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Abstract

This paper focuses on the characterization of a subset of optimal sequences for
the famous two-machine flowshop problem. Based on the relative order of the job
processing times, two particular interval structures are defined so that each job is
associated with an interval. Then, using the Allen’s algebra, the interval relation-
ships are analysed and a sufficient optimality condition is established providing a
characterisation of a large subset of optimal sequences. This set necessarily includes
any Johnson’s sequences together with numerous other optimal job sequences.
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1 Introduction

Scheduling methods able to provide a set of solutions as opposed to methods
providing only one solution are said robust (or flexible) since they tolerate
unforeseen disturbances without any schedule re-calculation [13]. According
to this definition, several robust scheduling methods have been proposed in
the literature [17,18]. Here under, the famous two machine flowshop problem
is studied with the aim to characterize without enumeration a large set of
optimal sequences. Classically, we denote J the set of jobs to sequence on two
machines M1 and M2 (pj1 and pj2 respectively indicate the processing times of
each job j ∈ J on M1 and M2). The selected criterion is the makespan Cmax

and only permutation sequences are considered (i.e. F2|prmu|Cmax) since they
are dominant for Fm||Cmax, if m ≤ 3 [12].
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Several related papers already dealt with this problem providing a single or
several optimal solutions. A well-known result was given by Johnson [19] who
demonstrated that any job sequence which respects the rule min(pi1, pj2) ≤
min(pj1, pi2) ⇔ i ≺ j is optimal. Following this rule, a single optimal job
sequence can be computed in O(n log n). The use of the algorithm proposed
in [5] gives the list of all the sequences satisfying the Johnson’s rule. Billaut and
Lopez [6] also proposed an algorithm which enumerates, by job permutations
in the optimal Johnson’s sequences, the complete set of optimal sequences. A
related approach based on the notion of maximal sequence was also proposed
in [8]. In both cases, we notice that only small problems, with a dozen of jobs
at most, can be solved due to a prohibitive time complexity of the algorithms.
Indeed, the enumeration of the complete set of optimal sequences is a problem
known to be NP-hard in the strong sense [16].

A F2|prmu|Cmax problem possibly have a very large set of optimal solutions.
The complete enumeration of this set has to be avoided since it is obviously
time consuming. As a consequence, the approaches aiming at characterizing,
rather than enumerating, a subset of optimal solutions should be preferred.
This classically implies to handle sequential flexibilty by means of a partial
order. A partial order P is defined by a pair P = (X,�P ) where the binary
relation �P on X × X is reflexive, antisymetric and transitive [11]. A partial
order P = (X,�P ) is a complete order (or a linear order) if for every pair
(u, v) ∈ X × X either u �P v or v �P u holds. Moreover, given a pair of
partial orders Q = (X,�Q) and P = (X,�P ), on the same set X, we call Q
an extension of P if u �P v implies u �Q v for all u, v ∈ X.

The notion of group sequence [22] gives an interesting partial order. It allows
the characterization of a set of solution specifying, for each resource, an ordered
sequence of group, provided that the order of the elements of a group is not
imposed. The main advantage of such a partial order lies on the capability
to perform a worst case analysis and to determine the quality of the set of
solutions with respect to a regular criterion. Of course, the larger the set of
solutions is and the worse its quality is. The notion of group sequence has been
widely used in the field of shop scheduling and intends to determine a family
of solutions to be used during the schedule real time execution. Switching from
one solution to the other allows to face the potential disruptions without any
peformance loss [21,1,10,3,23,7,20].

In both [4] and [16], the authors suggest to reuse the notion of group sequence
for the F2|prmu|Cmax problem. The Baptiste’s algorithm gives a group se-
quence characterizing a set of sub-optimal job sequences of which the worst
execution time is bounded. On the basis of a given optimal job sequence,
Esswein et al. also proposed a Greedy Forward Grouping algorithm, having
the worst case complexity O(n log n), which determines an optimal group se-
quence of jobs while maximizing the flexibilty (i.e. the number of groups is
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minimized). In both previous works, the authors showed that the number of
characterized optimal solutions can be very impressive.

