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Abstract
The smooth Huber approximation to the nonlinear �1 problem was proposed by Tish-

ler and Zang (1982), and further developed in Yang (1995). In the present paper, we use
the ideas of Gould (1989) to give a new algorithm with rate of convergence results for the
smooth Huber approximation. Results of computational tests are reported.

1 Introduction

In this paper we investigate a new algorithm for the nonlinear �1 estimation problem, also
known as the absolute deviations curve fitting problem in statistics. Let ci : �n �→ � be at
least twice continuously differentiable functions for each i = 1, . . . ,m . We want to find a
minimizing point for the following function

f(x) ≡
m∑

i=1

|ci(x)|. (1)

From a statistical point of view, it is well known that the properties of the estimated param-
eters, i.e., optimal values of x , highly depend upon the underlying distribution of the error
terms in the model. Basset and Koenker (1978) proved that the estimator based on the �1

problem above (a minimizing point of f ) is a consistent and asymptotically normal estimator.
They also discussed conditions under which the �1 estimator is superior to the least squares
estimator. Since the �1 estimator does not square the contributions of errors, it may be less
influenced by the presence of outliers in the data as opposed to the least squares estimator.
Tishler and Zang (1982) observed that when measurement errors are Cauchy distributed the
�1 solution yields more reliable estimates than the nonlinear least squares problem.

From a computational point of view, the nonlinear �1 estimation problem presents a
major difficulty: its objective function is not continuously differentiable. Several algorithms
have been proposed for solving the problem over the past three decades. Gonin and Money
(1989) offer a classification of these algorithms into four categories:

1



1. Gauss-Newton or Levenberg-Marquardt type algorithms. These algorithms
use first derivative information only and reduce the nonlinear problem into a sequence
of linear �1 estimation problems. Examples of this class of algorithms can be found in
Osborne and Watson (1971), Anderson and Osborne (1977a), Anderson and Osborne
(1977b), and McLean and Watson (1980).

2. SQP type methods. These algorithms utilize a sequence of quadratic programming
(QP) subproblems along with an active set strategy. They incorporate second order
information into the objective function of QP subproblems. Examples of this class are
algorithms proposed by Murray and Overton (1981), Bartels and Conn (1982), and
Overton (1982).

3. Two phase or hybrid methods. These algorithms aim at identifying the optimal
active set in the first phase of the algorithm. With the active set identified the algorithm
proceeds to the second phase where a system of nonlinear equations is solved using a
method with fast local convergence properties, e.g., Newton’s method or a quasi-Newton
method. Representatives of this type of algorithms are given by McLean and Watson
(1980), Hald and Madsen (1985).

4. Smoothing or approximation algorithms. These methods approximate the non-
differentiable objective function by a differentiable function amenable to minimization
by first- or second-order methods depending on the approximation. These methods,
although not presented as such in the original sources, have a path-following flavor
as well; see El-Attar et al. (1979), and Tishler and Zang (1982) for two different
algorithmic contributions to this area. Ben-Tal and Teboulle (1989) derive smoothing
functions for non-differentiable optimization problems including the �1 problems. Ben-
Tal et al. (1991) applied the El-Attar et al. function to engineering problems in
plasticity. The El-Attar et al. function is known as the hyperboloid approximation in
location literature; see Andersen (1996).

The method given in the present paper is akin to the algorithm of Tishler and Zang
(1982) and to that of Yang (1995). It uses an approximation function known as the Huber’s
M-estimator function in the field of robust statistics. The method is similar to the successful
method for the linear �1 problem developed by Madsen and Nielsen (1993) and Madsen et
al. (1996). However, the proposed algorithm presents many theoretical and computational
departures from the Tishler-Zang, Yang, and Madsen et al. cases:

• Unlike Tishler-Zang, Yang, and Madsen et al. it uses a sequence of inexactly minimized
subproblems which are solved more and more accurately as the approximation becomes
more accurate.

• Unlike the Tishler-Zang and Yang method, it uses an extrapolation procedure which
enables the two-step superlinear convergence property under a strict complementarity
assumption.

• It uses second-order information effectively in that Newton’s method coupled with a
line search is employed to solve the Huber subproblems.
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• Although it is the third contribution on the Huber approximation of the nonlinear �1

function, our paper is the first to give rate of convergence results for the resulting
algorithm.

