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ABSTRACT

In mechanism design problems under incomplete information, it is generally
di¢cult to …nd decision problems that are …rst best implementable. A de-
cision problem under incomplete information is …rst best implementable if
there exists a mechanism that extracts the private information and achieves
e¢ciency with a transfer scheme that adds up to zero in every state. One
such problem is the queueing problem with one machine. In this paper we
identify the conditions on cost structure for which queueing problems with
multiple machines are …rst best implementable.
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1 Introduction

In a queueing problem with multiple machines, there is a server (for example,
a computer server), with more than one identical machines (computers)
which has to process a …nite number of jobs for a set of individuals. The
machines are identical in the sense that a given job takes the same length of
time for completion. We assume that it takes one unit of time to complete
one job. Each individual has one job to be processed. The server can
serve one individual in one machine, that is, it takes one unit of time to
process one job in a machine. If the number of jobs, to be processed, is
more than the number of machines then individuals will have to wait in
a queue. Waiting in a queue is costly for each individual. The server’s
objective is to order the individuals in a queue e¢ciently so as to minimise
the aggregate waiting cost. If the cost of waiting in the queue is private
information then an individual, if asked, will announce his cost strategically
so as to get his job done as early as possible. Therefore, in the queueing
scenario described above, the server’s role is that of a planner who has to
solve an incentive problem under incomplete information. More precisely, we
have a mechanism design problem of a social planner (server in the queueing
problem) whose objective is to extract the privately held information (true
waiting cost) of each individual and select the e¢cient decision (to order the
individuals in a queue so as to minimise the aggregate waiting cost) in each
state.

One of the most signi…cant achievements in the planner’s mechanism
design problems under incomplete information has been the existence of
a class of mechanisms called Groves-Clarke mechanisms (see Clarke (1971)
and Groves (1973)). These mechanisms achieve the twin objectives of truth-
ful revelation of private information and e¢ciency of decisions provided the
agents have quasi-linear preferences. Moreover, for a very broad class of
preference structures, in a quasi-linear set up, Groves-Clarke mechanisms
are the only class of mechanisms that achieve these objectives (see Holm-
ström (1979)). However, the drawback of such mechanisms is that they are,
in general, not Pareto-optimal. This means that there are preference real-

1



izations where the sum of Groves-Clarke transfers are non-zero. In the pure
public goods problem, Hurwicz (1975), Green and La¤ont (1979) and Walker
(1980) proved the budget imbalance of a Groves-Clarke scheme. Hurwicz
and Walker (1990) proved the impossibility result in the context of pure
exchange economies (economies in which there are no production, no public
goods and other externalities). The damaging nature of budget imbalance,
in the public goods context, was pointed out by Groves and Ledyard (1977).
They proposed, using a very simple model, that an alternative procedure
based on majority rule voting may lead to an allocation of resources which is
Pareto superior to the one produced by Groves mechanism. However, there
are certain decision problems where …rst best or Pareto optimality can be
achieved. In the public goods problem, Groves and Loeb (1975) have proved
that if preferences are quadratic then we can …nd balanced Groves transfer.
This result was generalized by Tian (1996) and Liu and Tian (1999). In a
single server (one machine) queueing problem with linear cost, Mitra and
Sen (1998) showed the existence of …rst best mechanisms. A problem similar
to the queueing problem with linear costs in Mitra and Sen (1998) is the
sequencing problem in Suijs (1996). Unlike the queueing problem, where it
takes one unit of time to service one individual, in a sequencing problem the
servicing time can di¤er from one individual to another. Therefore, while
the linear cost queueing problem is a discrete time problem, the sequencing
problem in Suijs (1996) is a continuous time problem. By assuming servic-
ing time to be common knowledge, Suijs proved the existence of …rst best
mechanisms for the sequencing problem. The existence result in Mitra and
Sen (1998) was further generalised by Mitra (2001) for a broader class of
cost structures. It was proved that the class of cost structures under which a
‘one machine queueing problem’ is …rst best implementable is ‘fairly’ large.
In this paper, we deal with the question of …rst best implementability of
queueing problems with multiple machine. Therefore, this paper is a gen-
eralization of the one machine queueing framework of Mitra (2001) to a
multiple machine framework. A multiple machine queueing problem is …rst
best implementable if there exists a mechanism that can extract the private
information with a vector of transfers that add up to zero. This allows the
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server to order the jobs in a way that minimises the aggregate cost. The
most important implication of …rst best implementability is that the server
can extract the private information costlessly. If a queueing problem is …rst
best implementable then there is no welfare loss as the transfers used to
extract the private information adds up to zero in all states.

A multiple machine queueing problem resembles some of the sequencing
problems that are analysed in the operations research literature. Papers re-
lating to sequencing n jobs in m machines by Dudek and Teuton Jr. (1964),
‡ow shop sequencing problems with ordered processing time by Dudek, Pan-
walkar and Smith (1975) and ‡ow shop problems with dominant machines
by Krabbenborg, Potters and van den Nouweland (1992) deal with …nding
algorithms to order (or queue) the n jobs in m machines in a way that min-
imises the total elapsed time. However, in all these models, unlike multiple
machine queueing problems, machines are not identical. The processing time
for the same job can be di¤erent in di¤erent machines. Moreover, unlike a
multiple machine queueing problem where cost parameter is private infor-
mation, the cost structures in all the above mentioned sequencing problems
are common knowledge.

In the incomplete information set up, sequencing problems were anal-
ysed by Hamers, Klijn and Suijs (1999). They analysed a multiple identical
machine sequencing (or scheduling) problem with linear time cost. There-
fore, their problem is a continuous time version of the multiple machine
queueing problem with linear cost. Hamers et al. (1999) look at the n jobs
and m identical machines sequencing situation both in a co-operative and
non-cooperative environments. In a co-operative set up, a sequencing prob-
lem is called a sequencing game. Curiel, Pederzoli and Tijs (1989) analyzed
the sequencing game in a one machine framework. Hamers et al.(1999), by
extending the sequencing game of Curiel et al.(1989) to a multiple identical
machine framework, addressed the issues of balancedness and non-emptiness
of core in m-sequencing games. In a non-cooperative set up, they address
the issue of …rst best implementability by assuming job processing time
to be equal to one. Thus, in the non-cooperative set up, the sequencing
situation analysed by Hamers et al.(1999) is identical to the multiple ma-
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chine queueing problem described in this paper with the restriction that the
cost is linear over time. The main objective of this paper is to achieve …rst
best implementability in multiple machine queueing problems. More pre-
cisely, this paper identi…es the conditions on the cost structure that lead to
…rst best implementability. Therefore, in this paper, we also generalise the
non-cooperative sequencing situation, analysed by Hamers et al.(1999), by
allowing for a very general time cost. The results that we get suggest that
…rst best implementability depends critically on the number of machines and
the number of jobs to be processed on those machines. If the number of ma-
chines (that is m) is even or if the number of jobs to be processed is strictly
greater than the number of machines but less than or equal to twice the
number of machines, then a multiple machine queueing problem is not …rst
best implementable. For all other multiple machine queueing problems there
exists a cost structure under which it is …rst best implementable. Finding an
algorithm to obtain the cost minimising queue is not a very important issue
since the conditions on the cost structure under which a multiple machine
queueing problem is …rst best implementable are such that the algorithm
for …nding the cost minimising queue is transparent. Therefore, obtaining a
state contingent transfer scheme that extracts the private information while
adding up to zero is of prime importance.

