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Abstract

We consider the problem of partitioning a set of positive integers values into a
given number of subsets, each having an associated cardinality limit, so that the
maximum sum of values in a subset is minimized, and the number of values in each
subset does not exceed the corresponding limit. The problem is related to scheduling
and bin packing problems. We give combinatorial lower bounds, reduction criteria,
constructive heuristics, a scatter search approach, and a lower bound based on col-
umn generation. The outcome of extensive computational experiments is presented.
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1 Introduction

Given n items Ij (j = 1, . . . , n), each characterized by an integer positive weight wj,
and m positive integers ki (i = 1, . . . , m) with m < n ≤ ∑m

i=1 ki, the ki-Partitioning
Problem (ki-PP) is to partition the items into m subsets S1, . . . , Sm so that |Si| ≤ ki

(i = 1, . . . , m) and the maximum total weight of a subset is a minimum. The problem
was introduced by Babel, Kellerer and Kotov [1] and finds possible applications, e.g., in
Flexible Manufacturing Systems. Assume that we have to execute a set of operations of
n different types, and that the operations of type j, requiring in total a time wj, must be
assigned to the same cell: If the capacity of the specific tool magazine of each cell imposes
a limit on the number of types of operation the cell can perform, then ki-PP models the
problem of completing the process in minimum total time.

A famous scheduling problem (usually denoted as P ||Cmax) asks for assigning n jobs,
each having an integer positive processing time wj, to m identical parallel machines Mi

(i = 1, . . . , m), each of which can process at most one job at a time, so as to minimize their
total completion time (makespan). By associating items to jobs and subsets to machines,
it is clear that ki-PP is the generalization of P ||Cmax arising when an additional constraint
imposes an upper bound ki on the number of jobs that can be processed by machine Mi.
Since P ||Cmax is known to be strongly NP-hard, the same holds for ki-PP.
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Another special case of ki-PP, that also generalizes P ||Cmax, is the P |# ≤ k|Cmax

scheduling problem, in which an identical limit k is imposed on the maximum number
of jobs that can be assigned to any machine. Upper and lower bounds for this problem
have been developed by Babel, Kellerer and Kotov [1], Dell’Amico and Martello [6] and
Dell’Amico, Iori and Martello [4].

The Bin Packing Problem (BPP) too is related to ki-PP. Here we are given n items,
each having an associated integer positive weight wj, and an unlimited number of identical
containers (bins) of capacity c: the problem is to assign all items to the minimum number
of bins so that the total weight in each bin does not exceed the capacity. Problem BPP can
be seen as a ‘dual’ of P ||Cmax: By determining the minimum c value for which an m-bin
BPP solution exists, we also solve the corresponding P ||Cmax problem. By introducing a
limit k on the number of items that can be assigned to any bin, we similarly obtain a dual
of P |# ≤ k|Cmax. In order to obtain a dual of ki-PP, we can impose the given limits ki

(i = 1, . . . , m) to the first m bins, and a limit equal to one to all other bins.
The dual relations above have been used to obtain heuristic algorithms and lower

bounds for P ||Cmax (Coffman, Garey and Johnson [2], Hochbaum and Shmoys [16], Del-
l’Amico and Martello [5]) and P |# ≤ k|Cmax (Dell’Amico and Martello [6]).

In this paper we study upper and lower bounds for ki-PP, either obtained by generaliz-
ing algorithms from the literature so as to handle the cardinality constraints, or originally
developed for the considered problem. In Section 2 we present lower bounds and reduction
criteria. In Section 3 we examine generalizations of heuristic algorithms and of a scatter
search approach. In Section 4 we propose a lower bound based on a column generation
approach, that makes use of the above mentioned relations with BPP. The effectiveness
of the proposed approaches is computationally analyzed in Section 5 through extensive
computational experiments on randomly generated data sets.

Without loss of generality, we will assume in the following that items Ij are sorted by
non-increasing wj value, and subsets Si by non-decreasing ki value.

2 Lower bounds and reduction criteria

By introducing binary variables xij (i = 1, . . . , m, j = 1, . . . , n) taking the value 1 iff item
Ij is assigned to subset Si, an ILP model of ki-PP can be written as

min z (1)
n∑

j=1

wjxij ≤ z (i = 1, . . . ,m) (2)

m∑

i=1

xij = 1 (j = 1, . . . , n) (3)

n∑

j=1

xij ≤ ki (i = 1, . . . , m) (4)

xij ∈ {0, 1} (i = 1, . . . , m; j = 1, . . . , n) (5)
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where variable z represents the maximum weight of a subset.
In the following we will denote by

free =
m∑

i=1

ki − n (6)

the total number of unused feasible assignments to the subsets (with respect to the cardi-
nality constraints) in any solution. Given a complete or partial solution x to (1)-(5),

Wi =
n∑

j=1

wjxij (i = 1, . . . , m) (7)

cardi =
n∑

j=1

xij (i = 1, . . . ,m) (8)

will denote, respectively, the total weight of the items currently assigned to subset Si,
and their number. In the next section we present lower bounds and reduction algorithms
based on the combinatorial structure of the problem. In our approach these computations,
together with those of the heuristics of Section 3.1, are performed at the beginning of the
scatter search approach described in Section 3.2. If an optimal solution is not obtained,
the bound is improved through a computationally heavier approach, based on column
generation, described later in Section 4.

