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Abstract

This paper addresses the existence of market mtpgorices and the economic
interpretation of strong duality for integer prognsin the economic analysis of markets with
nonconvexities (indivisibilities). Electric powerarkets in which nonconvexities arise from the
operating characteristics of generators motivateaoalysis; however, the results presented here
are general and can be applied to other marketghioh nonconvexities are important. We
show that the optimal solution to a linear progthit solves the mixed integer program has dual
variables that: (1) have the traditional econommterpretation as prices; (2) explicitly price
integral activities; and (3) clear the market ie fresence of nonconvexities. We then show
how this methodology can be used to interpret ttetisns to nonconvex problems such as the

problem discussed by Scarf (1994).
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|. Introduction

Scarf (1990, 1994) describes most markets in tedagvanced economies as having
considerable indivisibilities (nonconvexities). rlexample, firms must make discrete decisions
on whether to invest in a new project or when #&rtaip a production process. It has been
widely believed that in the presence of nonconvexiin the cost function, it is not possible to
guarantee the existence of linear prices thatalldlw the market to clear, unless the solution to
the relaxed convex problem just happens to prodartantegral solution (e.g. assignment
problems).

Unfortunately, the modeling of nonconvexities sashdiscrete choices and economies of
scale have largely been avoided due to the intrdityaof such problems. Standard graduate
texts in microeconomics such as Kreps (1990) andawWa(1992) note that assuming away
nonconvexities is unrealistic, but they proceechwiite standard assumptions without addressing
the issue further. Mathematical references usededpnomists such as Chiang (1984) and
Takayama (1985) do not mention integer programnfangsolving optimization problems with
nonconvexities. In the face of nonconvexitiesedincommodityprices in general will result in
either a situation of excess supply or excess ddpeard the market will not cleaAs a simple
example in which nonconvexities prevent a markamnfclearing, consider a market in which all
firms have the same cost and entry is free. Emohrhust incur a fixed cost of one to produce
any positive amount of a good in the range (0A]that range, marginal cost is zero. If the
market demand curve is P = 2 — 0.6Q, then therm imarket equilibrium. For any price less
than 1, no firm will produce and there will be aoghge. For any price strictly greater than 1,

guantity supplied is infinite, and there is a suspl Finally, for P =1, quantity demanded is 1.67,



but the quantity supplied will be no more than écdwuse if a second firm enters, it will not earn
enough revenue to cover its fixed cost.

Because of such problems, it has been more conmveaunel tractable to employ linear or
convex nonlinear optimization models to represeanfipmaximization problems for producers
and utility maximization problems for consumersicl optimization problems assume desirable
properties such as the continuity and concavityhefobjective function to be maximized, and
the convexity of the feasible region defined by tmstraint set. As a justification for the
assumption of convexity, Arrow and Hahn (1971), Masdell et al. (1995), Takayama (1985),
and Varian (1992) argue that if agents in an econamre replicated many times, then linear
prices will support a competitive equilibrium. Aw and Hahn use the convex hull of the non-
convex set of constraints to show an “approximaeuilibrium. An equilibrium in such a
market yields a linear commodity price (or vectdrlinear prices) and quantity (or vector of
guantities) such that all economic agents maxinthe® objectives and the market clears (the
guantity supplied equals the quantity demandedeémh commodity priced). Conceptually, a
linear price vector arises out of the applicatidrthe Separating Hyperplane Theorem. (For
example, see Takayama 1985, pp. 39-49, 103). Suuplifying assumptions about the
objective function and constraint sets allow ecoistsrto prove the existence of market clearing
prices using fixed-point arguments. Computatignaif the market equilibrium problem is
solved by Samuelson’s (1952) principle, the equiuim prices for such markets are simply the
dual variables (shadow prices or LaGrange multip)igor the market clearing constraints of the
goods.

Such modeling assumptions have allowed econonistsonstruct useful models of

economic behavior and to conduct insightful simatatexperiments with these increasingly



complex models. But since the work of Gomory araif@ol (1960), analogous dual variable
interpretations for mixed-integer programs haveletbeconomists and mathematician&s an
example, Geoffrion and Nauss (1977) state “(intgg@gramming) models have no shadow
prices or dual variables with an interpretation panable to that in linear programming.” The
economic literature continues to reflect this Heli€urrent market models are largely unable to
deal with the significant nonconvexities that atijuaxist. For example, whether or not to
invest in a new capital project or whether or reostart-up a production operation are discrete
decisions. Many production processes have econoofiescale, a property contrary to the
linearity/convexity assumption. The nonexistendentarket clearing prices can be a real
problem, and some degree of centralized coordinatiay be required in some markets to reach
the welfare maximizing solution.

An important market where nonconvexities are dicgmt and are a concern in
constructing prices is the short-term (day- to wab&ad) electric power market.
Nonconvexities include start-up and shut-down cakieg with minimum output requirements
(which state that if a plant is running, it musbguce at least a certain amount). The lumpiness
of the costs in these markets can have a largeeinde on operating schedules and ultimately
investment. It is widely noted that the presenttaamconvexities implies that there will be no
linear commodity prices that will support an eduiim (e.g., Johnsoat al, 1997, Madrigal
and Quintana, 2000; Hobbs, Rothkagfal, 2001). This lack of prices leads to a potential
mismatch of supply and demand that is of conceniaoengineers responsible for maintaining
system balance and stability, to the economists raacket designers who are interested in
promoting market efficiency, and to the market iggrants themselves who are worried about

how steps taken to balance supply and demand raifgut their outputs and revenues.



