A satisfying

Je(A &) < flao,b) + € ("

Although this class of functions looks more general than the class of closely
convex functions otB it can be shown (cf.[14], [35]) that any functighsatis-

fying relation (7) for som® < a < 1 also satisfies this property for anybe-
longing to a dense subset(@f, 1). This implies that such a function is actually
closely convex orB and so we are dealing with the same class of functions.
Again by induction it is easy to show in Definition 10 that one can replace
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F2(A) andF2(B) by F(A) andF(B). Also this class of payoff functions has

a clear game theoretic interpretation. Using the same topological conditions as
in Theorem 7 Neumann (cf.[21]), Fuchssteiner ariohlg (cf.[5]) and Jeyaku-

mar (cf.[33]) proved relation (6) for the larger class of closely concave-closely
convex functions. Another, seemingly unrelated, result was shown by Gwinner
and Oettli (cf.[16]) in1994. Technically speaking this result is not a minimax
result and to list their result we introduce for the arbitrary segsxd B the sets

R4, respectivelyR? of real valued functions orl, respectivelyB. Consider

now the seth C R4 andC C R” given by

D :={ueR*: Jycp f(a,b) < u(a) for everya € A} (8)
and
C:={ve RB : 3,c4 f(a,b) > v(b) for everyb € B}. 9)

and endowR” andR4 with the product topologyr (cf.[7]). If co(C) and
co(D) denote the convex hull of the setsand D andcl(co(C)) the closure
of the setco(C') with respect to the product topologythen the main result of
Gwinner and Oettli (cf.[16]) is given by the following theorem.

Theorem 11 For any setsA and B it follows that

inquco(D) SUPgeA U(CL) = SUPyeci(co(C)) infpep U(b)

Finally in 1996 Kassay and Kolumén (cf.[9]) introduced the following
class of functions. To list their definition we denote ©iyB > the set of all
finite subsets of3.

Definition 12 The functionf : A x B — R is called weakly concavelike on
A if for everyI belonging to< B > it follows that

SUPjer(4) Milper fe(A, €5) < SUP,e 4 minper f(a,b).

Sincee, belongs taF(A) it is easy to see that is weakly concavelike on
A'if and only if for everyl € < B > it follows that

Sup)\e]-'(A) minbe[ fe(>‘7 eb) = SUPgecA minbel f(av b)

and this equality also has an obvious interpretation within game theory. The
main result of Kassay and Kolumban (cf.[9]) is given by the following theorem.



Theorem 13 If A is a compact subset of a topological space and the function
f: Ax B — R isweakly concavelike oA and upper semicontinuous oh
for everyb € B then it follows that

inf,,c 7By MaXaea fe(€as 1) = Maxaea infpep fe(a,b).

At first sight this result might not be recognized as a minimax result. How-
ever, it is easy to verify for every € A that

infpep f(a’ b) = inf/LE]:(B) fe(eaa M)' (10)

By relation (10) an equivalent formulation of Theorem 13 is now given by

infue]—'(B) maxgea fe(€a, p) = maxqea infuef(B) fe(€a, 1)

and so the result of Kassay and Kolumban is actually a minimax result. Finally
we list the following well-known strong separation result in convex analysis.

Theorem 14 If A C R" is a closed convex set ariél C R™ a compact convex
set and the intersection of and B is empty then there exists somec R”
satisfying

sup{sga:a € A} <inf{sjb:bc B}.

In the next section we will show that all these results are easy consequences
of each other and so they form an equivalent chain of results.

2 Analysis.

In this section we will verify by means of the next chain of implications that
the minimax results mentioned in the introduction can be easily derived from
each other.

von Neumann=""16 Wald =19 Gwinner-Oettli=1"20

Kassay-Koluman ="2! Neumann-Jeyakumas 2% Konig =22

Ky-Fan='"?3 peck-Dulmage=-""23 Kneser="24

th27

strong separatior>""? Ville =26 Kakutani='"2" von Neumann.