The paper is organised in the following way: in section two we develop
the general problem, in section three we derive some characterization results,
in section four we deal with an application of the general results and …nally
in the concluding remarks of section …ve we summarize the results obtained
in this paper.

2 The General Problem

Let N = f1; 2; : : : ; ng be the set of individuals and m(> 1) be the set of
identical machines. De…ne [x]+ to be the lowest integral value not less than
x. For example, [2:005]+ = 3 and [3]+ = 3. Given n and m, the total number
of queue positions are M = [n=m]+. Here the number of individuals (and
hence the number of jobs) n is strictly greater than the number of machines
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m in order to have a meaningful queueing problem. µj(k) measures the cost
of waiting k periods in the queue for individual j where k 2 f1; : : : ; Mg. The
type or cost vector of individual j 2 N is the vector µj = (µj(1); : : : ; µj(M)).
Let R+ represent the non-negative orthant of R. Clearly, µj(k) 2 R+ for all
j 2 N and for all k 2 f1; : : : ;Mg. Any cost vector of an individual j 2 N
belongs to £ satisfying the following assumptions:

Assumption I: For all j 2 N and for all µj = (µj(1); : : : ; µj(M)) 2 £,
0 · µj(1) · µj(2) · : : : · µj(M).

Assumption I simply says that the individuals are impatient. We are as-
suming that the domain of cost vectors is identical for all individuals. Let
¹£ be the largest domain satisfying assumption I. Therefore, a domain £ to
be a subset of ¹£. For all j 2 N, µj 2 ¹£, the utility of each individual j is
assumed to be quasi-linear and is of the form: Uj(k; tj; µj) = vj ¡ µj(k) + tj
where vj(> 0) is the gross bene…t derived by individual j from the service
and tj is the transfer that individual j receives.

The server’s aim is to achieve e¢ciency or minimise the aggregate cost.
To de…ne what we mean by e¢ciency in a queueing problem with m ma-
chines, we need to develop the concept of a multi-set. A multi-set is a set
where all elements may not be distinct. For example, X = f1; 1; 1; 3; 6; 6; 9g
is a multi-set. Given a queueing problem with n individuals, m machines
and hence M = [n=m]+ queue positions, consider the multi-set Xn;m of
the form Xn;m = f1; : : : ; 1| {z }

m

; 2; : : : ; 2| {z }
m

; : : : ;M ¡ 1; : : : ;M ¡ 1| {z }
m

;M; : : : ;M| {z }
n¡(M¡1)m

g. Let

P (Xn;m) be the set of all possible permutations of the multi-set Xn;m. In
this problem, a queue ¾ is a mapping from the set of individuals N to
P (Xn;m), that is, ¾ = (¾1; : : : ; ¾n) : N ! P (Xn;m). Thus, ¾j = k indi-
cates that individual j has the kth position in the queue. Given a queue
¾ = (¾1; : : : ; ¾n)(2 P (Xn;m)), the cost of an individual j 2 N is µj(¾j). A
state of the world is µ = (µ1; : : : ; µn) 2 ¹£n where µj is a 1 £ M vector.

DEFINITION 2.1 Given a state µ 2 ¹£n, a queue ¾¤ 2 P (Xn;m) is e¢-
cient if ¾¤ 2 argmin¾2P (Xn;m)

P
j2N µj(¾j).

An e¢cient queue ¾¤ is an assignment that gives each individual exactly

5



one queue position and each of the …rst M ¡ 1 queue positions to exactly
m individuals and the Mth queue position to the remaining n ¡ (M ¡ 1)m
individuals in such a way that the aggregate cost is minimised. Observe,
that there can be states with more than one e¢cient queue. So we have
an e¢ciency correspondence. An e¢cient rule is a single valued selection
from the e¢ciency correspondence. Note that e¢ciency of a queue ¾¤ is a
concept independent of transfers and gross bene…ts of all individuals.

If the server knows the true state µ = (µ1; : : : ; µn) then he can cal-
culate the e¢cient queue. However, if µj is private information for in-
dividual j, the server’s problem then is to design a mechanism that will
elicit this information truthfully. This problem is called a multiple ma-
chine queueing problem under incomplete information and is written as
¡ = hN;m; ¹£i. Note that we are assuming that the domain ¹£ is com-
mon knowledge and that the cost vector of an individual is private infor-
mation. Therefore, each individual, if asked, will announce a cost vector
from the domain ¹£. Formally, a mechanism M is a pair h¾; ti where
¾ : ¹£n ! P (Xn;m) and t ´ (t1; : : : ; tn) : ¹£n ! Rn. Thus, a mechanism
M is a direct revelation mechanism where each individual j 2 N announces
a cost vector µj = (µj(1); : : : ; µj(M)) and based on the announcements of
all individuals (that is, µ = (µ1; : : : ; µn)), the planner (or server) speci…es
a queue ¾ and a vector of transfers t = (t1; : : : ; tn). Under M = h¾; ti,
given all others’ announcement µ¡j, the utility of individual j of type µj
when his announcement is µj 0 is given by Uj(¾j(µj 0; µ¡j); tj(µj 0; µ¡j); µj) =
vj ¡ µj(¾j(µj

0; µ¡j)) + tj(µj
0; µ¡j).

DEFINITION 2.2 A multiple machine queueing problem ¡ = hN;m; ¹£i
is implementable if there exists an e¢cient rule ¾¤ : ¹£n ! P (Xn;m) and
a mechanism M = h¾¤; ti such that for all j 2 N, for all pair of an-
nouncement vectors (µj; µj

0) 2 ¹£2 and for all announced µ¡j 2 ¹£n¡1,
Uj(¾¤j (µ); tj(µ); µj) ¸ Uj(¾¤j (µj

0; µ¡j); tj(µj
0; µ¡j); µj).

This de…nition says that ¡ = hN;m; ¹£i is implementable if there exists a
direct mechanism, with an e¢cient queueing rule ¾¤ and a vector of transfers,
that induces each individual to tell the truth independent of others’ report.
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DEFINITION 2.3 A multiple machine queueing problem ¡ = hN;m; ¹£i
is …rst best implementable, if there exists a mechanism M = h¾¤; ti such that
(1) M implements ¡ and (2) for all announcements µ 2 ¹£n,

P
j2Ntj(µ) = 0.

