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Abstract

In this paper we review known minimax results with applications in
game theory and show that these results are easy consequences of the
first minimax result for a two person zero sum game with finite strategy
sets published by von Neumann in1928. Among these results are the
well known minimax theorems of Wald, Ville and Kneser and their gen-
eralizations due to Kakutani, Ky-Fan, König, Neumann and Gwinner-
Oettli. Actually it is shown that these results form an equivalent chain
and this chain includes the strong separation result in finite dimensional
spaces between two disjoint closed convex sets of which one is com-
pact. To show these implications the authors only use simple properties
of compact sets and the well-known Weierstrass Lebesgue lemma.

1 Introduction.

Let A andB be nonempty sets andf : A × B → R a given function. A
minimax result is a theorem which asserts that

maxa∈A minb∈B f(a, b) = minb∈B maxa∈A f(a, b). (1)

In case min and/or max are not attained the min and/or max in the above ex-
pressions are replaced by inf and/or sup. The first minimax result was proved
in a famous paper by von Neumann (cf.[23]) in1928 for A andB unit sim-
plices in finite dimensional vector spaces andf affine in both variables. In this
paper it was also shown why such a result is of importance in game theory.
After the break-through of linear programming the key role of relation (1) was
also recognized in optimization theory. Therefore a lot of papers appeared in
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the literature after1928 verifying the equality expressed by relation (1) under
different conditions on the setsA andB and the functionf.One might say that
the conditions of von Neumann were generalized during the last75 years and
a nice overview of most of those generalizations is given in [29]. A careful re-
view shows that the majority of these minimax results were either established
by applying the Hahn Banach or a fixed point theorem. Although some of the
minimax results considered in this paper are also proved initially by a fixed
point argument we will only consider the most well known minimax results
proven by a Hahn-Banach type argument. To start with this overview the min-
imax results needed in game theory assumed that the setsA andB represented
sets of probability measures with finite support and the functionf was taken
to be affine in both variables. Later on, the condition on the functionf was
weakened and more general setsA andB were considered. As already ob-
served, these results turned out to be useful in optimization theory and were
derived by means of short or long proofs using a version of the Hahn Banach
theorem in either finite or infinite dimensional vector spaces. With the famous
minimax result in game theory proved by von Neumann in1928 (cf.[23]) as
a starting point we will show in this paper that several of these so-called gen-
eralizations published in the literature can be derived from each other using
only elementary observations about compact sets and continuous functions on
compact sets. Before introducing this chain of equivalent minimax results we
need the following notation. LetF(A) denote the set of probability measures
on A with finite support. Ifεa represents the one-point probability measure
concentrated ona this means by definition thatλ ∈ F(A) if and only if there
exists some finite set{a1, ..., an} ⊆ A and a sequenceλi, 1 ≤ i ≤ n satisfying

λ =
∑n

i=1
λiεai ,

∑n

i=1
λi = 1 andλi > 0, 1 ≤ i ≤ n. (2)

If the setA is given by{a1, ..., an} then it is clear that

F(A) = {λ : λ =
∑n

i=1
λiεai ,

∑n

i=1
λi = 1, λi ≥ 0, 1 ≤ i ≤ n}. (3)

Moreover, the setF2(A) ⊆ F(A) denotes the set of two-point probability
measures onA. This means thatλ belongs toF2(A) if and only if

λ = λ1εa1 + (1− λ1)εa2 (4)

with ai, 1 ≤ i ≤ 2 different elements ofA and0 < λ1 < 1 arbitrarily chosen.
Finally, for each0 < α < 1 the setF2,α(A) represents the set of two point
probability measures withλ1 = α in relation (4). Also on the setB similar
spaces of probability measures with finite support are introduced. Within game
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theory any element ofF(A), respectivelyF(B) represents a so-called mixed
strategy of player1, respectively player2 (cf.[1], [26]) and to measure the
payoff using those mixed strategies one needs to extend the so-called payoff
functionf to the Cartesian product of the setsF(A) andF(B). The extension
fe : F(A)×F(B)→ R is defined by

fe(λ, µ) :=
∑n

i=1

∑m

j=1
λiµjf(ai, bj) (5)

with λ as in relation (2) andµ =
∑m

j=1 µjεbj . To start in a chronological order
we first mention the famous bilinear minimax result in game theory for finite
setsA andB due to von Neumann and published in1928 (cf.[23]). Actually
in this paper a more general minimax result was verified forf continuous,A
andB unit simplices in finite dimensional vector spaces andf quasiconcave
onA and quasiconvex onB. This more general result was later extended using
fixed point arguments by von Neumann (cf.[24]), Nikaido (cf.[12]) and Sion
(cf.[22]). However, most authors only mentioned the special bilinear case as
the main result of von Neumann and this is probably due to the fact that in the
book of von Neumann and Morgenstern (cf.[25]) the authors only mentioned
this particular bilinear case.