Some of these implications are obvious. To prove the other implications we
only use an easy consequence of the finite intersection property of compact
sets given by Lemma 15he Weierstrass-Lebesgue lemma and the well-known
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result that any continuous function on a compact set is uniformly continu-
ous. Observe that the strong separation result itself is an easy consequence
of the Weierstrass-Lebesgue lemma (cf.[15]) and this shows that all these min-
imax results can be proved using only some elementary properties of com-
pact sets. This verifies that these minimax results are elementary results in
mathematics which do not need for its proof the Hahn-Banach theorem in in-
finite dimensional vector spaces and hence Zorn's lemma. (see the original
proof of Konig of his minimax result). The connection with the separation re-
sult for disjoint convex sets in finite dimensions was already discussed for the
Peck-Dulmage minimax result by dcf.[13]). (actually the so-called level

set method developed by @aleserves much more attention. The proof in
[13] can be adapted without using the separation result to give an elementary
proof of Sion’s minimax theorem), for Ky-Fan’s minimax result by Borwein
and Zhuang (cf.[17]), for Bnig’s minimax result by Kassay (cf.[8]) and for
Fuchssteiner-Knig's minimax result by Wen Song (cf.[35]). Also Jeyakumar
(cf.[33]) used a finite dimensional separation result for convex sets to verify
the Neumann-Jeyakumar minimax result and the same was done by Kassay
and Kolumban (cf.[9]) to prove their minimax result. However, in none of
these papers the easy implications between the above minimax results was
established. To keep the paper self contained a short proof of Lemma 15 is
included. Observe for every sktthe set< Y > denotes the set of all finite
subsets ot

Lemma 15 If the setX is compact and the function: X x Y — R is upper
semicontinuous oX for everyy € Y thenmax,cx infycy h(z,y) is well
defined and

maxgex infycy h(z,y) = infy,ecys maxzex mingey, h(z,y).

Proof. Since the functiork is upper semicontinuous oXi for everyy € Y we
obtain thap(x) := inf,ey h(z,y) is upper semicontinuous oxi and so by the
Weierstrass-Lebesgue lemma (see Corollagyof [18]) and X compact the
functionp attains its maximum oX. This shows thatax,¢ x inf,cy h(z,y)
is well defined and to check the equality it is sufficient to verify that

a = maxzex p(z) > infy,ccys maxgex mingey, h(z,y) == f.

If we assume by contradiction that< ( there exists some finite satisfying
a < v < pand this implies by the definition ef that

Nyev{z € X : h(z,y) >~} = 0. (11)



Since X is compact and. upper semicontinuous ol for everyy € Y we
obtain that the sefx € X : h(z,y) > ~} is compact for every € Y and by
relation (11) and the finite intersection property of compact sets (cf.[34]) we
obtain for som&j e< Y > that

Nyexolz € X : h(z,y) >~} = 0.

This impliesminyey, h(z,y) < ~ for everyx € X and by the first part
maxgex mingey, h(z,y) < < 5. This contradicts the definition ¢f and so
a > . O

Since for every, € F(B) andJ C A itis easy to see that

Sup,\e]—'(]) fE(Av M) = SUDgeg fe(eaa M) (12)

we are now ready to derive Wald’s minimax result from von Neumann’s min-
imax result. Observe Wald (cf.[3]) uses in his paper von Neumann’s minimax
result and the Lebesgue dominated convergence theorem to derive his result.

Theorem 16 von Neumann’s minimax resu Wald’'s minimax result.

Proof. If a := supyec 74y min,c 7(B) fe(A, 1) then clearly

Q= SUP jec A> MAX ) F(7) Wil e £(B) fe(As 1) (13)
Since the seB is finite we may apply von Neumann’s minimax result in rela-
tion (13) and this implies in combination with relation (12) that
Q = SUD je < o> Ml e 7By MaXye 7( ) fe(A, 1) (14)
= SUP je < 4> MiNy, e 7(p) MAXae ) fe(€a, 1)
= —infjecas max,,c r(p) minges —fe(€a, ).

The finiteness of the sdt also implies that the sef(B) is compact and the
functiony — f.(eq, pt) is continuous o (B) for everya € A. This shows in
relation (14) that we may apply Lemma 15 with the Xeteplaced byF(B),
Y by A andh(z,y) by — fe(eq, 1) and so it follows that

o = min,e 7(B) SUPgea fe(€as 1) (15)
Finally by relation (12) withJ replaced byA the desired result follows from
relation (15). d

In order to show that Wald’s minimax result implies the Gwinner-Oettli re-
sult we first need to rewrite the Gwinner-Oettli result by means of the following
elementary lemmas. Remember the g§eendD are given by relations (8) and

(9).
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Lemma 17 It follows that
inquco(D) SUPgeA u(a) = inf,uG]—'(B) SUPge A fe(eaa H)
= infre<p> minger(r) SUP4ea fe(€as 1)

