
European Journal of Operational Research 162 (2005) 99–111

www.elsevier.com/locate/dsw
Tabu search algorithms for job-shop problems
with a single transport robot

Johann Hurink a,*, Sigrid Knust b,1

a University of Twente, Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science,

P.O. Box 217, 7500 AE Enschede, The Netherlands
b Universit€at Osnabr€uck, Fachbereich Mathematik/Informatik, 49069 Osnabr€uck, Germany

Received 1 July 2001; accepted 14 October 2003

Available online 24 January 2004

Abstract

We consider a generalized job-shop problem where the jobs additionally have to be transported between the ma-

chines by a single transport robot. Besides transportation times for the jobs, empty moving times for the robot are taken

into account. The objective is to determine a schedule with minimal makespan.

We present local search algorithms for this problem where appropriate neighborhood structures are defined using

problem-specific properties. An one-stage procedure is compared with a two-stage approach and a combination of

both. Computational results are presented for test data arising from job-shop benchmark instances enlarged by

transportation and empty moving times.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Job-shop problem; Robot; Transportation; Tabu search
1. Introduction

In this paper we consider a generalized job-shop

scheduling problem where the jobs additionally

have to be transported between the machines by a

single transport robot. A job-shop problem with

transportation times and a single robot is a gener-

alization of the classical job-shop problem and
* Corresponding author. Tel.: +31-53-4893447; fax: +31-53-

4894858.

E-mail addresses: j.l.hurink@utwente.nl (J. Hurink), si-

grid@informatik.uni-osnabrueck.de (S. Knust).
1 Supported by the Deutsche Forschungsgemeinschaft, Pro-

ject �Komplexe Maschinen-Schedulingprobleme�.

0377-2217/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/j.ejor.2003.10.034
may be formulated as follows: We are given m
machines and n jobs. Each job consists of a chain
of operations which have to be processed in this

order. With each operation a dedicated machine is

associated on which the operation has to be pro-

cessed without preemption for a given duration.

Each machine can process at most one operation

at a time. Additionally, transportation times are

considered. They occur if a job changes from one

machine to another and depend on the jobs and
the machines between which the transport takes

place. We assume that all these transport opera-

tions have to be done by a single transport robot

which can handle at most one job at a time. Fur-

thermore, we assume that we have unlimited buffer
ed.

mail to: j.l.hurink@utwente.nl

100 J. Hurink, S. Knust / European Journal of Operational Research 162 (2005) 99–111
space between the machines. The objective is to
determine a feasible schedule which minimizes the

makespan, i.e. the completion time of the opera-

tion processed last.

If for the robot only the given transportation

times are important, we may consider the robot as

an additional ‘‘machine’’ which has to ‘‘process’’

all transport operations. Therefore, in this case the

problem is equivalent to a classical job-shop
problem with mþ 1 machines. Since the robot has

to process many more operations than the other

machines (each second operation of a job), it is

also called a bottleneck machine. However, in

practice in addition to the transportation times

also empty moving times arise when the robot

moves empty between two machines without car-

rying a job. These empty moving times may be
regarded as sequence-dependent setup times on the

robot and, thus, the empty moving times imply

that the robot cannot be treated in the same way as

the other machines. Consequently, the job-shop

problem with transportation times and a single

robot consists of scheduling a set of ‘‘classical’’

machines and a special machine on which addi-

tionally sequence-dependent setup times have to be
taken into account.

In this paper we propose two different ap-

proaches to integrate a transportation stage into

procedures which schedule the machines. In an

one-stage procedure we try to deal with the

problem on the whole and do not distinguish be-

tween the robot and the machines. Another pos-

sibility is to apply a two-level approach, where on
the first level machine orders for the job-shop

machines are fixed and on the second level a cor-

responding robot order is constructed. For these

two approaches and a combination of both we

present tabu search methods to calculate heuristic

solutions for the considered problem.

Whereas scheduling the machines in a classical

job-shop has been studied over a long period (for
summaries, see e.g. [2] or [9]), scheduling problems

with transportation aspects have received much

attention in the literature only in recent years (for

a survey cf. [5]). Although there are many differ-

ences between the various models, they all deal

with the interaction between the transportation

routing and the classical job scheduling decisions.
For shop problems with transportation times,
unlimited buffer space and a single robot only few

literature is available. Kise [11] proved that mini-

mizing the makespan in a two-machine flow-shop

with constant transportation times and a single

robot is already NP-hard. Additional complexity

results for such problems can be found in Hurink

and Knust [7]. King et al. [10] proposed a branch-

and-bound algorithm for a flow-shop environment
with a single robot. Langston [14] derived some

approximation algorithms for a flexible flow-shop

environment with two stages and interstage

transportation times. Bilge and Ulusoy [1] pro-

posed a heuristic for simultaneously scheduling the

machines and vehicles in a flexible manufacturing

system with job-shop structure.

The remainder of the paper is organized as
follows. In Section 2 we give a formal definition of

the considered scheduling problem and state some

additional assumptions. In Section 3 we extend the

well-known disjunctive graph model to the situa-

tion with one transport robot and derive some

problem-specific properties which are the basis for

our local search procedures. An one-stage ap-

proach is proposed in Section 4, a two-stage pro-
cedure and a combination of both are presented in

Section 5. Finally, computational results can be

found in Section 6.
2. Problem formulation

In this section we present a formal definition of
the considered problem and state some additional

assumptions. We are given m machines M1; . . . ;Mm

and n jobs J1; . . . ; Jn. Each job Jj consists of nj
operations Oij ði ¼ 1; . . . ; njÞ which have to be

processed in the order O1j ! O2j ! � � � ! Onj;j.