A multiple machine queueing problem ¡ = hN;m; ¹£i is …rst best imple-
mentable if it can be implemented with a budget balancing transfer. Thus,
if ¡ is …rst best implementable then incomplete information does not impose
any welfare loss.

3 Characterization Results

DEFINITION 3.4 A mechanism M = h¾; ti is a Groves-Clarke mecha-
nism if for all j 2 N and for all µ 2 ¹£n, the transfer is of the form

tj(µ) = ¡
X

l 6=j
µl(¾l(µ)) + °j(µ¡j) (3.1)

In a Groves-Clarke mechanism, the transfer of any individual j 2 N
in any state µ is the negative of aggregate cost plus the cost of individ-
ual j (that is ¡P

l2N µl(¾l(µ)) + µj(¾j(µ)) = ¡P
l 6=j µl(¾l(µ))), plus a con-

stant °j(µ¡j). The utility of individual j with a Groves-Clarke transfer
is his gross bene…t vj less the aggregate cost in state µ plus the constant.
We now proceed to verify that given a mechanism M = h¾¤; ti where the
queue satis…es an e¢cient rule and the transfer satis…es condition (3.1),
truth-telling is a dominant strategy. Suppose, it were not the case. Then
there exists an individual j with true cost µj and there exists a report µ¡j
such that individual j strictly bene…ts by misreporting his cost to be some
µ0j(6= µj). That is, Uj(¾¤j (µ); tj(µ); µj) < Uj(¾¤j(µj

0; µ¡j); tj(µj 0; µ¡j); µj).
Simplifying this inequality after substituting the Groves-Clarke transfer, we
get

P
j2N µj(¾¤j(µ)) >

P
j2N µj(¾¤j(µ

0
j; µ¡j)). This contradicts e¢ciency of

decision (or aggregate cost minimisation) in state µ. Hence, the Groves-
Clarke transfer leads to truth-telling in dominant strategies.

According to a well known result of Holmström (see Holmström (1979)),
decision problems with “convex” domains are implementable if and only if
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the mechanism is a Groves-Clarke mechanism (see Theorem (2) in Holm-
ström (1979)). Note that the domain under consideration in all multiple
machine queueing problems ¡ = hN;m; ¹£i are “convex” domains. Hence
multiple machine queueing problems are implementable if and only if the
mechanism is a Groves-Clarke mechanism. Therefore, the question of …rst
best implementability of a multiple machine queueing problem reduces to
…nding conditions on the domain under which we can …nd a balanced Groves-
Clarke transfer.

Let C(¾¤(µ0); µ) =
P
j2N µj(¾¤j(µ

0)) where, as stated earlier, ¾¤(µ0) is
an e¢cient queue for the announced state µ0. Thus, C(¾¤(µ0); µ) is the
minimum aggregate cost with respect to the announced state µ0 when the
actual state is µ. For notational simplicity we de…ne C(µ) ´ C(¾¤(µ); µ) to
be the minimum aggregate cost with respect to the actual state µ when the
announced state is also µ.

REMARK 3.1 From the de…nition of e¢ciency of the queue ¾¤ it follows
that for all µ and µ0, C(µ) · C(¾¤(µ0); µ).

When is a multiple machine queueing problem …rst best implementable?
In our …rst Theorem we show that the General Combinatorial Property, de-
…ned below, is necessary for …rst best implementability of a multiple machine
queueing problem.

DEFINITION 3.5 A multiple machine queueing problem ¡ = hN;m;£i
satis…es the General Combinatorial Property (or GCP) if for all j 2 N,
µj 2 £ is such that

MX

k=1
®(k;n;m)µj(k) = 0 (3.2)

where the coe¢cient vector ®(n;m) = f®(k;n;m)gMk=1 and ®(k;n;m) =
(¡1)(k¡1)m

nPm¡1
l=0 (¡1)l

¡ n¡1
(k¡1)m+l

¢o
if k 2 f1; : : : ;M ¡ 1g and ®(k;n;m) =

(¡1)(M¡1)m
nPn¡(M¡1)m¡1

l=0 (¡1)l
¡ n¡1
(M¡1)m+l

¢o
if k = M .

The following example illustrates the GCP.

8



EXAMPLE 3.1 Consider ¡̂ = hN = f1; : : : ; 10g;m = 3;£i. Here the
number of queue positions is M = [10=3]+ = 4 and ®(10; 3) = (®(1; 10; 3) =
28; ®(2; 10; 3) = ¡84; ®(1; 10; 3) = 57; ®(1; 10; 3) = ¡1). Therefore, ¡̂ satis-
…es the GCP if for all j 2 f1; : : : ; 10g, µj = (µj(1); µj(2); µj(3); µj(4)) 2 £
is such that 28µj(1)¡84µj(2)+57µj(3)¡µj(4) = 0. Note that the coe¢cient
vector ®(10; 3) = (28;¡84; 57; ¡1) is such that

PM=4
k=1 ®(k; 10; 3) = 0.

From Example 3.1 it is quite obvious that for a multiple machine queue-
ing problem ¡, the coe¢cient vector ®(n; m) = f®(k; n; m)gMk=1 is such that

MX

k=1
®(k;n;m) =

nX

p=1
(¡1)p¡1

Ã
n ¡ 1
p ¡ 1

!
= 0 (3.3)

We de…ne the …rst order di¤erence at k as ¢µj(k) = µj(k+1)¡µj(k). The
…rst order di¤erence at queue position k represents the increase in queueing
cost for individual j if he is moved from kth queue position to (k + 1)th
queue position. By simplifying equation (3.2) using ¢µj(k) we get

M¡1X

k=1
z(k;n;m)¢µj(k) = 0 (3.4)

where the partial sum coe¢cient vector z(n;m) = fz(k; n; m)gM¡1k=1 is such
that z(k; n; m) =

Pk
r=1 ®(r; n; m) for all k 2 f1; : : : ;M¡1g. From the math-

ematical identity
Pr
q=0(¡1)q

¡a
p
¢

= (¡1)r
¡a¡1
r

¢
, it follows that z(k;n;m) =

(¡1)km¡1
¡ n¡2
km¡1

¢
for all k 2 f1; : : : ; M ¡ 1g (see Tomescu (1985)). For ex-

ample consider the multiple machine queueing problem ¡̂ in Example 3.1.
Recall that in the co-e¢cient vector ®(10; 3) = (28; ¡84; 57;¡1). In ¡̂,
the elements of the partial sum coe¢cient vector z(10; 3) are z(1; 10; 3) =
®(1; 10; 3) = 28 = (¡1)2

¡8
2
¢
, z(2; 10; 3) = ®(1; 10; 3) + ®(2; 10; 3) = ¡56 =

(¡1)5
¡8
5
¢

and z(3; 10; 3) =
3P
k=1

®(k; 10; 3) = 1 = (¡1)8
¡8
8
¢
.

THEOREM 3.1 A multiple machine queueing problem ¡ = hN; m; ¹£i is
…rst best implementable only if it satis…es the GCP.