Theorem 1 If A andB are finite sets then it follows that

maxλ∈F(A) minµ∈F(B) fe(λ, µ) = minµ∈F(B) maxλ∈F(A) fe(λ, µ).

The next minimax result due to Ville (cf.[19]) and published in1938 is a
generalization of Theorem 1 and serves as an important tool in infinite antago-
nistic game theory (cf.[26]).

Theorem 2 If A andB are compact sets in metric spaces and the function
f : A×B → R is continuous then it follows that

supλ∈F(A) infµ∈F(B) fe(λ, µ) = infµ∈F(B) supλ∈F(A) fe(λ, µ).

In 1941 Kakutani (cf.[28]) proved the following minimax theorem arising
from his famous generalization of the Brouwer fixed point theorem.

Theorem 3 If A andB are compact convex sets in normed linear spaces and
the functionf : A × B → R is continuous anda → f(a, b) is concave inA
for everyb ∈ B andb→ f(a, b) is convex inB for everya ∈ A then it follows
that

maxa∈A minb∈B f(a, b) = minb∈B maxa∈A f(a, b).
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Another generalization of Theorem 1 due to Wald (cf.[3]) and published
in 1945 is given by the next result. This result plays a fundamental role in the
theory of statistical decision functions (cf.[4]).

Theorem 4 If A is an arbitrary nonempty set andB is a finite set then it
follows that

supλ∈F(A) minµ∈F(B) fe(λ, µ) = minµ∈F(B) supλ∈F(A) fe(λ, µ).

In 1952 Kneser (cf.[10]) proved in a two page note a very general minimax
result useful in game theory. Its proof is ingenious and very elementary and
uses only some simple computations and the well-known result that any upper
semicontinuous function attains its maximum on a compact set (Weierstrass-
Lebesgue lemma).

Theorem 5 If A is a nonempty convex, compact subset of a topological vector
space andB is a nonempty convex subset of a vector space and the function
f : A×B → R is affine in both variables and upper semicontinuous onA for
everyb ∈ B then it follows that

maxa∈A infb∈B f(a, b) = infb∈B maxa∈A f(a, b). (6)

One year later, in1953, generalizing the proof and result of Kneser, Ky
Fan (cf.[20]) published his celebrated minimax result. To show his result Ky
Fan introduced the following class of functions. As in [31] and [32] we call
this class of functions the class of Ky Fan convex (Ky Fan concave) functions.
In the literature (see for example [6]) these functions are also called convexlike
(concavelike).

Definition 6 The functionf : A × B → R is called Ky Fan concave onA if
for everyλ ∈ F2(A) there exists somea0 ∈ A satisfying

fe(λ, εb) ≤ f(a0, b)

for everyb ∈ B. The functionf : A×B → R is called Ky Fan convex onB if
for everyµ ∈ F2(B) there exists someb0 ∈ B satisfying

fe(εa, µ) ≥ f(a, b0)

for everya ∈ A. Finally, the functionf : A × B → R is called Ky Fan
concave-convex onA×B if f is Ky Fan concave onA and Ky Fan convex on
B.
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By induction it is easy to show that one can replace in the above defi-
nition F2(A) andF2(B) by F(A) andF(B). Although rather technical the
above concept has a clear interpretation in game theory. It means that the pay-
off function f has the property that any arbitrary mixed strategy is dominated
by a pure strategy. Eliminating the linear structure in Kneser’s proof Ky Fan
(cf.[20]) showed the following result.

Theorem 7 If A is a compact subset of a topological space and the function
f : A×B → R is Ky Fan concave-convex onA×B and upper semicontinuous
onA for everyb ∈ B then it follows that

maxa∈A infb∈B f(a, b) = infb∈B maxa∈A f(a, b).

Unaware of Ky-Fan’s more general minimax result Peck and Dulmage
(cf.[27]) proved in1957 the following minimax result. It is curious to note
that also Peck and Dulmage generalized the proof of Kneser.

Theorem 8 If A is a nonempty compact convex subset of a topological vector
space andB is a nonempty convex subset of a vector space and the function
f : A×B → R is concave-convex onA×B and upper semicontinuous onA
for everyb ∈ B then it follows that

maxa∈A infb∈B f(a, b) = infb∈B maxa∈A f(a, b).