Operation Oij has to be processed without pre-

emption on a dedicated machine lij 2 fM1; . . . ;
Mmg for pij > 0 time units. Each machine can only
process one operation at a time. Additionally,

transportation times are considered. They occur if a

job changes from one machine to another, i.e. if

job Jj is processed on machine Mk and afterwards

on machine Ml, a transportation time tjkl arises.

These transportation times may be job-dependent

or job-independent (tjkl ¼ tkl). We assume that all

J. Hurink, S. Knust / European Journal of Operational Research 162 (2005) 99–111 101
transportations have to be done by a single
transport robot R which can handle at most one

job at a time. The transportation times are sup-

posed to satisfy the following triangle inequality

for all jobs Jj and all machines Mk;Ml;Mh:

tjkh þ tjhl P tjkl: ð1Þ
If this inequality does not hold, i.e. tjkh þ tjhl <

tjkl for some indices j, k, h, l, we could save time
for the transport from Mk to Ml by first trans-

porting job Jj from Mk to Mh and then to Ml. In

practice, this situation is unlikely to occur, hence

this assumption is not a real restriction.

In addition to the transportation times we

consider empty moving times t0kl. While the trans-

portation times arise when a job is transported

from one machine to another, the empty moving
times t0kl arise when the robot moves empty from

machine Mk to Ml without carrying a job. For

these times we assume

t0kk ¼ 0; t0kh þ t0hl P t0kl and t0kl 6 min
n

j¼1
ftjklg:

ð2Þ
The first assumption means that no empty

moving times have to be considered if the robot

waits at a machine for the next transport. The
second condition is again a triangle inequality and

the third states that moving empty between two

machines does not take longer than moving a job

between the same two machines. In practical situ-

ations these assumptions are satisfied in most cases.

As in classical shop problems we assume that

sufficient buffer space exists between the machines.

This means that each machine Mk has an unlim-
ited output buffer where jobs processed on Mk

and waiting for the robot may be stored. The jobs

are automatically transferred into this buffer and

no further times for this transfer are considered.

Additionally, each machine Ml has an unlim-

ited input buffer where jobs which have been

transported and await processing on Ml may be

stored.
All data pij, tjkl, t0kl are assumed to be non-

negative integers. The objective is to determine

a feasible schedule which minimizes the make-

span Cmax ¼ maxnj¼1 fCjg, where Cj denotes the

completion time of the last operation Onj;j of job Jj.
3. The disjunctive graph model

In this section the well-known disjunctive graph

model for the classical job-shop problem devel-

oped by Roy and Sussmann [17] is extended to the

job-shop problem with transportation times and a

single robot. Since the classical disjunctive graph

model already deals with all conflicts regarding the
job-shop machines, we only have to incorporate

the scheduling of the robot into the model. This is

done by introducing transport operations for all

needed transports as additional vertices in the

disjunctive graph and requiring that these opera-

tions have to be processed by the robot. Further-

more, the empty moving times are modeled as

sequence-dependent setup times. Thus, the dis-

junctive graph G ¼ ðV ;C [DM [DRÞ consist of a

set of vertices V containing all operations (ordin-

ary and transport) and two dummy nodes 0 and *,

a set of conjunctions C representing the job orders,

and disjunctions for the machines (DM) and the

robot (DR).

More precisely, for each job Jj ðj ¼ 1; . . . ; nÞ we
introduce nj � 1 so-called transport operations

Tij ði ¼ 1; . . . ; nj � 1Þ with precedences Oij ! Tij !
Oiþ1;j. The processing time of Tij is equal to the

transportation time of job Jj from machine lij to

liþ1;j, i.e. pðTijÞ ¼ tjkl, when lij ¼ Mk, liþ1;j ¼ Ml.

The robot may be considered as an additional

‘‘machine’’ which has to process all these trans-

port operations. As for the classical job-shop,

the conjunctions C model the order of the opera-
tions within job. In addition to the classical set

of undirected machine disjunctions DM (consisting

of all pairs of operations which have to be pro-

cessed on the same machine and are not linked

by a directed path of conjunctions) we have a set

of undirected robot disjunctions DR (consisting

of all pairs of transport operations which are

not linked by a directed path of conjunctions).
Such an edge Tij � Tuv 2 DR represents the two

possible orders in which the transport opera-

tions Tij and Tuv may be processed on the robot

and is weighted with the pair ðt0kl; t0ghÞ of empty

moving times, when Tij 2 Ghk, Tuv 2 Glg, where

Gkl ðk; l ¼ 1; . . . ;mÞ is the set of all transport

operations with the same transport routing, i.e. we

have

102 J. Hurink, S. Knust / European Journal of Operational Research 162 (2005) 99–111
Tij 2 Gkl if and only if lij ¼ Mk; liþ1;j ¼ Ml:

To solve the scheduling problem we have to

turn all undirected arcs in DM [DR into directed

ones. Concerning an edge in DR weighted with a

pair of transportation times, at this point the di-

rected arc gets the corresponding unique weight. If

we orient an edge Tij � Tuv with Tij 2 Ghk, Tuv 2 Glg

in the direction Tij ! Tuv, it gets the weight t0kl, and
if we orient it in the other direction, it gets the
weight t0gh. Disjunctions which have been directed

are called fixed. We call a set SM of fixed machine

disjunctions a machine selection, a set of fixed ro-

bot disjunctions SR a robot selection and their

union S ¼ SM [SR a selection. A selection S is

called complete if all disjunctions in DM [DR have

been fixed, and the resulting graph GðSÞ ¼ ðV ;
C [SM [SRÞ is acyclic.

Given a complete selection S we may construct

a corresponding feasible schedule by longest path

calculations and starting each operation as early as

possible. The completion time CmaxðSÞ of the

schedule corresponding to a selection S is given by

the length of a longest path from 0 to * in the

acyclic graph GðSÞ. Such a path is also called a

critical path.

