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Abstract-In this paper, our objective is to come up 
with a sound methodology to design supply chains with 
outstanding delivery performance. As the first step to- 
wards this objective, we consider supply chains with a 
linear workflow, which we call pipelined supply chains. 
We define a new index of delivery performance called 
delivery sharpness which measures the precision as well 
as the accuracy with which products are delivered to 
the customers. The specific problem we solve is: given 
the delivery sharpness to be achieved, how can we al- 
locate variability across individual stages of the supply 
chain in a cost-effective way. We call this the variance 
pool allocation (VPA) problem. In formulating and 
solving the VPA problem, we explore interesting rela- 
tionships among process capability indices C,, C p k ,  and 
C,,, and generalize the notion of Motorola six sigma 
performance. The VPA problem leads to a four step de- 
sign methodology and the resulting optimization prob- 
lem is solved using the method of Lagrange multipliers. 
We present an interesting example of a supply chain in 
the plastics industry and illustrate the different steps 
of our methodology. 

Keywords- Supply chain lead time, Cycle time com- 
pression, Delivery Probability (DP), Delivery Sharp- 
ness (DS), Process Capability Indices, Variance Pool 
Allocation (VPA), Generalized Motorola Six Sigma 
(GMoSS) Concept 

I. INTRODUCTION 
important design objective in supply chain net- A" works is to achieve a high probability of delivery 

of finished products to the customer in a customer 
specified delivery window. This entails perfect syn- 
chronization among supply chain elements and indi- 
vidual business processes embedded within the supply 
chain process. This in turn requires variability reduc- 
tion all along the supply chain. Variability reduction 
in supply chains is the subject of several research pa- 
pers (several important references are listed in [l] and 
in [2]). 

A. Variance Pool AlEocation Problem 
In this paper, we formulate and solve an important 

problem in the design of synchronized supply chains. 
We call this problem as the variance pool allocation 
problem (VPA). Given a supply chain and the mean 
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and standard deviation of the end-to-end lead time for 
a certain product mix, the VPA problem seeks to opti- 
mally distribute the pool of variance among individual 
business processes so as to minimize cost and achieve 
outstanding delivery performance. 

In this paper, we also describe the delivery perfor- 
mance of a supply chain in terms of two metrics. The 
first is a traditional metric, delivery probability (DP), 
which is the probability that a typical customer order 
is delivered during a customer-specified window. We 
show in the paper that the two popular process capa- 
bility indices, C, and C,, [3], [4] provide an appro- 
priate vehicle for computing the delivery probability. 
The second metric is a new one that we propose, which 
we call delivery sharpness (DS), which is a measure of 
how close to the target (most desired) delivery date a 
customer order is actually delivered. 

B. Relevant Work 
The Motorola six sigma program for design toleranc- 

ing is described in [7], [8]. These reports also describe 
the process capability indices C, and Cpk.  These and 
other process capability indices are discussed in a com- 
prehensive manner in [6], 141. An attempt towards syn- 
chronizing the internal processes in a supply chain net- 
work for better delivery performance has been made 
by Narahari et a1 [9]. The authors emphasize the use 
of Motorola Six Sigma approach to analyze and de- 
sign a given supply chain process for six sigma deliv- 
ery performance. Two design problems are discussed 
in this paper: finding nominal pool and finding a vari- 
ance pool. The present paper is a generalization of the 
above paper [9]. 

C. Outline of the Paper 
Section 2 of this paper covers the description of pro- 

cess capability indices and relationship among each 
other, relationship with process yield and relationship 
DP as well as DS. The section also presents a gener- 
alization of the notion of Motorola six sigma quality. 
These findings are used in Section 3 to formulate the 
variance pool allocation problem for linear or pipeIined 
supply chains. In Section 4, we present a four-step 
methodology for VPA in supply chains. Finally in 
Section 5, we describe a six stage supply chain in a 
plastics industry and apply our design methodology. 
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TABLE I 
NOTATION USED IN THE DEFINITIONS OF PCIs 

p 
a 
L 
U 
T 

T 

P 
s 

I X I Lead Time or anv aualitv characteristic. 1 
Mean of X 
Standard deviation of X 
Lower specification limit for X 
Upper specification limit for X 
Target value for lead time X ,  given by customer 
Tolerance for lead time X ,  given by customer 
IT-PI 
min(lU - PI1 IC1 - LI) 

Potential 
Actual Yield 
UDDer Bound 

Implications and future work constitute Section 6. 