2.1 Combinatorial lower bounds

Since P |# ≤ k|Cmax is a special case of ki-PP, any lower bound for the former problem
with k set to km (the largest cardinality limit) is also valid for the latter. We will denote
by

L|#≤km| = max(Lk
3, LBKK , LHS) (9)

the best among three bounds from the literature, used in Dell’Amico, Iori and Martello [4]
for P |# ≤ k|Cmax. These bounds will not be described here for the sake of conciseness:
The complete description can be found in [4] and in Dell’Amico and Martello [6], Babel,
Kellerer and Kotov [1] and Hochbaum and Schmoys [16].

The following lower bounds explicitly take into account cardinality constraints (4).

Theorem 1. Given any instance of ki-PP, the value

L1 = w1 +
n∑

j=n−k1+free+2

wj (10)

is a valid lower bound on the optimal solution value.

Proof. Assume by simplicity that k1 − free > 1, and consider the item with maximum
weight w1. By (6), in any feasible solution such item will be assigned to a subset contain-
ing no less than k1 − free− 1 other items. The thesis follows, since in (10) it is assumed
that the other items in such subset are the smallest ones. (If k1 − free ≤ 1, note that a
summation

∑β
j=α wj is considered to produce the value zero if β < α.) 4
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Theorem 2. Given any instance of ki-PP, the value

L2 = max
`=1,...,m








n∑

j=n−k(`)+free+1

wj/`






 , (11)

where k(`) =
∑m

i=m−`+1 ki, is a valid lower bound on the optimal solution value.

Proof. Let ` be any integer between 1 and m, and consider the last ` subsets. Assume by
simplicity that free is strictly smaller than k(`), the sum of the cardinality limits for such
subsets. This implies that, even if the other subsets contain the maximum possible number
of items, the last ` subsets will contain, in total, no less than k(`)−free items. In the best
case: (i) these items will be the smallest ones, and (ii) they will be partitioned, among the
last ` subsets, so as to produce identical total weights. Hence d∑n

j=n−k(`)+free+1 wj/`e is a
valid lower bound for any ` value, and the validity of (11) follows. 4

If the summation in (10) has zero value, L1 gives the obvious P ||Cmax bound w1. An-
other immediate lower bound that comes from P ||Cmax (hence, does not take into account
the cardinality constraints) but is not dominated by L1 nor by L2 is

L3 = max


wm + wm+1,




n∑

j=1

wj/m





 (12)

Our overall combinatorial bound is thus

LC = max(L|#≤km|, L1, L2, L3) (13)

2.2 Reduction criteria

Remind that the items are sorted by non-increasing wj value, and the subsets by non-
decreasing ki value, and observe that, if k1 = 1, there exists an optimal solution in which
S1 = {I1}. This reduction process can be iterated, as shown in Figure 1.

Procedure Reduction1
1. i := 1;
2. while ki = 1 do Si = {Ii}, i := i + 1;
3. define a reduced instance by removing the first i− 1 items and subsets
end

Figure 1: Reduction1

Reduction1 can be performed before any other computation. Once a lower bound L
(e.g., LC , see (13)) has been computed, a more powerful reduction can be obtained, based
on the following considerations. First observe that if the total weight of the largest k1

items does not exceed L, then there exists an optimal solution in which S1 = {I1, . . . , Ik1}.
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This consideration can be extended to the first m̃, say, subsets and the first
∑m̃

i=1 ki items:
If we can obtain a feasible partial solution of value not exceeding L, then these items can
be assigned to these subsets as in the solution found, and both subsets and items can be
removed from the instance. Again, the process can be iterated, as shown in Figure 2.

Procedure Reduction2(L)
1. firstS := lastS := 1, firstI := 1, lastI = k1;
2. repeat

2.1 let x̃ be a feasible solution of value z̃ to the sub-instance induced by
subsets {SfirstS, . . . , SlastS} and items {IfirstI , . . . , IlastI};

2.2 if z̃ ≤ L then
assign items {IfirstI , . . . , IlastI} to subsets {SfirstS, . . . , SlastS} as in x̃;
firstS := lastS + 1, lastS := firstS;
firstI := lastI + 1, lastI := firstI + kfirstS − 1;

else lastS := lastS + 1, lastI := lastI + klastS

endif
until stopping conditions are met;

3. define a reduced instance by removing the first lastI items and lastS subsets
end

Figure 2: Reduction2

In our implementation the stopping condition is (z̃ > L and lastI ≥ n/2). When
the sub-instance includes just one subset, it can be trivially solved. The solution of sub-
instances with more than one subset is obtained through the heuristics of the next section.
Whenever Reduction2 manages to reduce the current instance, the lower bound is re-
computed: If it increases, the procedure is re-executed.

3 Heuristic algorithms

Problem P ||Cmax has been attacked with several constructive approximation algorithms
and with some metaheuristic approaches (see, e.g., the surveys by Lawler et al. [20],
Hoogeveen, Lenstra and van de Velde [17] and Mokotoff [24]). The constructive heuristics
can be subdivided into the following three main classes.

