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Abstract

In this paper we study both the nonpreemptive and preemptive versions of the popu-
lar unit-time open shop scheduling problem. For the set of feasible schedules which satisfy
a predetermined order of job completion times, we construct the linear description of the
convex hull of the vectors of the job completion times. Based on the properties of the result-
ing scheduling polyhedron, we show that the problem of constructing an optimal schedule
minimizing an arbitrary nondecreasing separable cost function of job completion times is

polynomially solvable.
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1 Introduction

We consider an open shop scheduling problem with n jobs and m machines. Each job has to
be processed by each machine exactly once in an arbitrary order and has a given processing
time p; for its operation Oy, @ = 1,...,n, k = 1,...,m. Each machine can handle at most
one operation at a time and each job can be processed by at most one machine at a time. If
preemption is forbidden, then a schedule can be specified either by the starting or completion
times of all operations. If preemption is allowed, then the processing of any operation O;; may
be interrupted at any time and resumed later, provided that the total length of all parts of the

operation is equal to p;x. A preemptive schedule can be specified by the starting or completion
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times of all parts of the operations. In either the preemptive or nonpreemptive case, a schedule
is characterized by the vector C = (C1,...,Cy) of the completion times of the jobs, where
C; = max{Ci|k = 1,...,m} is the completion time of job ¢ and Cj; is completion time of
operation Oj.

In this paper we focus on the special case of the problem with unit-time operations, i.e.
pix =1fori=1,...,n, k=1,...,m. This case is closely related to the scheduling problem
with m identical parallel machines and n identical jobs with preemption allowed. In the latter
problem, each job ¢, 1 <4 < n, can be processed by any machine k, 1 < k < m, which requires
pi =m.

The objective for both open shop and parallel machine problems is to construct a schedule
which minimizes a given function F = > | w; f(C;) depending on the completion times of the
jobs, where w; is the weight of job i and f(C;) is an arbitrary nondecreasing function. The
known examples of separable nondecreasing functions which have been studied in the scheduling
literature are

o F1 =311 wiC,

o =" wC?

o F3 =" wi(Ci —pi)?,

Fo=31", w;T;?, where T; = max{C; — D;,0} is a tardiness of job i with respect to due
date D;,

o [5=>" wi(l—e %), where r is a discount rate per unit time, 0 < r < 1,

o [s=> 1", w;e®@=Di) where « is a positive constant and D; is the due date of job i.

The first function Fj is the total weighted completion time and it is very well studied for
the unit-time open shop problem (see [1, 6, 8, 24]). The second function F» was introduced by
Townsend (1978) for the single machine problem with unequal job processing times. His paper
[30] was the first one to address a scheduling problem with the quadratic performance measure.
Since then various modified versions of the Townsend’s branch and bound algorithm and the
other approaches have been developed [2, 9, 12, 26]. The next function Fj generalizes function
F5. Tt was introduced by Szwarc and Mukhopadhyay [27, 28] in order to minimize the weighted
sum of squared waiting times, that is to reduce the inventory costs of raw materials and work-
in-process inventories. Function Fy is the total weighted squared tardiness introduced in [25] as
a compromise of the maximum tardiness and the total tardiness. The exponential function Fj
was introduced by Rothkopf in [20] and was also studied in [15, 21]. It can be treated as the

discounted total weighted completion time (see [22]). The last function Fg discussed in [§8] is



related to F5 and it can be considered as the total weighted exponential lateness. Observe that
functions F», F3, F, and Fy are convex, Fy is concave and the linear function Fj is both convex
and concave.

While the problem of minimizing the objective function F' = > | w; f(C;) has attracted
much attention of scheduling researchers, it has been investigated mainly for the single machine
case: polynomial-time algorithms are known for F1, F5, and Fg. For the multi-machine case with
arbitrary processing times, it is unlikely that a polynomial-time algorithm can be developed for
any of the functions Fi, Fs, ..., Fg since the problem with two parallel machines and function
Fy is NP-hard [7]. On the other hand, the multi-machine problem with equal processing times
has been extensively studied for the objective function Fp, but it has not been investigated for
any of the functions Fy, F5, ..., Fg.

Thus our first objective is to study the multi-machine problem of minimizing any of the
functions Fb, F3,..., Fg or, in general, an arbitrary nondecreasing separable function F =
S wif(C;). Second, we aim to advance the research on the unit-time open shop schedul-
ing problem from a polyhedral point of view by presenting a new mathematical formulation of
its scheduling polyhedron.