Several years after the publication of Ky Fan’s minimax theorem König
(cf.[11]) showed in1968 under the same topological conditions the result of
Ky Fan for a larger class of functions. To prove this result König introduced the
following class of functions. As in [31] and [32] we call this class of functions
the class of K̈onig convex (K̈onig concave) functions. In the literature (see for
example [6]) these functions are also calledα-concavelike (β-convexlike).

Definition 9 The functionf : A × B → R is called K̈onig concave onA if
there exists some0 < α < 1 such that for everyλ ∈ F2,α(A) there exists some
a0 ∈ A satisfying

fe(λ, εb) ≤ f(a0, b)

for everyb ∈ B. The functionf : A × B → R is called K̈onig convex onB
if there exists some0 < β < 1 such that for everyµ ∈ F2,β(B) there exists
someb0 ∈ B satisfying

fe(εa, µ) ≥ f(a, b0)

for everya ∈ A. Finally, the functionf : A×B → R is called K̈onig concave-
convex onA×B if f is König concave onA and König convex onB.
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The above definition means that the payoff functionf has the property
that one can find some0 < α < 1 such that any two-point mixed strategy
with probability α of selecting one action is dominated by a pure strategy.
Using the same topological conditions as in Theorem 7 König (cf.[11]) proved
relation (6) for the larger class of K̈onig concave-convex functions by means of
a version of the Hahn Banach theorem due to Mazur-Orlicz ( see Theorem1.1
of [30]). Actually König proved relation (6) for the class of König concave-
convex functions onA × B with α = β = 1

2 but observed in a remark at
the end of his paper that the same proof can also be given for an arbitrary
0 < α < 1 and0 < β < 1. The result of K̈onig was again generalized in
1977 to a more general class of functions by Neumann (cf.[21]), in1980 by
Fuchssteiner and K̈onig (cf.[5]) and in1986 by Jeyakumar (cf.[33]). To list
their result we need to introduce the class of closely concave-closely convex
functions. For an explanation of the name for these functions the reader should
consult [14].

Definition 10 The functionf : A × B → R is called closely concave onA if
for everyε > 0 andλ ∈ F2(A) there exists somea0 ∈ A satisfying

fe(λ, εb) ≤ f(a0, b) + ε

for everyb ∈ B. The functionf : A×B → R is called closely convex onB if
for everyε > 0 andµ ∈ F2(B) there exists someb0 ∈ B satisfying

fe(εa, µ) ≥ f(a, b0)− ε

for everya ∈ A. Finally, the functionf : A×B → R is called closely concave-
closely convex onA × B if f is closely concave onA and closely convex on
B.

Actually Fuchssteiner and K̈onig introduced the class of functionsf : A×
B → R having the next property: there exists some0 < α < 1 such that for
everyλ ∈ F2,α(A) and everyε > 0 one can find somea0 ∈ A satisfying

fe(λ, εb) ≤ f(a0, b) + ε (7)

Although this class of functions looks more general than the class of closely
convex functions onB it can be shown (cf.[14], [35]) that any functionf satis-
fying relation (7) for some0 < α < 1 also satisfies this property for anyα be-
longing to a dense subset of(0, 1). This implies that such a function is actually
closely convex onB and so we are dealing with the same class of functions.
Again by induction it is easy to show in Definition 10 that one can replace
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F2(A) andF2(B) byF(A) andF(B). Also this class of payoff functions has
a clear game theoretic interpretation. Using the same topological conditions as
in Theorem 7 Neumann (cf.[21]), Fuchssteiner and König (cf.[5]) and Jeyaku-
mar (cf.[33]) proved relation (6) for the larger class of closely concave-closely
convex functions. Another, seemingly unrelated, result was shown by Gwinner
and Oettli (cf.[16]) in1994. Technically speaking this result is not a minimax
result and to list their result we introduce for the arbitrary setsA andB the sets
R
A, respectivelyRB of real valued functions onA, respectivelyB. Consider

now the setD ⊆ RA andC ⊆ RB given by

D := {u ∈ RA : ∃b∈B f(a, b) ≤ u(a) for everya ∈ A} (8)

and

C := {v ∈ RB : ∃a∈A f(a, b) ≥ v(b) for everyb ∈ B}. (9)

and endowRB andRA with the product topologyπ (cf.[7]). If co(C) and
co(D) denote the convex hull of the setsC andD andcl(co(C)) the closure
of the setco(C) with respect to the product topologyπ then the main result of
Gwinner and Oettli (cf.[16]) is given by the following theorem.

Theorem 11 For any setsA andB it follows that

infu∈co(D) supa∈A u(a) = supv∈cl(co(C)) infb∈B v(b).

