N

N

A multi-start Dynasearch algorithm for the time
dependent single-machine total weighted tardiness
scheduling problem
Eric Angel, Evripidis Bampis

» To cite this version:

Eric Angel, Evripidis Bampis. A multi-start Dynasearch algorithm for the time dependent single-
machine total weighted tardiness scheduling problem. European Journal of Operations Research,
2005, 162 (1), pp.281-289. hal-00341340

HAL Id: hal-00341340
https://hal.science/hal-00341340
Submitted on 19 Jul 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00341340
https://hal.archives-ouvertes.fr

A multi-start Dynasearch algorithm for the time dependent
single-machine total weighted tardiness scheduling problem

E. Angel, E. Bampis
Université d’Evry Val-d’Essonne
LaMI
91025 Evry, France

email: {angel, bampis}@lami.univ-evry.fr

June 11, 2001

Abstract

We extend the dynasearch technique, recently proposed by Congram et al, in the context
of time-dependent combinatorial optimization problems. As an application we consider a
general time-dependent (idleness) version of the well known single-machine total weighted
tardiness scheduling problem, in which the processing time of a job depends on its starting
time of execution. We develop a multi-start local search algorithm and present experimental
results on several types of instances showing the superiority of the dynasearch neighborhood
over the traditional one.

1 Introduction

In this paper we evaluate the performance of dynasearch in the context of time-dependent
scheduling. Dynasearch is a recently proposed neighborhood search technique [5] that allows
a series of moves to be performed at each iteration of a local search algorithm, generating
in that way an exponential size neighborhood. In order to efficiently explore such a neigh-
borhood, dynasearch uses dynamic programming. Congram et al. applied dynasearch to the
classical single machine total weighted tardiness problem (1| > w;Ty) [5] and compared the
quality of the obtained solutions with traditional multi-start and iterated descent algorithms.
The obtained computational results were very encouraging in the case where dynasearch was
applied inside an iterated local search algorithm when compared to classical iterated descent
algorithms. However, the application of dynasearch in the case of a multi-start algorithm
gave marginally better results than the classical multi-start methods. It is then natural
to ask if dynasearch is not so appropriate for multi-start local search algorithms. In this
work, we show that this is not true. More precisely, we study the time dependent version
of the single machine total weighted tardiness problem, and we present computation results
showing that multi-start dynasearch clearly dominates the classical multi-start local search
algorithms.

In scheduling theory there have been an increasing interest, in the last few years, for
scheduling problems with time-dependent processing times [1]. In this paper we consider a
general time-dependent version of the well known single-machine total weighted tardiness
scheduling problem. The problem can be stated as follows. We are given a set of n jobs,
each job j has a due date d; and a positive weight w;. The processing time f; (%) of each job
j depends on its starting time of execution ¢ and is given by a function f;. We shall note

p'; for f;(t). So if a job j immediately starts after a job i, its duration is p7c with C; the

completion time of job i. We shall consider only the idleness version, and consider that all
values are integer ones.

Since we make no assumptions on the functions f;, this model captures a wide range
of practical applications. A first example is when the availability of the resources (e.g.
processing power) vary (e.g. in a monotone or cyclic way) over time; think for example at
the load of a computer network. A second example is when any delay in the execution of
a job may leads to an increase (resp. decrease) of the difficulty of the job and therefore to
a modified duration; think for example to fire fighting (resp. destroying a target which is
getting closer).

We denote by C; the completion time and by 7; = max{C; —d;, 0} the tardiness of job j.
The objective is to find a schedule which minimizes the total weighted tardiness Z?’Zl w;Tj.
Adopting the three-field standard notation of Graham et al. [7] we will denote this problem
by 1|p},idleness| Y, w;T;.

This problem is strongly NP-hard since it is a generalization of the single-machine total
weighted tardiness problem 1| 32, w;Ty [11]. Indeed, there exists a dynamic programming
algorithm with a running time O(n? Z;’lej) for the problem 1|| . w;T;, but only when
weights are agreeable, that is p; > pr = w; < wy for all jobs j and &k [11]. There exists a
branch and bound algorithm for the 1{| 37, w;T; problem [14], but as it is reported in [5]
it cannot be used in practice on instances with more than 50 jobs. Moreover the design of
approximation algorithms seems very hard, since the only known results concern only the
far less general 1{| 3 . T; problem with a FPTAS due to Lawler [12] in O(n"/¢) time, and
slightly improved by Kovalyov [10] in O(n® logn+n®/e€) time. Since the problem we consider
is a broad generalization of the 1| Zi w;T; problem, these results stress the importance of
the metaheuristic approach if one wants to practically deal with instances of this problem.