The polyhedral aspects of scheduling problems have been extensively studied since the pi-
oneering work by Balas [3]. Most of the research in this area, however, concentrates on the
single machine problem (see [17, 19, 32]) with the exception of [18], which investigates the non-
preemptive unit-time parallel machine problem with general assumptions on the release dates
and machine speeds. That paper shows that the scheduling polyhedron is supermodular, which
implies the possibility of minimizing function F; by a greedy algorithm.

In this research we construct a description of the scheduling polyhedron for the preemptive
parallel machine and open shop problems with zero release dates and equal machine speeds,
which leads to polynomial time algorithms for variants of the problems involving an arbitrary
nondecreasing objective function F' including the functions Fi-Fg as the special cases. The de-
scription consists of simultaneous linear inequalities that specify the convex hull of the character-
istic vectors associated with the feasible open shop schedules. We investigate some properties of
the polyhedron and show that the problem can be solved in polynomial time in both continuous
and discrete variables or, equivalently, the scheduling problem with or without preemption is
polynomially solvable.

To denote scheduling problems, we follow the standard classification scheme «|3|y (see, e.g.,

[8]), where « describes the machine environment, 3 stands for the job characteristics, and -y



is the objective function. For the original open shop problem, a = O, and for the auxiliary
parallel machine problem, o = P. The job characteristic f may include one of the conditions
pi = 1 or p; = m. The parameter pmtn in the second field denotes that preemption is allowed
and [pmtn]| denotes that preemption is allowed at integer times. The third field ~y specifies the
objective function F. The nonpreemptive and preemptive variants of our open shop problem
are denoted by Ol|p; = 1|F and Olpy = 1, pmin|F, respectively; while the two variants of the
parallel machine problem are denoted by P|p; = m|F and P|p; = m,pmitn|F, respectively.

The paper is organized as follows. In Section 2, we first determine the order of job com-
pletion times in the optimal schedule which is induced by the objective function F. Using the
result from [10, 13|, we specify linear inequalities that describe the convex hull of the feasible
completion time vectors which satisfy the specified job order. In fact, the convex hull is deter-
mined for an auxiliary problem P|p; = m,pmtn|F with each point of that hull corresponding
to a feasible open shop schedule (perhaps with preemption) and the integer points correspond-
ing to the nonpreemptive open shop schedules. In Section 3 we examine the properties of the
scheduling polyhedron. Based on these properties, we demonstrate in Section 4 how an arbitrary
nondecreasing function F' can be minimized in polynomial time. Directions worthy of further

research are suggested in Section 5.

2 The solution region of the problem O|p;; = 1|F

In this section, we construct the linear description of the scheduling polyhedron for the problems
Olpir, = 1|F and Olp;x = 1, pmin|F, which is defined as the convex hull of the job completion
time vectors C(s) associated with the feasible schedules s. The dominating integer points
of the scheduling polyhedron correspond to the characteristic vectors of the nonpreemptive

problem O|p;, = 1|F and all noninteger points correspond to the characteristic vectors of the

preemptive problem Olp;x = 1,pmin|F. We say that vector X = (x1, 2, - ,x,) dominates
vector Y = (y1,y2, -+ ,yn) if ; < y; for i = 1,...,n, and at least one of these inequalities is
strict.

In order to derive the analytic formulas for the scheduling polyhedron, we use the following
two results:
A. The equivalence of the problems O|p;, = 1, pmtn|F and P|p; = m,pmin|F (see [5]);
B. The necessary and sufficient conditions for the existence of a feasible schedule that respects
the deadlines Di, Da, ..., D, for the parallel machine problem P|p; = m, pmtn|C; <
D; (see [10, 13]).



The results can be formulated as follows.

Result A Any feasible schedule for the problem Olp;, = 1,pmin|F can be transformed into a
feasible schedule for the problem P|p; = m,pmin|F without changing the job completion times

and vice versa.

Observe that the equivalence of problems O|p;; = 1|F and P|p; = m, [pmtn] |F is proved in
[6].

Result B Let the jobs be numbered in accordance with D1 < Dy < ... < D,. A feasible
schedule for the problem P|p; = m, pmin|C; < D; exists if and only if the following inequalities
hold:

D,

v

m,

u
> Dy > pum, p=m-+1,...,n.
i=p—m+1

Due to Result A, the scheduling polyhedra for the problems O|p;r = 1,pmtn|F and Plp; =
m, pmitn|F coincide. Due to Result B, the completion times (C1, ..., C,,) of an arbitrary feasible

schedule for the problem P|p; = m,pmtn|F, if renumbered in nondecreasing order, satisfy the

inequalities
C1 <0y ... <Gy,
>
pr. Gr=m (1)
> Ci > um, p=m+1,....,n,
1=p—m+1

which specify the scheduling polyhedron P*.
The following lemma establishes a useful property of any optimal schedule for a nondecreasing

separable function F =", w; f(C}).