The proposed algorithm is essentially an adaptation of a quadratic penalty function algorithm
proposed by Gould (1989) to solve nonlinear programming problems with equality constraints.
The main contribution of the present paper is to use Gould’s ideas in the context of an
approximation algorithm for the nonlinear �1 estimation problem. We note that Dussault
(1995) proposed a similar algorithm for variational inequality problems. Dussault (1998)
extends these results to augmented Lagrangian-like penalty methods. However, he does not
give computational results in his papers.

In the next two sections (Section 2 and Section 3) we describe the proposed algorithm,
and we give convergence and rate of convergence results. Section 4 is devoted to a summary
of the numerical results. Unlike the previous contribution by Yang (1995) which does not
give numerical results, we report the results of a careful implementation, and comparison
with competing software.

2 The Proposed Algorithm

As the problem is non-differentiable at points where the functions ci have zero value (although
ci ’s are smooth themselves) we propose an approximation technique which will replace the
original problem by

Φ(x) =
m∑

i=1

φ(ci(x)), (2)

where

φ(ci(x)) =

{
ci(x)2

2µ if |ci(x)| ≤ µ

|ci(x)| − µ/2 if |ci(x)| > µ
(3)

for a positive scalar µ . The above function was proposed by Huber (1981) as a robust
estimator when the measurement error distribution deviated from normality. We use the
function as a smoothing approximation to the �1 function as in Madsen and Nielsen (1993).
It is easy to verify that φ is a once continuously differentiable function of its argument, and
that the following properties hold:

lim
µ→0

φ(t) = |t|

for scalar t , with
lim
µ→0

Φ(x) = f(x).

Therefore, when µ approaches zero, we get arbitrarily close to the true non-differentiable �1

function.
Before stating the algorithm we will give some definitions. Let A(x, µ) = {i||ci(x)| ≤ µ}

represent the active set at (x, µ) and Ac(x, µ) its complement with respect to the index set
{1, . . . ,m}. ∇cA(x) denotes a matrix with columns ∇ci(x) where i ∈ A(x, µ). The Lagrange
multiplier estimates λ̄i , so called as they are reminiscent of Lagrange multipliers in the
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Karush-Kuhn-Tucker (KKT) optimality conditions (8) below, are defined for all i ∈ A(x, µ)
as:

λ̄i = λ̄i(x, µ) =
ci(x)

µ
. (4)

Let ḡ given below represent the gradient of the function Φ(x). The expression for ḡ is given
as

ḡ(x, λ̄) =
∑

i∈Ac(x,µ)

sgn(ci(x))∇ci(x) +
∑

i∈A(x,µ)

λ̄i∇ci(x). (5)

We define the quantity Ḡ (derivative of ḡ with respect to x while keeping λ̄ fixed) as

Ḡ(x, λ̄) =
∑

i∈Ac(x,µ)

sgn(ci(x))∇2ci(x) +
∑

i∈A(x,µ)

λ̄i∇2ci(x) (6)

and, the (n + m) × (n + m) matrix

K(x, λ̄, µ) =

[
Ḡ(x, λ̄) ∇cA(x)T

∇cA(x) −µI

]
. (7)

We say that x∗ is a KKT point (first-order stationary point; see pp. 43 of Madsen (1985)) if
there exist multipliers λ∗

i such that −1 ≤ λ∗
i ≤ 1 and

∑
i∈Ac(x∗)

sgn(ci(x∗))∇ci(x∗) +
∑

i∈A(x∗)

λ∗
i∇ci(x∗) = 0, (8)

where A(x∗) = {i|ci(x∗) = 0}.
Now, the algorithm is the following:
Algorithm.

Step 0 Let an initial point x(0) be given. Set the positive constants γ, τ, β1, β2, ε, µ
(0) and

µmin as β1 < 0.5, β1 < β2 < 1, ε << 1 and µmin << 1. Let k = 0 and x(0,0) = x(0) .

Step 1 Inner Iteration:

Step 1.0 Let λ̄(k,0) = λ̄(x(k,0), µ(k)). Compute ḡ(x(k,0), λ̄(k,0)), Ḡ(x(k,0), λ̄(k,0)) and
K(x(k,0), λ̄(k,0), µ(k)). Let � = 0.

Step 1.1 If
‖ḡ(x(k,�), λ̄(k,�))‖2 ≤ γµ(k) (9)

then
x∗(k) = x(k,�) and λ∗(k) = λ̄(k,�) (10)

and continue from Step 2.