2 Dynasearch neighborhood

Local search algorithms, and their generalizations such as simulated annealing and tabu
search (also called metaheuristics), are often used to obtain near optimal solutions for a
wide range of NP-hard combinatorial optimization problems [15, 3, 4]. In these methods a
neighborhood is defined, usually by giving a set of transformations that can be applied on
the current solution. In the simplest local search method, at each iteration the algorithm
searches the neighborhood of the current solution for a better one. If such a solution exists
it becomes the new current solution and the process goes on, otherwise the algorithm has
found a local optimal solution and stops.

In general, the more large is the neighborhood, the less there are local optima and the
better in quality they are. Recently exponential size neighborhoods, which can be neverthe-
less searched in polynomial time, have been proposed for the traveling salesman problem [8]
(see also the pioneer works [16] and [17]), the one machine batching problem [9], and the
single machine total weighted tardiness scheduling problem [5].

The dynasearch neighborhood we use is based on the swap neighborhood which gives the
best results compared to other ones for the 1| > . w;T; problem [6] [2], and probably for
the generalized problem that we consider.

We shall represent a solution by a permutation o = (o(1),...,0(n)) of the set {1,2,...,n},
meaning that job o(j) is the j-th job to be scheduled.

Given a permutation o = (o(1),...,0(3),...,0(j)...c(n)) the swap neighborhood con-
sists of all n(n — 1)/2 permutations ¢’ = (¢(1),...,0(7),...,0(1)...0(n)), with1 <i < j <

n, that can be obtained from o by swapping two jobs. A move that swaps job o(7) with o(j),
and a move that swaps job o (k) with o(l) are said to be independent if max{i, j} < min{k, [}
or max{k,l} < min{i, j}.

The dynasearch swap neighborhood, introduced in [5], consists of all solutions that can be
obtained by a series of pairwise independent swap moves. For example, given the permutation
c=(134625810971214 13 11), we can apply the 3 independent swap moves figured

N R A | Lt

to obtain the neighboring permutation ¢/ = (164325 7 10 9 8 12 14 11 13). It is not

difficult to see that this neighborhood has size 2"~1 — 1.

To search this exponential neighborhood in an efficient way, i.e. to find the best neigh-
boring permutation among the 2"~ ! — 1 candidate permutations (i.e. we use steepest descent
local search), a dynamic programming algorithm is used. We use a backward enumeration
scheme in which jobs are appended to the beginning of the current partial sequence and are
possibly swapped with jobs already scheduled in the partial sequence.

We note (z)* = max{z, 0} for any integer z. Let o = (a(1),...,0(%),...,0(4) -..a(n)),
be a permutation. We note (o;,t) the best possible way to schedule jobs o(3), o(i+1), ... ,0(n)
by applying a series of independent swaps on the sub-permutation (o(3),o(i + 1),...,o(n)),
assuming that the first job scheduled in that sub-permutation is scheduled at time ¢. We
take only into account the total weighted tardiness of jobs o(3), o(i+1), ... ,o(n) and forget
jobs o(1),0(2),...,0(¢ — 1) when dealing with (o;,t). We note F(o;,1) the corresponding
total weighted tardiness of jobs o (i), o(i + 1), ... ,o(n) in the state (oy,t). We shall put
(ont1,t) = 0 and F(opy1,t) = 0 for any time ¢ to simplify the description of the algorithm
below.

Now the state (o;,%) must be obtained either by appending the job o (i) in front of the
state (oiy1, t—|—pfr(i)) or by appending the sequence (¢(j), c(i+1),...,0(j—1), (%)), obtained
by swapping jobs (i) and o(7), in front of the state (0;41,t") for some jobi+1 < j<n
and time ¢’ (to be determined later).