Lemma 1 If f(x) is a nondecreasing function and all jobs have equal processing times, then the
manimum of the separable function F' = >""" | w; f(C;) over all permutations m = (w(1),...,m(n))

s attained for
Cﬂ(l) < Cﬂ(g) <...< Cﬂ(n), wﬂ(l) > wﬂ(g) > ... 2> wﬂ(n). (2)

The lemma can be proved by the standard pairwise job interchange argument.
Based on Results A,B and Lemma 1, we can reduce the problems P|p; = m,pmtn|F and

O|pir = 1, pmin|F to the problem:

Minimize Y "w;f(Ci), subject to (1). (3)
=1



We study the relationship between the points of the polyhedron P! and feasible schedules of
the problems P|p; = m,pmtn|F and Olp;x = 1,pmin|F. In the next theorem we demonstrate
that any point of the scheduling polyhedron P! can be approximated with a point corresponding
to a feasible schedule for the problems P|p; = m,pmin|F and Ol|p;y, = 1,pmin|F. More pre-
cisiely, we show that for any point C = (Cj, ..., Cy) of the scheduling polyhedron P! there exists
a schedule C with job completion times Ci, ..., C, such that |Ci — (:’Z-\ <efori=1,2,....n

and for any positive ¢.
Theorem 1 The points C = (C4,...,Cy) of the scheduling polyhedron P! satisfy:

1) For any point C € P, there exists a “non-worse” point C= (é’l, e é’n) e P with C; <
Ci, i =1,...,n, that determines a feasible schedule for the problems P|p; = m,pmin|F

and Olpyr, = 1, pmin|F.

2) If a point C = (C4,...,Cy) of the scheduling polyhedron P! is not dominated by any other
point from P, then it specifies a feasible schedule for the problems P|p; = m,pmtn|F and
Olpir = 1,pmin|F.

3) An arbitrary point C of the scheduling polyhedron P can be approzimated with a point
corresponding to a feasible schedule for the problems Plp; = m,pmin|F and Olpy, =
1,pminl|F.

Observe that the known descriptions of scheduling polyhedra (see [17, 18]) do not have
property 3).

Proof. 1) The existence of the “non-worse” point C for the problem Plp; = m,pmtn|F
immediately follows from Result B is the values of Ci,Cs,...,C,, are used instead of dead-
lines .D1, Da, ..., Dy,. The corresponding optimal schedule can be constructed by means of the
O(nlogmn) algorithm from [23]. The number of preemptions in the resulting schedule is not
larger than n — 2 (see [23]). That schedule can be transformed into a feasible schedule for the
problem O|p;, = 1, pmitn|F by the O(gm?) algorithm from [5], where q is the number of states in
the preemptive parallel machine schedule and it is not greater than the number of preemptions
n—2.

2) As it follows from 1), there exists a feasible schedule C for Plp; = m,pmitn|F whose
completion times (é’l, ey C’n) satisfy: C~’Z < C;. Due to the assumption, there is no component
4 for which C’j < Cj. It means that C; =Cy, i =1,...,n. The schedule itself can be constructed

as described in 1).



3) As described above, we can always construct a feasible schedule C with job completion
times C; < Ci,i = 1,...,n. To construct a feasible schedule approximating C, we transform
a feasible schedule C by inserting idle times and processing infinitesimal parts of each job

i, 1=1,...,n, as close to C; as possible. ]

We illustrate Theorem 1 by the following example with n = 3 jobs, m = 2 parallel machines
and processing times p; = m, i@ = 1,...,n. The scheduling polyhedron P! is given by the
simultaneous inequalities

C1 <0y <G,
C1 > 2, (4)
Cy 4+ C3 > 6.