• List Scheduler: After sorting the jobs according to a given rule, the algorithm con-
siders one job at a time and assigns it to the machine Mi with minimum current
load, without introducing idle times. For P ||Cmax one of the more effective sorting
rules is the so called Longest Processing Time (LPT) introduced by Graham [15],
that orders the jobs by non-increasing processing times. The probabilistic analysis
in Coffman, Lueker and Rinnooy Kan [3] shows that, under certain conditions, the
solution produced by LPT is asymptotically optimal.
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• Dual algorithms: These methods exploit the ‘duality’ with BPP outlined in Section
1, using two possible strategies. Both strategies start with a tentative solution value
c̃ and solve the corresponding BPP instance with bin capacity c̃, by means of some
heuristic. If the solution uses more that m bins then: (i) the first strategy re-assigns
to bins 1, . . . ,m the items assigned to bins m + 1,m + 2, . . . using some greedy
method; (ii) the second strategy finds, through binary search, the smallest c̃ value
for which the induced BPP instance uses no more than m bins. An example of
dual approach implementing the first strategy is the Multi Subset (MS) method by
Dell’Amico and Martello [5], while methods using the second strategy are the Multi
Fit algorithm (MF) proposed by Coffman, Garey and Johnson [2], and the ε-dual
method by Hochbaum and Shmoys [16].

• Mixed algorithms: The main idea of these methods is to combine two or more so-
lution techniques, by switching from one to another during the construction of the
solution. The rationale behind these methods is to try and catch the best of each
basic algorithm. For example, it is well known that LPT is able to construct partial
solutions with values of the machine loads very close to each other, but it fails in
this attempt when assigning the last jobs. A mixed algorithm tries to overcome this
problem by using LPT for assigning the first, say, n̂ < n jobs, then completes the
solution using another rule (see e.g. Mokotoff, Jimeno and Gutiérrez [25]).

The solution obtained with one of the methods above can be improved through re-
optimization and local search. It is quite surprising that several metaheuristic approaches
can be found in the literature for variants of P ||Cmax arising, e.g., when there are sequence
depending setups, or the objective function is the sum of the completion times of the last
job of each machine, but very few algorithms have been proposed for the pure P ||Cmax

problem. Finn and Horowitz [9] introduced a polynomial improvement algorithm called
0/1 interchange. Hübscher and Glover [18] proposed a tabu search algorithm, Fatemi-
Ghomi and Jolai-Ghazvini [7] a local search approach based on 2-exchanges. Mendes et al.
[23] compared a tabu search approach with a memetic algorithm, while Frangioni, Necciari
and Scutellà [8] presented a local search algorithm based on multiple exchanges within
large neighborhoods.

For P |# ≤ k|Cmax, the only metaheuristic in the literature is, to our knowledge, the
scatter search algorithm proposed by Dell’Amico, Iori and Martello [4].

In the next sections we describe constructive heuristics and a scatter search algorithm
for ki-PP, that were obtained by generalizing constructive heuristics for P ||Cmax and the
scatter search algorithm for P |# ≤ k|Cmax. For the constructive heuristics the modifi-
cations are aimed to handle the cardinality constraints, while for the scatter search they
consist in generalizing the simpler cardinality contraints of P |# ≤ k|Cmax to our case. We
give in the following a synthetical description of the resulting ki-PP algorithms.
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3.1 Constructive Heuristics

We obtained heuristics for ki-PP by generalizing methods for P ||Cmax. The following al-
gorithms were obtained (see (7) and (8) for the definitions of Wi and cardi).

LPT-ki: This is an implementation of the LPT list scheduler, with an additional con-
dition imposing that no more than ki items are assigned to subset Si. The items are
initially sorted by non-increasing wj values. At each iteration, the next item is assigned to
the subset Si with minimum total weight Wi among those satisfying cardi < ki (breaking
ties by lower ki value).

GH-ki: This is an iterative mixed approach derived from the Gap Heuristics by Mokotoff,
Jimeno and Gutiérrez [25] for P ||Cmax. At each iteration, a procedure that builds up a
complete solution is executed with different values of a parameter λ. This procedure starts
by assigning the items to the m subsets with the LPT-ki method but, as soon as the min-
imum weight of a subset reaches λ, it switches to a different rule: Assign the current item
to the subset Si, among those with cardi < ki, for which the resulting total weight Wi is
as close as possible to lower bound LC . The best solution obtained is finally selected.

MS1-ki: The method is obtained from the dual algorithm MS by Dell’Amico and Martello
[5]. In the first phase, this algorithm approximately solves the associated BPP instance by
filling one bin at a time through the solution of an associated Subset Sum Problem (SSP):
Given n positive integers and a single bin of capacity c, find the subset of integers whose
sum is closest to, without exceeding, c. To adapt MS to ki-PP it is then enough to modify
the procedure used to define each subset Si (bin) so that it only produces solutions satis-
fying |Si| ≤ ki. The procedure used in our implementation was approximation algorithm
G2 by Martello and Toth [21], that builds up an SSP solution by selecting one item at a
time: It is then easy to modify it so as to handle the additional constraint. In the second
phase, MS uses a greedy method to re-assign the items (if any) not inserted in the first m
bins, and again the cardinality constraint is easily embedded.

MS2-ki: It differs from MS1-ki only in the method used to solve the SSP instances, that
is here the simpler and faster algorithm G1 in [21].

MS3-ki: This is a hybrid branch-and-bound/MS method. We start with a branch-decision
tree truncated at level `. At each level l ≤ ` we assign item Il, in turn, to all already
initialized subsets, and (possibly) to a new one, provided the corresponding cardinality
constraints are not violated: Each node has then an associated partial solution consisting
of the first l items. We consider all the partial solutions of level `: Each of them is com-
pleted by applying MS1-ki and MS2-ki to the remaining n − ` unassigned items, and the
best solution is finally selected. In our implementation we set ` = 5.

