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Abstract

This paper presents a novel three-phase heuristic/algorithmic approach for the multi-depot routing problem with
time windows and heterogeneous vehicles. It has been derived from embedding a heuristic-based clustering algorithm
within a VRPTW optimization framework. To this purpose, a rigorous MILP mathematical model for the VRPTW
problem is first introduced. Likewise other optimization approaches, the new formulation can efficiently solve case stud-
ies involving at most 25 nodes to optimality. To overcome this limitation, a preprocessing stage clustering nodes
together is initially performed to yield a more compact cluster-based MILP problem formulation. In this way, a hier-
archical hybrid procedure involving one heuristic and two algorithmic phases was developed. Phase I aims to identify-
ing a set of cost-effective feasible clusters while Phase II assigns clusters to vehicles and sequences them on each tour by
using the cluster-based MILP formulation. Ordering nodes within clusters and scheduling vehicle arrival times at cus-
tomer locations for each tour through solving a small MILP model is finally performed at Phase III. Numerous bench-
mark problems featuring different sizes, clustered/random customer locations and time window distributions have been
solved at acceptable CPU times.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A key issue in transportation is the cost-efficient

management of a heterogeneous vehicle fleet pro-
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Nomenclature

Sets

1 nodes

K clusters

P depots

V vehicles

Parameters

A maximum allowed waiting time be-
tween intra-cluster nodes

0i penalty cost for unit-time violations of
the specified time window for node i

D penalty cost for unit-time violations of
the maximum working time for vehicle
v

a; earliest service time at node i

aCy, earliest service time at cluster Cj

b; latest service time at node i

bCy, latest service time at cluster Cj

¢l vehicle-dependent distance cost matrix

cfy fixed cost for using vehicle v

¥ maximum allowed distance between
intra-cluster nodes

/ depot set cardinality
m vehicle set cardinality
n node set cardinality
nC cluster set cardinality

qs capacity of vehicle v

st? service time at node 7 by vehicle v

stC,  effective service time at cluster Cj,

1; least-cost travel time from node i to
node j

tvi"™*  maximum working time for vehicle v

w; demand at node i

wCp demand at cluster C;

Variables
Sy binary variable denoting that node i is
visited before or after node j

X binary variable denoting assignment of
vehicle v to depot p

Y binary variable denoting assignment of
vehicle v to node i

Aa; ith-time window violation due to early
service

Ab; ith-time window violation due to late
service

AT, working time violation for vehicle v

C; accumulated distance cost up to
node i

CV, total distance cost for vehicle v

T; vehicle arrival time at node i

TV, tour duration for vehicle v

decide on the number and types of vehicles to be
used but also he/she must specify which customers
are serviced by which vehicle and what sequence to
follow so as to minimize the transportation cost.
Products to be delivered are loaded at the depot
and picked-up products are transported back to
the depot. Then, every vehicle route must start
and finish at the assigned terminal and both vehi-
cle capacity and working time constraints are to be
satisfied. Moreover, each customer must be ser-
viced by exactly one vehicle since split demand is
not allowed. This class of logistic problems is usu-
ally known as the vehicle routing problem (VRP)
and its objective usually is the minimization of
the overall distance traveled by the vehicles while
servicing all the customers. The interest in VRP
problems comes from its practical relevance as well

as from the considerable difficulty to solve them
exactly. In the field of combinatorial optimization,
the VRP is regarded as one of the most challenging
problems. It is indeed NP-hard, so that the task of
finding the best set of vehicle tours by solving opti-
mization models is computationally prohibitive for
real-world applications. As a result, different types
of heuristic methodologies are usually applied.
Several classes of vehicle routing problems have
been studied in the literature. Though addressing
different practical situations, they all focus on the
common issue of efficiently managing a vehicle
fleet for the purpose of serving a given set of cus-
tomers. The most basic VRP is the capacitated
vehicle routing problem (CVRP) that assumes a
fixed fleet of vehicles of uniform capacity housed
in a central depot. It is intrinsically a spatial prob-
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lem with some capacity constraints. In addition to
the geographic component, more realistic routing
problems include a scheduling part by incorporat-
ing travel times between every pair of nodes, cus-
tomer service times and the maximum tour
duration as additional problem data. The vehicle
routing problem with time windows (VRPTW) is
a generalization of the CVRP with the further
complexity of time windows and other time data.
Because the VRP is NP-hard, the VRPTW is
NP-hard too (Savelsbergh, 1985). In the VRPTW
problem, each customer has an associated time
window defined by the earliest and the latest time
to start the customer service. The depot may also
have a time window defining the scheduling hori-
zon. Time windows can be hard or soft. In the
hard time window case, a vehicle arriving too early
at the customer site is permitted to wait until the
customer window is open. However, a vehicle is
not permitted at all to arrive at the node after
the latest service start time. In contrast, the soft
time window case permits time window violations
at the expense of a penalty cost.

In the past four decades, a tremendous amount
of work in the field of vehicle routing and schedul-
ing problems has been published. They are sum-
marized in recent books and surveys (see
Laporte, 1992; Desrosiers et al., 1995; Fisher,
1995; Bramel and Simchi-Levi, 1997 and Crainic
and Laporte, 1998). Some research efforts were
oriented towards the development and analysis
of approximate heuristic techniques capable of
solving real-size VRP problems. Bowerman et al.
(1994) classified the heuristic approaches to the
VRP into five classes: (1) cluster-first/route-sec-
ond, (2) route-first/cluster-second, (3) savings/
insertion, (4) improvement/exchange and (5) sim-
pler mathematical programming representations
through relaxing some constraints. From the two
clustering procedures, the cluster-first/route-sec-
ond looks more effective. This algorithm first
groups the nodes into clusters, assigns each cluster
to a different vehicle and, finally, finds the vehicle
tour by solving the corresponding traveling sales-
man problem (TSP). Heuristics 3 and 4 permit to
construct an initial solution or improve the current
set of tours by either inserting customers or
exchanging arcs. Some approximate approaches

called metaheuristics, including simulated anneal-
ing, tabu search and genetic algorithms, have
recently become very popular (Gendrau et al.,
1997).

On the other hand, effective optimal approaches
for VRPTW problems of smaller size have also
been reported. Exact approaches can be catego-
rized according to the underlying methodology
into: (a) dynamic programming techniques (Kolen
et al., 1987), which are extensions of the state-space
relaxation method of Christofides et al. (1981); (b)
Lagrangian relaxation methods which are cur-
rently capable of optimally solving some 100-cus-
tomer VRPTW problems (Jornsten et al., 1986;
Desrosiers et al., 1988; Halse, 1992); (¢) column
generation algorithms that are based on a combi-
nation of linear programming relaxed set covering
and column generation (Desrochers et al., 1992),
and (d) K-tree approaches that extended the classi-
cal 1-tree method for the TSP to the case with vehi-
cle capacity and time window constraints (Fisher,
1994; Fisher et al., 1997). The first three exact
approaches rely on the solution of a shortest path
problem with time windows and vehicle capacity
constraints either as part of a Lagrangian relaxa-
tion or to generate new columns.

Current VRPTW optimization models are use-
ful for a variety of practical applications. How-
ever, some practical issues have not yet been
addressed. While most solution methods have
assumed a single depot and a homogeneous fleet,
real-world problems usually include multiple ter-
minals and a finite set of vehicles with non-uni-
form capacity. Moreover, the best solution for
the VRPTW that minimizes the total distance trav-
eled by the vehicles to visit all the customers often
includes undesirable high waiting times. A more
suitable VRPTW cost function should be a combi-
nation of fixed vehicle utilization costs and vari-
able operational costs with the latter ones
including distance and travel times, waiting time
and service time costs.

In the first part, this paper presents a general
mixed-integer linear (MILP) mathematical pro-
gramming formulation for the VRPTW problem
with several terminals and multiple vehicle types
(see Section 2). Time window-based exact rules
are subsequently introduced to cut the problem



R. Dondo, J. Cerdd | European Journal of Operational Research 176 (2007) 1478-1507 1481

size and to reduce the solution time. However, the
proposed exact approach remains computationally
efficient for VRPTW problems of at most 25 nodes
and a single depot. To overcome such an usual
limitation of optimization methods, the second
part describes a systematic three-phase heuristic/
algorithmic hybrid approach that is capable of
solving 100-customer VRPTW problems with dif-
ferent topologies to optimality (see Section 3).
The new approach includes an initial preprocess-
ing phase during which a heuristic-based clustering
algorithm described in the paper is applied to
group the customers into a small number of clus-
ters. In this way, the general VRPTW model can
be written in terms of clusters rather than nodes
to generate a much smaller problem formulation.
A commercial MILP branch-and-bound solver is
then applied to efficiently find the optimal set of
tours at the level of clusters at Phase II. Finally,
the clusters on every tour are disaggregated into
the original nodes through solving a small MILP
model derived from the general VRPTW formula-
tion at Phase III. Section 4 shows the numerical
results found by solving a significant number of
well-known Solomon’s homogeneous VRPTW
benchmark problems and some new multi-depot
heterogeneous fleet VRPTW examples introduced
in this paper.