The work presented in this paper is quite connected with the above approaches
since we are also interested in characterizing a large set of optimal sequences
for the F2|prmu|Cmax problem. Nevertheless, some new interesting features
are provided. Firstly, a new partial order is defined which does not use the
notion of group sequence. Moreover, our approach does not require any initial
optimal sequence, since it can be directly stated that any sequence character-
ized with our partial order is optimal (the partial order is sufficient regarding
the makespan criterion). Additionally, our partial order being defined on the
basis of the relative order of the processing times pi1 and pi2, the character-
ized set of sequences remains optimal even if the job processing times increase,
provided that the relative order is unchanged. Such a feature is of interest in
a robust context where scheduling approaches have to be quite insensitive
to data variations. Also interesting is the fact that Johnson’s sequences are
always included in the set of characterized sequences.

The paper is organised as follows. First we recall some basic notions, used
for the definition of our partial order and related to the analysis of inter-
val structures. Then we focus on two particular interval structures for the
F2|prmu|Cmax problem and we progressively expound several sufficient con-
ditions of optimality, starting from the analysis of particular interval structures
up to the general case. Lastly, an example is given.

2 Interval structure and basic concepts

An interval structure can be defined by a couple < I, C > with I = {i1, . . . , in}
a set of intervals and C a set of constraints over I × I . Each interval ij is
defined by its lower and upper bounds xj and yj. Any constraint between two
intervals ij and ik can be expressed either by specifying a total order relation
among the lower and upper bounds of the intervals or by directly using the
relations of the algebra proposed by Allen [2] (see figure 1).

For instance, let us consider the interval structure with I = {A, B, C, D, E, F, G}
of the figure 2. We assume that C is defined by a total order such that
(xA = xB = xG) < (xC = xD) < yC < (yB = xF ) < xE < yA < (yD =
yE) < yF = yG). The set of equivalent Allen’s relations is represented on the
table of the figure 3. Such a table can be computed with a time complexity
O(n(n − 1)/2), n being the number of intervals.

Top and base [15] are two interesting notions related to the concept of interval
structure.
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precedes(A,B) meets(A, B) overlaps(A, B)

xA ≤ yA ≤ xB ≤ yB xA ≤ yA = xB ≤ yB xA < xB < yA < yB

starts(A, B) during(A, B) ends(A,B) equals(A,B)

xA = xB < yA < yB xB < xA ≤ yA < yB xB < xA ≤ yA = yB xA = xB = yA = yB

Fig. 1. Allen’s relations

Fig. 2. An interval structure example

A B C D E F G

A equals(A, A) starts(B, A) during(C, A) overlaps(A, D) overlaps(A, E) overlaps(A, F ) starts(A, G)

B starts(B, A) equals(B, B) during(C, B) overlaps(B, D) precedes(B, E) meets(B, F ) starts(B, G)

C during(C, A) during(C, B) equals(C, C) starts(C, D) precedes(C, E) precedes(C, F ) during(C, G)

D overlaps(A, D) overlaps(B, D) starts(C, D) equals(D, D) ends(E, D) overlaps(D,F ) during(D, G)

E overlaps(A, E) precedes(B, E) precedes(C, E) ends(E, D) equals(E, E) during(E, F ) during(E, G)

F overlaps(A, F ) meets(B, F ) precedes(C, F ) overlaps(D, F ) during(E, F ) equals(F, F ) ends(F, G)

G starts(A, G) starts(B, G) during(C, G) during(D, G) during(E, G) ends(F, G) equals(G, G)

Fig. 3. Allen’s relation for the intervals {A,B,C,D,E, F,G}

Definition 1. A top of an interval structure < I, C > is an interval t ∈ I
such that ∀i ∈ I the Allen’s relation during(i, t) never holds.

Definition 2. A base of an interval structure < I, C > is an interval b ∈ I
such that ∀i ∈ I the Allen’s relation during(b, i) never holds.

These notions of top and base can be respectively used to define the notions
of t-pyramid and b-pyramid.
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Definition 3. Given a top tα, a t-pyramid Pα related to tα is the set of inter-

vals i ∈ I such that during(tα, i).
Definition 4. Given a base bα, a b-pyramid Pα related to bα is the set of

intervals such that during(i, bα).

For illustration, let us consider the interval structure of the figure 2. It has
three tops {C, D, E} and four bases {A, B, F, G}. The involved t-pyramids
are PC = {B, A, G}, PD = {G} and PE = {F, G}, and the b-pyramids are
PA = {C}, PB = {C}, PF = {E} and PG = {C, D, E}.