We have for the first case F(oy,t) = wq(;)(t + pfr(i) —do@))t + F(oigr,t+ pfr(i)). For the
second case, let t; be the starting time of the k-th scheduled job for 2 < k < j after having
swapped o(2) and o(j). By definition of F(o;,t), t; = t. Then since jobs ¢(3) and &(j) have
been swapped, t;11 = t; —|—pfr"’(7.). Finally, ¢t =t 1 +pi'}il,1) for i+ 1 < k < j. Thus we have

F(04,8) =wa()(ti + Py — da(i)T + D Waie) (s + Py — doii) T+
i<k<j

t; t;
Wo(i) (j + 25 — doi) T+ F(oj41,t5 +2,)4)-
If j =4+ 1, the sum Zi<k<7’ is empty.
Finally the dynamic programming algorithm can be stated as:

F(Una t) = wn’(n)(t + p:,(") - dn’(n))+

and
F(oi,t) = min{wg (i + pf,"’(i) - dn—(i))+ + F(oiq1,ti + pf,"’(i)),

Lmin wo (b + Pl — dei)) T+ Y wate(te+ P — o) T +
1i<Isn i<k<j

W) (i + By — doi) T + F0i41,t +)}, for 1<i<n

We want to calculate F(oq,0). To implement the dynamic programming algorithm we
have used a basic memoize technique: an array stores the values of F' already computed in
order to reduce the number of recursive calls. The optimal set of independent swaps can be
retrieved by examining an array which stores, for each job j and each time ¢ for which a
value F(o;,t) was computed, the position of o(j) in the state (o;,1).

We shall assume that the processing times are bounded up by a constant pmg., i.e.
0< pfr(j) < Dmaz, VJ,t. Under this assumption, the time £ at which the last job can start is
bounded up by (7 — 1)pmax- There are n(n— 1)pyq. states (o;,t), each one can be computed
in O(n?) time (assuming that the previous required states have been already computed),
leading to a total O(n*pmas) time complexity. The space complexity is O(n2pmaz)-

3 Experimental results

There is certainly a tradeoff between the benefice of using a large neighborhood in terms of
the quality of local optima and the induced time increase, relative to a small neighborhood,

in order to search it. Our experiments were designed in order to determine if it was worth
to spend more time exploring a larger neighborhood. To compare the performance of the
standard and the dynasearch swap neighborhoods we have used multi-start local search
(MLS).

In MLS with the dynasearch swap neighborhood, a fixed number of local search are
performed, 10 in our case, and we retain the best local optima found out of these 10 local
search. In MLS with the standard swap neighborhood, the number &k of local search is not
known @ prioriand it is a function of the time spent, say T, by the MLS with the dynasearch
swap neighborhood, namely we perform local search until the total time spent is greater or
equal to T. In this way we can fairly compare the two algorithms. In the sequel, MLS
means multi-start local search with the swap neighborhood, and MDS means multi-start
dynasearch, that is multi-start local search with the dynasearch swap neighborhood.

To speed-up the local search algorithm with the standard swap neighborhood, when a
swap involving jobs o(2) and o(j), with j > 1, is evaluated, only the portion in the right of
the job o(j) is taken into account to calculate the cost of the new solution (we use additional
arrays to record for each job its starting time, and for each position the partial cost induced
by the current solution up to this position).

An instance of the problem 1 |p';, idleness | E w;T; with n jobs is completely described
by giving the (14 (n— 1)pmas)1 processing times p w1th 1<j<nand0<t<(n—1)pmar,
with the n weights and the n due dates for each _]ob We have chosen pyq,. — 20.

We have generated random instances of various types with sizes 30 and 40. For each
job j an integer weight w; is randomly uniformly generated in [1, 10] whatever the type of
the instance. In the first type of instances, each processing time p is independent of the
others, and is chosen randomly in [1, pmaz]- This method certainly leads to the most difficult
instances, but from a practical point of view they are not realistic. In the second type of
instances, each job j has an ideal starting time b; and is penalized if its starts either too

early or too late. Its processing time is given by p';- =1+ min{pmas — 1, LMJ} In the
third (resp. fourth) type of instances, the processing times are decreasing (resp. increasing)
with the time, i.e. the latter a job starts, the shorter (resp. longer) its duration. More
precisely, the processing time of a job j given that it starts at time ¢ is max{1, | Pmax — 7 *

t * %J} for the third type of instance, with r; a real random number in [0,1], ¢ in

{0,1,...,(n—1)Pmax }, and min{pmas, | 1+7; %t (pmlﬁj} for the fourth type of instance.