Proof. To show the first equality it is clear by relation (8) for every F(B)
that the function: € R4 given byu(a) := f.(eq, 1) belongs taco(D) and so
we obtain

infcho(D) SUPgeA u(a) < infue]-'(B) SUPge A fe(eav :u)' (16)

Moreover, for anyu € co(D) there exist a sequence of functiomse D and
a positive sequenge;, 1 < j < m such that

m m

Sinceu; € D one can find somg; € B satisfying f(a,b;) < u;(a) for every
a € A and introducing now: € F(B) given byu = > I, pjep,; we obtain
by relation (17) thatu(a) > fe(eq, i) for everya € A. This implies

infy,cco(D) SUPge A u(a) > inf,,c7(B) SUPge 4 fe(€a, i) (18)

and by relations (16) and (18) the first equality follows. The second equality is
a direct consequence of the continuity of the functior> f.(e,, 1) on F(I)
for everya € A and the Weierstrass-Lebesgue lemma. O

Another elementary observation is given by the following consequence of
the product topology oRR”.

Lemma 18 If cl denotes the closure with respect to the product topolagy
then it follows that

SUPyecl(co(C)) infypep U(b) = infre<p> SUPyeco(C) minger ’U(b)
= infre<p> supyer(a) Mitper fe(A, €).

Proof. To show the first equality introduce for evehypelonging to< B > the
mappingh; : R — R given by

hi(v) := minyeg v(b).

Since the neighbourhood base of an arbitragye R” in the product topology
m is given by the sets (cf.[7])

W(I,e,wp) = {w € RP : |w(b) — wy(b)| < eforeveryb e I}

11



with I belonging to< B > ande > 0 it is easy to verify that the functioh;
is continuous orfR?, 7). This shows by contradiction that

SUDyecl(co(C)) hi (v) = SUPyeco(C) hy ('U)

and so Witho := supy,e qi(co(c)) infoe 5 v(b) We obtain
o < infre<Bs SUPyec(co(c)) h1(V) = infre<ps SUPyeco(oy h1(v).  (19)
To show the reverse inequality we assume by contradiction that
o < infrecps SUPyeco(c) Minper v(D).
If this holds there exists some> 0 such that for every belonging to< B >
one can find some; € co(C) satisfying
mingey vr(b) > a+ €. (20)

Introduce now the functiom; := min{«a + €, vy} anda + e denoting the con-
stant function orR? with value everywhere equal to+ e. It is now obvious
that the functiorny; : B — R given by

VI = v —wr (21)

is nonnegative for every € B. Since we also know that; € co(C) it follows
that there exists some functions; € C,1 < j < m; < oo satisfying

mr my
vp = ijl Mr;vr,j, pr,; > 0and Zj:1 prj=1 22)

and this implies by relations (21) and (22) that
wy = ijll wr,;(vr; — 1) (23)

By the nonnegativity of the functiof; and the definition o€ it follows using
vr; € C,1 < j < mythatalsovs; —~; belongs taC for everyl < j < my
and so by relation (23) we obtain; € co(C). Clearly the se{I : I belongs
to < B >} is a directed set with partial ordering and so we consider the net
{wr : I €< B >} C co(C). By the definition of the product topology and
relation (20) we obtain that; converges in the product topologydo+ ¢ and
this shows thatv + € belongs ta:l(co(C')). Hence it follows that

Q= SUDPyee(co(c)) IMfbeB V(D) > a + €

and we obtain a contradiction. This verifies the first equality and the second
equality can be proved similarly as Lemma 17. a

In the next theorem we show that Wald’s minimax result implies the result
of Gwinner and Oettli.

12



Theorem 19 Wald’s minimax resuls- result of Gwinner and Oettli.

Proof. Introducinga := inf,cco(p) SUP4e 4 u(a) it follows by Lemma 17 and
relation (12) that

a=infreop> ming, e 7(7) SUPge A fe(€a, 1)
= infre<p> mingex(r) SUPrer(a) fe(A, 1)

Since every element of B > is a finite set we may apply Wald’s minimax
result and this shows

a = infre<p> SUPpcp(a) Miny e (1) fe(A, 1) (24)
= infre<p> SUpper(4) Minper fe(A, €p).
Applying now Lemma 18 yields the desired result. d

We will now verify that the Gwinner-Oettli result implies the Kassay-
Kolumban minimax result.

Theorem 20 Gwinner-Oettli results- Kassay-Kolumén minimax result.