2. The multi-depot heterogeneous
VRPTW problem

2.1. Problem definition

Let us consider a routing network, represented
by the directed graph G{I, P, A}, connecting cus-
tomer nodes I = {iy, i, ..., i,} and depot nodes
P = {p1, p>, ..., p;} through a set of directed edges
A=1{(G,)/i,je (IU P)}. The edge (i,j)e A4 is
supposed to be the lowest cost route connecting
node i to node j. At each customer location i € I,
a fixed load w; is to be picked up (delivered) within
a time window [a;, b;], where q; is the earliest time
and b; is the latest time at which the service
can start. A fleet of heterogencous vehicles
V=1{vy, vy, ..., v,} with different cargo-capaci-
ties (¢,) and housed in multiple depots p € P is

available to accomplish the required pick-up/deliv-
ery tasks. Each vehicle v must leave from the
assigned depot p € P, pick up the full load from
several supply points and then return to the same
terminal p. Then, the route for vehicle v is a tour
of nodes r=(p,...,i,(i+1),...,p) connected
by directed edges belonging to A4 that starts and
ends at depot p assigned to vehicle v. Associated
to the set of edges a; € A, there is a pair of vehi-
cle-dependent matrices C = {c;} and I'={#}
denoting the travel cost and the travel time from
node 7 to node j using vehicle v, respectively. It is
assumed that the triangle inequality is satisfied
by the ¢;’s and the #;’s, ie. ¢y + ¢y = ¢y and
tg + ti; = t;. The demand (w;) and the service
time by vehicle v(st/) at node 7 are also given.
Therefore, a feasible solution to the VRPTW
problem must satisfy the following constraints:
(i) every route must start and end at the same
depot; (ii) each node must be serviced by just a sin-
gle vehicle; (iii) the total load assigned to vehicle v
must never exceed its cargo-capacity ¢,; (iv) the
length of time during which a vehicle v can be in-
service should be shorter than the maximum
allowed working time tv™*; (v) the pick-up/deliv-
ery service at every customer site i must start
within the time window [a;, b;] since otherwise a
penalty cost should be charged. The problem goal
is to minimize the total cost of performing the
pick-up (or delivery) services at all customer
nodes. Four types of costs are considered in the
objective function: fixed costs for used vehicles,
distance costs and travel time costs along the
selected routes, waiting time costs and penalty
costs due to time-window and working time con-
straints violations.

2.2. Problem decision variables

The proposed mathematical formulation
requires to define three different sets of 0-1 vari-
ables: (a) the assignment variable Y;, to allocate
vehicle v € V' to customer site i € I; (b) the assign-
ment variable X,, to allocate vehicle v € V' to
depot p € P; and (c) the sequencing variable S
to denote that customer site i € [ is visited before
(S; = 1) or after (S; = 0) node j just in case they
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are both serviced by the same vehicle v
(Y = Y;, = 1). Otherwise, the value of §; will
be meaningless. It is defined just a single variable
S;; for each pair of nodes (i, j) that can share the
same tour. Therefore, the relative ordering of
nodes (i, j) is established by the variable S;;, such
that ord(7) < ord(j), where ord(i) indicates the rel-
ative position of the element 7 in the customer set
I. In this way, the number of sequencing variables
is cut by half. It should be emphasized that the
approach uses the notion of generalized predeces-
sor rather than direct predecessor. Then, a node j
on a particular tour may have one or several pre-
decessors; ie. S;=1 for every node i visited
before node j by the same vehicle.

Table 1
The MILP mathematical model
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2.3. Problem mathematical formulation

The proposed MILP mathematical formulation
for the multi-depot heterogeneous fleet VRPTW
problem is shown in Table 1. A thorough model
explanation is subsequently made.

2.3.1. Objective function

The problem objective (1) aims to minimize the
overall service expenses, including fixed vehicle uti-
lization costs, traveling distance and time costs,
waiting and service time costs and penalty costs.
The parameter cf, stands for the fixed cost of using
vehicle v and the binary variable X,, becomes
equal to one only if vehicle v is employed, i.e.

+ p, AT, + Zpi(Aai + Ab;)

iel

Min >~ (cfl_ > Xp TV, + CV1,>

velV peEP
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whenever it was assigned to a depot p. Since the
tour duration includes all travel times, waiting
times and service times, then a single term is
included in the objective function to charge time-
based costs like labor expenses. Such type of cost

is

assumed to be a linear function of time and

the parameter ¢, denotes the labor cost per unit
time. In addition, CV, represents the total dis-
tance-based travel cost and the last two terms
penalize violations on either the maximum allowed
working time or the node time windows.

2.3.2. Problem constraints

Assignment of nodes to vehicles

Eq. (2) states that every customer node i € [
must be serviced by a single vehicle v € V. Split-
ting the load to be picked-up from a customer
site is a forbidden option.

Assignment of vehicles to depots

Constraint (3) states that every used vehicle v
should be allocated to a single depot p to which
it returns after visiting all the assigned custom-
ers. The required fleet size is a problem variable
to be determined simultaneously with the best
set of routes and schedules.

Least traveling cost for vehicle v to arrive at
node i

Constraint (4) states that the cost of traveling
from depot p to node i (C;) must be greater
than or equal to c,, only if the node i € [ is
serviced by vehicle v (Y;, = 1) housed in depot
p (X,, = 1). This is so because, by definition,
¢, denotes the least travel cost from depot p
to node i. Constraint (4) can become bind-
ing just in case customer i is first visited by
vehicle v.

Relationship between traveling costs up to
nodes i, j € I on the same tour

Let ¢j; stand for the least travel cost from node i
to node j on the vehicle v. If both nodes (i, j) are
on the same tour (Y;, = Y}, = 1, for some vehi-
cle v) and node i is visited before (S;; = 1), then
Eq. (5a) states that the distance-based travel
cost from the depot to node j (C;) must always
be greater than C; by at least ¢j;. In case node
Jis visited earlier (S; = 0), the reverse statement
holds. Constraints (5a) and (5b) both become

redundant whenever nodes i, j € I are serviced
by different vehicles (Y;, + Y;, <2, for any v).
By definition, M is a large positive number.
Overall traveling cost along the tour assigned to
vehicle v

Constraint (6) states that the overall traveling
cost incurred by vehicle v (CV,) to complete
the assigned pick-up/delivery tasks must always
be greater than the traveling expenses from the
depot to any node i (C;) along the tour by at
least the amount ¢;,. Indeed, the last node vis-
ited by vehicle v is the one finally defining the
value of CV,. Therefore, the constraint (6)
related to such a node and the assigned vehicle
v is just the one binding at the optimum. If
nodes i, i’ € I are both on the same tour and
i’ is the last visited, then constraint (6) for node
i will usually become redundant because the tra-
vel cost iy by definition, is smaller than or at
most equal to the traveling expenses from i to
p through at least another node 7, i.e.
c}’p <+ cf}p.

Earliest service starting time at node i
Constraint (7) states that the vehicle v will never
begin the service at the assigned node i before
time 7, where 7, is the least travel time from
depot p to node i. Constraint (7) assumes that
vehicle v is ready at ¢ = 0. Otherwise, the v-vehi-
cle ready time should be added to 7. M7 is a
positive large number.

Relationship between the service starting times
at the pair of nodes (i, j) on the same tour

Let us assume that nodes i/ and j are both ser-
viced by the same vehicle v. If node i is visited
before (S; = 1), then the constraint (8a) states
that the service starting time at node j (7))
should be greater than T; by at least the sum
of both the traveling time #;; and the service time
(st;) at node i. If not (S; = 0), the reverse state-
ment holds and constraint (8b) will become
active. If one of the nodes is not on the tour,
then Y;, + Y, <2 and constraints 8a,8b both
become redundant.

Overall traveling time for vehicle v

Constraint (9) indicates that the total time
required by vehicle v to complete the tour is
found by adding the sum of both the service
time st; at node i and the travel time 7, along
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the edge (i, p) to the service initial time at the
node last visited i (i.e., the largest service initial
time). Since the node last visited by vehicle v is
not known beforehand, then Eq. (9) should be
written for every node i.

e Time constraint violations due to early/late ser-
vices at customer sites
Time windows can be hard or soft. When the
time windows are regarded as hard constraints,
constraint (10) states that a vehicle cannot start
the service at the assigned node i before the ear-
liest time a; by simply making Aa; = 0. In turn,
constraint (11) prohibits to start the service at
node i after the allowed latest time b; by setting
Ab; = 0. If the vehicle arrives too early at the
customer site, it must wait until the customer
is ready to start the service. This is an option
allowed by the model. In the soft time window
case, time window constraints can be violated
at a finite cost and the vehicle can start the ser-
vice at node i before time ;. In such a case, the
variables Aa; and Ab; stand for the size of TW-
constraint violations caused by early or late ser-
vice at node i, respectively.

e Time constraint violation for vehicle v
Constraint (12) applies just in case the maxi-
mum allowed working time tv™* is regarded
as a soft constraint that can be violated at some
penalty cost. Otherwise, TV, should not be
greater than tv"™*.

e Capacity constraints
Constraint (13) states that the overall load to
pick up from/deliver to customer sites serviced
by a used vehicle v should never exceed its
cargo-capacity ¢,. Any used vehicle v is assigned
to a depot p and, therefore, X, X, = 1.

The continuous problem variables, 7;, TV,, C,
CV,, Aa,;, Ab;, and AT, are all non-negative.
Assignment constraints 2 and 3 together with
traveling cost constraints (4)—(6) and vehicle
capacity constraints (13) all define the feasible
solution space for the traditional VRP. Timing
constraints include visiting time constraints
(7)-(9) and soft time constraint violations
(10)—(12). No sub-tour breaking constraints
are necessary. Time-window and working time
constraints can be treated as hard constraints
by simply setting all variables Ag;, Ab; and

AT, equal to zero and, in addition, the penalty
cost terms are removed from the objective func-
tion. In short, the proposed general mathemat-
ical model can account for a fleet of fixed or
variable size composed by either homogeneous
or heterogeneous vehicles and housed at single
or multiple depots. The new MILP formulation
can still be applied if open tours not starting
and ending at the same location are considered.