The integer due dates were generated in a similar way than what it is usually done
for the classical 1| E T; problem: For each job j, an integer due date d; is randomly
generated in the 1nterva1 [(1-TF — RDD/2),P(1 — TF + RDD/2)] using a uniform
distribution, with P = E ._,pj, RDD € {0.2,0.4,0.6,0.8,1.0} the relative range of due
dates, and TF € {0.2,0.4, 0 6,0.8,1.0} the tardiness factor. When the tardiness factor is
close to 1 it means that the majority of jobs will be completed after their due dates and
the problem is very constrained. The relative range of due dates indicates the variability
of the due dates around their mean value. We adopted the same procedure, with P —
Z;':l Zg":'gl)p"”““’ p';/((n — 1)Pmax + 1) to take into account the time dependent processing
times.

We have generated five instances for each of the 25 pairs of values of RDD and TF, which
yields a total of 125 instances for each size and each type of instance. The experiments were
performed on a Pentium III biprocessor-500Mhz. Average results (over 10 executions of MLS
and MDS) are shown in Tables 1 to 8.

In Tables 1 and 2, for each TF and RDD values we have three entries. The first entry
is the cost of the best local optimum found using MLS (or MDS), the second entry is the
execution time in seconds, and the last entry is the number of local search performed for
MLS in order to have the same execution time than MDS. Table 3 indicates the improvement
in percentage on the cost of the solution found by MDS versus MLS.

We can see than despite a much less number of local search (10 against several hundreds),
MDS performs better than MLS. The improvement can be very significant, for example for
instances with RDD=0.2 and TF=0.6, we obtain the optimal solution with MDS, whereas
MLS gives solutions with a cost of 20.1.

rdd\tf | 0.2 0.4 0.6 0.8 1.0
0.2 0.0; 2.3; 366 | 0.0; 2.4; 122 20.1; 8.7; 217 1966.1; 23.2; 422 | 12939.8; 24.4; 390
0.4 0.0; 2.3; 271 | 0.0; 3.1; 130 | 2.3; 10.8; 231 9237.4; 23.9; 405 | 14287.1; 24.9; 397
0.6 0.0; 2.4; 231 | 0.0; 4.9; 187 | 0.9; 13.5; 265 3997.3; 24.6; 404 | 11723.3; 25.4; 399
0.8 0.0; 2.7; 186 | 0.0; 7.2; 235 65.6; 16.5; 306 4356.7; 23.9; 378 | 17836.4; 25.4; 391
1 0.0; 3.6; 208 | 0.0; 10.3; 280 | 1035.2; 20.0; 345 | 6970.6; 25.0; 380 | 18160.4; 26.6; 398
Table 1: size: 40, type: 1, multi-start local search
rdd\tf | 0.2 0.4 0.6 0.8 1.0
0.2 0.0; 2.3; 10 | 0.0; 2.4; 10 | 0.0; 8.7; 10 880.3; 23.1; 10 | 11769.6; 24.3; 10
0.4 0.0; 2.3; 10 | 0.0;3.1; 10 | 0.0; 10.8; 10 | 1245.7; 23.9; 10 | 13064.3; 24.9; 10
0.6 0.0; 2.4: 10 | 0.0; 4.9;10 | 0.5; 13.5; 10 | 2507.8; 24.6; 10 | 10820.6; 25.4; 10
0.8 0.0; 2.7; 10 | 0.0; 7.2; 10 | 49.8; 16.5; 10 | 3895.1; 23.9; 10 | 17010.8; 25.4; 10
1 0.0; 3.6; 10 | 0.0; 10.3; 10 | 994.0; 19.9; 10 | 6567.3; 24.9; 10 | 17361.0; 26.5; 10

Table 2: size: 40, type: 1, multi-start dynasearch

rdd\tf | 0.2 | 0.4 | 0.6 0.8 1.0
0.2 0 0 -100.0 | -55.2 | -9.0
0.4 0 0 -100.0 | -44.3 | -8.6
0.6 0 0 -44.4 | -23.9 | -7.7
0.8 0 0 -24.1 | -10.6 | -4.6
1 0 0 -4.0 -5.8 |-4.4

Table 3: size: 40, type: 1

Due to space limitation we present only the percentage of improvement for the other
types of instances with size 30 and 40 in Tables 4 to 8. We can see that in the overwhelming
of cases, multi-start dynasearch gives better results. There is an exception however for type
For them we obtain exactly the same cost with multi-start local search and
dynasearch. This probably indicates that these instances are solved to optimality.

4 instances.