In this paper, we present a method for constructiisgt of linear prices that will support
a Walrasian competitive equilibrium in markets witbnconvexities that is based on mixed
integer programming (MIP). Prices are derived frealving a MIP and an associated linear
program and have a corresponding analogy to n@adiimulti-part) prices. These prices will
support equilibrium allocations in a decentralizetttion-based market. That is, if a Walrasian
auctioneer announced to market participants theeprive derive, from within the set of the
maximizing allocations chosen by agents is a sa#twould clear the market.Fdr any ties that

might occur, the auctioneer would randomly seldoners.)

The role of non-linear pricing in markets with nocorvexities has been recognized and
well researched (See Wilson 1993). However, theketaenvironments in which non-linear
prices have been examined have not been consigerddctly competitive. For example,
monopoly utility services often are subject to riokear pricing in the form of a demand or
access charge plus a variable linear charge fosghace. Additionally, non-linear prices can be
employed to enable firms to capture rents throughepdiscrimination or to strategically
compete for certain segments of the market. Inrashtthe prices we propose, while being
analogous to non-linear prices, can be employed aompetitive environment where market
agents are price takers and therefore do not hayensarket power and do not compete
strategically.

Our method for calculating equilibrium prices isagghtforward. First, we solve a MIP
to find the optimal allocation. Next, we remove timtegrality constraints and insert equality
constraints (cuts) that force the integer varialbbeassume their optimal values in the resulting
linear program (LP). We then solve the LP to fihé associated dual prices on the market
clearing conditions and added equality constraintbese dual (or shadow) prices then can be

used as prices to support a competitive equilibrium



The paper proceeds as follows. Section Il revid¢hes relevant literature. Then in
Section lll, we define a linear program that solvesed-integer programs and discuss why
linear prices on the output commodity are not sidfit for a competitive equilibrium in the face
of non-convexities. In Section IV, we discuss éxample used by Scarf (1994), and we show
how the market clearing prices can be computechi®rmodel. In Section V, we provide a
general formulation of the market clearing moded angeneral proof that demonstrates that we
can always find prices that will clear a markethwinndivisibilities, so long as we can find the
optimal solution to the MIP that describes the reaairkSection VI concludes and discusses some

applications and extensions.
[l. Related Literature

The economics and management science literatuse olcaasionally addressed the
problem of finding dual price interpretations toeiger programs and MIPs. The classic work in
this area is Gomory and Baumol (1960). In ordefirtd the solution to the MIP, Gomory and
Baumol add additional constraints or cutting platieshe LP relaxation of the MIP), which in
their case they define as linear combinations o$teg constraints, until the solution to the
augmented LP results in an integer solution. Whis tnethodology, they obtain shadow prices
that are non-negative, impute zero profits, andrigero prices for activities not used to capacity.

However, the shadow prices obtained by Gomory Badmol have some peculiar
properties. The prices themselves are integeredaéund can vary with the choice of additional
constraints. Gomory and Baumol refer to the addéi constraints needed to solve the problem
as “artificial”, and they refer to the shadow pecen the additional constraints as “artificial
capacity prices” or as the “opportunity costs o thdivisibilities.” Moreover, they observe that

constraints in the non-integer solution that haesitpve prices may have zero prices in the



integer solution. For example, a warehouse may laawapacity of, say, 3.4 units, but the units
only come in integer values. In this case, theacayp constraint may be binding (by making 4
units infeasible), but there is still positive #tadn an economic sense, there should be a pesitiv
price associated with this constraint.

In an attempt to deal with these peculiaritiesp®oy and Baumol attempt to impute the
prices from the “artificial” constraints back intbe original constraints to get prices. These
recomputed prices have the property that they yiglld zero profit and any good with a zero
price is truly a free good in an economic sensa&fokiunately, the recomputed prices may not
price at zero all free goods.

The Gomory and Baumol prices also have some wellfiapécations. First, competitive
output combinations arising from these prices Wl efficient. However, Gomory and Baumol
go on to state:

"Unlike the ordinary linear programming case, hoarevnot every efficient

output can be achieved by simple centralized pyiciacisions or by competitive

market pricing processes. Moreover, it is possibl¢he integer programming

case that there exists no hyperplane which sepathee feasible lattice points

from those which are preferred to or indifferenthwihe optimal lattice point. In

other words, there may exist no set of prices whithultaneously makes the

optimal point,Q, the most profitable among those that can be mediuand the

cheapest among those that consumers considerdbleast as good &3. That

is, at any set of prices either producers will toy make, or consumers will

demand, some other output combination” (p. 537).



It is important to note here that Gomory and Baumod searching for linear, uniform
commodity prices. They do note that there are mteakzed discriminatory prices that would
lead to an efficient allocation, but they do notgue this line of inquiry further.

Additional relevant research stems from Shapley @inubik (1972) and their discussion
of assignment markets. They point out that lirmanmodity prices that support an equilibrium
are available in a market with indivisibilities whéhe market can be modeled as a two-sided
assignment game. When this is done, the dualhlasaf the resulting assignment problem can
be used to create prices that clear the marketileVBhapley and Shubik lay the groundwork for
deriving prices in markets with indivisibilitiesdir approach is successful only when the linear
programming relaxation coincidently solves the gete programming representation of the
market, as is the case with the assignment probltile this approach addresses some markets
with indivisibilities, it does not address the gealease where the indivisibilities arise from such
things as startup costs and economies of scale.

Later authors have addressed variations on thegramsnt game (Leonard, 1983;
Bikhchandani and Mamer, 1997; Bikhchandani and @yst200la; and Bikhchandani and
Ostroy, 2001b). The central issue in these paigetisat equilibrium supporting prices can be
obtained when the underlying market is represeatedn assignment problem. In these cases,
there are a set of prices (dual variables) forctlramodities that fall in the core of an assignment
game, and there may be, and generally are, macypgnectors that support an equilibrium. All
of the researchers stop short of the next stepeadeéd in this paper: the problem of deriving a
set of prices that will support a Walrasian contpegi equilibrium in a general nonconvex

market (i.e. one where the LP relaxation fails tincidently solve the MIP). In particular,



Bikhchandani and Ostroy 2001b extend results fakage bidding beyond the assignment
model, but not to general MIPs.