2.4. Exact elimination rules

The information on customer time windows can
be used in order to reduce the VRPTW problem
size, thus enhancing the efficiency of the solution
algorithm. The narrower the time windows the lar-
ger the number of sequencing variables and con-
straints that can be deleted from the problem
formulation. The time window-based elimination
rules that consider the time windows as hard con-
straints can be stated as follows:

Rule 1. If no vehicle v € V can service a pair of
nodes 7, j € I without violating the related time
windows constraints, then two different vehicles
must be used to visit them. Whatever is the node
first visited, the service at the other node can never
begin before the latest start time unless another
vehicle is used. Mathematically, this condition can
be expressed as follows:

Vi,jel,veV: i<j/\(a,-+st}‘+t;.)
= bj/\ (%—!—Stf—!—t?l) > bi
=Y+ V<1 (14)

When Rule 1 applies to a pair of nodes i, j € I,
then the constraint Y, + Y, < 1 must be included
in the problem formulation. Constraint (14) indi-
cates that vehicle v can service either node i or
node j but not both. Thus, constraints (5a)—(5b)
and (8a)—(8b) can be ecliminated for any pair
{i,j} satisfying condition (14). Moreover, the
sequencing variable S;; is no longer needed since
both nodes cannot belong to the same tour.

To illustrate this rule, let us suppose that the
service times at nodes i, j € I, are: st; = st; = 10.
In addition, the node time windows are given by
la;, b;] = [10, 20], [a;, b;] = [20, 30] and the travel
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time from either i to j or j to 7 is equal to 30. If
node i is first visited at the earliest time ¢ =
a; = 10, then the earliest service start time at node
j will be a;+st;+¢; =10+ 10 + 30 = 50 > b;
(see Fig. 1a). Therefore, node j cannot be serviced
within its related time window by a vehicle depart-
ing from node i. Inversely, if node j is first visited
at the earliest time ¢ = a; = 20, then the earliest
service start time at node i will be given by
aj+st;+1; =20+ 10+ 30=60. Since 60>
b; =20, node i cannot be visited by a vehicle
departing from node j without violating its time
window (see Fig. 1a). Consequently, if both nodes
are on the same tour, a time window constraint
will be violated. Therefore, it can be imposed the
condition: Y, + Y, < 1 for any v € V.

Rule 2. Letussuppose that nodesiandare visited
by the same vehicle v. Moreover, the sum of the
earliest service start time at node i (a;) and the travel
time between both nodes, including the service time
at node i, is higher than the latest service start time
at node j (b;). Then, node i cannot be visited before
node j and S; = 0. Therefore,

VijjelveV: i<jA (a,-+stf+tfj>
If Rule 2 applies, then node 7 cannot be visited
before node j. As a result, the sequencing variable

S;; and the constraints (5a) and (8a) can all be
dropped from the problem formulation. More-

a; + st; + t;;= 10+ 10+ 30 = 50 > b;

|-
L
“«—>
;=20 by=30
“«—>
a=10 b;i=20

a; + st; + t; =20+ 10 + 30 = 60 > b;

v

(a) Rule 1

a; + st + 1;= 10+ 10 + 30 =50 > b;

“«—>
a;=20 by=30

A

v

a;=10

aj+ st;+ t; =20+ 10+ 30 =60 < b;

a; + st + ;= 10+ 10+ 30 =50 < b;

v

(b) Rule 2

>

v

<

a;=20

+—>
a;=10 b;=20

aj+ st + ;=20 + 10 + 30 =60 > b;

v

(¢) Rule 3

Fig. 1. Illustrating the exact elimination rules.
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over, constraints (5b) and (8b) will reduce to the
simpler Egs. (16) and (17), respectively.

C,' 2 Cj+C;i_MC(2_YiL'_Yjv)a (16)
Ti = Tp4st)+ 15 —Mp(2— Yy — Yp). (17)

1

Constraints (16) and (17) really apply just in case
both nodes are on the same tour (Y, + Y, = 2).
Otherwise, they become redundant.

Let us suppose that the service times at nodes
i,j €1, are: st;=st; =10 and the time windows
are given by [a;, b;]=[10, 80] and [a;, b;] = [20,
30]. Moreover, the travel times from i to j and
from j to i are: t; = t; = 30. If node 7 is first visited
at the earliest time ¢ = @; = 10, then the earliest
service start time at node j will be given by «; +
st; + ¢; =10 + 10 + 30 = 50 > b,. Therefore, node
j cannot be visited within its related time window
by a vehicle departing from node 7 (see Fig. 1b).
Inversely, if node j is first visited at the earliest time
t = a; = 20, then the earliest service start time at
node 7 will be: a; + st; + #; = 20 + 10 + 30 = 60.
Since 60 < b; = 80, node i can be visited by a vehi-
cle departing from node j without violating its time
window. Consequently, if both nodes are on the
same tour, S; = 0.

Rule 3. Let now suppose that nodes i and j have
been assigned to the same tour. Furthermore, the
sum of the earliest service start time at node j (a;)
and the travel time along the route (j, i), including
the service time at node j, is higher than the latest
service start time at node i (b;). Then, node j
cannot precede node i on the tour and Sj; = 1:

Vi,jelveV : i<jA(a,-+st;‘+tfj)
ébj/\ (aj—l-st;—kt;l) >b,$SU: 1. (18)

Therefore, constraints (5b) and (8b) can be elimi-
nated from the model and inequalities (5a) and
(8a) reduce themselves to

o

T;

Ci+ng*Mc(27Y,‘v7Y/’U), (19)

=
2T,""Stf‘i‘tf]-—MT(z—Y,'U—Yjv). (20)

To illustrate Rule 3, let us consider a simple
example where the service times at nodes i, j € I,
are: st; = st; = 10, their related time windows are

given by [a; b;]=[10, 20], and [a;, b;] = [20, 80]
and the travel times from i to j and vice versa is
equal to #; = t; = 30. If node i is first visited at
the earliest time ¢ = a; = 10, then the earliest ser-
vice start time at node j will be a;+ st;+
t; =10+ 10 + 30 = 50. Since 50 < b; = 80, ser-
vice at node j can be started within the specified
time window by a vehicle departing from node i
(see Fig. 1c). Inversely, a vehicle first visiting node
Jj at the earliest start time ¢ = a; = 20, cannot start
servicing node i before its time window has closed
because  a; + st; + t; =20 + 10 + 30 = 60 > b;.
Consequently, S;; = 1 and node i must be a prede-
cessor of node ;.

3. A three-phase hierarchical hybrid approach for
large-scale VRPTW problems

There is no doubt that the multi-depot hetero-
geneous fleet VRPTW is very difficult to solve
through a pure optimization approach. In fact,
even simpler vehicle routing problems are among
the most difficult class of combinatorial optimiza-
tion problems. Current fastest algorithms can dis-
cover the optimal solution for single-depot
homogeneous fleet VRPTW problem instances
featuring tight time windows and up to 100 cus-
tomers (Desrochers et al., 1992; Fisher et al.,
1997). Problems with wider time windows and a
number of nodes over 100 are still considered com-
putationally challenging to solve to optimality. In
general, heuristics can approximately solve prob-
lems of larger sizes in less computational time.
For example, meta-heuristics such as tabu-search,
simulated annealing and genetic algorithms (Gen-
drau et al., 1997; Golden et al., 1998) are able to
solve vehicle routing problems with wide time win-
dows and nearly 500 customers.

However, heuristics usually lack robustness and
their performance is problem dependent. Instead,
optimization algorithms offer the best promise
for robustness (Fisher, 1995). Given the enormous
complexity of large VRPTW problems, however, it
does not seem realistic to apply pure optimization
methods. Instead, we can focus on hybrid solution
algorithms that can be as robust as the optimiza-
tion methods and capable of discovering good
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solutions for large problems within acceptable
CPU times. In this work, it has been developed a
hierarchical hybrid solution approach that inte-
grates a heuristic clustering procedure into an opti-
mization framework (see Fig. 2). It is based on the
traditional cluster first-route second philosophy.
Clusters of nodes are first defined, then such clus-
ters are assigned to vehicles and sequenced on the
related tours and finally the routing and schedul-
ing for each individual tour in terms of the original
nodes is separately found. In this way, a three-
phase VRPTW hierarchical hybrid approach has
been defined.

Finding a good set of clusters, each one com-
prising several customer sites, without relying on
routing information is a quite difficult task. Conse-
quently, this paper introduces a time-window
based heuristic algorithm that efficiently assem-
blies customer nodes into a rather low number of
feasible clusters. Such a heuristic clustering proce-
dure leads to a compact version of the VRPTW
formulation presented in Section 2.2 by just
replacing nodes by clusters. Both the cluster proce-

Node location, loads and time
windows

U

Clustering procedure

dure and the compact VRPTW model constitute
the basic building blocks of the proposed hybrid
approach. After grouping customer nodes into a
few clusters during Phase I, the solution of a
low-size multi-depot heterogeneous fleet VRPTW
formulation, posed in terms of clusters rather than
nodes, permits to simultaneously allocate clusters
to vehicles and construct routes by linking clusters
on the same tour (Phase II). In the last phase, the
detailed routing and scheduling for each tour
found in Phase II is determined. Therefore, as
many scheduling problems are to be tackled in
Phase III as the number of tours required to visit
all the customer nodes. In each case, a more com-
pact form of the basic VRPTW formulation is to
be solved. This is so because the model just
account for the nodes contained in the clusters
over the tour under analysis. Since the sequence
of clusters has already been defined in Phase II,
then the relative location of nodes belonging to
different clusters is already established and the val-
ues of many sequencing variables S; are known
beforehand. Such a fact produces a sharp decrease

Stage 1: Cluster generation

rr
Depot and Cluster location, load
vehicle and time windows

I,

Cluster based VRPTW
problem

Stage 2: Cluster assignment and
sequencing

[T
I
Nodes-vehicles
assignment relations

Y

TSPTW problem

l

Vehicle routes
and schedules

Stage 3: Node sequencing

Fig. 2. Schematic of the VRPTW hierarchical hybrid approach.
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in the number of binary variables and constraints
in the MILP model solved in Phase III.