The concept of t-pyramid has been already used in the scheduling literature
in order to determine a dominant partial order [14,9] for the single machine
problem (1|ri, di|Lmax). In the following, the focus is put on the b-pyramid
concept which gives a sufficient condition of optimality for the F2|prmu|Cmax

problem.

3 Two interval structures for F2|prmu|Cmax

Two particular interval structures I1 and I2 are defined:

- I1 is the interval structure associated with the jobs j ∈ J such that pj1 ≤ pj2;
- I2 is the interval structure associated with the jobs j ∈ J such that pj2 ≤ pj1.

An interval ij = [pj1, pj2] is associated to each job j ∈ I1 and similarly, an
interval ij = [pj2, pj1] is associated to each job j ∈ I2 . Therefore, a job j such
that pj1 = pj2 belongs to both interval structures I1 and I2 and its correspond-
ing interval is a point. Moreover, one can see that the interval structures I1

and I2 do not change as long as the relative order of the processing times pj1

and pj2 remains unchanged.

In the following, we focus on the bases of I1 and I2. We assume that the n1

bases of I1 are indexed according to the ascending order of their processing
times on the first machine (in an arbitrary order in case of equality). Similarly,
the n2 bases of I2 are indexed, starting from the index n1 + 1, according to
the descending order of their processing times on the second machine (in an
arbitrary order in case of equality).

For the problem instance of the figure 4, the interval structures I1 and I2

are represented on the figure 5. First, we notice that I1 contains three bases,
b1 = 1, b2 = 2 and b3 = 3, which involve three b-pyramids: P1 = {5, 6},
P2 = {6, 7} and P3 = {8}. The interval structure I2 only contains a single
base, b4 = 4, which involves the b-pyramid P4 = {7, 9}.
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jobs j 1 2 3 4 5 6 7 8 9

pj1 1 3 8 8 2 4 7 9 5

pj2 6 8 12 2 4 5 7 11 3

Fig. 4. A F2|prmu|Cmax problem instance

Fig. 5. Interval structures I1 and I2 for the problem of the figure 4

Before giving our general result, we need to consider two particular interval
structures: we focus first on the case where a F2|prmu|Cmax problem is char-
acterised by one single b-pyramid, then we consider the bi-pyramidal case.

4 The mono-pyramidal case

Let us consider a F2|prmu|Cmax problem with only one single base b and one
single b-pyramid Pb. Two cases will be distinguished either Pb is a b-pyramid
of I1 or Pb is a b-pyramid of I2.

4.1 Pb is a b-pyramid of I1

In this case, the following theorem can be stated.

Theorem 1. Any job sequence which places the base b in the first position

and the other jobs in any order is optimal with:

Cmax = pb1 +
∑

j∈J

pj2
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Proof. We must prove that there is necessarily no idle time on M2 when the
base b is sequenced first. First, as b is the only base, any job j ∈ J −{b} of I1

obviously respects the inequality pb1 < pj1 ≤ pj2 < pb2. As illustrated on the
figure 6, we note σ the sub-sequence of n jobs being already sequenced after the
base b, and ∆tn the idle time on M1 (i.e. ∆tn = Cσ+{b}−

∑

j∈σ+{b} pj1). Proving
that there is no idle time on M2 is equivalent to prove that ∆tn ≥ pj1 ∀n and
∀j ∈ J − σ − {b}. The case where only the base b is sequenced (i.e. σ = ∅) is
obvious since ∆t1 = pb2 and therefore, ∆t1 > pj1 ∀j ∈ J − {b}. If we consider
now the general case, then it is easy to see that ∆tn = ∆tn−1 +pj2−pj1. Since
pj2 − pj1 ≥ 0 by hypothesis, we can deduce that ∆tn ≥ ∆tn−1 ≥ · · · ≥ ∆t1 >
pj1. Hence there is no idle time on M2 and Cmax = pb1 +

∑

j∈J pj2.

Fig. 6. Optimal job sequences for the mono-pyramidal case (Pb belongs to I1)

4.2 Pb is a b-pyramid of I2

In the case where b is a base of I2, a dual theorem can be stated.

Theorem 2. Any job sequence which places the base b in the last position and

the other jobs in any order is optimal with :

Cmax = pb2 +
∑

j∈J

pj1

Proof. The proof is similar to the previous one by permuting the processing
times pj1 and pj2 (reverse problem formulation). Therefore, the optimal job
sequences are the same but in the reverse order.