The two integer vectors C! = (2,2,4) and C? = (2, 3,3) satisfy (4). They are not dominated
by any other vector satisfying (4) and they determine the feasible schedules represented in
Figure 1. Vector C? = (3,3,3) also satisfies simultaneous inequalities (4) but it is dominated
by vector C? and it does not determine a feasible schedule: two machines cannot complete
processing three jobs at time C; = Cy = (5 = 3. On the other hand, there exists a noninteger
vector C* = (3,3,3 + ¢) which approximates vector C* and determines a feasible preemptive

schedule with inserted idle time. Schedules C!, C? and C* are illustrated in Fig. 1.

|
|
M, 1 : M, 1 3
My 2 [ 3 ] My 2 [ 3] 2]
| | | | | |
| | | | | |
0 2 4 0 2 3
Cl = (27274) 02 = (2737 3)
| | I3
| | |
M 3 |l 2|
My 1] 2] 1]
| | |
| | |
0 2 3

C* = (3,3,3+¢)

Figure 1: Schedules C!, C? and C*

Consider now the nonpreemptive problem O|p;r; = 1|F and the parallel machine problem



with preemptions at integer times P|p; = m,[pmitn] |F. The next theorem establishes the

properties similar to 1)-2).
Theorem 2 The integer points C = (C1,...,Cy) of the scheduling polyhedron Pt satisfy:

1) For an arbitrary integer point C of the scheduling polyhedron P!, there ewists a “non-
worse” integer point C = (C’l, ...,Cp) with C; < Ci, i = 1,...,n, that determines a

feasible schedule for the problems P|p; = m, [pmtn||F and O|py = 1|F.

2) If an integer point C of the scheduling polyhedron P! is not dominated by any other integer
point from P, then it specifies a feasible schedule for the problems Plp; = m, [pmtn]|F
and Olpir, = 1, pmin|F.

Proof. Property 1) can be proved in a similar way as in the previous theorem. As above, the
schedule with completion times (Cy, ..., Cy) can be constructed by the algorithm from [10, 23]
and in the resulting schedule preemptions occur at integer times. A feasible nonpreemptive open
shop schedule can now be obtained in O(nmlog?(nm)) time using the approach of Brucker et

al. [6] based on the edge coloring algorithm. n

Thus we can conclude that the problems O|p;, = 1|F and Plp; = m,[pmtn] |F can be
reduced to problem (3) with additional constraints on the integer values of C;.
Observe that verifying whether a vector C of the scheduling polyhedron P! is not dominated

by any other vector from P! can be done in O(n) steps for both Theorems 1 and 2.

3 Some properties

In this section, we study the properties of the scheduling polyhedron and an optimal schedule.

3.1 Lower and upper bounds on job completion times

Simultaneous inequalities (1) determine an unbounded polyhedron P! with an infinitely large
number of points corresponding to the schedules with inserted idle times. The importance of
limiting the search space by replacing the unbounded polyhedron with a closed one with regard
to combinatorial problems was stressed in [19]. To address this problem and to reduce the search
space, we may consider only a class of the so called “dense" schedules, for which a machine is
idle if and only if there is no job waiting for this machine [4]. Clearly, for any nondecreasing

objective function there exists an optimal schedule in the class of dense schedules.



The following lemma specifies the lower and upper bounds for the completion time C; of
each job 4. It is assumed that, for a given schedule, the jobs are numbered in nondecreasing

order of their completion times.
Theorem 3 For any dense schedule, the job completion times satisfy the inequalities:
max{i,m} < C;<i+m-—1, i=1,...,m. (5)

The proof is given in the Appendix. Observe that, as follows from Theorem 3, C; = m for

any dense schedule and hence for the optimal one as well.

3.2 Integral property

Integral polyhedra play an important role in combinatorial optimization. As we will show, the
polyhedron of problem (3) is not integral. On the other hand, we can enlarge the minimization
space of problem (3) retaining the same optimum solution while incorporating the integral
property in the enlarged polyhedron.

First we give an example justifying that not all extreme points of the polyhedron P! are

integers. Let n =4 and m = 3, then (1) becomes

Cy > 3, (6)
Cy > O, (7)
Cs > Oy, (8)
Cy > Cs, (9)
Co+ Cs+Cy > 12. (10)

It is easy to check that the extreme point defined by (6), (7), (9) and (10) treated as equalities
has a form (3, 3,4.5,4.5), i.e., it is not integral.
Let us now consider the alternative formulation of the minimization problem (3) obtained

by replacing the inequalities
Ci <y <... <y, (11)
by the lower bound on job completion time determined in Theorem 3:

C; > max{i,m},i=1,...,n,



i.e. the problem of minimizing F' over the polyhedron

C; > max{i,m}, 1=1,...,n,
2. p
P > G > pm, p=m+1,...,n. (12)
1=p—m+1

Due to Lemma 1, the minimum of the nondecreasing separable function F' =7 ; w; f(C;)
satisfies the ordering (11) and, in this sense, the problem with the enlarged minimization
space (12) is equivalent to problem (3).