In the paper of Congram et al. [5], MDS gave only little improvement over MLS for
the 1||> w,;T; problem. The improvement was however significant for a more elaborated
method called iterated local search (in which a new local search is started from a solution
“close” to the previously found local optimum, instead of a randomly generated solution as it
is the case for MLS and MDS). The explanation we give for the efficiency of MDS over MLS
for the time-dependent scheduling problem we consider is the following one. In our case,
starting from a solution o, the swap of two jobs ¢(2) and o(j) (2 < j) can lead to a solution
o' in which the swap of two jobs o(k) and o(l) (i < j < k<lork <l <i<j)leadstoa
solution o'’ with a lower cost than solution o, whereas performing first the swap of jobs o (k)
and o(l) on solution o is not profitable, i.e. it increases the cost of the solution obtained.
This situation is not encountered in the static scheduling problem 1|| Y w;T;. Therefore, we
take the benefice of a lookahead capability which is absent from the standard local search
algorithms which are traditionally myopic in nature.

4 Conclusion and extensions

Our work is in the continuity of Congram et al. [5] which have introduced the dynasearch
swap neighborhood for the 1] 27. w;T; problem. By introducing the time parameter inside
the dynamic programming algorithm we obtain a pseudopolynomial algorithm in time and
space, whereas their algorithm needed O(n3) time and O(n) space, but we enlarge consid-
erably the class of problems which can now be treated. We need not anymore to consider

rdd\tf | 0.2 | 0.4 06 |08 | 1.0 rdd\tf | 0.2 04 | 06|08 |1.0
0.2 0 -32 |-0.1]0.1 |-0.0 0.2 -3.7 |-0.4 0.0 0.0 |0.0
0.4 0 -171 103 | 0.2 | -0.1 0.4 -17.3 |-1.4 0.0 | 0.0 | 0.0
0.6 0 9.5 0.4 |-0.0]-0.0 0.6 0 -1.4 { 0.1 0.0 | 0.0
0.8 0 0 0.9 | 0.0 | 0.0 0.8 0 -1.5 0.1 |-0.0 | 0.0
1 0 3.5 0.5 |-0.0-0.0 1 0 -2.00.0|0.0 |-0.0
Table 4: size: 40, type: 2 Table 5: size: 40, type: 3
rdd\tf | 0.2 | 0.4 | 0.6 0.8 1.0 rdd\tf | 0.2 | 0.4 06|08 |1.0
0.2 0 0 -100.0 | -39.1 | -2.5 0.2 0 -1.3 | 0.1 0.2 |0.0
0.4 0 0 0 -34.6 | -3.8 0.4 0 -15.4 | 1.0 | -0.0 | -0.0
0.6 0 0 -976 | -6.2 |-3.3 0.6 0 -0.7 |0.2]0.1 |0.0
0.8 0 0 -15.1 | -3.4 |-1.3 0.8 0 5.1 0.2 101 |-0.0
1 0 0 3.1 -1.0 | -2.6 1 0 1.3 0.3 0.0 |-0.0
Table 6: size: 30, type: 1 Table 7: size: 30, type: 2

rdd\tf | 0.2 04 [06]08[1.0
0.2 37 |-00][0.0][00]00
0.4 135 |-0.6 | 0.1|0.0 | 0.0
0.6 7.0 |-0.5|0.0|0.0|0.0
0.8 -100.0 | -1.1 | 0.1 | 0.0 | 0.0
1 0 0.1 [0.0 [0.0 | -0.0

Table 8: size: 30, type: 3

problems in which the cost change between neighboring solutions depends only on the jobs
between o(i) and o(j) which are swapped. Namely, in the 1| Z]- w;T; problem when jobs
o(2) and o(j) (i < 7) are swapped, the jobs in the left of o(j) and in the right of &(z) have
the same starting time than before the swap. For instance multiprocessor scheduling prob-
lems, in which a swap may involve jobs executed not only in the same processor, but also in
different processors, could be treated in the same way, by introducing one time variable for
each processor.

The experimental results have demonstrated the superiority of the dynasearch approach
over the standard swap neighborhood for the 1 |p';, idleness | 2_7' w;T; problem. More elab-
orate methods such as iterated local search [5] or metaheuristics such as simulated annealing
and tabu search [15] would perhaps give better results, but we think that they should be in
agreement with ours, namely it is worth to spend more time exploring the bigger dynasearch
neighborhood. A reason for the strong improvement we have noticed for the multi-start local
search may be the lookahead capability of the dynasearch neighborhood when it is applied to
time-dependent scheduling problems. Enlarging the neighborhood would increase this looka-
head capability, and therefore it is natural to wonder how big can we make the neighborhood
until the benefit of having a large neighborhood is neutralized by the long time spent at each
iteration to explore it. Insertion moves (consisting in taking a job and inserting it between
two consecutive jobs) could be added to swap moves, resulting in a bigger neighborhood still
searchable in pseudopolynomial time using the same dynasearch technique.