5 The bi-pyramidal case

We assume now that the problem is characterized by two bases b1 and b2. We
consider two cases either b1 and b2 belongs to the same interval structure (I1

or I2) or not.
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5.1 The bases b1 and b2 belong to the same interval structure I1

We assume that b1 and b2 are two bases belonging to I1 such that pb11 ≤ pb21.
As illustrated on the figure 7, we focus on job sequences in the form b1 ≺ σ1 ≺
b2 ≺ σ2. We distinguish again two sub-cases either the relation precedes(b1, b2)
holds or not.

Fig. 7. Optimal job sequences for the by-pyramidal case (b1 and b2 belong to I1)

5.1.1 The relation precedes(b1, b2) holds

Since precedes(b1, b2), obviously Pb1 ∩ Pb2 = ∅ and every job j ∈ J − {b1, b2}
belongs to either Pb1 or Pb2 . We prove the following theorem:

Theorem 3. If Pb1 and Pb2 are two b-pyramids of I1 with precedes(b1, b2),
then any job sequence such that:

- b1 precedes b2;

- all the jobs belonging to Pb1 are sequenced inside σ1 in any order;

- all the jobs belonging to Pb2 are sequenced inside σ2 in any order;

is optimal with:

Cmax =
∑

j∈σ2+{b2}

pj2 + max(pb11 +
∑

j∈σ1+{b1}

pj2,
∑

j∈σ1+{b1}

pj1 + pb21).

Proof. Let us focus on the Johnson’s optimal sequence which arranges jobs in
the ascending order of their pj1. This optimal sequence is in the form b1 ≺
σ1 ≺ b2 ≺ σ2 and obvioulsy respects the three conditions of the theorem 3
since b1 precedes b2, any job j ∈ Pb1 is assigned to σ1 and any job j ∈ Pb2

is assigned to σ2. From the theorem 1, it can be stated that the values of
Cσ1+{b1} and Cσ2+{b2} (hence the value of the optimal makespan), do not change
whathever the job orders inside σ1 and σ2 are. Depending on the value of ∆tσ1

compared to pb21, the optimal makespan Cmax has two possible expressions.
If ∆tσ1 ≥ pb21 then Cmax = pb11 +

∑

j∈σ1+{b1} pj2 +
∑

j∈σ2+{b2} pj2. Otherwise,
Cmax =

∑

j∈σ1+{b1} pj1 +pb21 +
∑

j∈σ2+{b2} pj2. The value of the makespan is the
greater between those, hence the Cmax expression of the theorem 3.
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5.1.2 The relation precedes(b1, b2) does not hold

We assume that b1 and b2 are two bases of the interval structure I1 such that
pb11 ≤ pb21. Since the relation precedes(b1, b2) does not hold, six Allen’s rela-
tions remain possible: equals(b2, b1), starts(b2, b1), starts(b1, b2), ends(b2, b1),
overlaps(b1, b2) and meets(b1, b2). For all these cases, we notice that some jobs
can belong to both Pb1 and Pb2 .

Theorem 4. If Pb1 and Pb2 are two b-pyramids of I1 such that the relation

precedes(b1, b2) does not hold, then any job sequence such that:

- b1 precedes b2;

- all the jobs only belonging to Pb1 are sequenced inside σ1 in any order;

- all the jobs only belonging to Pb2 are sequenced inside σ2 in any order;

- any job belonging both to Pb1 and Pb2 is sequenced anywhere either inside

σ1 or σ2 in any order;

is optimal with:

Cmax = pb11 +
∑

j∈J

pj2.