3.1. Heuristic clustering algorithm (Phase I)

Phase I is intended to massively reduce the com-
putational burden of the subsequent solution
phases. This goal is achieved by cleverly defining
a small set of feasible clusters or “hyper-nodes”,
each one enclosing several customer sites, and then
establishing approximate travel distances and
times between any pair of them. By expressing
the mathematical model in terms of few clusters
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rather than a huge number of customers, the
VRPTW problem size can be sharply decreased.
To rapidly find a good set of clusters for large
VRPTW, the heuristic procedure shown in Fig. 3
is applied.

The procedure inputs are the set of customer
nodes I, the set of vehicles V, travel distances
and times among nodes, service times and pick-
up/delivery loads as well as time-window data.
The aim of the procedure is to identify a set of fea-
sible clusters that includes all customer nodes,
where “feasible” cluster means that (a) the cluster
cargo can be assigned to a single vehicle and, in

1. (a) Open a list of nodes L and sort them by increasing values of the earliest arrival times a;. If

(35

w2

9.

several nodes have the same a;, arrange them by increasing values of the latest arrival times
bi.

(b) Open a list of available vehicles V and sort them by decreasing values of the ratio (g, /cf;).

(c) Choose the maximum allowed distance between any pair of nodes in the same cluster (")
and the maximum allowed waiting time A.

. (nth-major iteration) Open an empty list K, linked to the next cluster C, to be created. Assign the

top entry of list V to cluster C, and delete it from V.
(a) Pick up the top node i on the list L and place it at the bottom of list K. Initialize the
parameters of cluster C,:
aC, < a; bC, « b;
wCy ¢ W; StC, < st

(b) Delete node i from list L and make a copy of the current list L and call it L.

Pick up the top node j from list L', and verify that the current load to pick up from cluster C,
plus w; does not exceed the cargo-capacity ¢, of the assigned vehicle v. If the vehicle capacity is
exceeded, delete nodej from list L’ and repeat step (4). Otherwise, proceed to step (5).
(a) Compute the distance dj; between node j and its nearest node / on the list K.
(b) Verify that dj; is smaller than the maximum allowed distance &". If not, delete node j from
the temporary list L’ and return to step (4). Otherwise, proceed to step (6).

Verify that the following constraint is satisfied:

aC, +stC,, +t; <max(bC,, b/)
If not, delete node j from the temporary list L’ and return to step (4). Otherwise, proceed to step
(7).
Verify that the following constraint is satisfied:
aC, +stC, +t; +A>a,

If not, close the cluster C, by deleting the temporary list L’ and saving the list K, defining C,
and return to step (4). Otherwise, proceed to step (8).

. (a) Place node j at the bottom of list K}, and update the parameters for cluster C, as follows:

wC, <~ wC, +w,
(b) If bC,, > b, then:

stC, max(stC,, +1y st a,+st,—a, )

bC, « b
Otherwise, the latest time arrival bC, remains unchanged. Delete node ;j from lists L and L’ and
20 to step (9).
If list L’ is empty, save the list K, defining the cluster C, and proceed to step (10). Otherwise,
return to step (4).

10. Repeat steps 2-9 until the list L is empty.
11. Compute the cluster centroids as well as the time and distance between any pair of clusters

defined by the algorithm.

Fig. 3. The heuristic clustering procedure.
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addition, (b) there exists a route connecting the
nodes on the cluster that satisfies all the time win-
dow constraints. The set of clusters to be synthe-
sized should also be cost-effective, in the sense
that (c) the vehicle waiting time because of early
arrivals at pick-up/delivery points must be kept
as small as possible and (d) the average length
per node traveled by the assigned vehicle through-
out the cluster should remain low.

To reach such goals, the node list L is properly
arranged in step (1) to facilitate the generation of
feasible, cost-effective clusters. Before adding
another node to the cluster being generated, its
closeness to the other nodes in the cluster and
the fulfillment of time window and vehicle capacity
constraints are tested (steps 4-7). Moreover, a
maximum idle time A for early arrival at the cus-
tomer site (i.e. before the earliest service start time)
is just permitted. If exceeded, the incorporation of
the node in the cluster is rejected (step 7).

To define the mathematical formulation in
terms of clusters rather than nodes, the notions
of “cluster time window” and “cluster service
time” have been introduced. The earliest service
start time at cluster C, (aC,) is given by
min;cc, (a;), while the latest service start time for
C, (bC,) is updated by taking the minimum of
(bC,, b;), with bC, denoting the current C,-latest
service start time and b; representing the corre-
sponding value for the new entry 7 in the cluster
C,.. In this manner, the time windows for the cur-
rent nodes in C, are all satisfied and the cluster
time windows become much tighter. Each time a
new node is added to a cluster, the related time
window parameters (aC,, bC,) are updated. On
the other hand, the “cluster service time” stC, is
a good approximation to the overall time
expended by the assigned vehicle while visiting
the cluster C,. Therefore, it includes not only the
service time at the enclosed nodes but also the tra-
vel and idle times throughout the cluster.

Since the fleet size is a problem variable, the pro-
cedure must choose the most efficient vehicles to
accomplish the pick-up tasks. This can be achieved
by sorting the vehicle list in step (2) by increasing
cost-efficiency values. Finally, step (11) determines
the cluster “locations” as well as the travel distance
and the travel time between any pair of clusters.

3.2. Cluster-based multi-depot heterogeneous
fleet VRPTW problem (Phase II)

The aim of Phase II is to assign clusters to vehi-
cles and then sequence those ones on the same tour
by solving a compact version of the MILP model
introduced in Section 2.2. Such shrinkage in the
model size is achieved through replacing the cus-
tomer nodes by the clusters generated in Phase I.
In the worst case, the number of binary variables
(BV) drops from:

BV = Im+ mn + @
nC(nC —1)
2

where nC denotes the total number of clusters for
the VPRTW problem. If nodes(n) = 200, de-
pots(/) = 1, vehicles(m) = 10 and clusters(nC) =
15, the value of BV drops from 21,910 to 265,
i.e. almost a two-order-of magnitude reduction.
Because of the way the parameter bC,, is updated
(step 8b), the clusters generated in Phase I can of-
ten feature narrow time-windows. Therefore, the
application of the exact elimination rules at the le-
vel of clusters may lead to a further decrease of the
VRPTW model size. After accomplishing Phase II,
the following tasks have been completed: (i)
assignment of customer nodes via clusters to vehi-
cles; (ii) allocation of used vehicles to depots; (iii)
discovery of a near-optimal set of cluster-based
tours and (iv) the sequence of clusters on the same
tour that indirectly provides a partial arrangement
of the customer sites visited by the same vehicle.

to

BV = Im + mnC +

3.3. The single tour scheduling problem
(Phase III)

Ordering nodes within clusters and scheduling
the service start times at the customer locations
for every tour is the aim of Phase III. To reach that
goal, a low-size version of the VRPTW mathemat-
ical formulation introduced in Section 2.2 must be
solved as many times as the number of tours found
in Phase II. By including just the nodes in the clus-
ters linked to the same tour, a TSP-type formula-
tion for each single-tour scheduling problem can
be derived. Moreover, the relative ordering of the
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clusters along the tour found in Phase II will per-
mit to further reduce the number of sequencing
variables S;. To illustrate this statement, let us
consider a pair of nodes i € C; and j € C; and
assume that clusters (C;, Cy) are on the same tour
and C; is visited earlier by the assigned vehicle.
Then, node i will surely precede node j and, conse-
quently, S;; = 1 and the exact elimination rule # 3
can be applied. By so doing, the variable S; and
the related constraints (4) and (7) can all be elimi-
nated from the problem formulation. For the
reverse situation, S;; will be equal to zero and the
exact elimination rule # 2 can be enforced. In this
way, the formulation avoids including cost/time
sequencing constraints for every pair of nodes
belonging to different clusters. Often, such a saving
in binary variables allows one to solve the whole
set of individual tour scheduling problems all at
once in a short CPU time.

4. Results and discussion

To show the computational performance of the
proposed three-phase hierarchical hybrid VRPTW
approach, several examples from the classical col-
lection of 56 Solomon’s homogeneous VRPTW
benchmark problems have been solved. A full
description of Solomon’s problems can be found
in Solomon (1987). In addition, new test examples
involving multiple depots and heterogeneous fleets
have also been tackled. In this way, we aim to: (i)
show that the new hybrid methodology is able to
provide good solutions to moderate size instances
of the multi-depot heterogeneous fleet VRPTW
problem in a reasonable CPU time, and (ii) assess
the effectiveness of the three-phase hybrid
approach by solving several Solomon’s homoge-
neous VRPTW instances and subsequently com-
paring the solutions found and the CPU times
required with known optimal solutions and com-
putational needs reported in the literature. This will
allow us to conclude that the proposed strategy is
able to often find optimal solutions to instances
with clustered customers and good solutions to
instances with randomly distributed customers.