Scarf (1990, 1994) describes the simplex algoritbinsolving LPs as being analogous to
the economic institution of competitive markets,edfpcally a Walrasian auction. The
similarities are that in a Walrasian auction, theteneer calls out prices until markets clear and
there are zero profits, while the simplex algoritattempts candidate solutions until no activity
or slack variable can be introduced into the sofubasis that improves the solution. Scarf then
goes on to note that once increasing returns tte smaindivisibilities are introduced, it is
difficult to draw any similar analogies betweenemgér programming algorithms and firms or
markets with such indivisibilities. Moreover, Scé&t990) makes the following observations:

“And, perhaps even more significant for economi@otly, none of these

algorithms seemed capable of being interpreted ev®n the most sympathetic

student - in meaningful economic terms. ... Th& {gor convex programs) for
optimality is not available for integer programisete simply need not be a set of

prices that yields a zero profit for the activitiasuse at the optimal solution. ... Is

its profitability at the equilibrium prices a nesasy and sufficient condition for a

Pareto improvement - for the possibility that ewery can be made better off

using this new activity? The answer, unfortunatedyno! ... The market test fails

because the firm, whose technology is based orcewitg-analysis model with

integral activity levels, cannot be decentralizethout losing the advantages of

increasing returns to scale” (p. 381-382).

In an attempt to link integer-programming algamth to economic institutions Scarf

(1990) draws the analogy of the internal structoirea large firm to an integer-programming



algorithm. Scarf looks at an integer-programmirigoathm that breaks the large integer
program down into a decision tree in which smadigp-problems can be solved in polynomial
time. Scarf likens the branches of this tree taistbns of a large firm, and the nodes as
managers making decisions for each of the branicblesv it. However, Scarf (1990) offers no
method for computing prices that will help cleae timarket in the presence of indivisibilities,
and that will provide a pricing test for Pareto noyements.

More recently, Williams (1996) discusses the miatecs of duality and its potential
economic interpretations. Williams observes the esgaroblems encountered by Gomory and
Baumol in that there are often binding constraintsteger programs that have positive slack.
Williams laments that this problem leads to matherahdifficulties, particularly a violation of
complementarity conditions. Moreover, Williams tamds that the dual prices found by
Gomory and Baumol do not provide a proof of optitgglequality of primal and dual objective
functions). Williams then proposes a dual as aencomplex extension of Gomory and Baumol.
Computation of the dual relies heavily on advanogdger optimization techniques, and in
general it is difficult to associate any dual vhales with a particular resource. Finally, the dual
proposed by Williams, while providing a proof of topality, still does not satisfy
complementarityconditions.

Other operations researchers have also attempteefitee interpretable and computable
duals/shadow prices/price functions for integergpams (Wolsey, 1981). For instance, Crema
(1995) defines a shadow price based on the avermgemental contribution of a resource,
while Williams (1989) defines a marginal value & tdirectional partial derivative of the

optimal objective function value with respect tatpebations in the right hand side.
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The approach described here models markets withisiallities first as a MIP and then
as a linear program that is created from the optisaédution to the MIP. In terms of the
assignment markets literature and traditional necomomic theory, we are expanding the set of
commodities in the market (and therefore commagliteebe priced) by at most one extra good
for each indivisibility. In this vein, the markean be thought of as a pseudo-assignment game
for the indivisibilities combined with a continuogame for the commodities. In the vernacular
of game theory, the general non-convex marketgarae that has an empty core in the initial
commodity space. By expanding the game to incltite indivisibilities as additional
commodities, the game is converted to one in adrighmensional space where there is a
nonempty core. As a result, this expanded gamelveays be solved to produce a set of linear
prices for indivisibilities and commodities thatpgorts a competitive equilibrium and clears the
market.

[1l. Prices in the LP that Solve the MIP

A mixed integer problem witim continuous variables amtlinteger variables (Rx Z"
that has a feasible and bounded optimal solutionbesaconverted to a linear program with at
mostm-+n continuous variables (R") and at mosh additional linear constraints (Gomory and
Baumol, 1960). These statements can be proved $srahbg that an additional constraint can be
defined for each integer variable setting the \@dei@qual to its optimal value, which produces a
LP that solves théMIP. (It is worth noting here that simply solvitige integer program and
inserting the optimal values as equality constsisinot what Gomory and Baumol had in mind.
They were primarily concerned with using cuttingr@s to find the solution to the integer
program. As the reader will see below, we sepdhetessues of finding the optimal solution and

identifying cuts whose duals can be interpretegrases.) Thus, n can be thought of as the
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maximum number of additional degrees of freedondeddo price the output or the maximum
additional dimensions needed for the space whexesdéiparating hyperplane or linear support
function exists. In R, the support function is nonconvex and poorly edaGould 1971). In
R™" there is always a separating hyperplane.