Finally in 1996 Kassay and Kolumb́an (cf.[9]) introduced the following
class of functions. To list their definition we denote by< B > the set of all
finite subsets ofB.

Definition 12 The functionf : A × B → R is called weakly concavelike on
A if for everyI belonging to< B > it follows that

supλ∈F(A) minb∈I fe(λ, εb) ≤ supa∈A minb∈I f(a, b).

Sinceεa belongs toF(A) it is easy to see thatf is weakly concavelike on
A if and only if for everyI ∈ < B > it follows that

supλ∈F(A) minb∈I fe(λ, εb) = supa∈A minb∈I f(a, b)

and this equality also has an obvious interpretation within game theory. The
main result of Kassay and Kolumban (cf.[9]) is given by the following theorem.
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Theorem 13 If A is a compact subset of a topological space and the function
f : A× B → R is weakly concavelike onA and upper semicontinuous onA
for everyb ∈ B then it follows that

infµ∈F(B) maxa∈A fe(εa, µ) = maxa∈A infb∈B fe(a, b).

At first sight this result might not be recognized as a minimax result. How-
ever, it is easy to verify for everya ∈ A that

infb∈B f(a, b) = infµ∈F(B) fe(εa, µ). (10)

By relation (10) an equivalent formulation of Theorem 13 is now given by

infµ∈F(B) maxa∈A fe(εa, µ) = maxa∈A infµ∈F(B) fe(εa, µ)

and so the result of Kassay and Kolumban is actually a minimax result. Finally
we list the following well-known strong separation result in convex analysis.

Theorem 14 If A ⊆ Rn is a closed convex set andB ⊆ Rn a compact convex
set and the intersection ofA andB is empty then there exists somes0 ∈ Rn
satisfying

sup{s>0 a : a ∈ A} < inf{s>0 b : b ∈ B}.

In the next section we will show that all these results are easy consequences
of each other and so they form an equivalent chain of results.

2 Analysis.

In this section we will verify by means of the next chain of implications that
the minimax results mentioned in the introduction can be easily derived from
each other.

von Neumann⇒th16 Wald⇒th19 Gwinner-Oettli⇒th20

Kassay-Kolumb́an⇒th21 Neumann-Jeyakumar⇒th22 König⇒th22

Ky-Fan⇒th23 Peck-Dulmage⇒th23 Kneser⇒th24

strong separation⇒th25 Ville ⇒th26 Kakutani⇒th27 von Neumann.

Some of these implications are obvious. To prove the other implications we
only use an easy consequence of the finite intersection property of compact
sets given by Lemma 15, the Weierstrass-Lebesgue lemma and the well-known
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result that any continuous function on a compact set is uniformly continu-
ous. Observe that the strong separation result itself is an easy consequence
of the Weierstrass-Lebesgue lemma (cf.[15]) and this shows that all these min-
imax results can be proved using only some elementary properties of com-
pact sets. This verifies that these minimax results are elementary results in
mathematics which do not need for its proof the Hahn-Banach theorem in in-
finite dimensional vector spaces and hence Zorn’s lemma. (see the original
proof of König of his minimax result). The connection with the separation re-
sult for disjoint convex sets in finite dimensions was already discussed for the
Peck-Dulmage minimax result by Joó (cf.[13]). (actually the so-called level
set method developed by Joó deserves much more attention. The proof in
[13] can be adapted without using the separation result to give an elementary
proof of Sion’s minimax theorem), for Ky-Fan’s minimax result by Borwein
and Zhuang (cf.[17]), for K̈onig’s minimax result by Kassay (cf.[8]) and for
Fuchssteiner-K̈onig’s minimax result by Wen Song (cf.[35]). Also Jeyakumar
(cf.[33]) used a finite dimensional separation result for convex sets to verify
the Neumann-Jeyakumar minimax result and the same was done by Kassay
and Kolumban (cf.[9]) to prove their minimax result. However, in none of
these papers the easy implications between the above minimax results was
established. To keep the paper self contained a short proof of Lemma 15 is
included. Observe for every setY the set< Y > denotes the set of all finite
subsets ofY.

Lemma 15 If the setX is compact and the functionh : X × Y → R is upper
semicontinuous onX for everyy ∈ Y thenmaxx∈X infy∈Y h(x, y) is well
defined and

maxx∈X infy∈Y h(x, y) = infY0∈<Y > maxx∈X miny∈Y0 h(x, y).