Solomon’s benchmark problems have been
grouped into three different categories: C, R and

RC. The data set for every category comprises
from 8 to 12 examples all involving 100 nodes with
the same geographical distribution, a central
depot, similar vehicle capacities but different time
windows. Problems of class C have clustered cus-
tomers whose time windows have been generated
based on known solutions. R-class problems have
customer locations uniformly randomly generated
over a square. In turn, RC-class problems have a
combination of clustered and randomly generated
customers and time windows. Problems of each
class are further classified into two types “1” and
“2”, like C1 and C2. Type-1 problems have nar-
row time windows and a small vehicle capacity,
while type-2 problems have wider time windows
and a larger vehicle capacity. Therefore, solutions
to type-2 problems include fewer tours and longer
scheduling horizons. Problem data also include the
number of available vehicles, Euclidean distances
among customer sites and normalized vehicle
speeds such that traveling times and Euclidean dis-
tances are numerically identical. Furthermore,
time windows are regarded as hard constraints,
service times are assumed to be independent of
the customer requirements and the tour duration
cannot exceed a maximum value /. The selected
problem objective is the minimization of the total
distance cost.

Since test examples for the multi-depot hetero-
geneous fleet VRPTW problem are barely reported
in the literature, some new benchmark problems
have been introduced. They result from generating
a modified version of Solomon’s instance C-101
that includes both a heterogeneous fleet and a pair
of depots.

Though one can expect a much better perfor-
mance with problems of types “C” and “RC”,
the proposed approach has been used to tackle
problems of any category. Results for a significant
number of examples involving up to 100 nodes are
next reported. They have been found by using
ILOG OPL Studio 3.5 (script mode) on a
733 MHz Pentium III PC. The effectiveness of
the strategy is first studied by thoroughly analyz-
ing the solution generated at each phase for two
small examples: C-101(25) and C-102(25) prob-
lems, each involving 25 nodes and 3 vehicles with
a uniform capacity of 200 units. In Phase I, the
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Table 2
Results for problem C-101(25) and some variants
Problem type Binary Continuous Constraints Objective function Solution
variables variables time®
Single depot—homogeneous fleet
Exact approach 93 56 2274 191.8 43.94
Hybrid approach (Phase II/Phase III) 21/0 18/56 171/2274 191.8 0.16/0.16
Single depot—heterogeneous fleet
Exact approach 93 56 2274 193.23 71.5
Hybrid approach (Phase 11/Phase I1I) 21/0 18/56 171/2274 193.23 0.06/0.16
Two depots—homogeneous fleet
Exact approach 96 56 2350 162.68 1451.41
Hybrid approach (Phase 11/Phase III) 24/0 18/56 171/2274 162.68 0.39/0.28
Two depots—heterogeneous fleet
Exact approach 96 56 2350 172.93 2924.4
Hybrid approach (Phase 1I/Phase I1I) 24/0 18/56 171/2274 172.93 0.28/0.28

# Seconds ILOG on a 733 MHz Pentium III PC by using OPL Studio 3.5 (script mode).

Table 3a

Optimal tour schedules for example C-101(25 nodes)

Vehicle Node Waiting time  Arrival time

Departure time

Node load  Vehicle load Traveled distance

Travel time

V1 T13 0.00 30.81
T17 0.00 124.81
T18 0.00 217.81
T19 0.00 312.81
T15 0.00 407.81
T16 0.00 502.81
T14 0.00 594.81
T12 0.00 687.81
V2 TS 0.00 15.13
T3 0.00 106.13
T7 0.00 198.13
T8 0.00 290.96
T10 0.00 384.57
TI1 0.00 477.57
T9 0.00 570.73
T6 0.00 662.96
T4 0.00 755.20
T2 0.00 848.81
T1 0.00 967.00
V3 T20 0.00 10.00
T24 0.00 105.00
T25 0.00 197.00
T23 440.76 732.00
T22 0.00 825.00
T21 0.00 917.00

120.81
214.81
307.81
402.81
497.81
592.81
684.81
777.81

105.13
196.13
288.13
380.96
474.57
567.57
660.73
752.96
845.20
938.81
1057.00

100.00
195.00
287.00
822.00
915.00
1007.00

30
20
20
10
40
40
10
20

10
10
20
20
10
10
10
20
10
30
10

10
10
40
10
20
20

190

160

110

95.88

59.48

36.44

815.88

1075.68

1017.20

Objective function: 191.80.

maximum allowed distance between intra-cluster
nodes d™** has been chosen equal to 10, almost

one-third of the average distance among nodes
for both benchmark problems. The procedure
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starts by setting d™** equal to the average inter-
node distance in order to generate few clusters.
Afterwards, d™** is gradually reduced by a factor
0.8 until either no solution improvement is
achieved or the CPU time required for solving
the cluster-based MILP formulation in Phase II
sharply increases. In turn, the maximum allowed
waiting time A4 has been adopted equal to
max(st;, 0.05M**). Results indicate that the mor-
phology of the synthesized clusters is not very sen-
sitive to minor changes in d™** and 4.

4.1. Example C101(25)

Example C-101(25) has been derived from the
original benchmark problem C-101 comprising
100 nodes (Solomon, 1987) by just considering
the first 25 customers. Three variants of Example
C-101(25) involving (a) single terminal/heteroge-

Table 3b

Optimal tour schedule for the heterogeneous-fleet C-101(25) variant

neous fleet; (b) two depots/homogenous fleet and
(¢) two terminals/heterogeneous fleet were also
tackled. The optimization method based on the
VRPTW mathematical formulation introduced in
Section 2 was first used to solve Example C-
101(25) and their three variants. Model sizes, solu-
tion times and the optimal objective value for the
four cases are all reported in Table 2. Euclidean
coordinates for the new depot are: X = 30 and
Y = 55, while the heterogeneous fleet is composed
by 2 vehicles of 150-unit capacity and a third one
of 250-unit capacity. The true optimal solution
to the original Example C101(25) was found in
43.94 seconds. When a second depot was consid-
ered, without any further restriction, the solution
time increased to 1451 seconds. Moreover, the
solution time for the heterogeneous-fleet case was
71.5 seconds for one depot and 2924.4 seconds
for two depots, respectively. Optimal node-based

Vehicle Node Waiting time  Arrival time  Departure time  Node load  Vehicle load  Traveled distance  Travel time
Vi T20 0.00 10.00 100.00 10

T24 0.00 105.00 195.00 10

T25 0.00 224.00 314.00 40

T23 440.76 732.00 822.00 10

T22 0.00 825.00 915.00 20

T21 0.00 917.00 1007.00 20 110 36.44 1017.20
V2 T5 0.00 15.13 105.13 10

T3 0.00 106.13 196.13 10

T7 0.00 198.13 288.13 20

T8 0.00 290.96 380.96 20

T10 0.00 384.57 474.57 10

T11 0.00 477.57 567.57 10

T9 0.00 570.73 660.73 10

T6 0.00 662.96 752.96 20

T4 0.00 755.20 845.20 10 120 53.30 863.31
V3 T13 0.00 30.80 120.80 30

T17 0.00 124.80 214.80 20

T18 0.00 217.80 307.80 20

T19 0.00 312.80 402.80 10

T14 0.00 594.80 684.80 10

T15 0.00 407.80 497.80 40

T16 0.00 502.80 592.80 40

T12 0.00 687.80 777.80 20

T2 22.20 825.00 915.00 30

T1 0.00 917.00 1007.00 10 230 103.49 1025.68

Objective function: 193.23.
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tour schedules are summarized in Tables 3a-3d
and Figs. 4a—4d.

Next, the three-phase hierarchical hybrid
VRPTW approach was applied to the original
Example C101(25) involving an homogeneous fleet
and a single depot. The 25 original nodes have
been merged into four customer clusters. The
nodes in each cluster are shown in Table 4 in the
same order they were added to the cluster entry
list. In Phase II, the three available vehicles are
used to service the clusters. Two of them visit just
a single cluster while the remaining one succes-
sively provides service to the sequence of clusters
C' and C* (see Table 5). In Phase III, clusters
are disaggregated into the original nodes to find
the three tour schedules. The solution depicted in
Fig. 4a and Table 3a is the truly problem optimum
already found through the exact approach. The
same vehicle schedules are still found even if the

Table 3¢
Optimal tour schedule for the two-depot C-101(25) variant

cluster sequencing on every tour provided by
Phase II is explicitly considered to decrease the
model size solved in Phase III. Moreover, the
nodes in each cluster are visited in the same order
they appear in the cluster entry list. Note that the
total travel-times for vehicles V1 and V2 are quite
similar to those estimated in Phase II (see Table
3a). In addition, the total travel time for vehicle
V3 is quite similar to the sum of both the service
time for clusters C' and C* and the waiting time
before servicing cluster C>. A similar conclusion
can be drawn when estimated and real travel dis-
tances are compared. Note that the large waiting
time before V3 starts servicing cluster C2 arises
because the selected problem objective ignores
time-related costs. In summary, the clustering pro-
cedure leads to a cluster-based problem formula-
tion of smaller size that still is a good
representation of the original VRPTW problem.