Step 1.2 Find p(k,�) that satisfies the descent condition:

−ḡ(x(k,�), λ̄(k,�))T p(k,�) ≥ εµ(k)‖ḡ(x(k,�), λ̄(k,�))‖2‖p(k,�)‖2, (11)

I.e., if K(x(k,�), λ̄(k,�), µ(k)) satisfies the second-order conditions (i.e., it is non-
singular and it has precisely m negative eigenvalues, the rest of the eigenvalues
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are positive; see Gould (1986)) then, compute p(k,�) for the descent condition (11)
as a Newton direction from the system below:[

Ḡ(x(k,�), λ̄(k,�)) ∇cA(x(k,�))T

∇cA(x(k,�)) −µ(k)I

](
p(k,�)

r(k,�)

)
= −

(
ḡ(x(k,�), λ̄(k,�))
0

)
(12)

Otherwise, use Remark 2.
Step 1.3 Find a stepsize α(k,�) that satisfies Armijo-Goldstein sufficient descent and

curvature conditions

Φ(x(k,l) + α(k,l), µ(k)) ≤ Φ(x(k,l), µ(k)) + β1α
(k,l)ḡ(x(k,l), λ̄(k,l))T p(k,l) (13)

ḡ(x(k,l) + α(k,l)p(k,l), λ̄(x(k,l)α(k,l)p(k,l)))T p(k,l) ≥ β2ḡ(x(k,l), λ̄(k,l))T p(k,l). (14)

If p(k,�) is indeed a Newton direction then always try first α(k,�) = 1, i.e., try a
full Newton step first.

Step 1.4 Move:
x(k,�+1) = x(k,�) + α(k,�)p(k,�)

and let � ← � + 1. Go to Step 1.1.

Step 2 If µ(k) < µmin then stop with the iterate x∗(k) as an approximate solution. Other-
wise, µ(k+1) is set according to 0 < µ(k+1) < µ(k) .

Step 3 If K(x∗(k), λ∗(k), µ(k)) satisfies the second-order condition (i.e., is invertible and has
precisely m negative eigenvalues) compute p(k) from the linear system of equations
below:[

Ḡ(x∗(k), λ∗(k)) ∇cA(x∗(k))T

∇cA(x∗(k)) −µ(k)I

](
p(k)

r(k)

)
= −

(
ḡ(x∗(k), λ∗(k))
cA(x∗(k)) − µ(k+1)λ∗(k)

)
(15)

and, let
x∗(k)

a = x∗(k) + p(k). (16)

If
‖ḡ(x∗(k)

a , λ̄(x∗(k)
a , µ(k+1)))‖2 ≤ max{τ, ‖ḡ(x∗(k), λ̄(x∗(k), µ(k+1)))‖2} (17)

then
x(k+1,0) = x∗(k)

a . (18)

Otherwise, set x(k+1,0) = x∗(k) ; k ← k + 1 go back to Step 1.

Some remarks concerning the algorithm are in order here.
Remark 1. In Step 1.1 we require only an inexact stationary point of the Huber approx-

imation function. However, as γ becomes smaller, the accuracy becomes more stringent.
Remark 2. In Step 1.2 when the matrix K does not satisfy the second-order condition

(i.e., is not invertible or fails to have precisely m negative eigenvalues) then we may use a di-
rection of negative curvature (donc) or a direction of linear infinite descent (dolit), depending
on which is applicable, (see Gould (1986)), as long as (11) is satisfied.

Remark 3. Note that Step 3 is an extrapolation procedure which applies a Newton
step at the stationary point conditions of the Huber function using the reduced value of µ .
However, it uses the previous value of µ so that the matrix K is available from Step 1.4 of
the previous inner iteration.
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3 Convergence and Rate of Convergence

In this section we give convergence and rate of convergence results for the algorithm of the
previous section. The results follow along the lines of Gould (1989). Therefore, we omit
the proofs whenever they are obtained, mutatis mutandis, by verbatim repetition of Gould’s
results. We point out the corresponding result of Gould (1989) for the interested reader’s
convenience.

Under a strict complementarity assumption, the algorithm is shown to converge in a lo-
cally two-step superlinearly convergent manner. The two-step superlinear convergence hinges
on Step 3 in the following way:

• First, we can show using Gould’s results that the sequence {µ(k)} can be set as a
superlinearly convergent sequence. This follows from the observation that eventually,
the starting point of an inner iteration is always obtained from the linear system at
Step 3.