In the matrix form, we represent this polyhedron as Ax > b with the matrix A given by

1
1
1
C’L > m, 1= 17 )y Ty
1
1
4 1
11111
1111
111 1 u
: > Cizpum, p=m+1,...,n.
i=p—m+1
1 1 11
1111
111 1
————
m ‘1’s
where in the first submatrix (rows i = 1,...,n), ‘1’ is in the i-th position, and in the second
submatrix (rows ¢ = n+1,...,2n—m), ‘I’s are in positions i—n+1, ..., i—n+m. Since any row of

the matrix A has the consecutive-ones-property, i.e., it has the form (0,...,0,1,...,1,0,...,0),
A is totally unimodular or, equivalently, the polyhedron P? is integral (see [11]).

The integral property of the polyhedron P? and the equivalence of the problems with the
simultaneous inequalities (12) and (1) will be used essentially in Section 4 dealing with the
algorithmic issues.

We illustrate the polyhedra P! and P? by an example with n = 3 jobs and m = 2 machines
(see Fig. 2). In accordance with Theorem 3, we restrict the search space to the parts of the
polyhedra P! and P? with C; = 2. The polyhedron P! is given by the hatched cone, while
the polyhedron P? is the union of the two cones. The black dots represent those integer points

which are not dominated by others.
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0O 1 92 3 4 5 6 7 8 O

Figure 2: Polyhedra P!, P?

Finally we observe that the convex hull of all feasible schedules regardless of the ordering (11)

can be defined as a union of n! polyhedra P! or P2, each of which satisfies its particular order

of job completion times Cy 1) < Cr2) < ... < Cry)- The relationships among the scheduling

polyhedra are illustrated schematically in Fig. 3.

/ Whole scheduling polyhedron

Polyhedron (12)

Polyhedron (1)

Optimum

N

\

/

Figure 3: The relationships between the scheduling polyhedra
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4 Algorithmic and complexity aspects

Based on the results of the previous section, we now describe polynomial-time algorithms to
solve our scheduling problems P|p; = m,pmtn|F, O|py, = 1,pmtn|F Plp; = m, [pmtn] |F, and
Olpi = 1|F. We will distinguish the continuous and discrete cases. As we have shown, the

optimal integer solution of the problem
Minimize F, subject to (12), (13)

determines the optimal nonpreemptive schedule for problems O|p;, = 1|F and P|p; = m, [pmtn]|F’;
the optimal continuous solution determines the optimal preemptive schedules for the problems
O|pi = 1,pmin|F and Plp; = m,pmtn |F.

In order to simplify problem (13), we use the lower and upper bounds (5) and substitute C;
by the new variables z; = C; — o, where a; = max{i, m}, thus replacing problem (13) by the
problem

n
Minimize — wif(m) + > w;f(x; + i)
i=2

subject to i=p—m+1

where
B; = min{i,m} — 1,

ho— (p=—m)Bm—p—1)/2, forpy=m+1,...,2m—1,
1 mim —1)/2, for p=2m,...,n.

Observe that h, <m(m —1)/2 for any p=m+1,...,n.

4.1 Nondecreasing convex separable objective function: Integer solution

We describe now an approach based on the reduction of problem (14) with additional integral
restrictions on the variables z;, i = 1,...,n, to linear programming problem (LP).
In order to formulate problem (14) with additional integral restrictions as a linear program,

we replace f(x; + ;) in (14) by the linear approximation on the integer grid

F@i + i) = Ei + nyy,
with coefficients &;;,,n;;, determined for successive unit-length slots [k — 1,k], k=1,...,5;:

§iw = fk+a;) — f(k+ai — 1),

12



nixg = kf(k+a; —1)— (k—=1)f(k + o).
It is easy to check that both functions f and f have equal values in the integer points z; = k,
k=1,...,03;, and thus finding an integer optimal solution of F' is equivalent to finding an integer
optimum solution of the piecewise-linear function F = o, wi f(z; + o).

Define new variables y;, for £ =1,...,3;, such that
0<wir <1,
and replace each variable z; by
Bi
x; = Zyika (15)
k=1

thus obtaining a new problem:

_ n B
Minimize F=5S wiéyyi
3 3 (16)
ik > N = 1...
subject to i=u;w+1 k§1 Yik = hy, p=m+1,...,n,
OSkaél’ izla"'7n;k:1’...76i.
Ifys, i=1,...,n, k=1,...,3,;, determine the integer optimal solution, then substituting

Y. into (15) yields the optimum values for z; because f is convex. Moreover, the matrix of (16)
is totally unimodular since it has the consecutive-ones-property (see Section 3.2). Hence the
continuous optimum solution of the linear programming problem coincides with the integer one
and determines the solution of the initial nonpreemptive scheduling problem.