Vehicle Depot Node Waiting time Arrival time Departure time Node load Vehicle load Traveled distance Travel time

Vi P1 T5 0.00 15.13 105.13
T3 0.00 106.13 196.13
T7 0.00 198.13 288.13
T8 0.00 290.96 380.96
T10  0.00 384.57 474.57
T11  0.00 471.57 567.57
T9 0.00 570.73 660.73
T6 0.00 662.96 752.96
T4 0.00 755.20 845.20
T2 0.00 848.80 938.80
T1 0.00 940.80 1030.80
V2 P2 T20  5.00 10.00 100.00
T24  0.00 105.00 195.00
T25  0.00 224.00 314.00
T23  0.00 732.00 822.00
T22  0.00 825.00 915.00
T21 0.00 917.00 1007.00
V3 P2 T13  8.46 30.00 120.00
T17  0.00 124.00 214.00
T18  0.00 217.00 307.00
T19  0.00 312.00 402.00
T15  0.00 407.00 497.00
T16  0.00 502.00 592.00
T14  0.00 594.00 684.00
T12  0.00 687.00 777.00

10
10
20
20
10
10
10
20
10
30
10 160 59.98

10
10
40
10
20
20 110 29.24

30
20
20
10
40
40
10
20 190 88.22

1049.49

1010.00

807.41

Objective function: 177.44.
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Table 3d

Optimal tour schedule for the two-depot heterogeneous-fleet C-101(25) variant

Vehicle Depot Node Waiting time Arrival time Departure time Node load Vehicle load Traveled distance Travel time

V1 P2 T5 0.00 15.62 105.62 10

T3 0.00 106.62 196.62 10

T7 0.00 198.62 288.62 20

T8 0.00 291.45 381.45 20

T10 0.00 385.05 475.05 10

T11 0.00 478.05 568.05 10

T9 0.00 571.21 661.21 10

T6 0.00 663.45 753.45 20

T4 0.00 755.69 845.69 10 120 53.38 863.38
V2 P2 T20 5.00 10.00 100.00 10

T24 0.00 105.00 195.00 10

T25 0.00 197.00 287.00 40

T23 0.00 732.00 822.00 10

T22 0.00 825.00 915.00 20

T21 0.00 917.00 1007.00 20 110 29.24 1010.00
V3 P1 T13 0.00 30.80 120.80 30

T17 0.00 124.80 214.80 20

T18 0.00 217.80 307.80 20

T19 0.00 312.80 402.80 10

T15 0.00 407.80 497.80 40

T16 0.00 502.80 592.80 40

T14 0.00 594.80 684.80 10

T12 0.00 687.80 777.80 20

T2 22.20 825.00 915.00 30

T1 0.00 917.00 1007.00 10 230 103.48 1025.68
Objective function: 186.11.

Cluster C*

Cluster C'

Fig. 4a. Best solution found for example C-101(25 nodes).
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Fig. 4b. Best solution found for the heterogeneous-fleet C-
101(25) variant.

Model sizes and CPU times for the problems
solved at Phases II and III are also reported in
Table 2. The three vehicle scheduling problems at
Phase 11 were all solved at once. Compared with
the rigorous approach, the number of binary vari-
ables has been cut by three and the CPU time shar-
ply drops from 43.94 seconds to less than one
second. Time requirements from the clustering
procedure have been neglected. Next, the proposed
hybrid approach was applied to the three variants

of Example C101(25). The optimal solutions
depicted in Figs. 4b, 4c and 4d, respectively, were
again found but at much lower computational
cost. Table 2 shows that the solution time for the
two-depot/homogeneous fleet C101(25) variant
decreases from 1451.41 seconds (required by the
exact approach) to merely 0.67 seconds. Saving
in CPU time is much larger for the two-depot/het-
erogeneous fleet variant since it drops from 2924.4
seconds to 0.56 seconds. As mentioned before,
vehicle-scheduling problems at Phase III were all
solved at once since the values of variables Y,
and X, have already been set in Phase II and, in
addition, the exact elimination rules fixed the val-
ues of all Sj-variables. Consequently, the MILP
formulation tackled in Phase III becomes an LP.

4.2. Example C102(25)

Benchmark problems C101(25) and C102(25)
both comprise the same set of nodes and locations
but a different time-window distribution. Applica-
tion of the clustering procedure to problem C-
102(25) yielded 5 clusters (see Table 6). However,
it is observed that the merging of clusters
C* U C° generated for Example C102(25) is equiv-
alent to the single cluster C* of problem C-101(25).
The other three -clusters (C], c?, C3) remain

V2 tour

P1

Fig. 4c. Best solution found for example C-101(25 nodes) with 2 depots and a homogeneous fleet.
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Fig. 4d. Best solution found for the two-depot heterogeneous fleet C-101(25) variant.

unchanged but not necessarily with the same
ordering of nodes in the corresponding entry list.
In short, the change in the time-window distribu-
tion led to the split of a cluster into a pair of
new ones and a different ordering of nodes in the
entry list of cluster C'.

In Phase I, the three available vehicles are used
to service the five clusters, with vehicle V1 succes-
sively visiting clusters C° and C* in this order. As a
result, a cluster-based tour schedule similar to that
found for Example C101(25) was discovered (see
Table 7). Finally, Phase III provides the optimal
node-based tour schedules that are summarized
in Table 8 and Fig. 5. The only difference between
the optimal tour schedules for Examples C101(25)

and C102(25) is the reordering of nodes on the
tour assigned to vehicle V2 visiting cluster C* only.
The analysis of results indicates that: (a) Phase 11
again provides an accurate estimation of the travel
time required by each vehicle to complete the tour,
and (b) the optimal solution is still found even if
the ordering of clusters on each tour found in
Phase II is enforced during the execution of Phase
III1. In this way, sizable savings in binary variables,
constraints and CPU time are simultaneously
achieved at no additional traveling expenses. In
other words, aggregated tour images are generated
during Phases I and II. Though somewhat simpler
than the real route topology, they still capture
their fundamental structures.

Table 4
Clusters for example C-101(25) generated at Phase I
c' lon c ct

Assigned nodes T20 T24 T25 T23 T22 T21 T5T3 T7 T8 T10 T11 T9 T6 T4 T2 T1 TI13 T17 T18 T19 T15 T16 T14 T12
Cluster load 60 50 160 190
Coordinates

X 27 29 40 20

Y 51 53 68 80
Time window

aC 10 732 15 30

bC 73 771 67 92
Cluster service time 278 276 1029 764
Traveled-distance 8 6 39 44
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Table 5
Cluster-based tour schedules for example C-101(25 nodes)

Vehicle Cluster Waiting time Arrival time Departure time

Cluster load Vehicle load Traveled distance Travel time

Vi c 0.00 30.81 794.81 190 190 105.62 825.62
V2 c 0.00 15.13 982.13 160 160 69.26 997.26
V3 C! 0.00 10.00 288.00 60
c? 441.14 732.00 1008.00 50 110 41.26 1019.40
Objective function: 216.14 (includes intra-cluster traveled distances).
4.2.1. Numerical results for large homogeneous domly generated based on a uniform

VRPTW examples

Numerical results for a large number of Solo-
mon test problems of different sizes; node geo-
graphical densities and time-window distributions
are presented in Tables 9-15. Optimal values for
them reported in Tables 9 and 12 were extracted
from Kallehauge et al. (2001). The maximum
allowed distance between intra-cluster nodes was
"™ =10 for “C” and “RC” problems and
d™ =12 for “R” problems. Since the geographi-
cal locations of nodes in “R” problems are ran-

distribution, it was necessary a larger d™** to still
get a low number of clusters during Phase 1. From
the numerical experiments, it can be drawn the fol-
lowing conclusions:

(1) As expected, the method was especially suc-
cessful for clustered examples solving many
of them to optimality. Table 9 shows the
number of clusters generated during Phase
I for nine benchmark problems of class C
when the first 25, 50 or the whole set of

Table 6
Clusters generated for example C-102(25 nodes)
C' e c c c

Assigned nodes T20 T24 T25 T23 T22 T21 T1 T2 T3 T5T7 T8 T10 T11 T9 T6 T4 TI12 T15T16 T14 TI13 T17 T18 T19
Cluster Load 60 50 160 110 80
Coordinates

X 27 29 40 22 18

Y 51 53 68 84 76
Time window

aC 10 732 0 0 30

bC 73 771 324 429 92
Cluster service time 278 276 1029 659 375
Traveled distance 8 6 39 24 15
Table 7

Cluster-based tour schedules for example C-102(25 nodes)

Vehicle Cluster Waiting time  Arrival time  Departure time

Cluster load Vehicle load Traveled distance Travel time

Vi e 0.00 30.81 405.81
c 0.00 414.75 1073.75

V2 c 0.00 16.00 1045.00

V3 c 0.00 10 288.00
c 441.14 732.00 1008

80
110 190 117.20 1112.20
160 160 71.00 1061.00
60
50 110 41.26 1019.40

Objective function: 229.46 (includes intra-cluster traveled distances).
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Optimal tour schedules for example C-102(25 nodes)

Vehicle Node Waiting time  Arrival time  Departure time Node load  Vehicle load  Traveled distance  Travel time
V1 T13 0.00 30.81 120.81 30

T17 0.00 124.81 214.81 20

T18 0.00 217.81 307.81 20

T19 0.00 312.81 402.81 10

T15 0.00 407.81 497.81 40

T16 0.00 502.81 592.81 40

T14 0.00 594.81 684.81 10

T12 0.00 687.81 777.81 20 190 95.88 815.88
V2 T7 0.00 16.00 106.00 20

T8 0.00 108.83 198.83 20

T10 6.39 210.83 300.83 10

T11 0.00 303.83 393.83 10

T9 32.16 429.15 519.15 10

T6 0.00 521.38 611.38 20

T4 0.00 613.62 703.62 10

T2 0.00 707.22 797.22 30

T1 0.00 799.22 889.22 10

T3 0.00 892.83 982.83 10

T5 0.00 983.83 1073.83 10 160 58.38 1048.38
V3 T20 0.00 10.00 100.00 10

T24 0.00 105.00 195.00 10

T25 0.00 197.00 314.00 40

T23 440.76 732.00 822.00 10

T22 0.00 825.00 973.00 20

T21 0.00 917.00 1225.00 20 110 36.44 1017.20

Objective function: 190.70.

Cluster C*

Cluster G

Cluster G

Cluster C!