Before proving Theorem 3.1, a Lemma due to Walker (1980) is stated
below. Consider two pro…les µ = (µ1; : : : ; µn) and µ0 = (µ01; : : : ; µ

0
n). De…ne
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for S µ N, a type µj(S) = µj if j 62 S and µj(S) = µ0j if j 2 S. Thus for
each S µ N, we have a state µ(S) = (µ1(S); : : : ; µn(S)).

LEMMA 3.1 A multiple machine queueing problem ¡ = hN;m; ¹£i is
…rst best implementable only if for all pair of states (µ; µ0) 2 ¹£n £ ¹£n,
P
SµN(¡1)jSjC(µ(S)) = 0.1

By adding the Groves-Clarke transfer of all individuals and setting it to
zero we get (n ¡ 1)C(µ) =

P
j2N °j(µ¡j) (see Holmström (1977) for a more

general result). Thus, for all fµ; µ0g 2 ¹£n £ ¹£n,
P
SµN(¡1)jSjC(µ(S)) =

1
(n¡1)

P
j2N

P
SµN(¡1)jSj°j(µ¡j(S)) = 0 (see Walker (1980)).

PROOF OF THEOREM 3.1: We start with a given type for individual
1 (that is µ1) and construct µ¡1 and µ0. Then we apply Lemma 3.1 due to
Walker (1980) to derive the result. Consider individual 1 and any announce-
ment µ1 = (µ1(1); : : : ; µ1(k); : : : ; µ1(M)). Let f²2; : : : ; ²n; ´g be a set of num-
bers such that ²2 < : : : < ²n and 0 · ´ · µ1(1). Given µ1, we consider two
states µ = (µ1; µ2; : : : ; µn) and µ0 = (µ01; : : : ; µ

0
n) of the following type: for all

k = 1; : : : ;M , µj(k) = µ1(k)+k²j for all j 6= 1 and µ0j(k) = ´, for all j 2 N.
Therefore, µj = (µ1(1) + ²j ; µ1(2) + 2²j; : : : ; µ1(M) + M²j) for all j 6= 1 and
µ0j = (´; ´; : : : ; ´) for all j 2 N. Consider any two queue positions k and k+1
and any two individuals j and j+1 with types µj and µj+1, respectively. Note
that from the construction of µ, on the one hand, it follows that if individual
j gets the kth position and (j + 1)th individual gets the (k + 1)th position,
then the costs for these two positions add up to f2µ1(k)+k²j+(k+1)²j+1g.
If, on the other hand, the positions of j and (j + 1) are interchanged then
the costs add up to f2µ1(k) + (k + 1)²j + k²j+1g. The former cost exceeds
the latter for all k = 1; : : : ;M ¡ 1 since from the construction it follows
that ²j < ²j+1 for all j = 1; : : : n ¡ 1. Thus the queue that minimises the
aggregate cost requires that, ¾¤j+1(µ) · ¾¤j(µ) for all j = 1; : : : ; n ¡ 1. In
other words, ¾¤j(µ) = [(n + 1 ¡ j)=m]+ for all j 2 N. Now consider pro…les
µ(S) = (µ1(S); : : : ; µn(S)) where µj(S) = µj if j 62 S and µj(S) = µ0j if j 2 S.
Observe that from the arguments applied to …nd the e¢cient queue in state

1Here jXj denotes the cardinality of X.
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µ it follows that if fj; lg 62 S and j < l, then ¾¤l (µ(S)) · ¾¤j(µ(S)). Again,
given any S µ N and S 6= Á, ¾¤j (µ(S)) · ¾¤s(µ(S)) for all fs; jg 2 S £N¡S.
This is because the queueing costs of all individuals j 62 S, in all queue posi-
tions, is not less than the queueing costs of all individual s 2 S. Note that all
queue ¾¤(µ(S)), satisfying (1) ¾¤j (µ(S)) · ¾¤s(µ(S)) for all fs; jg 2 S£N¡S
and (2) ¾¤l (µ(S)) · ¾¤j (µ(S)) for all fj; lg 2 N¡S£N¡S, j < l, are e¢cient
since the cost of all individuals s 2 S are identical. From this argument it
follows that if S = N, that is, if µ(S) = µ0, then any queue is e¢cient.

We now consider the sum
P
SµN(¡1)jSjC(µ(S)). Consider an individual

j 2 N with j 6= 1. Let Pj = fp : p > jg be the set of individuals with
the higher ranking index than j. Consider all sets ¹S such that j 62 ¹S and
there are x number of individuals from the set Pj and j ¹Sj ¡ x number of
individuals from the set N¡fPj [jg. The queue position of individual j for
all such ¹S is ¾¤j(µ( ¹S)) = [(n + 1 ¡ j ¡ x)=m]+. By collecting all such sets ¹S,
that is, by considering the coe¢cient of the term µj([(n + 1 ¡ j ¡ x)=m]+),
in the sum

P
SµN(¡1)jSjC(µ(S)) we get (¡1)x

¡n¡j
x

¢ P
TµN¡fPj[jg(¡1)jT j.

Note that
P
TµN¡fPj[jg(¡1)jT j =

Pj¡1
r=0(¡1)r

¡j¡1
r

¢
= (1 + (¡1))j¡1 = 0

since j 6= 1. Therefore, in
P
SµN(¡1)jSjC(µ(S)), the coe¢cient of a term

µj([(n+1¡j¡x)=m]+) is zero for all j( 6= 1) and for all x(· jPj j). Hence, the
sum

P
SµN(¡1)jSjC(µ(S)) is independent of all elements in the set of vectors

fµ2; : : : ; µng. Observe that by adding the cost of an individual j 2 N for
all Ŝ(µ N) such that j 2 Ŝ, we get

P
j2ŜµN(¡1)jŜj´ =

Pn
s=1(¡1)s

¡n¡1
s¡1

¢
´ =

¡(1 + (¡1))n¡1´ = 0. Therefore, the sum
P
SµN(¡1)jSjC(µ(S)) is also

independent of ´.
Finally, from the above observations, we get

P
SµN(¡1)jSjC(µ(S)) =

P
SµN¡f1g(¡1)jSjµ1(¾¤1(µ1; µ¡1(S))). For individual 1, with type µ1, we get

¾¤1(µ1; µ¡1(S)) = [(n ¡ jSj)=M ]+ for all S µ N ¡ f1g. Therefore,

X

SµN¡f1g

(¡1)jSjµ1(¾¤1(µ1; µ¡1(S))) =
MX

k=1

2
4 X

x: [(n¡x)=m]+=k

(¡1)x
µ
n¡ 1
x

¶3
5 µ1(k) (3.5)

Simplifying condition (3.5) using
¡n¡1
x

¢
=

¡n¡1
n¡x

¢
and then by applying

Lemma 3.1 we get (¡1)n¡1
PM
k=1 ®(k; n; m)µ1(k) = 0. Since the selection of
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individual 1, for the above construction, was arbitrary the result follows.
Note that the GCP is a restriction on ¹£. It may be the case that with

the GCP and assumption I, the only admissible cost vectors are those that
are time independent. This would mean that there is no incentive problem.
To eliminate such possibilities we consider the assumption of non-trivial
domain (or NTD).