Proof. The proof is quite similar to the previous one. Indeed, we also focus
on the Johnson’s optimal sequence which arranges the jobs in the ascending
order of their pj1. This optimal sequence is in the form b1 ≺ σ1 ≺ b2 ≺ σ2

(see figure 7) and obvioulsy respects the conditions of the theorem 4 since b1

precedes b2, jobs belonging only to Pb1 are assigned to σ1 and all the other
jobs (belonging either to Pb1 ∩ Pb2 or only to Pb2) are assigned to σ2. Since
b1 and b2 are two bases such that precedes(b1, b2) does not hold, the relation
pb11 ≤ pb21 ≤ pb12 stands. Therefore, according to the proof of the theorem
1, one can deduce that ∆tσ1 ≥ pb21. Hence the optimal makespan value is
Cmax = Cσ1+{b1} +Cσ2+{b2}−pb21 = pb11 +

∑

j∈σ1+{b1} pj2 +
∑

j∈σ2+{b2} pj2. From
the theorem 1, it can be stated that the values of Cσ1+{b1} and Cσ2+{b2} (hence
the one of the optimal makespan), do not change whathever the job orders
inside σ1 and σ2 are. Moreover, scheduling a job belonging both to Pb1 and Pb2

in σ1 (instead of σ2 as in the Johnson’s sequence) does not decrease ∆tσ1 . So
the relation ∆tσ1 ≥ pb21 still holds and the Cmax value does not change. Lastly,
in the particular case where pb11 = pb21, the base indexes can be swapped in
the theorem.

5.2 The bases b1 and b2 belong to the same interval structure I2

We assume here that b1 and b2 are two bases belonging to I2 such that
pb12 ≥ pb22. Then the two following theorems can be directly stated since
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their proof is similar to both previous ones, by considering the reverse formu-
lation of the problem. In this case, the structure of the optimal sequences is
σ1 ≺ b1 ≺ σ2 ≺ b2.

Theorem 5. If Pb1 and Pb2 are two b-pyramids of I2 with precedes(b2, b1),
then any job sequence such that:

- b1 precedes b2;

- all the jobs belonging to Pb1 are sequenced inside σ1 in any order;

- all the jobs belonging to Pb2 are sequenced inside σ2 in any order;

is optimal with:

Cmax =
∑

j∈σ1+{b1}

pj1 + max(pb22 +
∑

j∈σ2+{b2}

pj1,
∑

j∈σ2+{b2}

pj2 + pb12).

Theorem 6. If Pb1 and Pb2 are two b-pyramids of I2 such that the relation

precedes(b2, b1) does not hold, then any job sequence such that:

- b1 precedes b2;

- all the jobs only belonging to Pb1 are sequenced inside σ1 in any order;

- all the jobs only belonging to Pb2 are sequenced inside σ2 in any order;

- any job belonging both to Pb1 and Pb2 is sequenced anywhere either inside

σ1 or σ2 in any order;

is optimal with:

Cmax = pb22 +
∑

j∈J

pj1.

5.3 The bases b1 and b2 do not belong to the same interval structure

In this section, we assume that b1 is a base of I1 and b2 is a base of I2. We notice
that only the jobs such that pj1 = pj2 can belong both to Pb1 and Pb2 (their cor-
responding interval is a point). As illustrated on the figure 8, we focus on job
sequences in the form b1 ≺ σ1 ≺ σ2 ≺ b2. Then we state the following theorem:

Theorem 7. If Pb1 is a b-pyramid of I1 and Pb2 is a b-pyramid of I2, then

any job sequence such that:

- b1 precedes b2;

- all the jobs only belonging to Pb1 are sequenced inside σ1 in any order;

- all the jobs only belonging to Pb2 are sequenced inside σ2 in any order;

- any job belonging both to Pb1 and Pb2 is sequenced anywhere either inside

σ1 or σ2 in any order;
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is optimal with:

Cmax = pb11 + pb22 + max(
∑

j∈σ1∪σ2

pj1 + pb21,
∑

j∈σ1∪σ2

pj2 + pb12).

Fig. 8. Optimal job sequences for the by-pyramidal case (b1 belong to I1 and b2

belong to I2)

Proof. Once again, let us consider the Johnson’s optimal sequence which ar-
ranges the jobs belonging to I1 in the ascending order of their pj1 and the jobs
belonging to I2 in the descending order of their pj2. This optimal sequence
obvioulsy respects the three conditions of the theorem 7 since b1 precedes b2,
any job j ∈ Pb1 is assigned to σ1 and any job j ∈ Pb2 is assigned to σ2. From
the theorem 1, one can see that the values of Cσ1+{b1} and Cσ2+{b2} (hence
the one of the optimal makespan), do not change whathever the job orders
inside σ1 and σ2 are. Additionally, if a job j belongs to both Pb1 and Pb2

(pj1 = pj2), then it can be assigned either to σ1 or σ2 since whatever the as-
signment is, it neither modifies the values of ∆tσ1 and ∆tσ2 , nor the one of
the makespan. Depending on the value of ∆tσ1 compared to ∆tσ2 , two cases
may happen. If ∆tσ1 ≥ ∆tσ2 then Cmax = pb11 + pb12 +

∑

j∈σ1∪σ2
pj2 + pb22.