The next challenge is to find an economic inteidien of the linear prices in"R". For
convex problems there is a commodity vector forakhinere is a corresponding price vector.
In the fixed charges example @bmoryand Baumol (1960, pp. 538-540), they assume tleat th
additional dimensions are artificial and not megfuh However, we believe the additional
dimensions required for integer problems can bdullgeviewed as additional commodities.
One can think of the sub-optimality associated vittegral activities and linear prices as a
misspecification of the commodity space. If stgs, or any other integral activity, are
necessary for production, the auctioneer can cengltese activities as separate commodities
complementary to the output commodity productiotivdies that can therefore be priced as

well.
IV. Scarf's Example

As an example of a market with non-convexities theks a market-clearing price for the
commodity, consider the problem put forth by Sa894). He postulates two types of plants,
each with significant fixed costs and relativelyadinmarginal costs (Table 1). The objective of
the problem (auctioneer) is to minimize the totatoof satisfying a fixed level of demand. The
corresponding decentralized market problem wouldobeach plant of each type to maximize
profits subject to internal constraints and satmeBrket feasibility.

Suppose that we were to attempt to satisfy a fikechand of 61 units. The optimal

solution to this problem would be to build three dkastack plants and two High Tech plants
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with each running at full capacity except for tlastl Smokestack plant that only produces 15
units. What prices would support a competitive ildgium in the decentralized market
problem? In the context of linear prices, candidaices might include the marginal production
costs of each type of plant and the average codtdl &apacity of each type of plant. Yet if
price equaled either of the marginal costs (2 orn@)ther type of technology would want to
produce. Each type would incur losses, so it adifppmaximizing at those prices to neither build
nor produce. But on the other hand, if the priqaaded the average cost of the Smokestack
technology at capacity (6.3125), then two Smokéstgoe plants would be making zero profits,
and the third Smokestack plant would be operattrag lass. At this price, the High Tech types
would be making positive profits, and an infinitenmber of this type would want to enter the
market. Therefore, 6.3125 cannot be an equilibquime since there would be excess supply at
this price. The only other serious candidate piscthe average cost of the High Tech type at
capacity (6.2857). At this price the High Techdgpvould make zero profit if they operate at
full capacity, but the Smokestack types would stitlur losses. Therefore, no Smokestack types
would wish to enter; further, if enough High Tegpéds enter to meet the demand of 61, the last
unit would not be operating at capacity, and wdagdncurring losses. Thus, a price of 6.2857
cannot be an equilibrium either.

Table 1. Production Characteristics: Smokestackersus High Tech (from Scarf, 1994)

Smokestack High Tech
Characteristic (Type 1 Plant) (Type 2 Plant)
Capacity 16 7
Construction Cost 53 30
Marginal Cost 3 2
Average Cost at Capacity 6.3125 6.2857
Total Cost at Capacity 101 44

13



Now, consider the construction (start-up) for eagle as a separate commodity so that
there are now three commodities that must be pritdeel final output, construction of the
Smokestack type, and construction of the High Tgpke. Let a price of 3, the marginal cost of
the higher cost type, be the candidate price feffittal output. Let a price of 53, the construction
cost of the Smokestack type, be the candidate fordeuilding the Smokestack type. Finally, let
a price of 23 be the candidate price for buildingHTech types. A price of 3 on the final
output makes sense, in the example above, sindbitdeSmokestack unit can produce one more
unit at a marginal cost of 3 before being at cayacAt the candidate prices, all Smokestack
units would receive a price of 3 for the final auitphat they can produce at a marginal cost of 3.
Each Smokestack unit then receives a price of B8dnstruction, leaving each Smokestack unit
with zero profits. The High Tech units each reeeavprice of 3 for the final output that they can
produce at a marginal cost of 2, leaving each Higbh unit with a margin of 1 per unit of
output. At the candidate construction price of @8¢h High Tech unit is left with precisely zero
profit. Note that the construction price that Hi§ach units receive is not equal to its actual
construction costs. If the market were to naiedy them actual construction costs, the High
Tech units would be making positive profits thatuleblead to entry of an infinite number of
High Tech units and excess supply.

Thus, if entry decisions in that example are viéwss commodities, competitive
equilibrium supporting prices can be constructdt.turns out that these prices are the dual
variables for a linear program augmented by twa th&t define the number of Smokestack and
High Tech units as equaling 3 and 2, respectivéthythe remainder of this section, we analyze
Scarf's problem further and then present the oailgmixed integer programming formulation

along with the augmented LP that solves it.
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Table 2. Cost Minimizing Choices of Plants and Oput Levels (from Scarf 1994)

Type 1 Plants Type 2 Plants Output of  Output of
Demand (Smokestack) (High Tech) Type 1 Type 2 Total Cost

55 3 1 48 7 347
56 0 8 0 56 352
57 1 6 15 42 362
58 1 6 16 42 365
59 2 4 31 28 375
60 2 4 32 28 378
61 3 2 47 14 388
62 3 2 48 14 391
63 0 9 0 63 396
64 4 0 64 0 404
65 1 7 16 49 409
66 2 5 31 35 419
67 2 5 32 35 422
68 3 3 47 21 432
69 3 3 48 21 435
70 0 10 0 70 440

Table 2 presents the least-cost solutions for desyaanging from 55 to 70 units in the
example presented by Scarf (1994). We calculatatket-clearing prices for these problems
using the following procedure:

1. Formulate the problem as a mixed integer prograchsolve.

2. Find a LP that solves the MIP by adding cuts seathe integer variables to their optimal
values.

3. Use the dual variables and primal quantitiemftbe linear program to form an efficient
contract.

A MIP formulation of the Scarf problem to find thest minimizing set of units and outputs is:

Minimize: Y. (53 +3q )+ Z,— (30z; + 2q;) (4.1)
subject to: Ziqﬂ + Z [ G = Q (4.2)
-16z,+q <0 Oi (4.3)
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- 722] Q< 0 iy (4.4)

0,,0,20 01, j (4.5)
z;,%; 1{0} 0i,j, (4.6)
where:
z1;i andz; represent the decision to start up plaft=1,2,...,1) of | available Smokestack

plants and plant(j=1,2,...,J) of J High Tech plants, respectively, and
0ui anday; are the quantities of output for Smokestack plarind High Tech plan,
respectively.