Fig. 5. Best solution found for example C-102(25 nodes).

100 nodes were considered. In all cases
except one the optimal solution was found

at

low computation cost. Moreover, an

improved solution for Problem C205(50
nodes) has been discovered (see Table 10
and Fig. 6). Fig. 7 presents the best solution
found for Problem C-102 involving 100
nodes.

(2) Phase II is usually the “bottleneck™ step of

the proposed approach mostly determining
the CPU time requirements. Model sizes
and solution times for C-class problems
solved in the paper are shown in Table 11.
It can be seen that Phase-II solution time
ranges from 21.64 seconds to 117.2 seconds
for 100-node problems of type Cl, rising to
1960 seconds for Solomon’s problem C-
201(100 nodes).

(3) The clustering strategy was also very effective

in dealing with RC class problems but its effi-
cacy decreases when R-class problems are
tackled. Numerical results for several RC
and R benchmark problems involving up to
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Table 9
Results found for different C-class benchmark problems

Problem Nodes Clusters Vehicles This approach Best solution reported Subopt. gap (%)
C-101 25 4 3 191.80 191.80 0.00
50 7 5 363.23 363.23 0.00
100 10 10 828.90 828.90 0.00
C-101m* 100 10 10 784.90 - -
C-102 25 7 3 190.70 190.70 0.00
50 12 5 373.68 362.17 3.17
100 20 10 828.90 828.90 0.00
C-103 25 7 3 191.80 191.80 0.00
C-105 25 4 3 191.80 191.80 0.00
50 6 5 363.10 363.10 0.00
100 10 10 828.90 828.90 0.00
C-106 25 4 3 191.80 191.80 0.00
50 5 5 363.23 363.23 0.00
100 10 10 828.90 828.90 0.00
C-107 25 4 3 191.80 191.80 0.00
50 6 5 363.23 363.23 0.00
100 10 10 828.90 828.90 0.00
C-108 25 4 3 191.80 191.80 0.00
50 5 5 363.23 363.23 0.00
100 10 10 828.90 828.90 0.00
C-109 25 4 3 191.80 191.80 0.00
50 5 5 363.23 363.23 0.00
100 10 10 828.90 828.90 0.00
C-201 25 6 2 215.55 215.55 0.00
50 9 3 391.55 361.80 0.00
100 7 3 591.10 591.10 0.00
C-202 25 29 2 215.55 215.55 0.00
C-203 25 9 2 215.55 215.55 0.00
C-205 25 5 2 215.55 215.55 0.00
50 8 3 361.80 363.50° 0.00
100 7 3 588.40 588.40 0.00
C206 25 5 2 215.55 215.55 0.00
C-207 25 8 2 215.55 215.55 0.00
C-208 25 5 2 215.55 215.55 0.00

# Two-depot heterogeneous-fleet C101(100) variant.
® A new best solution for problem C205(50 nodes).

50 nodes are shown in Table 12. Optimal and
near-optimal solutions were often discovered
when tackling RC-problems. Model sizes
and computational requirements are listed
in Table 13. Moreover, a new best solution
was found for problem RC-101(25 nodes)
that is shown in Table 14 and Fig. 8. Note
that the CPU time required to solve the clus-
ter-based MILP formulation shows a sizable

increase for RC-problems of 50 nodes.

(4) Despite the good performance of the cluster-
ing algorithm for RC-problems, some diffi-
culty arises when the number of nodes is 50

or 100. Combination of tight and randomly
distributed time-windows together with
approximated intra-cluster travel time forces
using more than one vehicle to service some
clusters. This is the case for benchmark prob-
lems RC-102 and RC-103. To avoid such
infeasibilities during Phase III, & is further
reduced and, consequently, the number of
clusters rises. As a result, the computational
efficiency and the solution quality both
become worse. Difficulties with RC-problems
with 50 or more nodes can be overcome by
allowing small time-window violations at
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Table 10
New best solution for example C-205(50 nodes)

Vehicle Node Waiting time  Arrival time  Departure time Node load  Vehicle load  Traveled distance  Travel time

V1 TS 0.00 15.13 105.13 10
T2 22.04 133.00 223.00 30
T1 0.00 231.60 321.60 10
T7 663.59 993.00 1083.00 20
T3 0.00 1087.12 1177.12 10
T4 0.28 1181.00 1271.00 10 90 70.71 1296.62

V2 T49 855.95 887.00 971.00 10
T40 749.84 1739.00 1829.00 10
T44 0.00 1833.47 1923.47 10
T46 0.15 1929.00 2019.00 30
T45 0.00 2025.40 2115.40 10
T50 92.13 2212.00 2302.00 10
T47 93.00 2400.00 2490.00 10
T43 0.00 2493.00 2583.00 10
T42 0.00 2586.00 2676.00 20
T41 0.00 2678.00 2768.00 10
T48 0.00 2776.06 2866.06 10 140 95.78 2876.84

V3 T20 0.00 10.00 100.00 10
T22 0.00 102.82 192.82 20
T24 159.02 355.44 445.44 10
T27 0.00 448.27 538.27 10
T30 0.00 542.51 632.51 10
T29 0.00 637.51 727.51 10
T6 0.00 736.45 826.45 20
T32 0.00 832.78 922.78 30
T33 0.00 924.78 1014.78 40
T31 0.00 1020.16 1110.16 20
T35 0.00 1115.16 1205.16 10
T37 0.00 1211.00 1301.00 20
T38 0.00 1303.00 1393.00 30
T39 0.00 1398.00 1488.00 20
T36 0.00 1493.00 1583.00 10
T34 0.00 1586.00 1676.00 20
T28 0.00 1686.77 1776.77 20
T26 0.00 1784.83 1874.83 10
T23 0.00 1882.04 1972.04 10
T18 0.00 1981.09 2071.09 20
T19 0.00 2076.09 2166.09 10
T16 0.00 2173.17 2263.17 40
T14 0.00 2265.17 2355.17 10
T12 0.00 2358.17 2448.17 20
T15 0.00 2455.24 2545.24 40
T17 0.00 2550.63 2640.63 20
T13 0.00 2644.63 2734.63 30
T25 0.00 2743.63 2833.63 40
T9 0.00 2840.84 2930.84 10
T11 0.00 2937.91 3027.91 10
T10 0.00 3030.91 3120.91 10
T8 0.00 3127.00 3217.00 20
T21 0.00 3222.65 3312.65 20 630 195.30 3324.32

Objective function: 361.80.
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Table 11
Model sizes and solution times for C-class benchmark problems
Problem Nodes Phase II Phase III
Binary Continuous  Constraints CPU time Binary variables Continuous Constraints CPU time
variables variables (seconds) variables (seconds)
C-101 25 18 14 63 0.60 40 23 257 3.79
50 36 24 236 1.76 1 23 177 1.38
100 100 40 610 74.15 45 27 246 1.42
C-10lm* 100 103 40 610 2271.00 45 27 246 1.42
C-102 25 29 20 264 0.71 40 23 257 3.79
50 77 34 1001 2.69 40 23 257 3.79
100 263 60 5730 21.64 48 27 252 2.25
C-103 25 42 20 339 12.15 52 24 270 0.60
C-105 25 14 14 90 0.54 1 23 179 0.22
50 35 22 273 1.75 30 23 237 0.44
100 106 40 1000 100.13 14 26 221 0.33
C-106 25 12 14 69 0.12 12 24 190 0.10
50 26 20 140 0.60 12 24 190 0.10
100 103 40 840 81.00 19 28 260 0.60
C-107 25 14 14 90 0.45 13 24 192 0.12
50 35 22 273 1.75 13 24 192 0.12
100 115 40 1310 117.20 16 28 254 0.60
C-108 25 16 14 102 0.55 24 24 214 0.60
50 28 20 180 0.69 24 24 214 0.60
100 121 40 1480 91.30 31 28 284 0.55
C-109 25 17 14 114 0.60 34 24 234 2.53
50 28 20 180 0.55 34 24 234 2.53
100 115 40 1310 117.20 43 28 308 1.61
C-201 25 15 16 132 0.39 22 40 482 0.76
50 43 24 119 17.47 28 56 894 2.53
100 27 20 240 1960.00 145 68 1512 4.83
C-202 25 32 22 295 4.67 58 40 554 4.28
C-203 25 36 22 313 1.70 136 40 710 0.94
C-205 25 15 14 113 0.99 50 40 538 0.17
50 41 22 375 6.37 100 68 1422 2.14
100 27 20 240 23.18 100 70 1493 2.63
C-206 25 16 14 117 0.55 68 40 574 0.49
C-207 25 23 20 222 0.60 119 40 676 3.79
C-208 25 16 14 117 0.55 87 40 612 3.80

& Two-depot heterogeneous-fleet C101(100) variant.

)

some penalty costs during Phase II. In this
way, the sub-optimal gap reported in Table
12 for benchmark problems RC-102(50
nodes) and RC-108(50 nodes) can be reduced
by half and the solution times experience a
large decrease.

Despite using a larger d™**, the number of
clusters generated for R-class problems is
considerably higher than that for C and
RC-problems and so are the solution time
requirements (see Tables 11 and 13). How-

ever, near optimal solutions were sometimes
identified. The best solution found for prob-
lem R-112(25 nodes) is described in Table 15
and Fig. 9.