Example. We consider an instance of the job-shop

problem with a single robot, m ¼ 4 machines,

n ¼ 3 jobs, 8 ‘‘ordinary’’ operations and 5 trans-

port operations. The corresponding disjunctive

graph can be found in Fig. 1. All transport oper-

ations which do not belong to the same job are

linked by a robot disjunction weighted with the
corresponding empty moving times. For example,
Fig. 1. Disjunctive graph for a job-shop with a single robot and

n ¼ 3 jobs.
the disjunction between the transport operations

T21 2 G23 and T23 2 G13 is weighted with the pair

ðt031; t032Þ, the disjunction between T11 2 G12 and

T13 2 G41 is weighted with ðt024; t011 ¼ 0Þ. In Fig. 2 a

complete selection is shown in which the machine

disjunctions are oriented into O11 ! O23 on M1,

into O21 ! O12 on M2, into O22 ! O31 ! O33 on

M3, and the robot sequence is given by T11 !
T13 ! T12 ! T21 ! T23. A corresponding schedule

can be found in Fig. 3. h

In the following, we derive some problem-spe-

cific properties which are useful to define appro-

priate neighborhoods for local search algorithms.

We represent feasible solutions by complete

selections S ¼ SM [SR in the disjunctive graph
where all machine and robot disjunctions are fixed

such that the resulting graph GðSÞ ¼ ðV ; SÞ is

acyclic. We consider the situation in which a

complete selection S with makespan CmaxðSÞ is

given and we want to improve this solution. In

order to define appropriate neighborhood struc-

tures we use a so-called block approach. Such an

approach was first proposed for the single-ma-
chine problem 1jrjjLmax [6]. Later it was success-
Fig. 2. A complete selection.

Fig. 3. A corresponding schedule.

J. Hurink, S. Knust / European Journal of Operational Research 162 (2005) 99–111 103
fully adapted to some other scheduling problems
(like the job-shop, flow-shop or general-shop

problem, cf. [3,4,16]). With the definition of blocks

it can be stated that only certain changes of a

selection S may have a chance to improve the

current makespan CmaxðSÞ and in the search pro-

cess only such solutions will be considered as

candidates for neighbored solutions.

Let PS be a critical path in GðSÞ. A sequence
u1; . . . ; uk of at least two successive nodes (i.e.

k > 1) on PS is called

• a machine-block if the operations of the se-

quence are processed consecutively on the same

machine, and enlarging the subsequence by one

operation leads to a subsequence which does

not fulfill this property,
• a robot-block if the sequence consists of trans-

port operations which are processed consecu-

tively on the robot without idle times (empty

moving times are no idle times), no conjunction

exists between consecutive operations and

enlarging the subsequence by one operation

would violate one of the previous properties.

In the example above PS
1 ¼ ðO13 ! T13!

t0
12 T12!

t0
32

T21 ! O31 ! O33Þ is a critical path with the ma-

chine-block ðO31;O33Þ on M3 and the robot-block

ðT13; T12; T21Þ. Another critical path is

PS
2 ¼ ðO11 ! T11 ! O21 ! O12 ! T12!

t0
32 T21

! O31 ! O33Þ

with the machine-blocks ðO21;O12Þ on M2,

ðO31;O33Þ on M3 and the robot-block ðT12; T21Þ.
The following theorem is the basis for defining

suitable neighborhoods on the set of selections. It

can easily be proved by combining the corre-

sponding proofs for the classical job-shop problem

(cf. [3]) and the situation on the robot (cf. [8]).

Note that for the condition on the robot the tri-

angle inequality (2) for the empty moving times is

necessary.

Theorem 1. Let S be a complete selection with
makespan CmaxðSÞ and let PS be a critical path
in GðSÞ. If another complete selection S0 with
CmaxðS0Þ < CmaxðSÞ exists, then in S0
• at least one operation of some machine-block B
on PS has to be processed before the first or after
the last operation of B, or

• at least two transport operations of a robot-block
on PS are processed in the opposite order.
4. An one-stage approach

In this section we present an one-stage tabu

search approach for the job-shop problem with a

single transport robot. The search space of the

tabu search algorithm is the set of all complete

selections and in each iteration a neighbored

solution is generated either by moving an opera-

tion on a machine or by moving a transport
operation on the robot to another position. In the

following we define suitable neighborhoods and

describe some further elements of the tabu search

approach. The presented neighborhoods form

extensions of neighborhoods used for the job-shop

problem, where the special role of the transport

operations has been integrated.

Theorem 1 gives necessary conditions for
improving a given solution. Both conditions stated

in Theorem 1 indicate that orders of opera-

tions from blocks on a critical path have to be

changed. Thus, a first neighborhood N1 may be

defined as for the job-shop problem by inter-

changing neighbored operations on a critical

path (cf. [13]). This neighborhood considers also

the interchange of neighbored operations in the
inner part of machine-blocks although due to

Theorem 1 such moves cannot result in improving

solutions. However, these extra moves are needed

to prove that N1 has the nice (theoretical) prop-

erty that it is weakly connected, i.e. from an arbi-

trary selection it is possible to reach a globally

optimal selection via a sequence of steps in N1.

For this proof, we first derive a property of
neighbored operations within blocks on a critical

path.

Lemma 1. Let i and j be two neighbored operations
(ordinary or transport) within a block of a critical
path belonging to a complete selection S. Then, in
GðSÞ, besides the arc ði; jÞ no further path exists
from i to j.

104 J. Hurink, S. Knust / European Journal of Operational Research 162 (2005) 99–111
Proof. Assume that in GðSÞ a path P ¼ ði; u1;
. . . ; uk; jÞ; kP 1 with length ‘ exists.

Case 1. i and j belong to a machine-block.