Different algorithms and approaches can be used to solve the linear programming prob-
lem (16). In particular, the algorithm from [31] has the complexity O(m*5m?c(A)), where A
is m x m matrix and ¢(A) is a constant depending only on A. For the constraints matrix cor-
responding to (16), m < n +nm, © < nm, and ¢(A) can be estimated as O(logm). Thus the
complexity of solving LP (16) by the algorithm from [31] is O((nm)%51log(nm)). Indeed, other
specialized algorithms can be developed with other complexity bounds. We have chosen the
algorithm from [31] just to illustrate that LP problem (16) is solvable in strongly polynomial
time.

Recall that after the optimal solution C* is obtained, the corresponding schedule can be

constructed in O(nmlog?(nm)) time as described in the proof of Theorem 2.

4.2 Nondecreasing convex separable objective function: Continuous solution

The continuous problem of minimizing the convex function F over the polyhedron P? can be

solved by the standard techniques of convex minimization. For instance, applying the O(n3L)

13



algorithm by Monteiro and Adler [16] for solving the convex quadratic programming problem
with n variables and input size L = nlog W +n? (here W = max{w;|i = 1,...,n}) results in an
O(n*(log W + n)) algorithm for the scheduling problem (14).

Recall that after the optimal solution C* is obtained, the corresponding schedule can be
constructed in O(nlogn + nm?) as described in the proof of Theorem 1. Thus the complexity
of solving the preemptive scheduling problem is dominated by the complexity of solving the

minimization problem (14).

4.3 Nondecreasing concave objective function

Our scheduling problems with a concave objective function are proved to be much easier to deal
with than with a convex function. The crucial property for concave minimization is the existence
of an optimal nonpreemptive schedule for the preemptive parallel machine problem P|pmitn|F.
This property was first established for the linear objective function [14], then for the exponential
function [20] and finally for an arbitrary nondecreasing concave function [29].

Due to this property and Lemma 1, the optimal solution is given by the vector

n n
Cc* = <m,...,m, 2m,....2m, ..., km,....km, ..., {—Wm,...,{—}m)
N—— N N——— m m
m components m components m components n — | 2| m components

consisting of L%J m-~tuples of equal components and the remaining n— L%J m components being
equal to [%] m. This implies an O(nlogn) algorithm for constructing the optimum vector C*
for the preemptive and nonpreemptive problems P|p; = m,pmitn|F, P|p; = m, [pmtn||F, P|p; =
m|F, Olpix, = 1,pmtn|F, and O|p;, = 1|F. The total complexity (including the construction

of the optimal schedule) can be estimated as O(nlogn) for the three parallel machine problems

and as O(nlogn + nm) for the two open shop problems.

5 Conclusions

In this paper we have constructed the linear description of the scheduling polyhedron for the
unit-time parallel machine and open shop scheduling problems. Based on numerous scattered re-
sults obtained for the unit-time problems, most of which were published more than 20 years ago,
we have provided new mathematical programming formulations for these well-studied schedul-
ing problems. We have demonstrated that the nonpreemptive unit-time scheduling problem is

solvable in strongly polynomial time in case of a general objective function. An interesting topic

14



for the research is further investigation of the constructed polyhedral model in order to develop

the algorithms with better complexity bounds.
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Appendix

Proof of Theorem 3 We use simultaneous inequalities (1) as the description of the vectors of
job completion times for feasible schedules.
The lower bound for Cj is trivial. To prove the upper bound we show that if j is the first

index for which
C; >j+m, (17)

then C; can be decreased by 1 and the resulting schedule is feasible.

Case 1: j=1.

If C1 > m+1, then it is easy to see from (1) that C; can be decreased to m.
Case 2: 2<j<m-+1.

As follows from (1), the component C; of vector C can be decreased by 1 if inequalities

that have Cj hold as strict inequalities, i.e. if
J+k
Z Ci>{+kmfor k=m—j5+1,....m—1 (18)

i=j+k—m+1

Indeed, using the lower bound C; > m for the completion times of jobs ¢ = j +k — m +

1,...,j — 1, the assumption C; > j +m, and (11) we conclude:
J+k j—1 j+k
Y G o= Yo G+ Ciz(m—k—1)m+(k+1)(j+m)
i=j+k—m+1 i=j+k—m+1 i=j
= m?+jk+j.
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We show that m? + jk +j > (j + k)m:
(m?+jk+5)—m(j+k) =m?—j(m—k—1)—mk >m*—(m+1)(m—k—1)—mk = k+1 > 0.