Otherwise, Cmax = pb11 +
∑

j∈σ1∪σ2
pj1 + pb21 + pb22. Hence the general Cmax

expression of the theorem 7.

6 A sufficient condition of optimality for F2|prmu|Cmax

Now we consider the general case where each interval structure I1 and I2 is
characterized by any number of b-pyramids. As illustrated on the figure 9,
we denote σj, with j ∈ [1, n1], the sub-sequence of jobs located between the
bases bj and bj+1, provided that the bases of I1 have been indexed according
to the ascending order of their pj1 (in any order in case of equality). Similarly,
we denote σk, with k ∈ [n1 + 1, n1 + n2], the sub-sequence of jobs located
between the bases bk−1 and bk, provided that the bases of I2 have been indexed
according to the descending order of their pj2 (in any order in case of equality).
We focus on job sequences in the form: b1 ≺ σ1 ≺ b2 ≺ σ2 ≺ · · · ≺ bn1 ≺ σn1 ≺
σn1+1 ≺ bn1+1 ≺ · · · ≺ σn1+n2 ≺ bn1+n2 .
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Fig. 9. Optimal job sequences for the general case

For each job j, we denote u(j) (respectively v(j)) the index of the base of the
first (respectively the last) b-pyramid to which the job j belongs. For a base
bi, we set u(bi) = v(bi) = i. Then we state the following general theorem.

Theorem 8. Any job sequence such that:

• the bases of I1 and I2 are sequenced according to the ascending order of their

indexes;

• any job j is sequenced inside any sub-sequence from σu(j) to σv(j) in any

order;

is optimal with:

Cmax = Cσ1+{b1} +

max(Cσ2+{b2} − pb21, Cσ2+{b2} − ∆tσ1) +

max(Cσ3+{b3} − pb31, Cσ3+{b3} − ∆tσ2) +

· · ·+

max(Cσn1+{bn1}
− pbn11, Cσn1+{bn1}

− ∆tσn1−1) +

max(Cσn1+1+{bn1+1} − ∆tσn1+1, Cσn1+1+{bn1+1} − ∆tσn1
) +

max(Cσn1+2+{bn1+2} − ∆tσn1+2, Cσn1+2+{bn1+2} − pbn1+12) +

· · ·+

max(Cσn1+n2−1+{bn1+n2−1} − ∆tσn1+n2−1 , Cσn1+n2−1+{bn1+n2−1} − pbn1+n2−22) +

max(Cσn1+n2+{bn1+n2}
− ∆tσn1+n2

, Cσn1+n2+{bn1+n2}
− pbn1+n2−12)

with:

Cσi+{bi} =











pbi1 +
∑

j∈σi+{bi} pj2 if i ∈ [1, n1]

pbi2 +
∑

j∈σi+{bi} pj1 if i ∈ [n1 + 1, n1 + n2]

∆tσi
=











Cσi+{bi} −
∑

j∈σi+{bi} pj1 if i ∈ [1, n1]

Cσi+{bi} −
∑

j∈σi+{bi} pj2 if i ∈ [n1 + 1, n1 + n2]

Proof. We focus on the Johnson’s sequence which arranges first the jobs of I1,
according to the ascending order of their pj1, then the jobs of I2, according to
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the descending order of their pj2. This optimal sequence respects the theorem
8 since the base order matches the increasing order of the base index, any
job j ∈ I1 is assigned to σv(j) and any job j ∈ I2 is assigned to σu(j). From
the theorems 3, 4, 5, 6 and 7, one can easily deduce the optimal makespan
expression given in the theorem 8. Moreover, since this expression gives the
optimal makespan value for the particular previous Johnson’s sequence, it
also can be deduced that this value does not changed for any assignement
of a non-base job j ranging from σu(j) to σv(j) (as seen in the proof of the
theorem 4).

Now we intend to prove that the partial order defined by the theorem 8 is an
extension of the partial order defined by the Johnson’s rule.

Corollary 1. Any Johnson’s sequence is necessarily included in the set of job

sequences characterized by the theorem 8.