MS-ki: Execute MS1-ki, MS2-ki and MS3-ki, and select the best result.
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3.2 Scatter Search

Scatter Search is a metaheuristic technique whose founding ideas go back to the seminal
works of Glover [10, 11] in the early Sixties. Apparently these ideas were neglected for
more than 20 years and resumed in Glover [12], where Scatter Search was presented for the
first time. In the Eighties and the Nineties the method was successfully applied to solve
a large set of problems. The basic idea (see Glover [13]) can be outlined in the following
three steps:

1. generate a starting set of solutions (the reference set), possibly using problem depen-
dent heuristics;

2. create new solutions through combinations of subsets of the current reference solu-
tions;

3. extract a collection of the best solutions created in Step 2 and iterate on Step 2,
unless a stopping criterion holds.

This basic procedure has been improved in several ways. First of all, the reference set is
usually divided into two subsets: The first one containing solutions with a high “quality”,
the second one containing solutions very “diverse” from the others. A second refinement
consists in applying some re-optimization algorithm to each solution before deciding if it
has to be stored in the reference set. Other improvements concern the methods used to
generate the starting solutions, to combine the solutions and to update the reference set.
We based our implementation on a classical template (see Laguna [19], Glover, Laguna and
Mart́ı [14]) that was already used in Dell’Amico, Iori and Martello [4] for P |# ≤ k|Cmax,
summarized in Figure 3.

Procedure Scatter
1. Randomly generate a set T of solutions and improve them through intensification.
2. Compute the fitness of each solution, i.e., a measure of its “quality”.
3. Create a reference set R of r distinct solutions by selecting from T the q solutions

with highest fitness, and the d solutions with highest diversity.
4. Evolve the reference set R through the following steps:

4.1 Subset generation: generate a family G of subsets of R.
4.2 while G 6= ∅ do

extract a subset from G and obtain a solution s through combination;
improve s through intensification;
execute the reference set update on R

endwhile;
4.3 if stopping criteria are not met then go to 4.1;

end

Figure 3: Scatter Search
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On the basis of the outcome of extensive computational experiments, we set the size
of the initial set T to 100, while the reference set R has size r = q + d = 18 (with q = 10
and d = 8). In the reference set we maintain separated the high-quality solutions (first q
solutions) and the high-diversity solutions (last d solutions). Solutions 1, . . . , q are ordered
by decreasing quality, while solutions q + 1, . . . , r are ordered by increasing diversity (i.e.,
the best solution is the first one and the most diverse is the last one).

In the following we give some details on the implementation of fitness calculation, di-
versity evaluation, intensification, subset generation, combination method, reference set
update and stopping criteria.

Fitness. Let z(s) be the value of a solution s. The corresponding fitness is defined as
f(s) = z(s)/(z(s) − L), where L denotes the best lower bound value obtained so far. We
have chosen this function instead of the pure solution value in order to obtain a less flat
search space in which differences are highlighted, so the search can be directed towards
more promising areas.

Diversity. Given two solutions, s and t, and an item, Ij, we compute

δj(s, t) =

{
1 if Ij is assigned to the same subset in solutions s and t;
0 otherwise

(14)

and establish the diversity of s from the solutions in R as the minimum ‘distance’ of s from
a solution of the set, defined as

d(s) = min
t∈R





τ∑

j=1

δj(s, t)



 (15)

with τ = min(2m,n), i.e., only the items with largest weight are relevant in this evaluation.

Intensification. Given a solution s, we apply a sequence of re-optimization proce-
dures obtained by generalizing those introduced in Dell’Amico, Iori and Martello [4] for
P |# ≤ k|Cmax.

Procedure MOVE considers one subset Si at a time and tries to move large items from
Si to other subsets. It starts with the largest item, say Ij, currently assigned to Si and
looks for the first subset Sh (h 6= i) such that cardh < kh and Wh + wj < Wi. If such Sh

exists, item Ij is moved to Sh and the procedure is re-started; otherwise the next largest
item of Si is selected and the search is iterated.

Procedure EXCHANGE works as MOVE, with just one difference: The selected large
item Ij ∈ Si is not just moved to Sh but exchanged with an item Ig ∈ Sh, provided that
wg < wj and Wh − wg + wj < Wi.

In the special case n =
∑m

i=1 ki, two additional re-optimization procedures, MIX1 and
MIX2, are applied. MIX1 builds a new partial solution by initially assigning the first n
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(n < n) items as in the given solution, and then considering the subsets according to non-
increasing Wi values. For each Si, the quantity gapi = ki − cardi (number of items that
can be still assigned to Si) is evaluated: if gapi > k (for a given parameter k), then the
(gapi−k) smallest items are assigned to Si. In any case, Si is completed with the addition
of min{gapi, k} items that are selected, through complete enumeration, in such a way that
the resulting Wi value is as close as possible to L. Procedure MIX2 differs from MIX1 only
in the construction of the initial partial solution: Given a prefixed parameter k̃, each subset
Si is initialized with the first (largest) min{k̃, ki} items as in the original solution. The
values of the parameters were experimentally determined as: k = 3, n = max(m,n− 3m)
and k̃ = max {0, (km − 3)}.

Subset generation. We adopted the classical multiple solution method (see, e.g., Glover,
Laguna and Mart́ı [14]), that generates, in sequence, all 2-element subsets, the 3-element
subsets that are obtained by augmenting each 2-element subset to include the best solution
not already belonging to it, the 4-element subsets that are obtained by augmenting each
3-element subset to include the best solution not already belonging to it and the i-element
subsets (for i = 5, . . . , r) consisting of the best i elements.