Observe that j <m+1land m—k—12>0.

Case 3: m+2<j<n.

We prove that inequalities (18) hold for & = 0,...,m — 1. First we show that (18) holds for

k = 0. Suppose it is not the case, i.e.

zj: Ci < mj. (19)

i=j—m+1
Jj—1 J
Then Cj_p = >, Ci— > C;+ Cj. Since vector C corresponds to a feasible schedule,
1=j—m 1=j—m+1
j—1
it satisfies (1) and Y. C; > m(j —1). Using this inequality, together with (17) and (19), we

i=j—m
obtain:

Cj—m 2m(j —1) =mj+ (j +m) = j,

and this contradicts the assumption that j is the first index for which (17) holds.
Now we prove that inequalities (18) hold for any k, k =1,...,m — 1. Consider the m-tuple

(Cj-i—kfm-i—l’ ey Cj—l; Cj ey Cj-{—k) with Cj-{—k > .2 Cj > j + m. If the first components

Cjtk—m+1,---,Cj-1 of this m-tuple are not less than j, then
Jt+k Jj—1 J+k
o= Y CGEY Cizm—k—1)j+(k+1){+m)
i=j+k—m+1 i=j+k—m+1 i=j

= m(j+k+1)>m(j+k).

Otherwise, i.e. if there are some components which are less than j, we represent this m-tuple
in a form consisting of three components, the first components being less than j, the middle

components being not less than j, and the last components being not less than j + m:

(] - 5j+k7m+17 .. 7.j - 6j+17m7 ] + 5j+1,m+]_, s 7.j + 6j—17 C] ... C]-{—k)

Y
N~

Here k+1 <1 <m — 2 and all values §; are nonnegative. Using this notation, we obtain:

J+k JH-m Jj—1 Jtk
Z C;, = Z C; + Z Ci+ Z C;
i=j+k—m+1 i—j+k—m+1 i=jl—m+1 i=j
Jj+l-m Jj—1
> mj— > &+ > i+ (k+1)m.
i=jtk—m+1 i=j+Hl—m+1

16



j—1 jHl—m j—1
To estimate > 6 — > di, we use the inequality > C; > m(j — 1), which
i=j+l—m+1 i=j+k—m+1 i=j—m
follows from the feasibility of the schedule with the completion time vector C. Besides, Cj_,, <

j — 1 since according to our assumption, j is the first index for which (17) holds. Hence we

obtain:
j—1 J+l—m Jj—1
m(] — 1) < Z C; = ijm + Z C; + Z C;
i=j—m i=j—m+1 i=j+l—m+1
jHl—m j—1
< G-DEm-Dj- Y s+ Y b
i=j—m+1 i=j+l—m+1
It follows that
j—1 jH—m Jj—1 JHl—m
SEEEE LTS S T e
i=j+l—m+1 i=j+k—m+1 i=j+l—m+1 i=j—m+1
Jtk
Substituting the latter condition in the formula for > C;, we obtain:
i=j+k—m+1
j+k
Y. CGizmj-—m+1+(k+Dm=m(j+k) +1.
1=j+k—m+1
L]
References

[1] I. Adiri, N. Amit, Openshop and flowshop scheduling to minimize sum of completion times,

Computers and Operations Research 11 (1984) 275-284.

[2] P.C. Bagga, K.R. Kalra, A node elimination procedure for Townsend’s algorithm for solving
the single machine quadratic penalty function scheduling problem, Management Science 26

(1980) 633-636.

[3] E. Balas, On the facial structure of scheduling polyhedra, Mathematical Programming
Study 24 (1985) 179-218.

[4] 1. Barani, T. Fiala, Nearly optimum solution of multimachine scheduling problems, Szigma

15 (1982) 177 - 191 (in Hungarian).

[5] H. Briisel, N.V. Shakhlevich, On the solution region for certain scheduling problems with
preemption, Annals of Operations Research 83 (1998) 1-21.

17



[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

P. Brucker, B. Jurisch, M. Jurisch, Open shop problems with unit time operations, ZOR
37 (1993) 59-73.

J.L. Bruno, E.G. Coffman , R. Sethi, Scheduling independent tasks to reduce mean finishing
time, Communications of the ACM 17 (1974) 382-387.