Proof. From the theorem 8, we state that a job i cannot precede a job j in
any optimal sequence if and only if u(i) > v(j). Indeed, if u(i) ≤ v(j) then
either u(i) ≤ v(i) < u(j) ≤ v(j) and i precedes j in every job sequence, or
u(i) ≤ u(j) ≤ v(i) ≤ v(j) and job sequences exists such that i and j are
assigned to the same sub-sequence σk with u(j) ≤ k ≤ v(i) (hence i and j can
be sequenced in any order). The relation u(i) > v(j) (i.e. i ⊀ j) only stands
in one of the following cases:

- j belongs to I1 (but not to I2) and i belongs to I2 (but not to I1), hence
pj2 > pj1 and pi1 > pi2;

- i and j both belong to I1 and either pj1 < pi1 ≤ pj2 < pi2 (i.e. overlaps(j, i)
or meets(j, i)) or pj1 < pj2 < pi1 < pi2 (i.e. precedes(j, i)), and there does
not exist any base b such that both during(i, b) and during(j, b) (i and j
do not belong to any common b-pyramid);

- i and j both belong to I2 and either pi2 < pj2 ≤ pi1 < pj1 (i.e. overlaps(i, j)
or meets(i, j)) or pi2 < pi1 < pj2 < pj1 (i.e. precedes(i, j)), and there does
not exist any base b such that both during(i, b) and during(j, b) (i and j
do not belong to any common b-pyramid);

Thus one can see that in any above case the inequality min(pi1, pj2) > min(pi2, pj1)
always holds. Therefore the theorem 8 only discards job precedences which
do not satisfy the Johnson’s rule. Hence the Johnson’s sequences are con-
served.

Also interesting is the impressive number of job sequences characterized by
our theorem. Let S be the set of all the possible job assignments inside the
sub-sequences σ. The cardinality of S is

∏m
q=1 qnq [14], where m is the number

of b-pyramids and nq, the number of jobs belonging to exactly q b-pyramids.
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For a particular job assignment s ∈ S, let ni(s) be the total number of jobs
assigned to σi with respect of the theorem. Then the total number of job per-
mutations is

∏m
i=1(ni(s)!). Hence, the total number of characterized sequences

is
∑

s∈S(
∏m

i=1 ni(s)!).

As illustration, for a problem with 20 jobs such that m = 4, u(j) = v(j) ∀j ∈ J
and ni = 4, the theorem characterizes (4!)4 = 331776 optimal sequences. Now
for the same problem, if we assume that one (and only one) job belongs to
two b-pyramids, then the number of characterizd optimal sequences becomes
(4!)4 + (3! ∗ 5! ∗ 4! ∗ 4!) = 746496.

7 Example

For theorem 8 illustration, let us take again the example of the figure 4. The
value of the functions u(j) and v(j) are given for each job j on the table of
the figure 10.

Jobs j 1 2 3 4 5 6 7 8 9

u(j) 1 2 3 4 1 1 2 3 4

v(j) 1 2 3 4 1 2 4 3 4

Fig. 10. u(j) and v(j) values

According to the theorem, we focus on job sequences in the form b1 ≺ σ1 ≺
b2 ≺ σ2 ≺ b3 ≺ σ3 ≺ σ4 ≺ b4. Regarding the table of the figure 10, the
possible assignments of the jobs are 5 ∈ σ1 , 6 ∈ σ1 or 6 ∈ σ2, 7 ∈ σ2

or 7 ∈ σ3 or 7 ∈ σ4, 8 ∈ σ3 and 9 ∈ σ4. We recall that the order of jobs
inside each sub-sequence σi does not impact the makespan value. Therefore,
enumerating all the possibilities, we find thirteen optimal job sequences with
the optimal makespan Cmax = 49: 1 ≺ 5 ≺ 6 ≺ 2 ≺ 7 ≺ 3 ≺ 8 ≺ 9 ≺ 4,