• Second, eventually either this starting point of Step 3 or the first inner iterate ob-
tained from it at Step 1.4 (which is ultimately a full Newton iterate with a step size of
unity) satisfy the inner stopping criteria. Therefore, the iterates inherit the superlinear
behavior of µ eventually but in a two-step fashion.

For the analysis, we will assume that µmin = 0. The first global convergence result is
stated under the following assumptions.

A1 All iterates x generated by the algorithm stay in a bounded domain Ω.
A2 The sequence {µ(k)} goes to zero as k goes to infinity.
A3 At every limit point x∗ of the sequence {x∗(k)}, and the corresponding limit point

λ∗ of the sequence {λ∗(k)} (it is proved below in Theorem 1 that whenever {x∗(k)} has a
limit point, the sequence {λ∗(k)} has a limit point), strict complementarity holds. That is,
for ci(x∗) = 0 one has |λ∗

i | < 1.
Assumption A3 implies that ∇cA(x∗) is of full rank and that |A(x∗)| ≤ n following

Proposition 2.22 of Madsen (1985).
The set of indices A used in cA refers to the active set at x∗ , unless otherwise stated.

That is, A = {i|ci(x∗) = 0}.

Theorem 1 Let x∗ be a limit point of the sequence {x∗(k)}.

(a) Under A1, A2 and A3, x∗ is a KKT point. The sequence {λ∗(k)} converges to a vector
of Lagrange multipliers.

(b) For all indices k corresponding to the subsequence of {x∗(k)} convergent to x∗ the fol-
lowing error estimates hold when µ(k) → 0+ :

λ∗(k) = λ∗ + o(1), (19)

cA(x∗(k)) = µ(k)λ∗ + o(µ(k)). (20)

Proof: First, we define for the purposes of the proof the quantity

g(x) =
∑

i∈Ac(x,µ)

sgn(ci(x))∇ci(x).
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Now, consider only those indices k for which a particular subsequence {x∗(k)} converges to
x∗ . As ∇cA(x∗) is of full rank, we may define

λ∗ = −∇cA(x∗)+�g(x∗).

Furthermore, for k sufficiently large, ∇cA(x∗(k))+ exists, is bounded, and converges to
∇cA(x∗)+ . From (9) and (10), we have that

‖ g(x∗(k)) + ∇cA(x∗(k))�λ∗(k) ‖2 = ‖ g(x∗(k), λ∗(k)) ‖2 (21)
≤ γµ(k).

Thus, we deduce that

‖ ∇cA(x∗(k))+�g(x∗(k)) + λ∗(k) ‖2= (22)
‖ ∇cA(x∗(k))+�(g(x∗(k)) + ∇cA(x∗(k))�λ∗(k)) ‖2

≤ γµ(k) ‖ ∇cA(x∗(k))+� ‖2 .

Combine the identity

λ∗(k) − λ∗ = (∇cA(x∗(k))+�g(x∗(k)) + λ∗(k)) + (∇cA(x∗)+�g(x∗) −∇cA(x∗(k))+�g(x∗(k)))

with (22) to obtain the bound

‖ λ∗(k) − λ∗ ‖2= γµ(k) ‖ ∇cA(x∗(k))+� ‖2 + ‖ ∇cA(x∗)+�g(x∗) −∇cA(x∗(k))+�g(x∗(k)) ‖2 .
(23)

Thus, as the right-hand side of (23) can be made arbitrarily close to zero by picking k large
enough, λ∗(k) is bounded for k sufficiently large and converges to λ∗ . Furthermore, since
‖λ∗(k)‖∞ ≤ 1 we have that ‖λ∗‖∞ ≤ 1. Then, taking the limit of (21) as k approaches
infinity, we deduce that

g(x∗) + ∇c�A(x∗)λ∗ = 0. (24)

Furthermore, multiplying (23) by µ(k) , we obtain the additional bound

‖ cA(x∗(k)) − µ(k)λ∗) ‖2 ≤ γµ(k)2 ‖ ∇cA(x∗(k))+� ‖2 + (25)
µ(k) ‖ ∇cA(x∗)+�g(x∗) −∇cA(x∗(k))+�g(x∗(k)) ‖2 .