Note thatthe formulation shown here can take an unnecegdang time to solve unless
modern MIP software is used (Hobbs, Stewart, et28l01). An equivalent formulation that
would solve more quickly on basic MIP solvers definz and 2z as representing the total
numbers of units of types 1 and 2, respectively] gnand @ asrepresenting their respective

outputs.

A linear program that solves the above MIP can tsated by replacing the integer

constraint (4.6) with the two sets of constraints:
z, =7 i 4.7)
2= g 0j (4.8)
where z, and z;]. are the optimal values from the MIP. The dualaldes for constraints (4.2),
(4.3), (4.4), (4.7), and (4.8) in the LP are dedoby the symbolsy, y., Y, wii, andwx;

respectively, and they represent, in order, thglsicommodityprice for each output unit

produced, the capacity price for ttita Smokestack plant, the capacity price jtbr High Tech
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plant, the start-up (construction) price for tlin Smokestack plant, and the start-up
(construction) price for thgh High Tech plant.

Table 3 summarizes the values of the dual varidbbes solving the LP for each of the
demand instances in Table 2. As we show in th¢ sextion, the dual variables for the market
constraint (4.2) and integer variable constraidt§)(and (4.8) collectively can be used by a
market operator (auctioneer) to define a set afgsrithat clear the market and are efficient.
Each Smokestack plant is paMi*z,* for starting up ang*q.i* in exchange for producing
g1*, and each High Tech plant is paigdj*z,* for starting up and/*gy* in exchange for
producingay;*.

In general, it is necessary to specify the quamditye produced in the contract because
price signals alone as decentralized mechanismsoa@ways sufficient to clear the market for
either convex or nonconvex problems. In convexnaigition, only cost functions that are
strictly convex at the equilibrium will, in generallow for pure price signals in an auction
context. Otherwise, if a supplier is on the flattpof a marginal cost curve, the auctioneer must
send quantity signals in addition to price signalsbtain a feasible solution that clears the
market without excess supply or demand.

Negative prices are payments to the auctioneer Iplaat as part of choosing to
produce). (In this case, the capacity price islicrtly embedded in the start-up price. For Type
2 units, the derivative of the Lagrangean definadeu the LP with respe@h; and setting that
equal to zero is 36 7y, — Wy = 0.) These prices yield nonnegative profits fackeplant. No
plant prefers to change its output and start-upsa®ct at the prices that have been announced.

Under these prices, those producing and those maluping are both economically satisfied

17



with their chosen production allocation, in the setthat under the announced prices, no other
levels of output would increase profit. Finallgetsolution is efficient (in this case, least cost)

Table 3: Dual Prices for Scarf's Problem

Plant 1 (Smokestack) Plant 2 (High Tech)
Dual Price  Commodity  Start-up Capacity Start-up Capacity
Set Price (y) Price(waj) Price(y,) Price(wx) Price(yz)
Set P 3 53 0 23 -1
Set II° 6.3125 0 -3.3125 -.1875 -4.3125
Set IlI° 6.2857 429 -3.2857 0 -4.2857

a. Applies to all integer demand level<pfrom 55 to 70
b. There are alternative dual solutions for demanid$,56,58,60,62,63,64,65,67,69,70,
when all units started, of either type, are opeggdit full capacity.

In the examples, the commodity pricge)(is either the variable cost of unit 1 (the
highest unit marginal operating cost), the averegg of unit 1 at full output, or the average
cost of unit 2 at full output (Table 3). The m¥cmay not be unique, depending on the level of
demand, as indicated in Table 3. These result flegeneracy in the primal LP, stemming
from the coincidence that demand exactly equalsstime of the capacities of the units in the
solution. However, each set of prices yields @m@e revenue and output result. Each also has
an economic interpretation. There are three dgisiaes corresponding to the dual variables in
Table 3. A example using dual price set | would be
1. For Smokestack units: produgg*; get paid $3/unit of produced (the highest margouesit

of a running unit); and get paid $53 to start.
2. For High Tech units: producg*; get paid $3/unit of production; and get paid $23ttot.

In this example, it turns out that all units proohg are offered prices that pay exactly
their costs. The start-up price is the differebetwveen total cost and the commodity revenues.
But in general, profits (scarcity rents) can beifpas if, for instance, some firms possess

uniquely low cost technologies and there are atdéichinumber of plants of a specific
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technology. In a more general case |, there wdagda finite number of plants, each with

different costs. Under these conditions, manyhefliidders could expect to see positive profits.
In Scarf’'s example there are an infinite numbepatential entrants with costs identical to firms

in the solution. So for these entrants to be fsatisand for there to be a competitive

equilibrium, no firms in the solution can be eagpositive rents.

The linear prices we derive can be viewed as bamgjogous to multi-part prices for
output commodities alone, except the prices we ggegexplicitly treat the non-convexity as a
commodity and price it as such. Moreover, thedmarices we derive, are similar to a solution
to a cooperative bargaining problem (Luce and Rdif®57) and to optimal multi-part pricing
for natural monopolies such as demand and commatdyges in regulatory contracts (Brown
and Sibley 1986). For example, a start-up pricelmaviewed as being similar to a demand or
customer charge in natural-monopoly utility pricingn contrast, in the presence of demand
with non-zero elasticity, the best one-part priaessRamsey (1927) prices and are "second best"
when compared with efficient multi-part prices fddition to Ramsey, see Sharkey 1982) or, as
we show below, the linear prices we derive when explicitly take integral activities as
commodities. It then should come as no surpris¢ thore degrees of freedom for pricing
allows for greater efficiency in a market with nm@artsaction costs. For MIPs, the pricing
degrees of freedom needed are bounded by the st alimber of explicit constraints and the
number of integer variables. In our experiencesatving electric power unit commitment
models, the number of non-zero prices associatéd start-up and shut-down decisions is one
to two orders of magnitude smaller than the nunabesuch variables. However, in general, the
number of additional prices could, in theory, tiseghe number of integer variables.