Since all vertices are weighted with processing

times greater than zero, we get

‘P pi þ pu1 > pi;

which contradicts the fact that ði; jÞ is an arc of a

critical path in GðSÞ.
Case 2. i and j belong to a robot-block.
In this case i and j are two transport operations

which are processed consecutively by the robot.

Thus, since S is a feasible selection, the path P
contains no further transport operations. As a

consequence, all vertices u1; . . . ; uk have to belong

to operations which are processed on the same

machine (say M1) and, thus, transport operation i
has to be a transport to machine M1 and transport
operation j has to be a transport away from ma-

chine M1. This implies that the length ‘0 of the path
consisting only of the arc ði; jÞ is equal to

‘0 ¼ pi þ t0ll ¼ pi due to t0ll ¼ 0. Thus

‘P pi þ pu1 > ‘0;

which contradicts the fact that ði; jÞ is an arc of a

critical path in GðSÞ. h

Using this lemma we can prove

Theorem 2. Neighborhood N1 is weakly connected.

Proof. Let S be an arbitrary non-optimal complete

selection and S� an optimal selection. Due to

Theorem 1 we know that in S for at least two
operations of a block (machine-block or robot-

block) on a critical path in GðSÞ the corresponding
disjunction is fixed in the opposite direction com-

pared with S�. Consequently, also two neighbored

operations of a block with this property exist.

Since by Lemma 1 their exchange leads to a fea-

sible selection, by one step in N1 we can achieve a

solution which has one more disjunction fixed in
the same way as in S�. Iteratively applying this step

leads to a globally optimal solution by a sequence

of steps in neighborhood N1. h

Theorem 2 gives a nice theoretical result for

neighborhood N1, but first computational tests
have shown that on the one hand, this neighbor-
hood does not give us enough possibilities to

change a solution and to reach different regions of

the search space fast enough. On the other hand,

as already mentioned, N1 contains superfluous

interchanges of neighbored operations in the inner

part of machine-blocks which cannot lead to an

improvement of the current solution due to The-

orem 1.
Since for the classical job-shop problem shifts

have been successful to achieve diversification

in the search process, we also will develop a

neighborhood based on shift operators. For a

given selection S ¼ SM [SR and a critical path

PS neighborhood N2 contains all feasible selec-

tions S0 ¼ S0
M [S0

R which can be constructed as

follows:

• in S0
M one operation (different from the first one)

of a machine-block B on PS is moved before all

other operations in B, or one operation (differ-

ent from the last one) of a machine-block B on

PS is moved after all other operations in B, or
• in S0

R an operation on a position k6 djBj
2
e of a ro-

bot-block B on PS is moved before the operation
on position j 2 f1; . . . ;k� 1; jBj � kþ 2; . . . ; jBjþ
1g of B, or in S0

R an operation on a position

k > djBj
2
e of a robot-block B on PS is moved be-

fore the operation on position j 2 f1; . . . ; jBj �
k þ 1; k þ 2; . . . ; jBj þ 1g of B.

(Here jBj denotes the number of operations in B
and moving an operation before position jBj þ 1 of
B means moving it after B.) For example, for the

block B ¼ ð1; 2; 3; 4; 5Þ we allow the moves

ð2; 3; 4; 5; �1Þ, ð�2; 1; 3; 4; 5Þ, ð1; 3; 4; �2; 5Þ, ð1; 3; 4; 5;
�2Þ, ð�3; 1; 2; 4; 5Þ, ð1; �3; 2; 4; 5Þ, ð1; 2; 4; �3; 5Þ, ð1; 2; 4;
5; �3Þ, ð�4; 1; 2; 3; 5Þ, ð1; �4; 2; 3; 5Þ, ð1; 2; 3; 5; �4Þ, and

ð�5; 1; 2; 3; 4Þ.
The difference in defining the shifts for the

normal machines and the robot results from the
different conditions in Theorem 1. In Brucker and

Thiele [4] similar moves are used within the

branching step of a branch and bound approach

(they use the concept of so-called extra-blocks)

and there results imply that neighborhood N2

covers the conditions of Theorem 1 in an appro-

priate way.

J. Hurink, S. Knust / European Journal of Operational Research 162 (2005) 99–111 105
Preliminary computational tests have shown
that the navigation behavior of the new neigh-

borhood is better than that of N1. Furthermore,

enlarging neighborhood N2 by some additio-

nal operators which make the neighborhood

weakly connected did not improve the quality of

the results but only increased the computational

times.

To use neighborhood N2 in a tabu search ap-
proach, we still have to define which information is

stored in a tabu list. The goal of using a tabu list is

to avoid coming back to a solution which has al-

ready been visited in previous iterations. If in some

iteration we leave a complete selection S by mov-

ing an ordinary (transport) operation u to some

other position, we store u together with its ma-

chine (robot) predecessor and successor and the
makespan CmaxðSÞ of the solution S. A solution S0

is defined to be tabu if CmaxðS0Þ equals the make-

span of an element in the tabu list and if the triple

of operations stored in this element of the tabu list

is scheduled in S0 in the same way as indicated in

the entry of the tabu list. We use a static tabu list,

i.e. the length of the tabu list is hold constant

during the whole search process. Since the objec-
tive values are already taken into account in the

attributes of the solutions, no additional aspira-

tion criteria are used.