Assumption NTD: For all j 2 N, £ contains at least one cost vector
µj = (µj(1); : : : ; µj(M)), such that µj(1) < µj(M).

Let £̂(½ ¹£) be the largest domain satisfying the GCP. We now consider
all multiple machine queueing problems ¡ = hN; m; £̂i. Observe that, for
a multiple machine queueing problem ¡ = hN;m; £̂i, Groves-Clarke mech-
anisms are the only class of mechanisms that lead to truthful revelation
of private information since £̂ is a “convex” domain. Thus, for the exis-
tence of a …rst best implementable multiple machine queueing problem, it
is necessary that the domain £̂ satis…es assumption NTD.

PROPOSITION 3.1 If the number of machines m is even or if the num-
ber of queue positions M = [n=m]+ = 2, then ¡ = hN; m; £̂i is not …rst best
implementable.

PROOF: If the number of machines m is even then for all k 2 f1; : : : ;Mg,
(¡1)km¡1 = ¡1 because km is also even. Moreover, from assumption I it
follows that for all µj , ¢µj(k) ¸ 0 for all k 2 f1; : : : ; M ¡1g. By substituting
(¡1)km¡1 = ¡1 and ¢µj(k) ¸ 0 in (3.4) we get ¢µj(k) = 0 for all k 2
f1; : : : ;M ¡ 1g. Hence, µj(1) = : : : = µj(M) and we have a violation of
assumption NTD.

If M = 2, then GCP implies ®(1;n;m)µj(1) + ®(2; n; m)µj(2) = 0 and
condition (3.3) implies ®(1;n;m)+®(2; n;m) = 0. Therefore, µj(1) = µj(2).
This again is a violation of assumption NTD.

Given the impossibility results of Proposition 3.1, we consider the class
multiple machine queueing problems with odd number of machines and with
at least three queue positions. So far we have imposed a restriction on
individual preferences (that is, the GCP). The next property is a restriction
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on group preferences.

DEFINITION 3.6 A multiple machine queueing problem ¡ = hN;m;£i
satis…es the General Independence Property (or GIP) if for all pairs fj; lg 2
N £ N, j 6= l, all cost vectors fµj; µlg 2 £2 are such that one and only one
of the following two conditions holds:

1. ¢µj(k) ¸ ¢µl(k) for all k 2 f1; 2; : : : ; M ¡ 1g

2. ¢µj(k) · ¢µl(k) for all k 2 f1; 2; : : : ; M ¡ 1g.

The GIP for a multiple machine queueing problem ¡ implies that if for
any pair of individuals fj; lg 2 N £ N, j 6= l, the respective cost vectors
µj = (µj(1); : : : ; µj(M)) 2 £ and µl = (µl(1); : : : ; µl(M)) 2 £ are such
that there exists a ¹k 2 f1; : : : ; M ¡ 1g such that ¢µj(¹k) > ¢µl(¹k), then
¢µj(k) ¸ ¢µl(k) for all k 2 f1; : : : ; M ¡ 1g. The relationship between the
GCP and the GIP is captured in the next proposition.

PROPOSITION 3.2 For ¡ = hN;m;£i with M = 3, GCP)GIP.

PROOF: Consider ¡ = hN; m;£i such that M = 3 and any two cost
vectors µj = (µj(1); µj(2); µj(3)) and µl = (µl(1); µl(2); µl(3)) for individuals
j and l respectively. From condition 3.3 we know that z(1;n;m)¢µi(1) +
z(2; n; m)¢µi(2) = 0 for all i 2 fj; lg. Therefore, for all i 2 fj; lg, ¢µi(1) =
®¢µi(2) where ® = ¡z(2;n;m)

z(1;n;m) > 0. Thus, ¢µj(1) < (>)¢µl(1) if and only if
¢µj(2) < (>)¢µl(2).

Consider ¡̂ = hN = f1; : : : ; 10g; m = 3;£i of Example 3.1. Here the
number of queue positions M = 4 and ®(10; 3) = (28;¡84; 57; ¡1). Consider
individuals j and l with costs ¹µj = (1; 3; 4; 4) 2 £ and ¹µl = (1; 2; 3; 31) 2 £
respectively. Observe that for i 2 fj; lg,

P4
k=1 ®(k; 10; 3)¹µi(k) = 0. However,

¢¹µj(1) = 2 > ¢¹µl(1) = 1 and ¢¹µj(3) = 0 < ¢¹µl(3) = 28. Therefore, the
GIP is not satis…ed. Hence for ¡̂, GCP 6) GIP. Let ¡ represent the class
of multiple machine queueing problems (with odd number of machines and
with at least three queue positions) satisfying both the GCP and the GIP.
Therefore, ¹¡ = hN;m; ~£i belongs to ¡ if ~£(µ £̂) is a domain satisfying
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the GIP and assumption NTD. Note that ~£ is any domain (and not neces-
sarily the largest domain) which is a subset of £̂ and satis…es the GIP and
assumption NTD. We now derive the e¢cient rule for any multiple machine
queueing problem ¹¡ = hN;m; ~£i 2 ¡. Before doing that we give some more
relevant notations and de…nitions. Consider ¹¡ = hN;m; ~£). For a state
µ 2 ~£n, de…ne Qj(µ) = [l 2 N ¡ fjg s.t. either 9k 2 f1; : : : ; M ¡ 1g and
f¢µl(k) > ¢µj(k)g or 8k 2 f1; 2; : : : ;M¡1g, f¢µl(k) = ¢µj(k) and l < jg].
Let Rj(µ) = 1 + jQj(µ)j(2 f1; : : : ; ng) be the rank of individual j in state µ.
Observe that the way we have speci…ed the ranking, there is no possibility
of a tie in the ranking of di¤erent individuals in any given state. Therefore,
Rj(µ) measures the rank of individual j in state µ. Using this de…nition of
ranking we state and prove an e¢cient rule (that is, a single-valued selection
from the e¢ciency correspondence) for ¹¡ = hN; m; ~£i 2 ¡.

PROPOSITION 3.3 Consider ¹¡ = hN;m; ~£i 2 ¡. For all µ 2 ~£n, let
¾¤(µ) = (¾¤1(µ); : : : ; ¾¤n(µ)) be the queue such that ¾¤j (µ) = [Rj(µ)=m]+ for
all j 2 N. The queue ¾¤(µ) = (¾¤1(µ); : : : ; ¾¤n(µ)) is e¢cient.