Taking the limit of (25) as k approaches infinity, we have that

cA(x∗) = 0. (26)

Hence, (24) and (26) imply that x∗ is a Kuhn-Tucker point, and the (sub)sequence {λ∗(k)}
converges to the relevant vector of Lagrange multipliers. The asymptotic estimates (19) and
(20) may be deduced from (23) and (25), respectively.
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Notice that under assumption A3, the algorithm identifies the optimal active set in a finite
number of iterations. Under assumption A1, one can show that the inner iteration is finitely
convergent under the condition that µmin > 0 using the standard analysis of Dennis and
Schnabel (1983).

One needs two further assumptions before stating a sharper convergence result identical,
after the necessary changes, to Theorem 4.2 of Gould (1989).

A4 At every limit point x∗ of the sequence {x∗(k)} the matrix K(x∗, λ∗, 0) has exactly
|A| negative eigenvalues, the remaining eigenvalues are positive.

The assumption above along with A3 can be shown to be a second-order sufficiency
condition for x∗ to be a local minimum; see Gould (1985).

A5 All functions ci possess third derivatives, and assume bounded values within Ω.

Theorem 2 Under A1, A2, A3, A4, and A5 the results of Theorem 1 are valid. Furthermore,
for all convergent subsequences of the sequence {x∗(k)} one has the following error estimates
when µ(k) → 0+ :

x∗(k) = x∗ + O(µ(k)), (27)

λ∗(k) = λ∗ + O(µ(k)), (28)

cA(x∗(k)) = µ(k)λ∗ + O(µ(k)2). (29)

Now, we begin with the local convergence results.
A6 The sequence {µ(k)} is adjusted so as to have µ(k+1) ≤ σ(k)µ(k) with limk→∞ σ(k) =

σ < 1.
The assumption A6 ensures that the sequence {µ(k)} is at least linearly convergent. The

following is the most important intermediate result. For the purposes of this theorem, we say
that ak = Os(bk) for two sequences ak and bk converging to zero if c2|bk| ≤ |ak| ≤ c1|bk| for
all k ≥ k0 and some constants c1 and c2 . Although this theorem corresponds to Theorem
5.1 of Gould (1989), it requires a slight addition in our case. We therefore give the proof in
its entirety for the sake of completeness.

Theorem 3 Under A1, A2, A3, A4, A5, and A6 for all indices k corresponding to a con-
vergent subsequence the following estimates hold:

ḡ(x∗(k), λ̄(x∗(k), µ(k+1))) = Os(µ(k)/µ(k+1)), (30)

ḡ(x∗(k)
a , λ̄(x∗(k)

a , µ(k+1))) = O(µ(k)2/µ(k+1)). (31)

Proof: To verify (30), first we have that the estimate (20) yields

λ(x∗(k), µ(k+1)) − λ∗(k) = cA(x∗(k))(1/µ(k+1) − 1/µ(k)) = (µ(k)/µ(k+1) − 1)λ∗ + o(µ(k)/µ(k+1))
(32)

as k tends to infinity. From (A6), we have that

1/2(1 − σ)µ(k)/µ(k+1) ≤ |µ(k)/µ(k+1) − 1| ≤ µ(k)/µ(k+1) (33)

for all large k . Therefore, combining (32) and (33), we have

(1/2(1 − σ)(1 − ε1) ‖ λ∗ ‖2)µ(k)/µ(k+1) ≤ ‖ λ(x∗(k), µ(k+1)) − λ∗(k) ‖2 (34)
≤ ((1 + ε1) ‖ λ∗ ‖2)µ(k)/µ(k+1)
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for all k sufficiently large, where the terms (1 − ε1) and (1 + ε1) (0 < ε1 � 1) account for
the asymptotically smaller terms in (34). Now, from (21) we obtain

g(x∗(k), λ(x∗(k), µ(k+1))) = g(x∗(k), λ∗(k)) + ∇c�A(x∗(k))(λ(x∗(k), µ(k+1)) − λ∗(k)) (35)
= ∇c�A(x∗(k))(λ(x∗(k), µ(k+1)) − λ∗(k)) + O(µ(k))
= ∇c�A(x∗(k))(λ(x∗(k), µ(k+1)) − λ∗(k)) + o(µ(k)/µ(k+1)).