A promising way of improving dynasearch would be to use some kind of branch and

bound inside the dynamic programming algorithm. We need a lower bounding function
L(o;,t) which gives a lower bound on the total weighted tardiness of the best sub-solution
involving jobs o(i),0(i + 1),...,0(n) given that the first job is scheduled at time %, and
we need a third parameter ¢ in F(o;,t,c), which indicates the total weighted tardiness of
the partial solution constructed so far (this has no incidence on the time complexity). If
the lower bound indicates that the best solution we can obtain by performing independent
swaps on jobs o(2),0(z + 1),... ,0(n) starting from time ¢ is worst than a solution we have
already obtained, then we need not to compute the state F(o;y,1).
For the time-dependent problem we have considered in this paper, a lower bound based on
the relaxation of the 1| > . w;T; to a transportation problem (see for example [13]) would
have a time complexity of O(n?), and therefore would perhaps be not competitive. We
are now exploring this approach for other time dependent scheduling problems whose lower
bounds can be obtained in a faster way.

References

[1] B. Alidaee and N.K. Womer. Scheduling with time dependent processing times: Review
and extensions. Journal of the Operational Research Society, 50(7):711-720, 1999.

[2] E.J. Anderson, C.A. Glass, and C.N. Potts. Machine scheduling. In E.H.L. Aarts and
J.K. Lenstra, editors, Local search in combinatorial optimization, pages 361-414. Wiley,

1997.

[3] E. Angel and V. Zissimopoulos. On the quality of local search for the quadratic assign-
ment problem. Discrete Applied Mathematics, 82:15-25, 1998.

[4] E. Angel and V. Zissimopoulos. On the classification of NP-complete problems in terms
of their correlation coefficient. Discrete Applied Mathematics, 99:261-277, 2000.

[6] R.K. Congram, C.N. Potts, and S.L. van de Velde. An iterated dynasearch algorithm
for the single-machine total weighted tardiness scheduling problem. Technical report,
Faculty of Mathematical Studies, University of Southampton,U.K., december 1998.

[6] H.A.J. Crauwels, C.N. Potts, and L.N. Van Wassenhove. Local search heuristics for
the single machine total weighted tardiness scheduling problem. INFORMS Journal on
Computing, 10:341-350, 1998.

[7]

(8]
[9]

[10]

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete

Mathematics, 5:287-326, 1979.

G. Gutin. Exponential neighbourhood local search for the traveling salesman problem.
Computers and Operations Research, 26(4), 1999.

J. Hurink. Efficient calculation of a best neighbor for a one machine batching problem.
Technical report, Osnabriicker Schriften zur Mathematik, Reihe P, No. 180, 1996.

M.Y. Kovalyov. On one machine scheduling to minimize the number of late items and
the total tardiness. Technical report, Institute of Engineering Cybernetics, Academy of
Sciences of Byelorussian SSR, Minsk, Byelorussia, 1991. Preprint N4.

E.L. Lawler. A “pseudopolynomial” algorithm for sequencing jobs to minimize total
tardiness. Annals of Discrete Mathematics, 1:331-342, 1977.

E.L. Lawler. A fully polynomial approximation scheme for the total tardiness problem.
Operations Research Letters, 1:207-208, 1982.

M. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice Hall, 1995.

C.N. Potts and L.N. Van Wassenhove. A branch and bound algorithm for the total
weighted tardiness problem. Operations Research, 33:363-377, 1985.

C.R. Reeves, editor. Modern heuristic techniques for combinatorial problems. Blackwell
Scientific Publications, 1993.

N.N. Doroshko V.I. Sarvanov. The approximate solution of the travelling salesman
problem by a local search algorithm that searches neighborhoods of exponential car-
dinality in quadratic time (in russian). Software: Algorithms and Programs, 31:8-11,
1981. Mathematical Institute of the Belorussian Academy of Sciences, Minsk.

N.N. Doroshko V.I. Sarvanov. The approximate solution of the travelling salesman
problem by a local search algorithm with scanning neighborhoods of factorial cardi-
nality in cubic time (in russian). Software: Algorithms and Programs, 31:11-13, 1981.
Mathematical Institute of the Belorussian Academy of Sciences, Minsk.