First computational tests with neighborhood

N2 indicated that it is very time-consuming to

determine the best non-tabu neighbor in each

iteration. This is caused by the fact that the size of

the neighborhood of a solution is rather large and
that the evaluation of each neighbor needs a

recalculation of the makespan (longest path cal-

culation). Thus, in order to reduce this large

computational effort for one iteration of the tabu

search procedure, we use lower bound calcula-

tions. More precisely, for each neighbor of the

current solution we first determine an easily cal-

culable lower bound for the makespan and only if
this lower bound is below the value of the best

neighbor found so far, we evaluate the makespan

of the neighbor exactly. Incorporating these

bounds leads to a significant reduction of the

computational times. The whole tabu search pro-

cess is stopped after a certain number of non-

improving iterations.
To start the tabu search procedure, a first
solution is constructed using a priority rule based

heuristic given in Brucker and Thiele [4] where the

robot is considered as an additional machine and

the empty moving times are regarded as setup

times. Additional details of the tabu search imple-

mentation are given in connection with the pre-

sentation of computational results in Section 6.
5. A two-stage approach

In this section we present another local search

algorithm which is based on Theorem 1, but which

tries to deal with the different situations on the

machines and the robot more individually. This

algorithm is organized in two stages. While in in
the outer stage an operation on a machine is

moved to another position, in the inner stage the

robot is optimized according to the new machine

selection. In order to obtain a good robot solution

we use a tabu search procedure of Hurink and

Knust [8] as a subroutine.

In the one-stage approach of the previous sec-

tion in each iteration a neighbored solution S0 is
constructed by either changing the machine selec-

tion SM or the robot selection SR (but not both).

Since the robot corresponds to a bottleneck ma-

chine, the old robot selection SR may be a bad

solution for the new machine selection S0
M or SR is

even infeasible w.r.t. S0
M (i.e. GðS0Þ contains a

cycle). To overcome this disadvantage, in an

alternative approach we proceed in two stages, i.e.
we define a neighborhood where after changing the

machine selection the robot selection is adapted

before the makespan of the new solution is deter-

mined. This means that in the second stage the

situation for the robot has to be considered where

all machine orders are fixed. We are interested in a

robot order respecting all precedences induced by

the fixed machine orders and having a minimal
makespan among all robot orders which are com-

patible with the given machine selection. As stated

in [8], the resulting robot problem may be denoted

as follows in the well-known ajbjc-notation:
1jprec ðlijÞ; rj; sijjmaxfCj þ qjg, where precðlijÞ
indicates arbitrary non-negative finish-start time-

lags lij P 0, sij stands for sequence-dependent setup

106 J. Hurink, S. Knust / European Journal of Operational Research 162 (2005) 99–111
times, rj for release dates (heads), and Cj þ qj de-
notes for each job the sum of its completion time

and its tail.

If we take the example from Section 3 with the

machine selection from Fig. 2, we get a situation

for the robot as presented in Fig. 4. Besides the

chain precedences of the jobs we get a conjunction

T11 ! T12 weighted with the time-lag p21 þ p12 in-

duced by the machine orientation O21 ! O12. Be-
tween all transport operations which are not

linked by a conjunction, a disjunction weighted

with the corresponding pair of empty moving

times exists (in Fig. 4 for clarity only the disjunc-

tion T11 � T13 is shown).

In Hurink and Knust [8] an effective tabu search

procedure for the robot problem is presented.

According to Theorem 1 the neighborhood of a
robot selection consists of selections in which the

order of critical operations in a robot-block is

changed. More specifically, the neighborhood is

defined by three types of operators: either two

adjacent transport operations of a block are

interchanged, the first block operation is shifted to

the right or an internal block operation is shifted

to the end of the block. Although a neighbored
selection differs only slightly from the current

selection, the starting times for all transport

operations which appear after the shifted opera-

tion have to be recalculated to determine the

makespan of a neighbored solution. Due to the

time-lags such a calculation is very time-consum-

ing and it is not efficient to evaluate all neighbors

exactly. Thus, not the correct objective values are
Fig. 4. The robot problem for a fixed machine selection.
calculated for all neighbors, but approximate val-
ues are used (for details see [8]).

Based on such a hierarchical decomposition of

the considered problem a neighborhood may also

be defined in a hierarchical way where first the

machine selection is changed and then the robot

selection is adapted. For a given selection S ¼
SM [SR neighborhood N3 contains all feasible

selections S0 ¼ S0
M [S0

R which can be constructed
as follows:

• in S0
M one operation (different from the first one)

of a machine-block B on PS is moved before all

other operations in B, or one operation (differ-

ent from the last one) of a machine-block B on

PS is moved after all other operations in B, and
• S0

R is obtained from SR by calculating a heuristic
solution for the robot problem associated with

the new machine selection S0
M.

For instances with large transportation times it

may happen that no machine-blocks exist for a

considered solution S and, thus, neighborhood

N3ðSÞ is empty. To improve such a solution S,
according to Theorem 1 some robot-block has to
be destroyed. Since in the outer stage of our hier-

archical approach we only want to change the

machine selection, but not the robot selection, we

allow some additional moves on the level of the

machine orders. For this purpose we do not only

move critical operations belonging to machine-

blocks, but also single operations on the chosen

critical path. According to Theorem 1 inter-
changing a single critical operation (not belonging

to a machine-block) with its machine predecessor

or successor cannot reduce the objective value, but

in combination with the change of the robot

selection an improving solution may be obtained

(since time-lags in the robot problem are canceled

by moving critical operations on the machines).

Thus, we enlarge N3ðSÞ by all feasible selec-
tions S0 ¼ S0

M [S0
R, where in S0

M a single critical

operation on PS is interchanged with its machine

predecessor or successor, and S0
R is again a solu-

tion associated with the new machine selection S0
M.

The resulting neighborhood N4 is used in a tabu

search algorithm, which will be described in more

detail next. As in the tabu search procedure from

J. Hurink, S. Knust / European Journal of Operational Research 162 (2005) 99–111 107
Section 4, we store attributes which characterize
visited solutions during the search process in a

static tabu list. If in a complete selection

S0 ¼ S0
M [S0

R the machine selection S0
M results from

SM by moving an operation u, we store the objec-

tive value CmaxðSÞ besides the triple consisting of u,
its old machine predecessor and successor in SM. A
solution S is defined to be tabu if CmaxðSÞ equals

the objective value of an element in the tabu list
and the associated triple of this element in the tabu

list is reconstructed in S. Note that contrary to the

one-stage approach only machine operations are

stored in the tabu list, the robot sequence is

implicitly taken into account by the Cmax-value.