Then, (34), (35), and the continuity of ∇cA(x) give the bound

‖ g(x∗(k), λ(x∗(k), µ(k+1))) ‖2≤ (2(1 + ε1)(1 + ε2) ‖ ∇c�A(x∗) ‖2‖ λ∗ ‖2)µ(k)/µ(k+1) (36)

for all k sufficiently large, where the term (1+ ε2) (0 < ε2 � 1) accounts for the asymptoti-
cally smaller terms in (35) and the constant two occurs because of the bound ‖ ∇c�A(x∗(k)) ‖2≤
2 ‖ ∇c�A(x∗) ‖2 . Premultiplying (35) by ∇cA(x∗(k))+� gives

λ(x∗(k), µ(k+1)) − λ∗(k) = ∇cA(x∗(k))+�g(x∗(k), λ(x∗(k), µ(k+1))) + o(µ(k)/µ(k+1)); (37)

Using the continuity of ∇cA(x)+� in some neighborhood of x∗ this leads to

‖ λ(x∗(k), µ(k+1)) − λ∗(k) ‖2≤ 2(1 + ε2) ‖ ∇cA(x∗)+� ‖2‖ g(x∗(k), λ(x∗(k), µ(k+1))) ‖2 (38)

for all k sufficiently large, where the term (1+ε2) once again accounts for the asymptotically
smaller term in (37). Inequalities (34) and (38) combine to give the bound

(1/4(1−σ)(1−ε1) ‖ λ∗ ‖2 /(1+ε2) ‖ ∇cA(x∗)+� ‖2)µ(k)/µ(k+1) ≤‖ g(x∗(k), λ(x∗(k), µ(k+1))) ‖2

(39)
for large k . The bounds (36) and (39) then imply (30).

For the estimate (31), observe that the coefficient matrix K(x∗(k), λ∗(k), µ∗(k)) of (15)
satisfies the second-order condition (and hence is nonsingular) for large enough k from as-
sumption (A4) and Theorem 2. Hence x

∗(k)
a is defined by (16). The active set at a limit

point of x∗ of {x∗(k)} is correctly identified for sufficiently large k at x
∗(k)
a . To see this, note

first that the right-hand side of (15) is O(µ(k)). This observation along with (15), (17) and
(27) imply that

x∗(k)
a = x∗ + O(µ(k)).

Then the active set identification property follows using A3.
Now define

λ∗(k)
a = λ∗(k) + r(k), (40)

where r(k) is given by (15). Then, by Taylor’s expansion and (15) one has[
g(x∗(k)

a , λ
∗(k)
a )

cA(x∗(k)
a ) − µ(k+1)λ

∗(k)
a

]
=

[
G(x∗(k), λ∗(k)) ∇c�A(x∗(k))
∇cA(x∗(k)) −µ(k+1)I

] [
p(k)

r(k)

]
(41)

=
[

g(x∗(k), λ∗(k))
c(x∗(k)) − µ(k+1)λ∗(k)

]

+ O(‖ p(k) ‖2
2) + O(‖ r(k) ‖2

2) (42)

=
[

0
(µ(k) − µ(k+1))r(k)

]
+ O(‖ p(k) ‖2

2) + O(‖ r(k) ‖2
2)

= O(‖ p(k) ‖2
2) + O(‖ r(k) ‖2

2) + O(µ(k) ‖ r(k) ‖2).
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Moreover, equations (9), (19), and (20) ensure that the right-hand side of (15) is O(µ(k)).
Thus ‖ p(k) ‖2= O(µ(k)) =‖ r(k) ‖2 and (41) gives

g(x∗(k)
a , λ∗(k)

a ) = O(µ(k)2), (43)

and
cA(x∗(k)) − µ(k+1)λ∗(k)

a = O(µ(k)2). (44)

But then, (44) and the definition of λ(x∗(k)
a , µ(k+1)) give

µ(k+1)(λ(x∗(k)
a , µ(k+1)) − λ∗(k)

a ) = cA(x∗(k)
a ) − µ(k+1)λ∗(k)

a = O(µ(k)2),

and hence
λ(x∗(k)

a , µ(k+1)) − λ∗(k)
a = O(µ(k)2/µ(k+1)). (45)

Now, equations (43) and (45) combine to give

g(x∗(k)
a , λ(x∗(k)

a , µ(k+1))) = g(x∗(k)
a , λ∗(k)

a ) + ∇c�A(x∗(k)
a )(λ(x∗(k)

a , µ(k+1)) − λ∗(k)
a )

= O(µ(k)2/µ(k+1)),

which establishes (31).