PROOF: We prove Proposition 3.3 by contradiction. If the statement in
Proposition 3.3 is false, then there exists a state µ 2 ~£n, such that the queue
¾¤(µ) = (¾¤1(µ); : : : ; ¾¤n(µ)) is not e¢cient. Therefore, there exists another
ordering ¾̂ = (¾̂1; : : : ; ¾̂n) 2 P (Xn;m) ¡ f¾¤(µ)g which is e¢cient and hence
yields a strictly lower cost than ¾¤(µ). It must be the case that for ¾̂, there
exists at least one pair fj; lg, j 6= l and a queue position k 2 f1; : : : ;M ¡1g,
such that ¢µj(k) > ¢µl(k) and ¾̂j = ¾̂l + 1 > ¾̂l = k.2 Now, consider
another queue ¹¾ 2 P (Xn;m) such that ¾̂j = ¹¾l, ¾̂l = ¹¾j and ¾̂i = ¹¾i for
all i 6= j 6= l 6= i. Thus, ¹¾ is obtained from ¾̂ by interchanging the queue
positions of j and l only. Note that the cost di¤erence C(¾̂; µ) ¡ C(¹¾; µ) =
¢µj(k) ¡ ¢µl(k) > 0. This contradicts our assumption that ¾̂ is e¢cient.

Therefore, …nding a queue that ensures e¢ciency or minimises the ag-
gregate cost is quite transparent if ¹¡ 2 ¡. Observe that for ¹¡ 2 ¡, the

2 If not, then for all fj; lg 2 N£N, j 6= l, ¢µj(k) ¸ ¢µl(k) ) ¾̂j · ¾̂l. It
is easy to check that in that case C(¾̂; µ) = C(¾¤(µ); µ).
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relative ranking of any two individuals fj; lg, for some given costs µj and µl
respectively, is independent of the costs announced by all other individuals.
Formally, if in state µ = (µ1; : : : ; µn), Rj(µ) > Rl(µ) for some fj; lg 2 N£N,
j 6= l, then Rj(µj; µl; µ

0
¡j¡l) > Rl(µj ; µl; µ

0
¡j¡l) for all µ0¡j¡l 2 ~£n¡2. Hence,

what determines the e¢cient queue is the ranking that each individual gets
in a given state. We now argue that if one individual is eliminated from the
queue then the relative ranking of all other individuals remain unchanged.
Before doing that we introduce some more relevant notations and de…ni-
tions that captures the idea of elimination of an individual from the queue
in any given state. De…ne M 0 ´ [n¡1m ]+ to be the number of queue positions
that remains in a multiple machine queueing problem with n jobs and m
machines after one individual (and hence one job) is eliminated from the
queue. Observe that M 0 = M ¡ 1 if n = rm + 1 where r = 2; 3; : : : and
M 0 = M otherwise. Using the idea of ranking of individuals for ¹¡ 2 ¡,
we de…ne Qj(µ¡l) = [i 2 N ¡ fj; lg s.t. either 9k 2 f1; : : : ; M 0 ¡ 1g and
f¢µi(k) > ¢µj(k)g or 8k 2 f1; 2; : : : ;M 0 ¡ 1g, f¢µi(k) = ¢µj(k) and
i < jg]. Let Rj(µ¡l) = 1+ jQj(µ¡l)j(2 f1; : : : ; n ¡ 1g). Therefore, in a state
µ, Rj(µ¡l) measures the rank of individual j in state µ by eliminating the
cost vector µl of individual l(6= j).

REMARK 3.2 Consider any multiple machine queueing problem ¡ satis-
fying the GIP but not the GCP such that M 0 = M ¡ 1. Consider a state
µ = (µ1; : : : ; µn) such that ¢µ1(k) = ¢µ2(k) for all k 2 f1; : : : ;M ¡ 2g
and ¢µ1(M ¡ 1) < ¢µ2(M ¡ 1). Moreover, assume that R1(µ) = n and
R2(µ) = n ¡ 1. Hence R1(µ) > R2(µ). Observe, that for all i 2 N ¡ f1; 2g,
R1(µ¡i) = n ¡ 2 and R2(µ¡i) = n ¡ 1 because ¢µ1(k) = ¢µ2(k) for all
k 2 f1; : : : ;M ¡ 2g and 1 < 2. Therefore, R1(µ) > R2(µ) and for all
i 2 N ¡ f1; 2g, R1(µ¡i) < R2(µ¡i). Therefore, for any multiple machine
queueing problem ¡ satisfying the GIP but not the GCP, if M 0 = M ¡ 1,
then the above construction shows that there exist cost vectors for which the
relative ranking of a pair of individuals can change if an individual outside
the pair under consideration is eliminated from the queue. It is not hard to
verify that the construction speci…ed above is the only type of construction
that can lead to such a rank reversal in a multiple machine queueing prob-
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lem ¡ satisfying the GIP when an individual is eliminated. Moreover, such
a rank reversal can take place only if M 0 = M ¡ 1 and ¡ fails to satisfy
the GCP. If, a multiple machine queueing problem ¡ satis…es the GIP and
the GCP and if ¢µj(k) = ¢µl(k) for all k 2 f1; : : : ;M ¡ 2g then the GCP
implies that ¢µ1(M ¡ 1) = ¢µ2(M ¡ 1). Therefore, the construction that
led to rank reversal is not possible for a multiple machine queueing problem
that satis…es the GCP. Hence, if a multiple machine queueing problem ¡
satis…es both the GCP and the GIP, then the relative ranking of any pair
of individuals with any given pair of cost vectors remain unchanged if some
other individual is eliminated from the queue. More formally, if ¹¡ 2 ¡,
then we obtain the following relationship between Rj(µ) and Rj(µ¡l). For
all fj; lg 2 N £ N, j 6= l and for all µ 2 ~£n,

Rj(µ¡l) =

(
Rj(µ) if Rj(µ) < Rl(µ)
Rj(µ) ¡ 1 if Rj(µ) > Rl(µ)

Using Remark 3.2 we derive the su¢ciency condition under which a multiple
machine queueing problem ¹¡ 2 ¡ is …rst best implementable.

THEOREM 3.2 A multiple machine queueing problem ¹¡ 2 ¡ is …rst best
implementable.

We …rst state and prove a lemma that will be used in proving Theorem 3.2.

LEMMA 3.2 A multiple machine queueing problem ¡ = hN;m;£i satis-
…es the GCP, if and only if for all cost vector µj 2 £, there exists a unique
1£(n¡1) vector Hj = fhj(1); : : : ; hj(n¡1)g such that for all p 2 f1; : : : ; ng,

µj([p=m]+) = (n ¡ p)hj(p) + (p ¡ 1)hj(p ¡ 1): (3.6)

PROOF: Consider a cost vector µj 2 £ for individual j 2 N that satis…es
PM
k=1 ®(k;n;m)µj(k) = 0. De…ne a vector Hj = fhj(1); : : : ; hj(n ¡ 1)g such

that for all p 2 f1; : : : ; n ¡ 1g,
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hj(p) =
pX

r=1
(¡1)p¡r

(k ¡ 1)!(n ¡ p ¡ 1)!
(r ¡ 1)!(n ¡ r)!