Combination. Given a number of distinct solutions s1, s2, . . ., we define an m× n fitness
matrix F with Fij =

∑
a∈Aij

f(sa), where Aij is the index set of the solutions where item
Ij is assigned to subset Si. We first construct γ solutions (γ being a given parameter)
through a random process that, for j∗ = 1, . . . , n, assigns item Ij∗ to subset Si∗ with prob-
ability F(i∗, j∗)/

∑m
i=1F(i, j∗). If the resulting subset Si∗ has ki∗ items assigned, then we

set F(i∗, j) = 0 for j = 1, . . . , n (so S∗i is not selected at the next iterations). If for the
current item I∗j we have

∑m
i=1F(i, j∗) = 0, then the item is assigned to the subset with

minimum weight Wi among those that have not reached the cardinality limit. We finally
select the best-quality solution among the γ solutions generated. In our implementation
we set γ = 3 for n < 100 and γ = 1 for n ≥ 100.

Reference set update. The dynamic reference set update (see, e.g., Glover, Laguna and
Mart́ı [14]) has been introduced to update the reference set by maintaining a good level
of quality and diversity. A solution enters R if its fitness is better than that of the q-th
best solution (the worst of the high-quality solutions maintained in R), or its diversity
(computed through (14) and (15)) is higher than that of the (q + 1)-th solution (the less
diverse solution of R).

Stopping criteria. We terminate the search if: (i) the current best solution has value
equal to lower bound L; or (ii) no reference set update occurs at Step 4.; or (iii) Step 4.
has been executed b times, with b = (10, 5, 1), for n < 100, 100 ≤ n < 400 and n > 400,
respectively.
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4 Column generation lower bound

In this section we introduce a lower bound obtained by iteratively solving, through column
generation, the LP relaxation of the following variant of multiple subset-sum problem:

SSPK(c): Given the input of an instance of ki-PP and a threshold value c,
assign items to the subsets so that no subset has a total weight
exceeding c or a total number of items exceeding its cardinality
limit, and the number of unassigned items is a minimum.

Let U be the value of the best heuristic solution produced by the algorithms of Section
3, and L the best lower bound value obtained so far. A possible approach for solving
ki-PP could attempt a ‘dual’ strategy consisting of a specialized binary search between
L and U : at each iteration one considers a threshold value c = b(L + U)/2c, and solves
SSPK(c). If the optimal solution has value zero, a solution of value c to ki-PP has been
found, so it is possible to set U = c and iterate with a new (smaller) value of c. If instead
the optimal solution value is greater than zero, we know that no feasible solution of value
c exists for ki-PP, so it is possible to set L = c + 1 and iterate with a new (higher) value
of c. The search stops with an optimal solution when L = U .

In the next section we give an ILP model for SSPK(c), derived from the set covering
formulation of BPP. The model will be used in Section 4.2 to obtain a lower bound for
ki-PP through column generation.

4.1 An ILP model for SSPK(c)

Let K = {κ1, . . . , κm} be the set of distinct ki values (sorted by increasing κi values), and
assume that κ0 = 0. For each value κr ∈ K let

Gr = {Si : ki ≥ κr} (16)

be the family of those subsets that can contain κr or more items, and

Pr(c) = {P ⊆ {I1, . . . , In} : κr−1 < |P | ≤ κr and
∑

Ij∈P

wj ≤ c} (17)

be a family of item sets (patterns) that can be feasibly assigned to a member of Gr but not
to a member of Gr−1 \ Gr. Observe that, by (17), {P1(c), . . . ,Pm(c)} is a partition of all
patterns that have total weight not greater than c. For any κr ∈ K and j ∈ {1, . . . , n}, let
Pr

j (c) ⊆ Pr(c) be the set of those patterns of Pr(c) that contain item Ij.
Let us introduce binary variables

xP =





1 if pattern P is selected

0 otherwise
(P ∈ Pr(c), κr ∈ K) (18)

and
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yj =





1 if item Ij is not assigned to any subset

0 otherwise
(j = 1, . . . , n) (19)

We obtain the ILP model

SSPK(c) min
n∑

j=1

yj (20)

∑

κr∈K

∑

P∈Pr
j (c)

xP + yj = 1 (j = 1, . . . , n) (21)

∑

i≥r

∑

P∈Pi(c)

xP ≤ |Gr| (κr ∈ K) (22)

yj ∈ {0, 1} (j = 1, . . . , n) (23)

xP ∈ {0, 1} (P ∈ Pr(c), κr ∈ K) (24)

Constraints (21) impose that each item Ij is assigned to exactly one subset, or not
assigned at all. Constraints (22) impose, for each κr ∈ K, the selection of at most |Gr|
patterns (see (16)) among those containing κr items or more. Objective function (20)
minimizes the number of unassigned items.

As we are just interested in computing a lower bound LCG on the optimal ki-PP solu-
tion, instead of optimally solving each SSPK(c) instance we solve its continuous relaxation
through the column generation approach described in the next section. In this case, the
binary search outlined above has to be modified as follows. If the optimal LP solution to
SSPK(c) has value greater than zero, it is still possible to set L = c + 1 and iterate with
the higher value of c. If instead the optimal LP solution to SSPK(c) has value zero, two
possibilities arise: (i) if the solution is integer (i.e., also optimal for SSPK(c)), it is still
possible to set U = c and iterate with the smaller value of c; (ii) otherwise no further
improvement is possible, so the search stops with the current L value as LCG. Further
observe that in case (i) the incumbent solution value can be possibly improved.