Proof. Since the functionh is upper semicontinuous onX for everyy ∈ Y we
obtain thatp(x) := infy∈Y h(x, y) is upper semicontinuous onX and so by the
Weierstrass-Lebesgue lemma (see Corollary1.2 of [18]) andX compact the
functionp attains its maximum onX. This shows thatmaxx∈X infy∈Y h(x, y)
is well defined and to check the equality it is sufficient to verify that

α := maxx∈X p(x) ≥ infY0∈<Y > maxx∈X miny∈Y0 h(x, y) := β.

If we assume by contradiction thatα < β there exists some finiteγ satisfying
α < γ < β and this implies by the definition ofα that

∩y∈Y {x ∈ X : h(x, y) ≥ γ} = ∅. (11)
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SinceX is compact andh upper semicontinuous onX for everyy ∈ Y we
obtain that the set{x ∈ X : h(x, y) ≥ γ} is compact for everyy ∈ Y and by
relation (11) and the finite intersection property of compact sets (cf.[34]) we
obtain for someY0 ∈< Y > that

∩y∈Y0{x ∈ X : h(x, y) ≥ γ} = ∅.

This impliesminy∈Y0 h(x, y) < γ for every x ∈ X and by the first part
maxx∈X miny∈Y0 h(x, y) < γ < β. This contradicts the definition ofβ and so
α ≥ β. �

Since for everyµ ∈ F(B) andJ ⊆ A it is easy to see that

supλ∈F(J) fe(λ, µ) = supa∈J fe(εa, µ) (12)

we are now ready to derive Wald’s minimax result from von Neumann’s min-
imax result. Observe Wald (cf.[3]) uses in his paper von Neumann’s minimax
result and the Lebesgue dominated convergence theorem to derive his result.

Theorem 16 von Neumann’s minimax result⇒Wald’s minimax result.

Proof. If α := supλ∈F(A) minµ∈F(B) fe(λ, µ) then clearly

α = supJ∈<A> maxλ∈F(J) minµ∈F(B) fe(λ, µ). (13)

Since the setB is finite we may apply von Neumann’s minimax result in rela-
tion (13) and this implies in combination with relation (12) that

α = supJ∈<A> minµ∈F(B) maxλ∈F(J) fe(λ, µ) (14)

= supJ∈<A> minµ∈F(B) maxa∈J fe(εa, µ)

= − infJ∈<A> maxµ∈F(B) mina∈J −fe(εa, µ).

The finiteness of the setB also implies that the setF(B) is compact and the
functionµ→ fe(εa, µ) is continuous onF(B) for everya ∈ A. This shows in
relation (14) that we may apply Lemma 15 with the setX replaced byF(B),
Y byA andh(x, y) by−fe(εa, µ) and so it follows that

α = minµ∈F(B) supa∈A fe(εa, µ). (15)

Finally by relation (12) withJ replaced byA the desired result follows from
relation (15). �

In order to show that Wald’s minimax result implies the Gwinner-Oettli re-
sult we first need to rewrite the Gwinner-Oettli result by means of the following
elementary lemmas. Remember the setsC andD are given by relations (8) and
(9).
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Lemma 17 It follows that

infu∈co(D) supa∈A u(a) = infµ∈F(B) supa∈A fe(εa, µ)

= infI∈<B> minµ∈F(I) supa∈A fe(εa, µ).

Proof. To show the first equality it is clear by relation (8) for everyµ ∈ F(B)
that the functionu ∈ RA given byu(a) := fe(εa, µ) belongs toco(D) and so
we obtain

infu∈co(D) supa∈A u(a) ≤ infµ∈F(B) supa∈A fe(εa, µ). (16)

Moreover, for anyu ∈ co(D) there exist a sequence of functionsuj ∈ D and
a positive sequenceµj , 1 ≤ j ≤ m such that

u =
∑m

j=1
µjuj ,

∑m

j=1
µj = 1. (17)

Sinceuj ∈ D one can find somebj ∈ B satisfying f(a, bj) ≤ uj(a) for every
a ∈ A and introducing nowµ ∈ F(B) given byµ =

∑m
j=1 µjεbj we obtain

by relation (17) thatu(a) ≥ fe(εa, µ) for everya ∈ A. This implies

infu∈co(D) supa∈A u(a) ≥ infµ∈F(B) supa∈A fe(εa, µ) (18)

and by relations (16) and (18) the first equality follows. The second equality is
a direct consequence of the continuity of the functionµ → fe(εa, µ) onF(I)
for everya ∈ A and the Weierstrass-Lebesgue lemma. �

Another elementary observation is given by the following consequence of
the product topology onRB.