(6) The computational performance improves

with tight time windows and high node geo-
graphical density. Due to the use of pruning
rules of Section 2.3, the critical size of the
cluster-based MILP formulation significantly
decreases and the hybrid approach becomes
much more efficient.
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Numerical results found for RC-class and R-class benchmark problems

Problem Nodes Clusters Vehicles This approach solution Optimal solution Subopt. gap (%)
RC-101 25 6 4 454.19 461.10" 0.00%
RC-102 25 12 3 348.13 348.13 0.00
50 15 7 1004.92 822.50 22.17
RC-103 25 12 3 334.00 334.00 0.00
50 17 6 928.39 710.90 30.60
RC-104 25 8 3 307.02 307.02 0.00
RC-105 25 11 4 416.88 412.30 1.11
RC-106 25 5 3 346.50 346.50 0.00
RC-107 25 6 3 298.95 298.30 0.00
RC-108 25 5 3 294.98 294.50 0.00
50 9 6 716.55 598.10 19.80
RC-201 25 6 3 361.24 361.24 0.00
R-101 25 19 8 693.11 619.17 11.94
R-102 25 19 7 623.19 547.90 14.89
R-103 25 18 5 478.50 454.60 5.25
R-104 25 13 4 430.11 418.00 2.90
R-107 25 16 4 483.17 425.30 13.60
R-111 25 10 4 517.27 429.90 19.39
R-112 25 9 4 428.90 394.00 8.86
% A new best solution for problem RC-101(25 nodes).
Table 13
Problem sizes and CPU times for RC-class and R-class examples
Problem  Nodes  Phase II Phase III
Binary Continuous  Constraints  Solution  Binary Continuous  Constraints  Solution
variables  variables time variables  variables time
RC-101 25 29 20 222 0.38 6 19 129 0.06
RC-102 25 70 32 708 0.05 11 19 139 0.11
50 143 44 2103 1977.86 47 22 235 6.87
RC-103 25 71 60 675 1.07 23 19 163 0.88
50 173 46 2661 2976.96 51 22 243 38.15
RC-104 25 39 22 324 0.33 41 20 200 2.53
RC-105 25 60 60 629 291 31 18 159 0.11
RC-106 25 19 16 129 0.88 24 18 145 0.88
RC-107 25 20 18 150 0.17 46 20 210 0.22
RC-108 25 20 16 135 0.22 46 20 210 0.33
50 72 30 729 41.69 56 22 253 20.43
RC-201 25 27 18 163 0.44 7 19 131 0.05
R-101 25 156 54 2553 751.00 2 9 45 0.16
R-102 25 178 52 2892 600.23 5 9 47 0.05
R-103 25 145 46 2014 180.29 7 13 81 0.06
R-104 25 92 34 1007 1800.40 21 15 127 0.11
R-107 25 114 40 1356 190.86 19 15 123 0.28
R-111 25 58 28 566 7.25 18 14 97 1.31
R-112 25 49 26 447 11.04 29 16 136 0.28
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Table 14
New best solution found for example RC-101(25 nodes)

Vehicle Node Waiting time  Arrival time  Departure time  Node load  Vehicle load  Traveled distance  Travel time
Vi T23 19.96 65.00 75.00 30

T21 0.00 77.00 87.00 10

T19 0.00 92.38 102.38 40

TI18 0.00 107.77 117.77 20

T20 0.00 127.97 137.97 10

T25 3.82 154.00 164.00 20

T24 0.00 174.44 184.44 10 140 125.72 219.50
V2 T14 0.00 35.35 45.35 10

TI2 0.00 48.35 58.35 40

T11 0.00 63.35 73.35 20

TI15 0.00 79.35 89.35 20

Tl6 0.00 91.35 101.35 20

T9 0.00 112.53 122.53 20

T10 0.00 127.53 137.53 30

T13 0.00 144.61 154.61 10

T17 0.00 165.79 175.79 20 190 126.10 216.10
V3 T22 57.00 92.00 102.00 40 40 70.00 137.00
V4 T5 0.69 41.00 51.00 20

T2 0.00 61.20 71.20 30

T7 0.80 79.00 89.00 20

T8 0.00 94.00 104.00 10

T6 0.00 109.83 119.83 20

T3 0.00 130.60 140.77 10

Tl 0.00 143.77 153.77 40

T4 0.00 160.14 170.14 20 170 132.39 212.39

Objective function: 454.19.

4.2.2. A large multi-depot heterogeneous fleet
VRPTW example

In order to illustrate the use of the cluster-based
approach on a large multi-depot heterogeneous
fleet VRPTW case study, the benchmark problem
C-101 has been modified by including a new depot
(Euclidean coordinates, X =30, Y =155) and a
heterogeneous fleet composed by 3 vehicles of
240 units capacity (V1, V2 and V3), 3 vehicles of
200 units capacity (V4, V5 and V6) and 4 vehicles
of 170 units capacity (V7-V10). However, the total
number of vehicles and the overall fleet capacity
remain unchanged. Phase I generated the clusters
to be assigned to tours. Phase II assigns clusters
to vehicles in such a way that “big” trucks service
clusters with large loads and “‘small” trucks visit
clusters with small loads. The reallocation of some
vehicles to the “new” depot allows an additional
reduction in the traveled distance from 828.9 to

784.9 units (see Table 9). This is so because vehi-
cles depart from depots closer to the clusters being
serviced. The solution found is depicted in Fig. 10.
Three of the vehicles have been assigned to the new
depot P2. Model sizes and solution times are
reported in Table 11. Though just three more bin-
ary variables are to be considered, the CPU time
grows from 74.15 seconds for the single-depot/
homogeneous fleet C101(100) to 2271 seconds for
the two-depot/heterogeneous fleet variant. In turn,
the solution time for the largest tour scheduling
problem tackled in Phase III is 1.42 seconds.

5. Conclusions
This work introduces a new cluster-based hier-

archical hybrid approach for the multi-depot het-
erogeneous-fleet VRPTW problem. The approach
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Best solution found for example R-112 (25 nodes)

Vehicle Node

Waiting time

Arrival time  Departure time  Node load  Vehicle load

Traveled distance

Travel time

V1 T7
T19
TI1
T10
T20
T9
Tl

V2 T12
T25
T24
T3

V3 TS
T6
T18
T8
T17
T16
T14

V4 T2
T15
T22
T23
T4
T21
T13

14.39
0.00
0.00
0.00
0.00
0.00
0.00

0.00
9.59
0.00
0.00

8.39
0.00
0.00
0.00
0.00
3.28
26.82

0.00
0.00
0.00
0.00
0.00
0.00
0.00

36.00 46.00 5
57.18 67.18 17
74.25 84.25 12
95.43 105.43 16
121.24 131.24 9
142.42 152.42 16
170.22 180.22 10 85
15.00 25.00 19
56.00 66.00 3
81.00 91.00 3
105.14 115.14 13 41
29.00 39.00 26
49.00 59.00 3
70.18 80.18 12
90.62 100.62 9
114.54 124.54 2
139.00 149.00 19
187.00 197.00 20 91
18.00 28.00 7
41.00 51.00 8
66.81 76.81 18
87.99 97.99 29
112.99 122.99 19
132.99 142.99 11
158.80 168.80 23 115

110.67

87.71

120.54

109.98

195.46

137.50

229.01

179.98

Objective function: 428.91.

aims to integrate a heuristic clustering algorithm
into an optimization framework. To this purpose,

Fig. 6. Best solution found for problem C-205(50 nodes).

an MILP mathematical formulation for this gen-
eral VRPTW type was first developed. Likewise
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V2 tour V6 tour

V4 tour

V3 tour

V8 tour

V5 tour

V10 tour

V7 tour

Fig. 7. Best solution found for example C-102(100 nodes).

pure optimization methods, however, the pro-
posed exact approach is able to solve problems
involving up to 25 nodes to optimality since the
model size and the solution time both grow expo-
nentially with the number of nodes and vehicles.
On the other hand, heuristics can approximately
solve problems of larger sizes in much less compu-
tational time but usually lack robustness and have
a problem-dependent performance. A heuristic/
algorithmic mixed strategy arises as another
option often sharing the attributes of both tech-
niques. By incorporating a preprocessing stage to

gather nodes into a few clusters, an efficient, com-
pact VRPTW mathematical model at the level of
clusters can be derived. The cluster-based solution
is subsequently processed by a small MILP model
to provide detailed vehicle routes and schedules
through disaggregating clusters into the original
nodes. The proposed clustering algorithm that
exploits time-window constraints to generate feasi-
ble clusters seems to be work well even for R-class
problems. The three-phase hybrid approach is as
robust as the optimization methods and capable
of solving problems with 100 nodes at reasonable
solution time. Numerical results indicate that the
cluster-based optimization method proved to be
quite successful on a variety of Solomon’s single-
depot homogeneous-fleet benchmark problems
and new multi-depot heterogeneous fleet VRPTW
instances introduced in this paper. Optimal or near
optimal solutions were obtained for a significant
number of C-class problems of different sizes.
For RC and R-class problems, the sub-optimal
gap increases but it remains within acceptable
limits.

Future research lines include the development
of a mathematical framework for further improv-
ing the solution provided by the three-phase
hybrid approach and the extension of the strategy
to more difficult problems such as the pick-up and
delivery problem with time windows (PDPTW).

Cluster C2

Cluster C4

V2 tour

V3 tour

Cluster C!

Fig. 8. New best solution found for problem RC-101(25 nodes).
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Fig. 9. Best solution found for problem R-112(25 nodes).

V4 tour (qv: 190/200)

VS tour (q =180/200) V6 tour(q, =190/200)

V8 tour (q = 170/170)
i sYP2

V9 tour (q\y: 170170)

V3 tour (g, = 200/240)
V7 tour(q, = 160/170)| | V2 tour (= 200/240)
V10 tour (qv: 150/170)|

V1 tour (qV =200/240)

Fig. 10. Best solution found for the two-depot heterogeneous
fleet C-101(100) variant.
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