Demand as well as supply can have significant rorvexities. For example, the
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electricity consumption of an aluminum smelter ayalotron may be an all-or-nothing choice.
If the buyers’ problems can also be modeled inMiti¢, equilibrium prices that are optimal can
be devised for both buyers and sellers. In the sestion, we present our general results for all

markets that can be represented by mixed integgrams.
V. General Formulation and Proofs

In this section, we present a result concernirg équivalence of a MIP and an LP
augmented with certain defined cutting planes. tén define a contract that an auctioneer
might offer that is efficient and that has pricéstt support a market clearing equilibrium.
Although these results are phrased as if they apply to formal auction markets, they are also
applicable to other markets.

Consider an auction market that can be represdntedPrimal Mixed I ntegerProgram
(PIP). The formulation below assumes that theianeer is buying and/or selling a set of goods,
and has an objective of maximizing the value tadbrd. The auctioneer is simply a computer

code that finds a solution to tipeoblem:

PIP  Maximize: Vpp = D, GX%+2, 0%

Subjectto: ). Agx *+ Y., AxZ< By

BaXt Boz< R Uk
X 20 Ok
z, 0{q3"® Ok,

where
X Z  are commodities or column vectors of commodifiegarticipant k I K) in the

market,
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Cv, &  are the values (benefits or costs) (scalars ciove) associated with the activities of
participantk (c« + dkz is the benefit or cost accruing to participlt

Au1, A2, are matrices whose coefficients reflect productiodemand characteristics of bidders
such that the constrairi AaXct Z . A%< Rrepresents the market clearing

constraint,
B«1,Bx2 are matrices whose coefficients reflect restricgion the individual bidders operations
(e.g. production of a particular plant is limitedthe capacity of that plant),
by represents the right hand sides of internal caimés of market participamt(scalars or
column vectors),
bo represents output commodities to be auctioneithé@yauctioneer (a scalar or column
vector) whose elements are different from zeroam@-sided auction and equal to zero
if a two sided auction.
Lower case characters represent scalars or vecigpsy case characters represent matrices; all
multiplication is of compatible dimensions.
Note that these problems may be hard to solveusecavith a few special exceptions,
they are NP-hard problemsegJohnsoret al. (1997)).

A Primal LinearProgram that solves PIP is:
PLIP(z*) Maximize:  Vp,p = Z GoX t Z O %

subjectto: Y AqX + ) Aci< B

BaX + Boz< B Dk
2 = % Ok
X 20 Ok,

21



wherez* represents the values of thevariables in an optimal solution to PIP. In gehelPLIP
contains more constraints than PIP; these are defedehe LP to solve the MIP and to yield

strong duality. The dual of PLIP(z*) is:

DLIP(z*) Minimize: Vo = Yolbt 2 MRt D, W Z

subject to: YoA:t Y Bi2 G Ok
YoAo+ % Bot W2 d Ok
Yo20
Y20, Ok
w, unrestricted Ok,

whereyp, Y, W are the dual variables, either scalars or appatgdyi dimensioned row vectors.
Theorem 1. vpp* = Vpp* = Vpup*, Where * indicates the optimal solution value fhe
respective problems.
Proof: vpp* = vpp* because PLIP is PIP with the additional constsaithiat the integer
variables are constrained to their optimal valugds¢h then allows the integrality conditiaa]
Z of PIP to be dropped as redundawm),p* = vpp* by strong duality of linear progranisl

With the auctioneer’s problem defined and thel@siament of Theorem 1, we can now
define the decentralized market problem so thatcare show that the dual variables (shadow
prices) that constitute the optimal solution \g. p*, are prices that support a competitive
equilibrium. Let g be the price of the output commodity, [t be the price of the commodity
representing the integral activity for ag&nThen each agehtsolves the following problem:
PIP,  Maximize:Vpipk = (Cix + dizi) —Po(AXictAxazi) -PZ

subject to: Buxk + Bz < by

X 20,
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2. 0Z¢

With each agent’s problem defined, we can now @edirompetitive equilibrium for the market.
Definition 1: A competitive equilibrium for this market is a set of pricepe{, pZ} for all k ,
and allocationgx, , z } for all k such that

1. Atthe prices fo, pZ} , the allocationgxy , z } solve PIR for all k, and

2. The market clears),, A,% + 2., As%< .

Theorem 2: Let {x*,z*" }be the solution to PIP(z*) and PLIP(z*) and leb¥, y«*, wi*} be the
solution to DLIPg*). If yo* = po andwe* = p, then the pricesy*, wi*} and allocations
{x*,z*" } for all kis a competitive equilibrium.