Again, the whole search process is stopped after a

certain number of non-improving iterations.

During the search process we use two versions
of the tabu search algorithm for the robot prob-

lem. First we evaluate all neighbored solutions in

N4ðSÞ by applying the tabu search algorithm

using only a small number of iterations. the best

neighbored solution which is not tabu and try to

improve the corresponding robot selection using a

larger number of iterations.

In order to obtain starting solutions for the
two-stage tabu search procedure, we use two

modified versions of the priority-based heuristic

from Brucker and Thiele [4]. Besides the one-stage

version described in the previous section, we use a

two-stage version in which we first only calculate a

machine selection SM and determine a corre-

sponding robot selection SR by the robot tabu

search algorithm afterwards.
Finally, we describe some combinations of the

one-stage and the two-stage approach. We com-

bine these two approaches in order to intensify and

diversify the search process. In a first version we

alternately apply the two algorithms allowing for

each algorithm a constant number of non-

improving iterations. At first the algorithm starts

with the two-stage approach and stops after q non-
improving iterations. After that we allow f � q
non-improving iterations of the one-stage ap-

proach, where the factor f is a given constant. The

algorithm continues changing between the two

approaches until no further improvement of the

best known solution occurs in both methods. In a

second version we change the order of the two
methods beginning with the one-stage approach.
We use the same strategy of organizing the number

of iterations.

In a third version we do not have a constant

factor f but keep it as a variable during the search

process. After each run of f � q non-improving

iterations of the one-stage and q non-improving

iterations of the two-stage approach, we calculate

a new value for f by

f :¼ C � iter2
iter1

;

where iter2 (iter1) is the absolute number of itera-

tions of the two-stage (one-stage) approach from

the last run and C is a given constant. The idea of

such a modified value is that the algorithm tries to

regulate the ratio between the number of iterations

of the two procedures by itself. For example, if

iter2 is big (i.e. there were many improving solu-

tions in the last run of the two-stage approach),
and iter1 is small (i.e. there were not many

improving solutions in the last run of the one-stage

approach), it could be good to intensify the one-

stage part in the search. To run this approach we

only have to specify the initial value f 0 of f and

the value of C which may be obtained after testing

the algorithm with different values.
6. Computational results

In this section we present some computational

results for the described tabu search algorithms.

We implemented all procedures in C and tested

them on a Sun Ultra 2 work station (167 MHz)

with operating system Solaris 2.5 and 320 MB
general storage.

Since no test instances for the job-shop problem

with transportation times were available from the

literature, we modified m� n benchmark problems

for the classical job-shop problem, where m de-

notes the number of machines and n the number of

jobs. We used the well-known 6 · 6 and 10 · 10
instances P1 and P2 from Muth and Thompson
[15]. In both instances the number of operations

per job is equal to the number of machines (i.e.

nj ¼ m for j ¼ 1; . . . ; n) and each job is processed

on each machine exactly once. The processing

108 J. Hurink, S. Knust / European Journal of Operational Research 162 (2005) 99–111
times of the operations in the instance P1 are from
the interval ½1; 10� and in P2 from the interval

½1; 100�. Various test instances were obtained by

adding transportation and empty moving times

with different characteristics.

For the transportation times tjkl we distin-

guished the following four cases: job- and ma-

chine-dependent times tjkl randomly generated

from the interval ½1; 10� (adjusted in such a way
that the triangle inequality holds), job-indepen-

dent transportation times tkl analogously to the

first case, job-independent transportation times

tkl ¼ Djk � lj with different values D (proportional

to the distance between the corresponding ma-

chines when they are assumed to be ordered in a

single line), and constant transportation times

tjkl ¼ T . Analogously, we distinguished the fol-
lowing three cases for the empty moving times:

randomly generated values t0kl, values t
0
kl ¼ djk � lj

depending on the machine distances and constant

times t0kl ¼ t.
In this way we obtained several instances with

6 · 5¼ 30 or 10 · 9¼ 90 transport operations

(arising from the 6 · 6 and 10 · 10 job-shop in-

stances P1 and P2, respectively). Since the pro-
cessing times in instance P2 are very large (from

the interval ½1; 100�), the time horizon for the

modified instances is often also very large (Cmax 2
½1000; 3000�). Therefore, we also generated some

instances in which the processing times are scaled

by a factor 0 < f < 1, i.e. we replaced the pro-

cessing times pij by df � pije.
After some first computational tests with a large

test set we tried identifying interesting instances

which are not easy to solve (i.e. for which priority

rules do not produce solution values with small

deviations from lower bound values). In the fol-

lowing we will only report results for these 30 in-

stances (10 6 · 6 instances with 30 transport

operations and 20 10 · 10 instances with 90 trans-

port operations).
In order to estimate the quality of the presented

procedures we compared the results of the one-

stage procedure with the two-stage procedure and

their combination. Furthermore, we calculated

lower bounds LB1 for the instances using the

techniques of constraint propagation and linear

programming (cf. [12]). Unfortunately, for the
10 · 10 instances the linear programming bounds
could not be calculated, i.e. for these instances we

could compare our results only with relatively

weak lower bounds LB0 (obtained with simple

constraint propagation techniques).

Preliminary computational tests showed that

the quality of the different procedures (varying the

starting solutions, the tabu list lengths and the

stopping criteria) differs from instance to instance.
Thus, for the final computational tests we decided

to run the procedures several times with different

parameters. The one-stage and two-stage proce-

dures were executed 6 times, the combination 12

times (additionally varying 2 different values for

the number q of non-improving iterations). Addi-

tionally, for each run a time-limit of 10 minutes

was imposed. Concerning the combination of the
one- and the two-stage procedure the third version

with a variable factor f outperformed the two

other versions with constant factors. After some

preliminary tests we took C ¼ 1000 and an initial

value of f 0 ¼ 30.