Proof. If a := inf,,c r(p) max,ea fe(€q, ) We Obtain by Lemma 17 and the
result of Gwinner and Oettli that

O = SUDyei(eo(c)) nfbeB V(D). (25)

Applying now Lemma 18 and' is weakly concavelike om it follows by
relation (25) that

a = infrecps sup,c 4 minger f(a,b). (26)

Also, since f is upper semicontinuous oA for everyb € B and A is
compact we know by relation (26) and the Weierstrass-Lebesgue lemma that
a = infrecps maxge 4 mingeg f(a, b) and using Lemma 15 we obtain =
maxqe A infpe g f(a, b) showing the desired result. O

We will now show that the Kassay-Kolurah minimax result implies the
Neumann-Jeyakumar minimax result.

Theorem 21 Kassay-Koluméan minimax results- Neumann-Jeyakumar min-
imax result.
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Proof. We first show that any functiof : A x B — R which is closely
concave o is also weakly concavelike oA. To verify this we first observe
by induction thatf is closely concave od if and only if for everye > 0 and
A € F(A) there exists somey € A satisfying

fe()‘ﬂ Gb) < f(aUv b) +€ (27)

for everyb € B. This implies for everyh € N and\ € F(A) that there exists
somea,, € A satisfyingf.(\, ;) < f(an,b)+n~1! for everyb € B and so for
every! belonging to< B > andn € N we obtain

minger fe(X, €) < sup,e 4 minges f(a,b) + n L.

Thereforeminges fe(A, &) < sup,c, minger f(a,b) and sincex € F(A)
is arbitrary it follows thatf is weakly concavelike oM. By the Kassay-
Kolumban minimax result we obtain therefore

maxqe infyep f(a,b) = inf e r(p) Maxaea fe(€a, 1) (28)

Also, sincef is closely convex orB we obtain as in the first part of this proof
that for everyn € N andu € F(B) there exists somi, € B satisfying

fe(eaa/ﬁ) > f(a,bn) e

for everya € A and so for every, € N andp € F(B) it follows that

maXgeA fe(em :u) > inbeB maXgeA f(av b) - n_l‘

This shows

inf,,cr(py MaXaea fe(€a, ) > infpep maxqea f(a,b)
and by relation (28) the desired result follows. O

Since any closely concave-closely convex function4rx B is Konig
concave-convex oA x B (cf.[14]) and any Ky-Fan concave-convex function
on A x B is Kdnig concave-convex oA x B we obtain immediately the next
implication.

Theorem 22 Neumann-Jeyakumar minimax resstiKonig’s minimax resuisKy-
Fan minimax result.

Also itis clear that Ky-Fan’s minimax result is a generalization of the Peck-
Dulmage minimax result and the Peck-Dulmage minimax result is a general-
ization of Kneser’'s minimax result and so the following result is obvious.

14



Theorem 23 Ky-Fan minimax resuks-Peck-Dulmage minimax resaitkneser’s
minimax result.

In the next result we verify that the strong separation result given by The-
orem 14 is an easy consequence of Kneser's minimax result.

Theorem 24 Kneser’s minimax resutstrong separation result.

Proof. SinceA C R"™ is a closed convex set arigil C R” is a compact convex

set we obtain that/ := A — B is a closed convex set. Itis now easy to see that
the strong separation result as given in Theorem 14 holds if and only if there
exists some, € R" satisfyingoy (so) := sup{sg = : € H} < 0. To verify

this we assume by contradiction tha (s) > 0 for everys € R™. This clearly
implieso g (s) > 0 for everys belonging to the compact Euclidean unit ball

and applying Kneser’'s minimax result we obtain

sup,cpy infecp sTh=inf.cp SUppc sTh>0. (29)

Since by assumption the intersectionAfand B is nonempty we obtain that
0 does not belong td/ := A — B and this implies usindg? is closed that
infyezr ||R|| > 0. By this observation we obtain for evehyc H that—h| | !
belongs toF and so for every. € H it follows thatinf,cp s ' h < —||h]|. This
implies that

suppcp infsep sTh< suppep —||h|| = —infrem ||h]| <O

and we obtain a contradiction with relation (29). Hence there must exist some
so € R™ satisfyingo 7 (sg) < 0 and we are done. O

In the next result we verify that Ville’s minimax result is a consequence of
the strong separation result.