Proof: We use the notatian*' to distinguish the optimal value of the variahlérom the fixed
right hand side of the constramt= z* in PLIP(z*). The Karesh-Kuhn-Tucker conditions fo

optimality of these problems are:
0< (Yo*Ar + Y'Bra- a) Ox* =0 Ok,
0< (Yo*Akz + WBie+w* - d) Oz =0 Ok,
O0<yo* [ (Zk A + 2k Az’ - ) <0
O<y* OBrax* + Bz - h) <0 Ok,
Wik (z* - 2* ) =0 Ok,
where “0< f(x) O x> 0” is shorthand for the following complementarttyndition for a scalar of

column vector x and a function of the same dimena®Xx:

0<f(x); x=>0; f(x)' x=0.
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Now consider the following problem. Say that whiea auctioneer definél, each participark

is offered pricesYo*, wy*} (term 2 of the contract), but their primal variab are unconstrained
(term 1 is not enforced). Then each particigawtill solve the following MIP that maximizes its
benefits minus payment, subject to its internalst@ints:

PIPc Maximize:Vpipk = (CiX + ki) —Yo* (AkaXictAkazc) -Wic*Zk

subject to: Buxk + Bz < by Ok
X 20, Ok
z. 0 Z8 Ok

Let vpip* be the value of the objective of RIBt {z*, xi*}. We can show thatpp* = y*by as
follows. Insert &*, xc*} into the objective of PIR and then add the terw*(Bup* + Byoz* -
by to the objective (which is permissible, since bg ttomplementary slackness conditions
given above, that term equals zero), and then t#erces:
Veipk® = (Cixi* + dizd) —Yo  (AkaXid*+AaZd*) —Wi*Zk — W (BraXc* + Bz — bi)

= (G - Yo* ALY Bro)Xc*+ (dk - Yo*Akz - WBkazd* - Wi*)zi* +y kb

= Yi*bx
The third equality follows because the first andos&l terms in the second equality each equal
zero by the complementary slackness conditionsngiearlier. Since botlyy and by are
nonnegative vpipk t00 is nonnegative, and all bidders must earn ngainee (and perhaps
positive) profits under contragt.

Now, let the optimal solution to BI®evpp™* . If is vpip** is less than or equal t@p*

for eachk, then the contradt is market clearing for the reasons below:

* no participant can obtain a feasiblg,{z} giving a greater profit in PlPthan {*,z*}, and

24



* as {*,z¢*} by definition solves PLIP, they also satisfy timearket clearing condition
2 (AxictAxazi) < by
The last thing that must be shown is thap** < vpipe* is indeed true. To demonstrate this,

rearrange the terms @ ;p** to yield the following:

Vpip™* = Maximize [ck - Yo*Ak)Xk + (dk - Yo*Akz - W)Zy]

subject to: Buixk + Byozk < by Ok
Xk =0 Ok
z, 0Z° Ok .

Now let {x**,z\** } be the optimal solution for P[P As a resultypipk** = [ (Ck - Yo*Ak)X**
+(dk - Yo*Ak2 - WH)ze**]. Now add the following nonnegative termvige**:
W (BraX™ + B kozd™ - by).
This term is nonnegative becaygte = 0 (see the PLIP complementary slackness condjtions
above) an®Bx** +B z** < by (by the definition of PIP. As a result:
Veipk™ < [(Ck - YorAk)X ™+ (d k - Yo*Akz - W)Zi™ ] - Vi (BkaXd™ + B oz -by)
= [(Ck - Yo* Ak -y Bko)Xd™ + (d k - Yo*Akz - W Bka - W)™ | + yi*bi
< Yi*bk = vpipit.
The last inequality results from noting that:
1. (C - Yo*Ak -Y'Brx™* < 0, becauséck - Yo*Aki-Yi*Bki) < 0 (from the definition of DLIP,
above) and** > 0.
2. (dk - Yo*Ak2 - W*Bk2 - WH)z** < 0, becausédk - Yo*Akz - W*Bkz2 - W*) < 0 (again from DLIP)

andz>* = 0.
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Consequently, we have shown thiab* < vpipe*; i.€., No participant k can obtain a feasible
solution giving a greater profit for BlIFhan the auctioneer's solutioxn¥, z*}. O

Theorem 2 shows that the dual solution to the cood linear program, PLIP, can be
used to form contracts for all bidders. In thigtaan, bidders may make or receive payments
associated with their lumpy decisions. In contriasa traditional uniform price auction, a bidder
is just paid the commodity (marginal) price (thealdvariable on the market clearing constraint)
for each unit of output and the dual variable amitidividual capacity constraint is ignored.

Theorem 2 in the context of Scarf’s problem presgidther insights. For instance, there
are some levels of quantity demanded for which t&rtokestack and High Tech plants are
“inframarginal” in the sense that their marginabtsare less than the commodity price and all
are operating at capacity (see Table 3). In theali program, the resulting scarcity rents appear
as positive dual variables on binding upper bouofdactivities. But, since they are paid an
amount equal to what they bid, they are also matgin other words, if the technology were
available to others and if any plant were to ratsebid, it would be replaced by another
competitor.

In some of these instances, High Tech units care hagative start-up payments,
indicating that scarcity rents from the commoditic@ exceed start-up costs. Such negative
start-up payments can occur in order to dissuadeanmomic entry for plants on the margin.
For instance, if any unit of a widely available ¢y collecting scarcity rents, then an infinite
number of those units will wish to enter, and tharket will not clear. However, in auctions
where entry cannot occur instantaneously (e.gly gawer markets), then rents can be earned
by units under & contracteven when, in the long run, the technology is widelailable. In

markets with integral constraints, the ‘margin’ niaguire the entire plant.

26



Examples of auctions formulated in a manner simbdaand yielding linear prices similar
to T can be found in the New York Independent Systener@ipr (NYISO) and the
Pennsylvania-New Jersey-Maryland InterconnectiodMPelectric energy markets. In these
markets, the market operator explicitly asks geoesato bid costs associated with non-
convexities (start-up and minimum load). In theswrkats, if a generating unit is started up in
order to meet demand and if the revenues from dlee &f energy fail to cover the sum of the
variable costs and the startup costs, then thdomeer provides a lump sum payment to the
generator to make up the difference. On the otfaed, if a generating unit’'s scarcity rents
associated with binding internal capacity constgaiare greater than start-up costs, then the
generating units are allowed to keep the rentgcatffely ignoring a negative dual price on the
start-up constraint.