4.2 Column Generation

In this section we discuss methods for handling the LP relaxation of SSPK(c) when the
number of patterns is too large to explicitly include all the corresponding variables into
the model. The LP relaxation of SSPK(c) (master problem) is given by (20)-(22) and

yj ≥ 0 (j = 1, . . . , n) (25)

xP ≥ 0 (P ∈ Pr(c), κr ∈ K) (26)

(Note that constraints yj ≤ 1 and xP ≤ 1 would be redundant.) By associating dual
variables πj and σr to constraints (21) and (22), respectively, we obtain the dual:

max
n∑

j=1

πj −
∑

κr∈K

|Gr|σr (27)

12



∑

j∈P

πj −
∑

i≤r

σi ≤ 0 (P ∈ Pr(c), κr ∈ K) (28)

πj ≤ 1 (j = 1, . . . , n) (29)

σr ≥ 0 (κr ∈ K) (30)

A column generation approach starts by solving a restriction of the LP relaxation of
SSPK(c), obtained by only considering a small subset of variables xP (restricted master).
The iterative phase consists in checking if the solution (π∗, σ∗) of the dual of the current
restricted master satisfies all constraints (28): If this is the case, the current solution value
provides a valid lower bound for SSPK(c). Otherwise primal variables corresponding to a
subset of violated constraints (28) are added to the restricted master (column generation),
and the process is iterated.

The check is performed by looking for primal variables (if any) with negative reduced
cost. If each item Ij is assigned a profit π∗j , this corresponds to looking for a pattern having
an overall profit greater than

∑
i≤r σ∗i for some κr ∈ K. Thus, for a given value κr ∈ K,

our slave problem can be formulated as

max
n∑

j=1

π∗j ξj (31)

n∑

j=1

wjξj ≤ c (32)

n∑

j=1

ξj ≤ κr (33)

ξj ∈ {0, 1} (j = 1, . . . , n) (34)

whose optimal solution identifies the pattern P ∈ Pr(c) with maximum profit, namely
P = {Ij : ξj = 1}. Problem (31)-(34) is a 0-1 Knapsack Problem ((31), (32), (34)) with
an additional cardinality constraint. Since the wj values are positive, we can reduce any
instance by removing items with non-positive profit. The reduced problem can then be
solved to optimality through the algorithm recently presented by Martello and Toth [22]
for the Two-Constraint 0-1 Knapsack Problem.

In our implementation we start with no variable xP in the restricted master. At each
iteration we add to the restricted master, for each κr ∈ K, the pattern of Pr(c) with
maximum profit, provided the corresponding constraint (28) is violated.

5 Computational experiments

The overall algorithm introduced in the previous sections,

Step 1. lower bounds, reduction, constructive heuristics (Sections 2 and 3.1);

Step 2. scatter search (Section 3.2);

Step 3. column generation (Section 4),

13



was coded in C and experimentally tested on a large set of randomly generated instances.
The computational experiments were performed on a Pentium III at 1133 Mhz running un-
der a Windows operating system. The LP relaxations produced by the column generation
approach for the computation of LCG were solved through CPLEX 7.0.

We generated 81 classes of test problems by combining in all possible ways 9 weight
classes and 9 cardinality classes. The weight classes have been derived from those used by
Dell’Amico and Martello [6], and are as follows (See Table 1 for the parameters’ values.)

Classes w1, w2 and w3: weights wj uniformly random in [Umin, Umax];

Classes w4, w5 and w6: weights wj drawn from an exponential distribution of average
value µ, by disregarding non-positive values;

Classes w7, w8 and w9: weights wj drawn from a normal distribution of average value
µ and standard deviation σ, by disregarding non-positive values.

The cardinality classes are as follows (See Table 2 for the parameters’ values.)

Classes k1, . . . , k6: cardinalities ki uniformly random in [kmin, kmax];

Classes k7, k8 and k9: given a parameter δ ≥ 1, ki values satisfying
∑m

i=1 ki = bδ nc
and ki ≥ 2∀i are generated through the procedure given in Figure 4.

Uniform Exponential Normal
Class Umin Umax Class µ Class µ σ
w1 10 1000 w4 25 w7 100 33
w2 200 1000 w5 50 w8 100 66
w3 500 1000 w6 100 w9 100 100

Table 1: Parameters used for the weight classes

Class kmin kmax Class kmin kmax Class δ
k1 dn/me − 1 dn/me k4 dn/me dn/me+ 1 k7 1
k2 dn/me − 1 dn/me+ 1 k5 dn/me dn/me+ 2 k8 3/2
k3 dn/me − 2 dn/me+ 2 k6 dn/me dn/me+ 3 k9 2

Table 2: Parameters used for the cardinality classes

For each generated instance we tested whether conditions n ≤ ∑m
i=1 ki and ki ≥ 2∀i

were satisfied: If not, a new instance was generated in order to avoid infeasible or easily
reducible instances. Note that the ki values of Classes k1–k6 lay in small ranges, so the
corresponding instances usually have a number of subsets with the same cardinality limit.
On the contrary, the ki values of classes k7–k9 are usually very sparse. Further observe
that instances of Class k7 have n =

∑m
i=1 ki, so each subset Si must be assigned exactly ki

14



Procedure Classes k7-k9(δ)
1. Sumk := bδ nc − 2 m;
2. for i := 1 to m− 1 do

r := random integer in [0, bSumk/2c];
ki := 2 + r;
Sumk := Sumk − r;

endfor
3. km := 2 + Sumk;
end

Figure 4: Data generation for Classes k7–k9

items. The same may occur with some instances of Classes k1–k6, in particular with the
first three classes.