Theorem 25 strong separation result Ville’'s minimax result.
Proof. It follows immediately that

inf e () SUPAcF(a) fe(A, 1) = subrer(a) Inf e r(p) fe(A, 1)

and so we only have to verify that the reverse inequality holds. By relation (12)
it is now sulfficient to show that

inf e 7(B) SUP4eA fe(€a, 1) < SUPrer(a) infoen fe(A, €b)

15



Introducing 3 := supycz(a) infrep fe(A, €) suppose now by contradiction
that there exists some> 0 satisfying

SUPgea fe(€as ) > B+ (30)

for everyu € F(B). Since the setgl and B are compact ant the functighis
continuous it is well-known (cf.[2]) that the functighis uniformly continuous
on A x B. This implies that there exists somie> 0 such that

7

suppep | fe(€r, b) — fe(Eyvb)’ < B)

for everyz,y € A satisfyingo(z,y) < J with p the metric on4 and so it
follows that

suber(s) feleas 1) = feley )] < 3 (31)
for everyz,y € A satisfyingo(z,y) < 4. By the compactness ol we
also know that there exists some finite $et,...,a,} C A satisfyingA C
UY_, (a; + 6E) with E denoting the unit open ball and this shows by relation

(31) and (30) that
Y Y
maXlgiSp fe(eaimu’) Z SupaeA fe(elmu) - 5 Z /8 + 5 (32)

for everyu € F(B). Introducing now the set C R? given by

S :={(f(a1,b),..., f(ap,b)) : b€ B}

we obtain by the continuity of and B compact thatS is compact and hence
the convex hulko(S) of S is compact. Also by relation (32) we obtain that
maxi<j<p 2 > 3+ 3 forevery(zi, ..., zp) € co(S) and so the intersection of
the compact conves set(S) and the closed convex skt := {(z1,...,2p) :
maxi<ij<p 2 < [+ 7} is empty. By the strong separation theorem one can
now find some vectofAy, ..., Ap) > 0 with > | \; = 1 such that for\ :=
>P 1 Ai€q, it follows that

B+ < infrep fo(), ).

This contradicts the definition gf and sog < « verifying Ville’s minimax
result. O

In the next result we verify that Kakutani's minimax result result is an easy
consequence of Ville’s minimax result.
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Theorem 26 Ville's minimax result=-Kakutani’'s minimax result.

Proof. Since for everya € A the functionb — f(a,b) is convex on the
compact convex set it follows for everyu € F(B) given byu = Z;’;l 1€,
that

SUDge A fe(€as 1) 2 SUPge 4 f(a, ijl 13b5) = infye p sup,e f(a,b).
This implies in combination with relation (12) that
inf,.c 7(B) SUPxe F(a) fe(€as 1) = Inf e 7(B) SUP,ea fe(€as 1) (33)
> infyep supge 4 f(a,b).

Similarly we obtain by the concavity of the functian— f(a, b) on the com-
pact convex sefl for everyb € B that

super(a) inf e 7 () fe(A, 1) = supyer(a) infrep fe(A &)  (34)
< sup,e4 infrep f(a,b).

Applying now Ville’s minimax result and relations (33) and (34) yields

infpe g sup,c 4 f(a,b) < sup,e g infoep f(a,b).

Since trivially the reverse inequality holds afids continuous on the compact
setA x B Kakutani's minimax result holds. O

Observe now for any finite setd = {ai,...,a,} andB = {b1,...,bn}
that von Neumann’s minimax result can also be written as

maxyea, Mingea,, A\, @) = min,ea,, maxyea, h(A, @)

with h(A, p) = >0, D000, A f(ai, bj). Since the functiorh is affine in
both variables and\,,, respectivelyA,,, denote the compact unit simplices of
R™, respectivelyR™ it is clear by the above representation that von Neumann’s
minimax result is a special case of Kakutani’s minimax result.

Theorem 27 Kakutani’'s minimax resuls-von Neumann’s minimax result.

This completes the proofs of the different implications. To conclude the
paper we finally list some conclusions. In this paper we have shown that a
number of minimax results are easy consequences of each other. This shows
that one can construct a chain of minimax results and so to prove one of those
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results one needs to prove that minimax result of which its proof is most el-
ementary. As such the authors believe that in all the minimax papers in the
references the most elementary proof is given by Kneser. Similarly one can ar-
gue that all those papers proving generalizations of the original first minimax
result of von Neumann by means of different proofs are elementary implica-
tions of this result. This also shows that von Neumann already captured in
1928 the basic minimax result which can be proved by means of a finite di-
mensional separating hyperplane argument. In that respect it is curious to note
that von Neumann was the handling editor of the celebrated paper of Ky Fan
in which the arguments of Kneser were generalized.
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