Theorem 3:If each participant k submits a bid reflectingtiige valuationsdgxy + dkz) and true
constraints Byixx + Brozk < b X =0; % UZ"), an auction defined as follows maximizes net
social benefits X, [ckxk + dkz]) and is market clearing:

1. The auctioneer first solves problem PIP dyred primal solution %*,z¢* };

2.  The auctioneer determines pricgs { wi*} by solving problem PLIP{*); and

3.  The auctioneer offers contragts
Proof. By definition, the solution X*, z*} of PIP maximizes net social benefits and satssfie
the second condition of market clearing [AxX« + Ax2z] < by). The only remaining condition
is whether the prices from PLEP{ support this solution. Theorem 2 demonstrates fibri the
payment schemes ih. [0

Theorem 3 is an extension, to auctions with nowegrities, of the Fundamental Theorem

of Welfare Economics, which states that a competigiquilibrium is Pareto Optimal.
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VI. Conclusions, Applications, and Extensions

This paper has addressed a problem that has tobtitdeeconomic analysis of markets
with non-convexities: the existence of market dlegarprices. Given the presence of non-
convexities in emerging electricity auctions, thi®blem is of practical as well as theoretical
interest. The contracts defined byprovide an answer to Scarf's (1994) search foetao$
prices in the presence of non-convexities thatdyrmdro profits for all activities in the optimal
solution. These results hold for any market tlaat loe represented by a mixed integer program.

Given recent advances in computational technologyl anteger programming
algorithms, finding the prices necessary to defihese contracts is practical. Roughly
speaking, MIPs today take on average about the sandess time (wall clock) than linear
programs of a similar size took to solve in theA®@Ceria, 2001; Hobbs, Stewattal, 2001).
(With respect to computational times, the theoattiupper bounds on calculations have usually
been much greater than the actual solution timesplications. There are several possible
explanations for this discrepancy. First, it maythat actual applications seldom encounter
pathological problems. Second, the difficult tdveoproblems are shelved. Third, difficult
problems can often be reformulated to remove masmhgbogies.) Therefore, the results
presented here are relevant for many practicallpnag In particular, applying this approach to
electric generating unit commitment auctions cdadda significant step forward. As mentioned
above, new and evolving electricity auction markiés PJM and NYISO have implemented
market and pricing mechanisms similar to the oseuwdised in this paper.

Now that we can find prices that support an equdiin in markets with non-

convexities, there are many questions that canxbenmed. First, Scarf's (1994) search for
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price based tests for Pareto improving entry camebexamined. If any potential activity can
make a positive profit under the prices and quiastispecified in contradi, then it should be
included in the solution. Future work should imgete the definition and properties of such
tests. However, such tests are unlikely to be beitessary and sufficient for evaluating the
profitability of such activities in non-convex pilems; in general, there may be some activities
that fail those tests, yet their inclusion wouldl gicrease profit. A definitive test is to inde

the activity in the MIP and resolve the model. tEoately, improved capabilities in mixed
integer programming make that a more practical @gogr than it once was.

Second, much has been made in the electricitystng about the possibilities for
strategic bidding behavior to manipulate priceg.(d8orenstein and Bushnell, 1999). Adding
bidding parameters, such as an integral activiiy $tart-up costs, gives generators another
degree of freedom that they can manipulate streaélgi One intuitive observation can be made
about strategic behavior. In the context of aesglauction where the technologies are widely
available and entry is instantaneous (as in thef 8égample in Section 1V), even if the
participants are not constrained to bid costs, B Bliction solution produces a Nash equilibrium
in which all generators bid their costs. The reasdhat if anyone bids above its costs it would
be immediately undercut by an entrant with the seasts. However, while this may be a good
point of departure, the reality of market powemarkets with integral activities is much
different. An examination of whether a greaterreise of market power, and hence higher
market power rents, are possible in the auctiorketgroposed in this paper versus simple
auctions in which non-convexities are ignored tureed to address the above issue. In the
context of such a study, issues like what bid patans (integral or continuous) should be bid

strategically to maximize profit, and what kindaattivity rules hinder or help such strategic
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behavior. Moreover, the auction pricing mechansoposed in this paper could be compared to
first-price and Vickrey-Clarke-Groves auction mealans. See Hoblet al. (2000) for a start at
this.

Third, the efficiency of the auction pricing mecksm proposed here can be compared
to the efficiency of simple auctions that ignorenfomnvexities. In particular, an efficiency
comparison of the MIP based auction to a simplemodity price, one-time auction would be
of interest. In the context of electricity markets, the abovenparison may have interesting
implications. While the overall cost impact of rRoonvex decisions may be small, these costs
can be a significant portion of total costs to gat@s serving peak load or reliability functions.
Moreover, without this mechanism, generators mageive physically infeasible dispatch
orders.

Finally, our results say nothing about the uniqssnaf equilibrium prices. In fact, as
can be seen in Scarf's example in Section 1V, tlee be multiple equilibria. (In simple
examples, degeneracy of the augmented LP can lmbkem leading to multiple dual solutions.
However, in larger more complex problems, it is motirely clear how big a problem a
multiplicity of solutions will be. In Scarf's exgnte, the multiple equilibria result from the
assumed identity of costs of different suppliets.reality, costs and bids are seldom exactly
equal) Alternative equilibrium prices might lead to @fént distributions of surplus for market
participants under contragt Given that there is a lot of money at stakehim new electricity
markets, where the bidding of non-convex costdresady taking place, an examination of the
distributional consequences and efficiency of aléwve equilibria and of suboptimal

approaches is of keen interest to these markatipanmnts.
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