µj([r=m]+) (3.7)

We prove Lemma 3.2 in two steps. In the …rst step it is proved, using (3.7),
that for all p 2 f1; : : : ; n ¡ 1g, condition (3.6) holds. In the next step we
prove that for p = n, condition (3.6) holds only if ¡ satis…es the GCP.

(n ¡ p)hj(p) + (p ¡ 1)hj(p ¡ 1)

= (n ¡ p)
pP
r=1

(¡1)p¡r (p¡1)!(n¡p¡1)!(r¡1)!(n¡r)! µj([r=m]+)

+(p ¡ 1)
p¡1P
r=1

(¡1)p¡r¡1 (p¡2)!(n¡p)!(r¡1)!(n¡r)!µj([r=m]+)

=
p¡1P
r=1

©
(¡1)p¡r + (¡1)p¡r¡1

ª (p¡1)!(n¡p)!
(r¡1)!(n¡r)!µj([r=m]+)+µj([p=m]+)

= µj([p=m]+) (because (¡1)p¡r + (¡1)p¡r¡1 = 0).

For p = n,

(n ¡ p)hj(p) + (p ¡ 1)hj(p ¡ 1)

= (n ¡ 1)hj(n ¡ 1)

= (n ¡ 1)
n¡1P
r=1

(¡1)n¡1¡r (n¡2)!
(r¡1)!(n¡r)!µj([r=m]+)

=
n¡1P
r=1

(¡1)n¡1¡r (n¡1)!
(r¡1)!(n¡r)!µj([r=m]+)

=
n¡1P
r=1

(¡1)n¡1¡r
¡n¡1
r¡1

¢
µj([r=m]+)

= (¡1)n¡2
MP
k=1

®(k; n; m)µj(k)+µj(M) (From the GCP)

= µj(M).

Therefore, the last step not only proves the necessity of the GCP but also
guarantees that for µj , the 1 £ (n ¡ 1) vector Hj is unique.
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We now prove the other part of Lemma 3.2. Observe that the sum
PM
k=1 ®(k;n;m)µj(k) =

Pn
p=1(¡1)p¡1

¡n¡1
p¡1

¢
µj([p=m]+). Therefore,

nP
p=1

(¡1)p¡1
¡n¡1
p¡1

¢
µj([p=m]+)

=
nP
p=1

(¡1)p¡1
¡n¡1
p¡1

¢f(n ¡ p)hj(p) + (p ¡ 1)hj(p ¡ 1)g

= (n ¡ 1)

(
n¡1P
p=1

(¡1)p¡1
¡n¡2
p¡1

¢
hj(p) +

nP
p=2

(¡1)p¡1
¡n¡2
p¡2

¢
hj(p ¡ 1)

)

= 0.

Lemma 3.2 gives rise to a particular type of separability (as given by
condition 3.6) that will be used in deriving the explicit form of the transfer
that …rst best implements any ¹¡ = hN; m; ~£i 2 ¡.

PROOF OF THEOREM 3.2: Consider the sum
P
l 6=j hj(Rj(µ¡l)) in

state µ 2 ~£n for individual j 2 N. From the GIP and Remark 3.2 we get
P
l 6=j

hj(Rj(µ¡l)) = (n ¡ Rj(µ))hj(Rj(µ)) + (Rj(µ) ¡ 1)hj(Rj(µ) ¡ 1)

= µj([Rj(µ)=m]+) (From condition (3.6) in Lemma 3.2).

We consider a Groves-Clarke mechanism M̂ = h¾¤; t̂i where the term
independent of j’s announcement is °̂j(µ¡j) = (n ¡ 1)

P
l 6=j hl(Rl(µ¡j)).

Then it follows that
P
j2N

°̂j(µ¡j) = (n ¡ 1)
P
j2N

P
l 6=j

hl(Rl(µ¡j))

= (n ¡ 1)
P
j2N

fP
l6=j

hj(Rj(µ¡l))g

= (n ¡ 1)
P
j2N

µj([Rj(µ)=m]+)

= (n ¡ 1)C(µ).

Observe that the last step follows from the e¢ciency rule of Proposition 3.3.
The last step implies that for all µ 2 ~£n, the sum of transfers

P
j2N t̂j(µ) =

¡(n ¡ 1)C(µ) +
P
j2N °̂j(µ¡j) = 0.
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Observe that from Theorems 3.1 and 3.2 and from Proposition 3.2 it
follows that a multiple machine queueing problem ¹¡ 2 ¡ with M = 3 is …rst
best implementable if and only if it satis…es the GCP.

4 Applications

In this section we …rst de…ne a class of multiple machine queueing problems
with separable cost and then verify under what conditions these problems
are …rst best implementable. For separable cost multiple machine queueing
problems, µj(k) satis…es the following conditions:

1. µj(k) = f(k)µj for all j 2 N, for all k 2 f1; 2; : : : ; Mg and for all
µj 2 £. Here £ is assumed to be an interval in R+.

2. Finally, f(k) ¸ f(k ¡ 1) for all k 2 f2; : : : ; Mg and µj ¸ 0 for all
µj 2 £.

Condition (1) multiplicatively separates the cost of each individual for
each position into two parts. The …rst part is a function f that depends on
the queue position. Observe that the functional form f is assumed to be
identical for all individuals j 2 N. Moreover, we assume that f is common
knowledge. The second part which is a non-negative number µj represents
the type (or cost parameter) of an individual and it is independent of queue
position. In this set up a type vector of individual j 2 N is given by
µj = (µj(1) = f(1)µj ; : : : ; µj(M) = f(M)µj). Therefore, from now on we
will write µj as the cost parameter or type of an individual. Condition (2)
implies assumption I, that is, µj(k + 1) ¸ µj(k) for all k 2 f1; : : : ; M ¡ 1g.
The cost parameter µj 2 £ for all j 2 N is private information. Finally,
µ = (µ1; : : : ; µn) 2 £n represents a state of the world or a pro…le.

In this framework the set of individuals N, m(> 1) number of ma-
chines and (f;£) de…ne the multiple machine separable cost queueing prob-
lem ¡̂ = hN; m; (f; £)i. We will completely characterize the class of …rst
best implementable multiple machine separable cost queueing problems. We
start by showing that these problems satisfy the GIP.
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PROPOSITION 4.4 A multiple machine separable cost queueing problem
¡̂ = hN;m; (f;£)i satis…es the GIP.

PROOF: Consider any pair fj; lg 2 N £ N, j 6= l, with cost parameters
µj and µl respectively. It is obvious that either µj ¸ µl or µj · µl. Since
f(k + 1) ¸ f(k) for all k 2 f1; : : : ;M ¡ 1g, it is also obvious that if µj ¸ µl,
then ff(k + 1) ¡ f(k)gµj ¸ ff(k + 1) ¡ f(k)gµl for all k 2 f1; : : : ; M ¡ 1g.
Therefore, ¢µj(k) = ff(k + 1) ¡ f(k)gµj ¸ ¢µl(k) = ff(k + 1) ¡ f(k)gµl
for all k 2 f1; : : : ; M ¡ 1g. Similarly, if µj · µl, then ¢µj(k) · ¢µl(k) for
all k 2 f1; : : : ; M ¡ 1g. Thus, it follows that ¡̂ = hN;m; (f; £)i satis…es the
GIP.