11. PROCESS CAPABILITY INDICES: A NEW 
PERSPECTIVE 

A .  The Index C, 
The process capability index, C,, is defined as 

USL - LSL 
6a 

c, = 

It is assumed later in our work that the distribu- 
tion of X is normal and the target value of lead time 

. T is the mid point of U S L  and LSL for any business 
process. Hence C, can be expressed in following equiv- 
alent form. 

(1) 
T c = -  
3a 

where T = tolerance = usL;LsL 
C, measures only the potential of a business pro- 

cess, where by potential, we mean the probability of 
delivering the products within customer specified de- 
livery window provided that T = p. This potential can 
be computed with the help of following relation: 

P 

2@ (3C,) - 1 
@ (3C,,) + @ (6C, - 3C,,) - 1 

@ /3c,, 

@(%)-@(%) = 2 ( @ ( 3 - 0 . 5 )  

= 2@(3C,) - 1 (2) 

where @(Z) is cumulative distribution function of 
standard normal distribution. This function is plotted 
in Figure 1. 

B. The Index C,, 
C,, is defined as follows: 

min(USL - p, p - LSL) 

While C, measures the potential of the process, C,, 
helps measure the actual yield (i.e. when T # p )  and 

‘Pk = 3a = (5) (3) 

Fig. 1. Potential of the Process vs C, 

TABLE I1 
FORMULAE FOR POTENTIAL, ACTUAL YIELD, UPPER AND 

LOWER BOUND ON PROCESS YIELD 

I Quantitv I Formula I 

I 

Lower Bound I 2@ (3cpkrf- 1 I 
actual yield of the process becomes equal to the poten- 
tial of the process when T = p. potential of process 2 
actual yield of process. 

In addition to potential and actual yield, we can 
define two other quantities: Upper Bound on process 
yield and Lower Bound on process yield. These bounds 
depend only on C,, and the actual yield of the process 
lies between these two values. These four quantities 
represent areas of different regions under probability 
density function, fx(z), as shown in Figure 2. Table 
I1 summarizes the formulae for these four quantities. 
A proof of these formulae is provided in [lo]. 

L T P U  L P U  

4 - 2 0 2  
L r P U  L T p u  

Fig. 2. 
Yield of the Process 

Potential, Actual Yield, Upper and Lower Bound on 

C. The Index C,, 

The index CPm is defined as 
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TABLE I11 
BOUNDS ON PCIs FOR ACTUAL YIELD = a 

Quantity E ( L )  = o2 + s2 is known as “Expected 
Taguchi Loss” [6], [4]. 

D. Relationship and Dependencies among C,, C,, , C,, 
The following relations can be derived among 

‘ P ,  ‘Pk I ‘Pm [lo]’ 

cp 2 cpk 2 0 ;  c p >  cpm 2 0  (5) 
Cp, = Cp(l - k) (6) 

where k = +. 
Despite of mutual relationships among themselves, 

indices have a tight coupling with process yield also. It 
is easy to show [10]that for a given value of actual yield 
a (say), there exhibit lower and upper bounds for the 
values of both C, and C,, . 3 denote these lower and 
upper bounds by CF, C;,, Cp” and respectively. 
A crisp idea behind the intent of these bounds is as 
follows: 

If process’s C, (C,,) is less than C; (C;,)then its 
actual yield can’t be equal to a; no matter how large 
C,, (C,) i s smi l a r ly  if process’s C,, is greater than 
or equal to C;, then it’s actual yield can’t be less than 
a; no matter how small C, is. The case with is 
little different. For any value of C, greater than or 
equal to it is possible to find a corresponding C,, 
such that actual yield of the process is a. Table I11 
summarizes such bounds on C, and C,,. 