B. Chen, C.N. Potts, G.J. Woeginger, A review of machine scheduling: complexity, algo-
rithms and approximation, in: D.-Z. Du, P.M. Pardalos (Eds.), Handbook of Combinatorial
Optimization, Vol. 3, Kluwer Academic Publishers, Dordrecht, 1998, pp. 21-169.

F. Della Croce, W. Szwarc, R. Tadei, P. Baracco, R. Di Tullio, Minimizing the weighted
sum of quadratic completion times on a single machine, Naval Research Logistics 42 (1995)

1263-1270.

V.S. Gordon, V.S. Tanaev, Preemption in deterministic systems with parallel machines and
release dates, in: Computers in Machine-Building, Institute of Engineering Cybernetics,

Minsk, Belarus (in Russian), 1973, pp. 36-50.

M. Grotschel, L. Lovasz, A. Schrijver, Geometric Algorithms and Combinatorial Optimiza-
tion, Springer, Berlin, 1993.

S.K. Gupta, T. Sen, On the single machine scheduling problem with quadratic penalty
function of completion times: an improved branching procedure, Management Science 30

(1984) 644-647.

W.A. Horn, Some simple scheduling algorithms, Naval Research Logistics Quarterly 21
(1974) 177-185.

R. McNaughton, Scheduling with deadlines and loss functions, Management Science 59

(1959) 1-12.

C.L. Monma, J.B. Sidney, Optimal sequencing via modular decomposition: Characteriza-

tion of sequencing functions, Mathematics of Operations Research 12 (1987) 22-31.

D.C. Monteiro, I. Adler, Interior path following primal-dual algorithms. Part II: Convex
quadratic programming, Mathematical Programming 44 (1989) 43-66.

M. Queyranne, S. Schulz, Polyhedral approaches to machine scheduling, Preprint 408/1994,
Department of Mathematics, Technical University of Berlin, 1994.

18



[18]

[20]

[21]

[22]

23]

[24]

[30]

[31]

M. Queyranne, S. Schulz, Scheduling unit jobs with compatible release dates on parallel
machines with nonstationary speeds, in: E. Balas, J. Clausen, (Eds.), Lecture Notes in

Computer Science, Springer, Berlin, 1995, pp. 307-320.

M. Queyranne, Y.G. Wang, Single-machine scheduling polyhedra with precedence con-
straints, Mathematics of Operations Research 16 (1991) 1-20.

M.H. Rothkopf, Scheduling independent tasks on parallel processors, Management Science
12 (1966) 437-447.

M.H. Rothkopf, S.A. Smith, There are no undiscovered priority index sequencing rules for
minimizing total delay costs, Operations Research 32 (1984) 449-454.

M.L. Pinedo, Scheduling: Theory, Algorithms and Systems. Prentice-Hall, Englewood
Cliffs, New Jersey, 1995.

S. Sahni, Preemptive scheduling with due-dates, Operations Research 27 (1979) 925-934.

V.A. Strusevich, Minimizing the total time for open shops, Vestnik BGU, Seria 1, Fizika,
Matematika, Mekhanika 1 (1988) 44-46 (in Russian).

X. Sun, J.S. Noble, C.M. Klein, Single-machine scheduling with sequence dependent setup
to minimize total weighted squared tardiness, IIE Transactions 31 (1999) 113-124.

W. Szwarc, M.E. Posner, J.J. Liu, The single machine problem with a quadratic cost

function of completion times, Management Science 34 (1988) 1480-1488.

W. Szwarc, S.K. Mukhopadhyay, Minimizing a quadratic cost function of waiting-times in

single-machine scheduling, Journal of the Operational Research Society 46 (1995) 753-761.

W. Szwarc, S.K. Mukhopadhyay, Solution of the generalized Townsend single machine
scheduling model, European Journal of Operational Research 91 (1996) 203-210

V.S. Tanaev, Preemption in deterministic processing systems with identical parallel ma-

chines, Izvestia AN BSSR, Seria fiz.-mat. nauk 6 (1973) 44-48 (in Russian).

W. Townsend, The single machine scheduling problem with quadratic penalty function of

completion times: a branch and bound solution, Management Science 24 (1978) 530-534.

S.A. Vavasis, Y. Ye, A primal-dual interior point method whose running time depends only

on the constraint matrix, Mathematical Programming 74 (1996) 79-120.

19



[32] L.A. Wolsey, Formulating single machine polyhedra with precedence constraints, in:
J.J. Gabszewicz, J.-F. Richard, L.A. Wolsey (Eds.), Economic Decision-Making: Games,
Econometrics and Optimization, North Holland, Amsterdam 1990, pp. 473-484.

20