The next two remarks follow trivially from the discussion of the GCP in
the previous section.

REMARK 4.3 A multiple machine separable cost queueing problem ¡̂ =
hN; m; (f;£)i satis…es the GCP if

MX

k=1
®(k; n; m)f(k) = 0 (4.8)

Using ¢f(k) = f(k + 1) ¡ f(k) and simplifying equation (4.8) we get

M¡1X

k=1
z(k;n;m)¢f(k) = 0 (4.9)

where z(k;n;m) =
Pk
r=1 ®(r;n;m) = (¡1)km¡1

¡ n¡2
km¡1

¢
.

REMARK 4.4 From condition (3.6) it follows that ¡̂ = hN;m; (f; £)i sat-
is…es the GCP, if and only if there exists a unique vector H = fh(1); : : : ; h(n¡
1)g such that for all p 2 f1; : : : ; ng,

f([p=m]+) = (n ¡ p)h(p) + (p ¡ 1)h(p ¡ 1) (4.10)

where h(p) =
Pp
r=1(¡1)p¡r (p¡1)!(n¡p¡1)!(r¡1)!(n¡r)! f([r=m]+).

The next result completely characterizes the class of …rst best imple-
mentable multiple machine separable cost queueing problems.
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PROPOSITION 4.5 A multiple machine separable cost queueing problem
¡̂ = hN;m; (f;£)i is …rst best implementable if and only if the cost function
satis…es the GCP.

The necessity part of Proposition 4.5 is similar to that of Theorem 3.1
and the su¢ciency part is similar to Theorem 3.2. Therefore, we omit the
proof of this proposition.

It is easy to verify that Proposition 3.1 is also true for separable cost
queueing problems. Therefore, all multiple machine separable cost queueing
problems with either (1) even number of machines or (2) two queue positions
are not …rst best implementable. Let ¡(S)(½ ¡) be the class of multiple
machine separable cost queueing problems where m is odd and n > 2m and
let ¡¤(½ ¡(S)) be the class of …rst best implementable multiple machine
separable cost queueing problems. The next proposition proves the existence
of ¡¤.

PROPOSITION 4.6 There exists ¡ 2 ¡(S) such that ¡ 2 ¡¤.

PROOF: Consider ¡̂¤ = hN;m; (f¤; £)i 2 ¡(S) with odd number of queue
positions M and with f¤ of the following form: f¤(1) = c ¸ 0 and ¢f¤(k) =
f¤(k + 1) ¡ f¤(k) = 1

( n¡2km¡1)
for all k 2 f2; : : : M ¡ 1g. We will prove that

¡̂¤ = hN;m; (f¤; £)i 2 ¡¤ by showing that f¤ satis…es condition (4.9).
Observe …rst that z(k;n;m)¢f¤(k) = (¡1)km¡1 for all k 2 f1; : : : ;M ¡ 1g.
Therefore, by substituting z(k;n;m)¢f¤(k) = (¡1)km¡1 in the left hand
side of condition (4.9) we get

PM¡1
k=1 (¡1)km¡1. Since both m and M are odd,

it is obvious that,
PM¡1
k=1 (¡1)km¡1 = 0. Thus, ¡̂¤ = hN;m; (f¤;£)i 2 ¡¤.

Similarly, consider ¡̂¤¤ = hN; m; (f¤¤; £)i 2 ¡(S) with even number of
queue positions M and with f¤¤ of the following form: f¤¤(1) = c ¸ 0 and
¢f¤¤(k) = f¤¤(k+1)¡f¤¤(k) = 1

( n¡2km¡1)
for all k 2 f2; : : :M¡2g and f¤¤(M¡

1) = f¤¤(M) (that is, ¢f¤¤(M ¡1) = 0). Observe that z(k;n;m)¢f¤¤(k) =
(¡1)km¡1 for all k 2 f1; : : : ;M ¡ 2g and z(M ¡ 1; n; m)¢f¤¤(M ¡ 1) =
0. Therefore, by substituting z(k;n;m)¢f¤¤(k) for all k 2 f1; : : : ;M ¡
1g in the left hand side of condition (4.9) we get

PM¡2
k=1 (¡1)km¡1. Here

PM¡2
k=1 (¡1)km¡1 = 0 because m is odd and M is even. Thus, ¡̂¤¤ 2 ¡¤.
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Observe that given ¡¤ ½ ¡(S) ½ ¡, it follows from Proposition 4.6 that
there exist …rst best implementable multiple machine queueing problems in
¡. We conclude this section with an important observation.

Observation [1]: Given the co-e¢cient vector ®(n; m), it follows that if
m is odd, M = 2q + 1 and n = m £ (2q + 1) (where q 2 f1; 2; : : :g) then
®(k; n; m) = ®(2q + 2 ¡ k; n; m) for all k 2 f1; : : : ; qg. Using this result and
by substituting ®(q + 1; n; m) = ¡2

Pq
k=1 ®(k;n;m) in equation (3.2) we

get

qX

k=1
®(k;n;m)fµj(k) + µj(2q + 2 ¡ k) ¡ 2µj(q + 1)g = 0 (4.11)

Observe that if µj(k) = kµj for all k 2 f1; : : : ; Mg, then condition (4.11)
holds. Thus, if m is odd, n = mM , M is also odd and ~f(k) = k for all k,
then ¡L = hN;m; ( ~f;£)i 2 ¡¤.

5 Concluding Remarks

We have obtained the following results regarding the …rst best implementabil-
ity of a multiple machine queueing problem.

1. A multiple machine queueing problem is …rst best implementable only
if it satis…es the GCP.

2. If the number of machines is even or if there are only two queue po-
sitions, then a multiple machine queueing problem fails to satisfy the
GCP and hence is not …rst best implementable.

3. If the number of machines m is odd and M = [n=m]+ = 3 then a
multiple machine queueing problem is …rst best implementable if and
only if it satis…es the GCP and the GIP.

4. If the number of machines m is odd and M = [n=m]+ ¸ 4 then a
multiple machine queueing problem is …rst best implementable if it
satis…es the GCP and the GIP.
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5. For all n > 2m such that m is odd, there exists a cost function for which
a multiple machine queueing problem is …rst best implementable.

6. Finally, if m is odd, the number of queue positions M = [n=m]+ is also
odd and n = m:M then a multiple machine queueing problem with
linear cost function is …rst best implementable.

Thus, …rst best implementability of a multiple machine queueing problem
depends heavily on the number of machines and on the number of jobs.
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