E. A Generalized View of Motorola Six Sigma Quality 
The basic idea of the Motorola Six Sigma concept 

[7], [8] is that it identifies a “sigma (a) level” with 
each value of number of defects per million opportuni- 
ties (npmo). In other words, a sigma level is attached 
with each value of actual yield of the process. As the 
actual yield increases the sigma level also increases. 
We call this sigma level as Delivery Probability (DP) 
because it essentially measures the upper bound of on 
time delivery probability in the context of the delivery 
process. This DP can be completely determined just 
by knowing C, and Cpk. 

Delivery Sharpness (DS): For any characteristic X 
if we look at the definition of C,,, the increase in the 
variance decrease C,, value. Similarly as mean ( p )  
comes closer to target (T), C,, increases. Thus C,, 
has as inherent feature to measure accuracy along with 
precision. Henceforth we call CPm of the process as DS 
of the process. 

-- 

-- 

Bound I Formula 
I 

A(@-’ 3 (F)) 

1 3 (@-I (F)) 

In the situation like above, we define six sigma qual- 
ity (or any other sigma) as the actual yield equal to 
(1 - 3.4 x x 100% not the upper bound as per 
Motorola 6a program. Now our interest is to find out 
in how many different ways the bias and variance can 
be adjusted together without disturbing actual yield. 
This leads to a generalized view of six sigma quality, 
which we call GMoSS quality. In order to explain this 
idea let us start with equation: 

actual yield = @ (3C,,) + (6C, - 3C,,) - 1 

If we fix the value of actual yield as a in above equation 
then there will be two independent variables C,, C,, , 
hence solution set will be unbounded. But already we 
have proved that for a given actual yield a C, and C,, 
are bounded within certain range. Hence the solution 
is bounded like: Cpk 5 C,, 2 

If we subs t i tuca-  = (1 - 3.4 XYO-~) and plot 
the curve, then all the points lying on the curve are 
(C,, , C,) pairs that correspond to the 6a quality level. 
This idea can be well understood with the help of Fig- 
ure 3. 

M7e can proceed one step further by looking at the 
connection between delivery probability and delivery 
sharpness in the light of the GMoSS notion. For this, 
we consider the plots of a quality levels on C,, - C, 
plane and then see how C,, behaves on the same plot. 
For this purpose we use the identity relation among 
C,,C,, and C,, (7) and plot this relation for a con- 
stant value of C,, (say C;,). The curve comes out to 
be a part of hyperbola. From a process design point of 
view, it can be said that for a desired level of DS (i.e. 
C,,,,) and DP (i.e. C,, C,,); this curve provides a set 
of 3-tuples (C,, C,, , Cpm) which all satisfy these two 

; C; 5 C, 5 00. 
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requirements. The designer has to decide which one of 
the triples to choose depending upon other limitations. 
Figure 3 shows some contours of C,, on C,, - C, 
plane. 

CP - 
Fig. 3. Contours of Cp, on C,, - Cp Plane 

111. VARIANCE POOL ALLOCATION (VPA) 

A .  Linear Supply Chains: A n  Overview of Variation 

Let us consider a linear or pipelined supply chain 
with n processes as shown in Figure 4. In this supply 

PROBLEM 

in Lead Time 

... fl <e * 
Fig. 4. A Pipelined Supply Chain Architecture 

chain, material flows from process 1 to process n and 
the end product is delivered to the end customer after 
processing at process n. The end-to-end lead time of 
each individual process (i.e. Xi, i = 1 , 2 , .  . . , n) is a 
continuous random variable. 

B. Assumptions on Nature of Business Process and 

The design methodology proposed in this paper is 
based upon the following assumptions: 
1. End-to-end lead time Xi of each business process 
i is normally distributed. Individual lead times are 
mutually independent of one another and also they 
are under statistical control. 
2. There is no time elapsed between transforming the 
material from process i to process i + 1. Hence supply 
chain lead time Y (which is equal to the total sojourn 
time of material within chain ) is equal to the sum 
of lead times of the individual processes which means 

Customer Delivery Window 

Y = Cyzl Xi. It is easy to see that Y will be normally 
distributed with p = Cy=l pi and a2 = cy'l a: as it 

is sum of n independent normally distributed random 
variables. 