For each instance and each of the three ap-

proaches we determined the best value UBbest and

the average value UBav obtained in a test series
with the specified number of runs (6 and 12,

respectively). For these heuristic solution values

UB we determined the relative deviation DðLBÞ ¼
UB�LB

LB
from a lower bound value LB. In Tables 1

and 2 we report the average and maximal relative

deviations DðLBÞav and DðLBÞmax (in %) as well as

the average and maximal computational times (in

minutes:seconds) for the P1- and P2-instances,
respectively.

Table 1 shows that for the small instances the

one-stage approach outperforms the others. Good

solutions can be obtained within small computa-

tional times. On the other hand, Table 2 gives the

impression that all three approaches do not differ a

lot concerning their quality and do not give very

good results. However, we have to take into ac-
count that the deviations given in Table 2 are

based on the weak lower bound LB0. For the P1-
instances the better bound LB1 has an average

deviation of LB1�LB0

LB0
¼ 7:8% from LB0. Thus, we

may expect that for the larger P2-instances the

average optimal value deviates a lot from LB0 and,

therefore, we may argue that the achieved quality

Table 1

Results for the 10 P1-instances

UBbest UBav time

One-stage DðLB1Þav 2.2 3.9 1:17

DðLB1Þmax 6.1 7.5 2:57

Two-stage DðLB1Þav 4.3 5.6 0:56

DðLB1Þmax 7.8 9.6 2:55

Combination DðLB1Þav 3.9 5.0 1:46

DðLB1Þmax 7.8 8.7 5:30

Table 2

Results for the 20 P2-instances

UBbest UBav time

One-stage DðLB0Þav 18.1 21.3 2:41

DðLB0Þmax 27.4 30.1 10:00

Two-stage DðLB0Þav 20.8 23.8 5:55

DðLB0Þmax 36.8 42.5 10:00

Combination DðLB0Þav 19.8 23.0 5:43

DðLB0Þmax 37.2 39.8 10:00

J. Hurink, S. Knust / European Journal of Operational Research 162 (2005) 99–111 109
is good and that again the one-stage approach
outperforms the two other approaches.

The results given in Tables 1 and 2 are obtained

using a time-limit of 10 minutes. Additional tests

have shown that for the one-stage approach the

results do not improve a lot if larger computa-

tional times are allowed. On the other hand, since

in the two-stage method the effort of evaluating

neighbored solutions is very high, in the same
amount of time much less solutions can be visited

than in the one-stage procedure. If we allow

computational times up to one hour, the quality of

the combined approach improves a lot. The devi-

ations of the best results (UBbest) reduce to

DðLB0Þav ¼ 16:1% and DðLB0Þmax ¼ 34:0% and,

thus, for longer computational times the combined

approach outperforms the one-stage approach.
Furthermore, a closer look at the individual

results for the different instances shows that the

approaches behave quite differently for different

instances. Table 3 contains the following infor-

mation:

•
P

tjkl: the sum of all transportation times of the

transport operations;
• UB0: the best objective value obtained by a ver-

sion of the priority-based heuristic;
• UBone: the best objective value obtained within

10 min with the one-stage approach;

• UBtwo: the best objective value obtained within

10 min with the two-stage approach;

• UBcomb
short : the best objective value obtained within

10 min with the combined approach;

• UBcomb
long : the best objective value obtained within

one hour with the combined approach;
• LB1: the lower bound obtained with constraint

propagation and linear programming;

• LB0: the weak lower bound obtained only with

constraint propagation.

A �*� indicates a best solution found within 10

minutes and a �+� indicates that the long run with

the combined approach gave a better solution than
the best solution found within 10 minutes with one

of the three approaches.

Since the differences between the results of

the different approaches are often quite large and

since no tendency for a real best method can be

given, in practice one should decide to use not

only one of the presented approaches, but one

should choose two different approaches to calcu-
late solutions. Based on our test results, a combi-