The algorithms have been tested on random instances with n in {10, 25, 50, 100,
200, 400} and m in {3,4,5,10,20,40,50}. In order to avoid trivial instances, we considered
only (n,m) pairs satisfying n > 2m, thus obtaining a grand total of 31 pairs. For each
quadruple (n, m, wj class, ki class) 10 feasible instances were generated, producing 25 110
test problems in total.

Tables 3 and 4 present the overall performance of lower bounds and heuristic algorithms.
Since it turned out that the results within each triple of classes (w1-w3, w4-w6, w7-
w9, k1-k3, k4-k6, k7-k9) were very similar to each other, we only report in the tables
the overall results for the “middle” class of each triple. In Table 3 the entries give, for
the selected weight classes, the average performance over all cardinality classes, while in
Table 4 they give, for the selected cardinality classes, the average performance over all
weight classes. Both Tables 3 and 4 report the behavior of lower bounds L|#≤km|, LC (see
Section 2) and LCG (see Section 4), of constructive heuristics LPT-ki, GH-ki and MS-ki

(see Section 3.1), and of the scatter search algorithm of Section 3.2. The last column gives
the performance of the overall heuristic, including the possible improvements produced by
the column generation computation. The scatter search was executed by receiving in input
the best solution found by the constructive heuristics. The tables provide the following
information. Let vL be the value produced by a lower bounding procedure L, and vH the
solution value found by a heuristic algorithm H. Let v∗L and v∗H denote the best lower
bound and heuristic solution value obtained, respectively. For each lower bound L (resp.
heuristic algorithm H) the tables give, for each class

• #best = number of times in which vL = v∗L (resp. vH = v∗H);

• #opt = number of times in which vL = v∗L (resp. vH = v∗H) and v∗L = v∗H , i.e., a
proved optimal value was obtained;

• %gap = average percentage gap. For each instance, the gap was computed as
100(v∗L − vL)/v∗L (resp. 100(vH − v∗H)/v∗L)
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The execution time was negligible for the combinatorial lower bounds and the constructive
heuristics. The column generation algorithm that produces LCG had a time limit of 60
seconds. (The computing times of the complete algorithm, including scatter search and
column generation, are reported below, in Tables 6 and 7.)

Table 3: Overall performance of lower bounds and heuristics on selected weight classes.
Class L|#≤km| LC LCG LPT-ki GH-ki MS-ki Scatter Overall

#best 2605 2615 2790 100 225 1741 2760 2790
w2 #opt 2393 2402 2509 100 225 1709 2482 2509

%gap 0.05 0.04 0.01 3.21 1.14 0.57 0.01 0.01
#best 2618 2625 2790 132 253 1780 2766 2790

w5 #opt 2399 2406 2501 132 252 1742 2478 2501
%gap 0.05 0.04 0.01 3.17 1.13 0.56 0.01 0.01
#best 2605 2614 2790 111 224 1711 2767 2790

w8 #opt 2393 2400 2496 111 224 1674 2477 2496
%gap 0.05 0.04 0.01 3.21 1.15 0.60 0.01 0.01

average #best 2609.2 2617.2 2790.0 115.1 230.3 1745.3 2764.4 2790.0
w1-w9 #opt 2396.3 2403.5 2503.4 115.1 230.0 1707.0 2480.8 2503.4

%gap 0.05 0.04 0.01 3.17 1.12 0.58 0.01 0.01

Table 4: Overall performance of lower bounds and heuristics on selected cardinality classes.
Class L|#≤km| LC LCG LPT-ki GH-ki MS-ki Scatter Overall

#best 2643 2643 2790 57 122 802 2762 2790
k2 #opt 2351 2351 2439 57 122 800 2414 2439

%gap 0.04 0.04 0.01 1.70 1.31 0.96 0.01 0.01
#best 2650 2650 2790 117 213 2154 2766 2790

k5 #opt 2415 2415 2487 117 213 2057 2470 2487
%gap 0.04 0.04 0.01 1.19 0.74 0.19 0.01 0.01
#best 2605 2628 2790 156 420 2227 2778 2790

k8 #opt 2412 2431 2519 156 420 2216 2510 2519
%gap 0.05 0.03 0.01 5.23 0.64 0.34 0.01 0.01

average #best 2609.2 2617.2 2790.0 115.1 230.3 1745.3 2764.4 2790.0
k1-k9 #opt 2396.3 2403.5 2503.4 115.1 230.0 1707.0 2480.8 2503.4