Lemma 18 If cl denotes the closure with respect to the product topologyπ
then it follows that

supv∈cl(co(C)) infb∈B v(b) = infI∈<B> supv∈co(C) minb∈I v(b)

= infI∈<B> supλ∈F(A) minb∈I fe(λ, εb).

Proof. To show the first equality introduce for everyI belonging to< B > the
mappinghI : RB → R given by

hI(v) := minb∈I v(b).

Since the neighbourhood base of an arbitraryw0 ∈ RB in the product topology
π is given by the sets (cf.[7])

W (I, ε, w0) := {w ∈ RB : |w(b)− w0(b)| < ε for everyb ∈ I}
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with I belonging to< B > andε > 0 it is easy to verify that the functionhI
is continuous on(RB, π). This shows by contradiction that

supv∈cl(co(C)) hI(v) = supv∈co(C) hI(v)

and so withα := supv∈cl(co(C)) infb∈B v(b) we obtain

α ≤ infI∈<B> supv∈cl(co(C)) hI(v) = infI∈<B> supv∈co(C) hI(v). (19)

To show the reverse inequality we assume by contradiction that

α < infI∈<B> supv∈co(C) minb∈I v(b).

If this holds there exists someε > 0 such that for everyI belonging to< B >
one can find somevI ∈ co(C) satisfying

minb∈I vI(b) > α+ ε. (20)

Introduce now the functionwI := min{α+ ε, vI} andα+ ε denoting the con-
stant function onRB with value everywhere equal toα + ε. It is now obvious
that the functionγI : B → R given by

γI := vI − wI (21)

is nonnegative for everyb ∈ B. Since we also know thatvI ∈ co(C) it follows
that there exists some functionsvI,j ∈ C, 1 ≤ j ≤ mI <∞ satisfying

vI =
∑mI

j=1
µI,jvI,j , µI,j > 0 and

∑mI

j=1
µI,j = 1 (22)

and this implies by relations (21) and (22) that

wI =
∑mI

j=1
µI,j(vI,j − γI) (23)

By the nonnegativity of the functionγI and the definition ofC it follows using
vI,j ∈ C, 1 ≤ j ≤ mI that alsovI,j − γI belongs toC for every1 ≤ j ≤ mI

and so by relation (23) we obtainwI ∈ co(C). Clearly the set{I : I belongs
to< B >} is a directed set with partial ordering⊆ and so we consider the net
{wI : I ∈< B >} ⊆ co(C). By the definition of the product topologyπ and
relation (20) we obtain thatwI converges in the product topology toα+ ε and
this shows thatα+ ε belongs tocl(co(C)). Hence it follows that

α = supv∈cl(co(C)) infb∈B v(b) ≥ α+ ε

and we obtain a contradiction. This verifies the first equality and the second
equality can be proved similarly as Lemma 17. �

In the next theorem we show that Wald’s minimax result implies the result
of Gwinner and Oettli.
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Theorem 19 Wald’s minimax result⇒ result of Gwinner and Oettli.

Proof. Introducingα := infu∈co(D) supa∈A u(a) it follows by Lemma 17 and
relation (12) that

α = infI∈<B> minµ∈F(I) supa∈A fe(εa, µ)

= infI∈<B> minµ∈F(I) supλ∈F(A) fe(λ, µ).

Since every element of< B > is a finite set we may apply Wald’s minimax
result and this shows

α = infI∈<B> supλ∈F(A) minµ∈F(I) fe(λ, µ) (24)

= infI∈<B> supλ∈F(A) minb∈I fe(λ, εb).

Applying now Lemma 18 yields the desired result. �

We will now verify that the Gwinner-Oettli result implies the Kassay-
Kolumbán minimax result.

Theorem 20 Gwinner-Oettli result⇒ Kassay-Kolumb́an minimax result.

Proof. If α := infµ∈F(B) maxa∈A fe(εa, µ) we obtain by Lemma 17 and the
result of Gwinner and Oettli that

α = supv∈cl(co(C)) infb∈B v(b). (25)

Applying now Lemma 18 andf is weakly concavelike onA it follows by
relation (25) that

α = infI∈<B> supa∈A minb∈I f(a, b). (26)

Also, sincef is upper semicontinuous onA for every b ∈ B and A is
compact we know by relation (26) and the Weierstrass-Lebesgue lemma that
α = infI∈<B> maxa∈A minb∈I f(a, b) and using Lemma 15 we obtainα =
maxa∈A infb∈B f(a, b) showing the desired result. �

We will now show that the Kassay-Kolumbán minimax result implies the
Neumann-Jeyakumar minimax result.