C. Problem Description 

C.l Known Parameters 

1. Customer delivery window for lead time of each pro- 
cess i.e., (-rt, Tt)Vi and also for overall supply chain lead 
time i.e., (7, T) .  
2. Mean pi of random variable Xi  Vi.  
3. Cost of lead time per unit item produced, denoted 
by Ci, for each process i. This cost is that part of 
the total processing cost which is associated with lead 
time. For example if it is manufacturing process then 
it may be the opportunity cost of capital tied up with 
machinery. In most practical situations, cost of lead 
time per unit for any process i increases as variance ui 

decreases because pi is constant here. 
It is known that C,, is inversely proportional to  ai, 
so any kind of function C, = f (ai) can be expressed 
in terms of C,, which means Ci = f(ai) = g(C,,). 
If underlying assumptions are assumed to hold, Tay- 
lor's theorem can be invoked on this function to a p  
proximate it, say, to a third order polynomial, in the 
following manner: 

Ci = ai0 + ailCpi + QC;~, + ~i3C;~ (8) 

Here aio, ail, ai2, ai3 are constants. 

C.2 Decision Variables and Constraints 

In the VPA problem, the decision variables are vari- 
ance values oi of individual lead times X i  of each 
process i in the supply chain. Following are the con- 
straints in the VPA problem: 
1. DP for overall supply chain lead time should be at 
least at the level of 6a or any specified a level. 
2. DS should be at least at the level of C:,. 

IV. A DESIGN METHODOLOGY FOR VPA PROBLEM 
A .  Step 1: Problem Formulation 

a nonlinear optimization problem as follows: 
Objective Function: 

The VPA problem can be expressed in the form of 

Minimize 
17 n 

Constraints: 
1. DS for supply chain lead time 1 C,, 
2. DP for supply chain lead time should be at least 

at the level of 6a. 
3. c,< 1 0 vi 
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B. Step 2: Formulation of Constraints in terms of De- 

As per assumptions made in Subsection III-B, the 
variance of supply chain lead time Y (i.e. a) can be 
expressed in terms of variance (ci) of processing time 
of process Xi. The following expression can be derived 
from it just by reengineering it. 

cision Variables 

+...+- T,” (10) 
T2 p 2  Tf T; +- --- - -- - 
9c; 9c;, 9cg1 9c;, 9% 

Equation (10) states that once the pair (Cp,Cpk) is 
chosen for supply chain lead time Y ,  the feasible so- 
lution set will get automatically b e d  and it is the set 
of all those n-tuples (Cpl , C,, , . . . , CPn) which satisfy 
this equation for the chosen value of C, and Cpk.  

The idea to get such a pair (C,, C,,) is to choose the 
pairs that satisfy both constraints (1) and (2) and use 
it in equation (10) in order to get the desired constraint 
in terms of decision variables. 

C. Step 3: Fixing Values for C, and C,, 

As pointed out in the last section, our problem is 
to find a (Cp, C,,) pair which satisfies constraints (1) 
and (2) and also satisfies the relation 6 = 6. 
This relation forces the desired (C,, Cpk)  pair to lie on 
the line C,, = $Cp in C,, - C lane. On the other 
hand, constraint (1) forces it to he on or above the 
contour C,, = CIS, and constraint (2) forces it to lie 
on or above the 60 curve in the same plane. This will 
result in some feasible region on C,, - C, plane.Figure 
5 shows different cases of such kinds of feasible regions 
depending upon relative positions of C,, = C;m con- 
tour (in short C,, curve) and 6a curve (in short a 
curve). From Figure 5 it is clear that feasible region 
in each case is the part of the line C,, = $Cp that 
intersects with the shaded region. We have called it as 
line ‘OP’l. In every case, the point ‘E’ where the line 
‘OP’ enters into shaded region is taken as the final de- 
sired (Cp,Cpk) pair. The reason behind choosing this 
point is that if we choose any other point on the fea- 
sible region then the corresponding C, value will be 
high which will result in higher value of individual C,, 
and hence higher delivery cost. Let us denote this pair 

p p. 

as cc;, C;,). 