%gap 0.05 0.04 0.01 3.17 1.12 0.58 0.01 0.01

Before discussing the results provided by the tables we recall that lower bound L|#≤km|
is incorporated in bound LC (see (13)) and that the binary search used to compute LCG

starts from the best bound previously obtained, namely LC . Hence LCG dominates LC

which, in turn, dominates L|#≤km|. This can be clearly observed by looking at the columns
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of Tables 3 and 4 devoted to the lower bounds. All bounds, however, produce values
very close to the optimum (see rows %gap): In particular, for both weight classes and
cardinality classes, L|#≤km| has average gaps around 5 · 10−4, LC around 4 · 10−4 and LCG

around 1 · 10−4.
Concerning the heuristic algorithms, we recall that the scatter search starts from the

best solution obtained by the constructive heuristics, although the computational experi-
ments showed that its behaviour does not worsen significantly when started from randomly
generated solutions. Looking at the last columns of Tables 3 and 4, in rows #best and %gap,
we see that LPT-ki and GH-ki are outperformed by MS-ki which, in turn, produces solu-
tions largely worse than those of the scatter search. Further improvements are produced by
the feasible solutions detected by the column generation algorithm. The best constructive
heuristic, MS-ki, produced solutions with gaps around 6 ·10−3 with a maximum of 1.3 ·10−2

for Class k3 (not shown in Table 4), whereas the scatter search always had solutions as
close to the lower bound as 1 · 10−4. On the other hand, the scatter search may require
consistently higher computing times.

Heuristic LPT-ki has average gaps close to 3 ·10−2 for all weight classes. For cardinality
classes k1–k6 its performance improves, while it worsens for k7–k9. Algorithm GH-ki

roughly has twice the number of best solutions with respect to LPT-ki. The average gaps
also improve, from around 3 · 10−2 to around 1 · 10−2. Heuristic MS-ki has very good
performances for almost all classes. Finally, the scatter search algorithm is very robust
and its performance is excellent on all classes: Its percentage gap is in practice 1 · 10−4 on
all instances. We additionally notice that the best solution for about 1% of the instances
was determined during the computation of the column generation lower bound LCG (see
columns Scatter and Overall, row #opt), which increased by about 200 units the number
of instances solved to optimality.

In Table 5 we give the performance of procedure Reduction2. (As already observed,
procedure Reduction1 cannot operate on our data sets.) For each weight class (resp.
cardinality class) the table provides the following information, computed over all cardinality
classes (resp. weight classes):

• %act = average percentage of instances where some reduction was obtained;

• %n-red = overall percentage of items reduction;

• %m-red = overall percentage of subsets reduction;

• time = average CPU time.

If we consider the results grouped by weight class we do not see considerable differences,
while the results grouped by cardinality class show very small reductions for classes k1–
k3, no reduction at all for classes k4–k6 and good behavior for classes k7–k9. For the
latter classes, both the reduction of the number of items and of the number of subsets
have relevant impact on the final dimension of the instance to be solved, probably due to
the fact that these instances are characterized by ki values with relatively high variance.
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The reduction phase proved to be an important tool for solving a number of instances
to optimality. The corresponding computational effort was however not negligible: By
comparing the average CPU times in Table 5 with those in Tables 6 and 7, one can see
that the fraction of time taken by the reduction process was about 18% of the total time.

Table 5: Performance of the reduction procedure.
Class %act %n-red %m-red time Class %act %n-red %m-red time
w1 20.68 4.33 9.37 1.41 k1 0.07 0.01 0.02 0.01
w2 19.96 4.26 9.17 1.85 k2 0.04 0.01 0.01 0.08
w3 20.22 4.27 9.27 1.42 k3 15.13 1.46 3.26 13.85
w4 21.25 4.47 9.62 1.47 k4 0.00 0.00 0.00 0.04
w5 20.36 4.30 9.33 1.50 k5 0.00 0.00 0.00 0.04
w6 20.18 4.32 9.34 1.76 k6 0.00 0.00 0.00 0.03
w7 20.47 4.19 9.11 1.70 k7 66.95 18.12 36.79 0.13
w8 19.89 4.30 9.30 1.74 k8 53.98 10.78 24.33 0.07
w9 20.54 4.34 9.41 1.50 k9 47.38 8.40 19.50 0.11

average 20.39 4.31 9.32 1.60 average 20.39 4.31 9.32 1.60

Tables 6 and 7 give more detailed results on the performance of the scatter search
algorithm for the selected classes considered in Tables 3 and 4. For each feasible pair
(n,m), the entries in Table 6 (resp. Table 7) give the values, computed over the 90
instances generated for each cardinality class (resp. weight class), of:

• %opt = average percentage of proved optimal solutions;

• %gap = average percentage gap, computed as for Tables 3 and 4;

• t1−2 = average computing time for Steps 1 and 2 (inizialization and scatter search);

• t = average total computing time;

• tmax = maximum total computing time.

The results in these tables confirm the robustness and stability of the algorithm, with
respect to both variations of weight and cardinality. Instances with up to 400 items and
10 subsets are almost systematically solved to optimality. This behavior worsens for larger
instances, but the overall performance remains satisfactory: The percentage gap never
exceeds 1.04 within reasonable CPU times, that are at most around 12 minutes on an
average speed computer. It is interesting to observe that instances with 25–50 items are
often more difficult to solve than larger instances. This is probably due to the fact that a
higher number of items, allowing a much higher number of weight combinations, makes it
easier to obtain solutions of value close to that of the lower bound.

We finally examined the impact of scatter search over the performance of the complete
algorithm. To this end, the algorithm was also run on our test bed of 25 110 instances
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without scatter search, by doubling the time limit assigned to the column generation phase,
in order to compensate for a worse initial solution. It turned out that scatter search is an
essential tool for the solution of these problems: Without it, the percentage of instances
solved to optimality decreased from 89.7 to 64.1, the average percentage gap increased
from 0.01 to 0.47 and the average CPU time increased from about 9 seconds to about 22
seconds.
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