Theorem 21 Kassay-Kolumb́an minimax result⇒ Neumann-Jeyakumar min-
imax result.
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Proof. We first show that any functionf : A × B → R which is closely
concave onA is also weakly concavelike onA. To verify this we first observe
by induction thatf is closely concave onA if and only if for everyε > 0 and
λ ∈ F(A) there exists somea0 ∈ A satisfying

fe(λ, εb) ≤ f(a0, b) + ε (27)

for everyb ∈ B. This implies for everyn ∈ N andλ ∈ F(A) that there exists
somean ∈ A satisfyingfe(λ, εb) ≤ f(an, b) +n−1 for everyb ∈ B and so for
everyI belonging to< B > andn ∈ N we obtain

minb∈I fe(λ, εb) ≤ supa∈A minb∈I f(a, b) + n−1.

Thereforeminb∈I fe(λ, εb) ≤ supa∈A minb∈I f(a, b) and sinceλ ∈ F(A)
is arbitrary it follows thatf is weakly concavelike onA. By the Kassay-
Kolumbán minimax result we obtain therefore

maxa∈A infb∈B f(a, b) = infµ∈F(B) maxa∈A fe(εa, µ) (28)

Also, sincef is closely convex onB we obtain as in the first part of this proof
that for everyn ∈ N andµ ∈ F(B) there exists somebn ∈ B satisfying

fe(εa, µ) ≥ f(a, bn)− n−1

for everya ∈ A and so for everyn ∈ N andµ ∈ F(B) it follows that

maxa∈A fe(εa, µ) ≥ infb∈B maxa∈A f(a, b)− n−1.

This shows

infµεF(B) maxa∈A fe(εa, µ) ≥ infb∈B maxa∈A f(a, b)

and by relation (28) the desired result follows. �

Since any closely concave-closely convex function onA × B is König
concave-convex onA× B (cf.[14]) and any Ky-Fan concave-convex function
onA×B is König concave-convex onA×B we obtain immediately the next
implication.

Theorem 22 Neumann-Jeyakumar minimax result⇒König’s minimax result⇒Ky-
Fan minimax result.

Also it is clear that Ky-Fan’s minimax result is a generalization of the Peck-
Dulmage minimax result and the Peck-Dulmage minimax result is a general-
ization of Kneser’s minimax result and so the following result is obvious.
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Theorem 23 Ky-Fan minimax result⇒Peck-Dulmage minimax result⇒Kneser’s
minimax result.

In the next result we verify that the strong separation result given by The-
orem 14 is an easy consequence of Kneser’s minimax result.

Theorem 24 Kneser’s minimax result⇒strong separation result.

Proof. SinceA ⊆ Rn is a closed convex set andB ⊆ Rn is a compact convex
set we obtain thatH := A−B is a closed convex set. It is now easy to see that
the strong separation result as given in Theorem 14 holds if and only if there
exists somes0 ∈ Rn satisfyingσH(s0) := sup{s>0 x : x ∈ H} < 0. To verify
this we assume by contradiction thatσH(s) ≥ 0 for everys ∈ Rn. This clearly
impliesσH(s) ≥ 0 for everys belonging to the compact Euclidean unit ballE
and applying Kneser’s minimax result we obtain

suph∈H infs∈E s>h = infs∈E suph∈H s
>h ≥ 0. (29)

Since by assumption the intersection ofA andB is nonempty we obtain that
0 does not belong toH := A − B and this implies usingH is closed that
infh∈H ‖h‖ > 0. By this observation we obtain for everyh ∈ H that−h‖h‖−1

belongs toE and so for everyh ∈ H it follows thatinfs∈E s>h ≤ −‖h‖. This
implies that

suph∈H infs∈E s>h ≤ suph∈H −‖h‖ = − infh∈H ‖h‖ < 0

and we obtain a contradiction with relation (29). Hence there must exist some
s0 ∈ Rn satisfyingσH(s0) < 0 and we are done. �

In the next result we verify that Ville’s minimax result is a consequence of
the strong separation result.

Theorem 25 strong separation result⇒ Ville’s minimax result.