nation of the one-stage approach with a short

computational time and the combined method

Table 3

Individual results for all 30 instances

Instance
P

tjkl UB0 UBone UBtwo UBcomb
short UBcomb

long LB1 LB0

P1 tjkl t0kl:1 124 137 134� 137 137 – 133 126

P1 tjkl t0kl:2 118 135 129� 132 134 – 128 121

P1 tjkl t0kl:3 132 146 144� 146 144� – 142 134

P1 D1 d1 66 90 87� 88 88 – 82 70

P1 D1 t1 66 83 81� 83 83 – 77 70

P1 D2 d1 132 156 148� 155 153 – 147 134

P1 D3 d1 198 220 217 219 216� – 213 200

P1 tkl t0kl:1 121 139 137� 138 141 – 136 123

P1 T2 t1 60 77 74� 76 74� – 71 63

P1 T3 t0 90 94 92� 94 93 – 92 92

P2 D1 d1 223 1088 1044 1035 1013� 990þ – 880

P2 D1 t0 223 1088 1042 1055 989� 989 – 880

P2 D1 t1 223 1088 1016 1021 995� 989þ – 880

P2 D2 d1 446 1123 1070 1064 1004� 993þ – 892

P2 D3 d1 669 1163 1070� 1084 1078 1072 – 906

P2 D5 t2 1115 1444 1325� 1390 1383 1371 – 1167

P2 T1 t1 90 1092 1006� 1053 1022 1018 – 874

P2 T2 t1 180 1094 1015� 1058 1053 1030 – 880

P2 T5 t2 450 1102 1102 1102 1090� 1020þ – 898

P2 tjkl t0kl:1 338 1101 1082 1066� 1089 1027þ – 890

P2 tjkl t0kl:2 333 1097 1035� 1063 1087 1033þ – 891

P2 tjkl t0kl:3 298 1093 1039� 1065 1081 989þ – 888

P2 tjkl t0kl:4 368 1096 1045� 1070 1084 997þ – 893

P2 tkl t0kl:1 337 1098 1086 1090 1061� 1018þ – 888

P2 tkl t0kl:2 385 1102 1028� 1073 1058 1014þ – 896

P2f 0:5 D1 d1 223 600 555� 578 562 558 – 482

P2f 0:5 D1 t1 223 595 544� 559 551 542 – 482

P2f 0:5 D2 d1 446 689 633� 680 674 666 – 497

P2f 0:5 D2 t0 446 611 578� 603 595 595 – 497

P2f 0:5 D2 t1 446 635 613� 627 621 620 – 497

110 J. Hurink, S. Knust / European Journal of Operational Research 162 (2005) 99–111
with a longer computational time seems to be the
best.

Summarizing, we can state that the presented

approaches are able to produce solutions of a high

quality for the tested instances. The deviations of

the best solution values obtained in any version of

the tests are DðLB1Þav ¼ 2:1%, DðLB1Þmax ¼ 6:1%
for the P1-instances and DðLB0Þav ¼ 14:7%,

DðLB0Þmax ¼ 27:4% for the P2-instances.
7. Concluding remarks

We developed different tabu search approaches

for a generalization of the job-shop problem where

additionally transportation aspects are taken into

account. The approaches differ in the way the
transportation is treated. For the one-stage ap-
proach the complete problem is transformed into a

job-shop problem with sequence-dependent setup

times, where the transportation leads to an addi-

tional machine. The tabu search method treats all

machines (inclusive the ‘‘transportation’’ machine)

in the same way. The two-stage approach distin-

guishes between transportation on the robot and

processing on the machines. In the outer stage
sequences on the machines are fixed and based on

this schedule in the second stage a transport

schedule is calculated. In both stages tabu search is

used to determine the solutions.

The computational results show that both ap-

proaches are able to produce good solutions

within reasonable time. However, if only short

computational times are available, the one-stage

J. Hurink, S. Knust / European Journal of Operational Research 162 (2005) 99–111 111
approach outperforms the two-stage approach.
For longer computational times a combination of

both methods is most successful. Furthermore, the

tests have shown that the success of the methods

may differ from instance to instance and, thus, in

practice all methods may be worthwhile to be

used.

For further research it would be interesting to

develop some acceleration techniques for the two-
stage approach and some methods which are able

to produce stronger lower bounds for large in-

stances.
References

[1] €U. Bilge, G. Ulusoy, A time window approach to simul-

taneous scheduling of machines and material handling

system in an FMS, Operations Research 43 (1995) 1058–

1070.

[2] J. Bla_zewicz, W. Domschke, E. Pesch, The job shop

scheduling problem: Conventional and new solution tech-

niques, European Journal of Operational Research 93

(1996) 1–33.

[3] P. Brucker, B. Jurisch, B. Sievers, A branch and bound

algorithm for the job-shop problem, Discrete Applied

Mathematics 49 (1994) 107–127.

[4] P. Brucker, O. Thiele, A branch and bound method for the

general-shop problem with sequence dependent setup-

times, OR Spektrum 18 (1996) 145–161.

[5] Y. Crama, V. Kats, J. van de Klundert, E. Levner, Cyclic

scheduling in robotic flowshops, Annals of Operations

Research 96 (2000) 97–124.
[6] J. Grabowski, E. Nowicki, S. Zdrzalka, A block approach

for single machine scheduling with release dates and due

dates, European Journal of Operational Research 26

(1986) 278–285.

[7] J. Hurink, S. Knust, Makespan minimization for flow-shop

problems with transportation times and a single robot,

Discrete Applied Mathematics 112 (2001) 199–216.

[8] J. Hurink, S. Knust, A tabu search algorithm for sched-

uling a single robot in a job-shop environment, Discrete

Applied Mathematics 119 (2002) 181–203.

[9] A.S. Jain, S. Meeran, Deterministic job-shop scheduling:

past, present and future, European Journal of Operational

Research 113 (1999) 390–434.

[10] R.E. King, T. Hodgson, F.W. Chafee, Robot task sched-

uling in a flexible manufacturing cell, IIE Transactions 25

(1993) 80–87.

[11] H. Kise, On an automated two-machine flowshop sched-

uling problem with infinite buffer, Journal of the Opera-

tional Research Society of Japan 34 (1991) 354–361.

[12] S. Knust, Shop-scheduling problems with transportation,

Ph.D. Thesis, Fachbereich Mathematik/Informatik Uni-

versit€at Osnabr€uck, 1999.

[13] P.J.M. van Laarhoven, E.H.L. Aarts, J.K. Lenstra, Job-

shop scheduling by simulated annealing, Operations

Research 40 (1992) 113–125.

[14] M.A. Langston, Interstage transportation planning in the

deterministic flow-shop environment, Operations Research

35 (1987) 556–564.

[15] J.F. Muth, G.L. Thompson, Industrial Scheduling, Pren-

tice Hall, Englewood Cliffs, NJ, 1963.

[16] E. Nowicki, C. Smutnicki, A fast tabu search algorithm

for the job shop problem, Management Science 42 (1996)

797–813.

[17] B. Roy, B. Sussmann, Les problemes d�ordonnancement

avec constraintes disjonctives, Note DS no. 9 bis, SEMA,

Paris, 1964.

	Tabu search algorithms for job-shop problems with a single transport robot
	Introduction
	Problem formulation
	The disjunctive graph model
	An one-stage approach
	A two-stage approach
	Computational results
	Concluding remarks
	References