1 ≺ 6 ≺ 5 ≺ 2 ≺ 7 ≺ 3 ≺ 8 ≺ 9 ≺ 4, 1 ≺ 5 ≺ 6 ≺ 2 ≺ 3 ≺ 8 ≺ 7 ≺ 9 ≺ 4,

1 ≺ 6 ≺ 5 ≺ 2 ≺ 3 ≺ 8 ≺ 7 ≺ 9 ≺ 4, 1 ≺ 5 ≺ 6 ≺ 2 ≺ 3 ≺ 7 ≺ 8 ≺ 9 ≺ 4,

1 ≺ 6 ≺ 5 ≺ 2 ≺ 3 ≺ 7 ≺ 8 ≺ 9 ≺ 4, 1 ≺ 5 ≺ 6 ≺ 2 ≺ 3 ≺ 8 ≺ 9 ≺ 7 ≺ 4,

1 ≺ 6 ≺ 5 ≺ 2 ≺ 3 ≺ 8 ≺ 9 ≺ 7 ≺ 4, 1 ≺ 5 ≺ 2 ≺ 6 ≺ 7 ≺ 3 ≺ 8 ≺ 9 ≺ 4*,

1 ≺ 5 ≺ 2 ≺ 7 ≺ 6 ≺ 3 ≺ 8 ≺ 9 ≺ 4, 1 ≺ 5 ≺ 2 ≺ 6 ≺ 3 ≺ 7 ≺ 8 ≺ 9 ≺ 4*,

1 ≺ 5 ≺ 2 ≺ 6 ≺ 3 ≺ 8 ≺ 7 ≺ 9 ≺ 4*, 1 ≺ 5 ≺ 2 ≺ 6 ≺ 3 ≺ 8 ≺ 9 ≺ 7 ≺ 4. For
this problem instance, only the three asterisked sequences satisfy the Johnson’s
rule.

In order to illustrate the robustness of our approach, we slightly increase some
job processing times in the above example. Then we analyse the consequences
on the above set of optimal job sequences.
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First let us suppose that, due to one disruption, p51 increases so that p51 = 3
(instead of 2). This modification does not affect the interval structures I1 and
I2 since the Allen’s relations between any pair of job intervals are maintained.
Therefore the above set of optimal sequences is kept unchanged, as well as the
Cmax value (since Cmax does not depend on p51 for this problem instance).

Now if we set p52 = 5 (instead of 4) then the interval structures I1 and I2

are again unchanged, as well as the set of optimal sequences. Nevertheless,
the optimal makespan value is now Cmax = 60 (instead of 59) for any job
sequence.

Now we suppose that p62 increases so that p62 = 7 (instead of 5). In this case,
the interval structure I1 is modified because the job 6 does not belong any
more to the b-pyramid Pb1 . Therefore any job sequence which assigns the job
6 to σ1 has to be removed from the set of optimal sequences. Thus it only
remains five optimal job sequences with the optimal makespan Cmax = 62:
1 ≺ 5 ≺ 2 ≺ 6 ≺ 7 ≺ 3 ≺ 8 ≺ 9 ≺ 4, 1 ≺ 5 ≺ 2 ≺ 7 ≺ 6 ≺ 3 ≺ 8 ≺ 9 ≺ 4,

1 ≺ 5 ≺ 2 ≺ 6 ≺ 3 ≺ 7 ≺ 8 ≺ 9 ≺ 4, 1 ≺ 5 ≺ 2 ≺ 6 ≺ 3 ≺ 8 ≺ 7 ≺ 9 ≺ 4,

1 ≺ 5 ≺ 2 ≺ 6 ≺ 3 ≺ 8 ≺ 9 ≺ 7 ≺ 4.

We see through this simple scenario that our approach is relatively insensitive
to data variations as long as these variations do not modify the bases of the
interval structures. Of course if this condition is not respected then a new
interval analysis has to be performed in order to re-compute dynamically the
new b-pyramids.

8 Conclusion

In this paper, we established a new sufficient condition of optimality for the
F2|prmu|Cmax problem. Based on two interval structures associated to the
problem, the sufficient condition of optimality characterizes a set of optimal
job sequences by determining the bases and the related b-pyramids of the
interval structures. This sufficient condition is quite efficient since it ensures
that any Johnson’s sequence is always included in the set of characterized
sequences, together with numerous other optimal job sequences. Furthermore,
as the set of optimal sequences remains unchanged as long as the relative order
of the processing times is conserved, this approach is relatively insensitive to
processing time variations. For the future works, we want to reuse the results
of this paper for solving more complex problems, starting with the F2|ri|Cmax

one, in order to define some new sufficient or dominant partial orders.
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