Proof. It follows immediately that

infµ∈F(B) supλ∈F(A) fe(λ, µ) ≥ supλ∈F(A) infµ∈F(B) fe(λ, µ)

and so we only have to verify that the reverse inequality holds. By relation (12)
it is now sufficient to show that

infµ∈F(B) supa∈A fe(εa, µ) ≤ supλ∈F(A) infb∈B fe(λ, εb)

15



Introducingβ := supλ∈F(A) infb∈B fe(λ, εb) suppose now by contradiction
that there exists someγ > 0 satisfying

supa∈A fe(εa, µ) ≥ β + γ (30)

for everyµ ∈ F(B). Since the setsA andB are compact ant the functionf is
continuous it is well-known (cf.[2]) that the functionf is uniformly continuous
onA×B. This implies that there exists someδ > 0 such that

supb∈B |fe(εx, b)− fe(εy, b)| <
γ

2

for everyx, y ∈ A satisfying%(x, y) < δ with ρ the metric onA and so it
follows that

supµ∈F(B) |fe(εx, µ)− fe(εy, µ)| < γ

2
(31)

for every x, y ∈ A satisfying%(x, y) < δ. By the compactness ofA we
also know that there exists some finite set{a1, ..., ap} ⊆ A satisfyingA ⊆
∪pi=1(ai + δE) with E denoting the unit open ball and this shows by relation
(31) and (30) that

max1≤i≤p fe(εai , µ) ≥ supa∈A fe(εa, µ)− γ

2
≥ β +

γ

2
. (32)

for everyµ ∈ F(B). Introducing now the setS ⊆ Rp given by

S := {(f(a1, b), ..., f(ap, b)) : b ∈ B}

we obtain by the continuity off andB compact thatS is compact and hence
the convex hullco(S) of S is compact. Also by relation (32) we obtain that
max1≤i≤p zi ≥ β + γ

2 for every(z1, ..., zp) ∈ co(S) and so the intersection of
the compact conves setco(S) and the closed convex setV := {(z1, ..., zp) :
max1≤i≤p zi ≤ β + γ

4} is empty. By the strong separation theorem one can
now find some vector(λ1, ..., λp) ≥ 0 with

∑p
i=1 λi = 1 such that forλ :=∑p

i=1 λiεai it follows that

β +
γ

4
< infb∈B fe(λ, εb).

This contradicts the definition ofβ and soβ ≤ α verifying Ville’s minimax
result. �

In the next result we verify that Kakutani’s minimax result result is an easy
consequence of Ville’s minimax result.
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Theorem 26 Ville’s minimax result⇒Kakutani’s minimax result.

Proof. Since for everya ∈ A the functionb → f(a, b) is convex on the
compact convex setB it follows for everyµ ∈ F(B) given byµ =

∑m
j=1 µjεbj

that

supa∈A fe(εa, µ) ≥ supa∈A f(a,
∑m

j=1
µjbj) ≥ infb∈B supa∈A f(a, b).

This implies in combination with relation (12) that

infµ∈F(B) supλ∈F(A) fe(εa, µ) = infµ∈F(B) supa∈A fe(εa, µ) (33)

≥ infb∈B supa∈A f(a, b).

Similarly we obtain by the concavity of the functiona → f(a, b) on the com-
pact convex setA for everyb ∈ B that

supλ∈F(A) infµ∈F(B) fe(λ, µ) = supλ∈F(A) infb∈B fe(λ, εb) (34)

≤ supa∈A infb∈B f(a, b).

Applying now Ville’s minimax result and relations (33) and (34) yields

infb∈B supa∈A f(a, b) ≤ supa∈A infb∈B f(a, b).

Since trivially the reverse inequality holds andf is continuous on the compact
setA×B Kakutani’s minimax result holds. �

Observe now for any finite setsA = {a1, ..., an} andB = {b1, ..., bm}
that von Neumann’s minimax result can also be written as

maxλ∈∆n minµ∈∆m h(λ, µ) = minµ∈∆m maxλ∈∆n h(λ, µ)

with h(λ, µ) :=
∑n

i=1

∑m
j=1 λiµjf(ai, bj). Since the functionh is affine in

both variables and∆n, respectively∆m denote the compact unit simplices of
R
n, respectivelyRm it is clear by the above representation that von Neumann’s

minimax result is a special case of Kakutani’s minimax result.

Theorem 27 Kakutani’s minimax result⇒von Neumann’s minimax result.

This completes the proofs of the different implications. To conclude the
paper we finally list some conclusions. In this paper we have shown that a
number of minimax results are easy consequences of each other. This shows
that one can construct a chain of minimax results and so to prove one of those
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results one needs to prove that minimax result of which its proof is most el-
ementary. As such the authors believe that in all the minimax papers in the
references the most elementary proof is given by Kneser. Similarly one can ar-
gue that all those papers proving generalizations of the original first minimax
result of von Neumann by means of different proofs are elementary implica-
tions of this result. This also shows that von Neumann already captured in
1928 the basic minimax result which can be proved by means of a finite di-
mensional separating hyperplane argument. In that respect it is curious to note
that von Neumann was the handling editor of the celebrated paper of Ky Fan
in which the arguments of Kneser were generalized.
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