D. Step 4: Solving the Optimization Problem 

The underlying optimization problem can be rewrit- 
ten as: Minimize cost C ,  given by equation (9), sub- 
jected to 

]For the sake of clarity of picture, we have not shown the line 
‘OP’ in all case except the case 1. 
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Fig. 5. 
and line ‘OP’ on Cpk - C, Plane 

All the possible configurations of Cp, curve, U curve 

The problem can be solved by using the method of 
Lagrange multipliers. The method is illustrated in the 
example in the next section. 

V. AN EXAMPLE 

Let us consider a supply chain for a plastics industry, 
as shown in Figure 6, to provide the basis for apply- 
ing our design methodology. The supply chain has six 
business processes namely Procurement, Sheet Fabri- 
cation, Transportation, Manufacturing, Assembly, and 
Delivery. Let us assume that lead times (in Days) as- 
sociated with these processes are represented by ran- 
dom variables Xi; i = 1,2 ,  . . . , 6  respectively and they 
satisfy the assumptions mentioned in subsection 4.2. 

Fig. 6. 
Plastic Industry Supply Chain 

An Example of a Pipelined Supply Chain: A Typical 

The problem here is to find out standard deviation 
ai of lead time Xi of all the processes in the chain 
such that a delivery probability of 6a level is attained 
and also a designated level of delivery sharpness, say, 
C,, = 1.42782 (arbitrarily chosen in this case), is 
achieved. The known parameters are tabulated in Ta- 
ble IV. Let the target value T of the end-to-end supply 
chain lead time Y be 82 days and tolerance T be 6.5 
days. 
Steps 1 and 2: The objective here is to minimize the 



TABLE IV 

PROBLEM 
KNOWN PARAMETERS FOR PLASTIC INDUSTRY SUPPLY CHAIN 

following cost function: 
6 6 6 

C = 6 + c C p ,  + c C i ,  + c C ; ,  
i= l  i= l  i=l 

subjected to  following constraints: 

C,, 2 O ’ d i = l , 2 ,  ..., 6 (14) 
Step 3 If we draw the 6a curve, C,,=Clm=1.42782 
curve and line C,, = (E) C, on C,, - C, plane 
then the situation will fall into case 2 of step 3 of 
our methodology. Solving the corresponding equations 
gives C; = 1.89832236 and C;, = 1.606272774. 
Step 4 Substitution of the values for C;,C;, will 
change the constraint (13) into E&, 5 = 11.724. 
Now we will apply the Lagrange Multiplier Method in 
order to solve this optimization problem. 
1. Lagrange Function Lagrange function L(C,,, . . . , C,, , A) 
is given as: 

2. Necessary Condition for Stationary Points Let point 
P* = (C,*,,. . . , A*) correspond to the optimal 
point then this point must satisfy the following nec- 
essary conditions: 

2x* = 3c;: +2c;; +e;: 

2x* = 3c;; +2c;; +c;; 

2x* = 3c;; +2c;; +e;; 

18A* = 3C;z +2C;: + C z  

18A* = 3C;: + 2C;: + 
8X* = 3C,*: +2C;:+C;: 

Solving this system of equations by standard numer- 
ical methods we get only one real solution: Cl, = 
C* P3 = C* P6 = 1.005670;C;, = C;, = 1.645700;C,*, = 
1.376280; A* = 3.074458. Under this operating condi- 
tion cost of delivery C* is 38.601998. It can be verified 
easily by the sufficiency condition that this point cor- 
responds to the point of minimum. 

VI. IMPLICATIONS OF THE WORK 
In our view, this research has several important im- 

plications. 
It provides an elegant characterization for supply 

chain delivery performance in terms of two metrics, 
delivery probability and delivery sharpness, and three 
well known process capability indices. 

The above metrics and capability indices will provide 
a general framework for developing a design method- 
ology for supply chains. 

The variance allocation problem is an important fist 
step in the design of synchronized supply chains. 

The work has some limitations. For example the 
analysis and design has been done only for make-to- 
order linear supply chains and that too for normally 
distributions lead times. Also, several assumptions 
have been made in formulating and solving the VPA 
problem. h4any of these limitations can be surmounted 
in due course of time and provide important directions 
for further work. 
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