Notice that under A6 the gradient at x∗(k) is asymptotically larger than the gradient
at the alternative starting point x

∗(k)
a . This indicates that the alternative starting point

x
∗(k)
a should be asymptotically preferable to x∗(k) . On the other hand, Theorem 3 gives a

clue as to the choice of the sequence {µ(k)}. The value µ(k+1) should be smaller than µ(k) ,
but larger than µ(k)2 . This choice ensures that the sequence {µ(k)} approaches zero in a
Q-superlinearly convergent manner. This leads to the final assumption.

A7 As k goes to infinity the sequence {µ(k)} is adjusted as µ(k)2/µ(k+1) = o(1).
Notice here that under assumption A7 the gradient at x∗(k) in the estimate (30) can get

arbitrarily large whereas the gradient at x
∗(k)
a vanishes to zero. The next step is to show

that the sequence {x∗(k)} follows the Q-superlinearly convergent sequence {µ(k)}. In order
to show this one needs to show (1) that asymptotically, the point x

∗(k)
a is always chosen as

the starting point of the inner iterations, and (2) that this point or the first Newton iterate
obtained from this point satisfies the inner iteration stopping criterion (9). For convenience
we use K to denote the set of indices corresponding to indices k associated with convergent
subsequences.

Theorem 4 Under A1–A7, for all k ∈ K the k + 1st inner iteration begins from the alter-
native starting point x

∗(k)
a as defined in (15).

The proof of this theorem follows directly from (17) which governs the use of x
∗(k)
a ,

assumption A6 and the estimate (31) of the previous theorem.
Now, one can give the next theorem the proof of which is identical to that of Theorem 5.8

of Gould (1989). This result is a consequence of two technical intermediate results, namely
Lemmata 5.5 and 5.8 of Gould (1989).
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Theorem 5 Under A1–A7, for all sufficiently large k ∈ K the following hold:

(a) The Newton direction p∗(k+1,0) obtained from (12) always satisfies (11).

(b) The step length α(k+1,0) used with the Newton direction is equal to one.

Now, using the above theorem and the aforementioned second-order sufficiency property
(c.f. assumption A4) of the matrix K(x(k+1,0), λ̄(k+1,0), µ(k+1)) the following corollary is
obtained.

Corollary 1 Under A1–A7, for all sufficiently large k ∈ K the following holds:

x(k+1,1) = x(k+1,0) + p(k+1,0),

where p(k+1,0) is the Newton direction obtained from (12).

The next step is to show that at the point x(k+1,1) of the previous corollary the gradient
can be bounded. It is easy to show using Taylor series expansion that ḡ(x(k+1,1), λ̄(k+1,1)) =
O(µ(k)4/µ(k+1)) for all sufficiently large k ∈ K . This leads to the following theorem and its
corollary.

Theorem 6 Under A1–A7, for all sufficiently large k ∈ K , for � ≤ 1 (9) holds.

Corollary 2 Under A1–A7, assume that the entire sequence {x∗(k)} converges. Then,
(a) if {µ(k)} converges Q-linearly the {x∗(k)} converges R-linearly,
(b) if {µ(k)} converges Q-superlinearly {x∗(k)} converges R-superlinearly.

4 Numerical Results

In this section we summarize our computational experience with a preliminary version of the
algorithm of the previous section. We believe more research effort will be necessary in future
to reach a definite conclusion about the performance of the algorithm.

A version of the algorithm for dense matrix algebra was coded in C, and tested on 25 test
problems with up to 15 variables and 100 equations. For the numerical linear algebraic tasks
the algorithm uses a version of the symmetric indefinite matrix factorization techniques of
Bunch and Parlett (1971). Using this factorization, the calculations can be arranged in such
a way that computation of the eigenvalues of the matrix K are not necessary. For details,
the reader is referred to Conn and Gould (1984). As in Gould (1989) we used τ = 0.1, and
γ = 1 although other choices should also be investigated in future work.

The results of our experiments with the algorithm of this paper, and two competing
algorithms, the Hald and Madsen (1985) two-stage nonlinear �1 algorithm, and the general
purpose Nelder-Mead (1965) simplex algorithm are summarized below. The Hald-Madsen
code is recognized to be the most efficient nonlinear �1 code to date.

We report results with two different degrees of accuracy, 10−8 and 10−6 , in Table 1. We
use the following legend in the table:

PH(6): Pinar and Hartmann (2003) Algorithm with µmin = 10−6
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PH(8): Pinar and Hartmann (2003) Algorithm with µmin = 10−8

HM: Hald and Madsen (1985) Algorithm

NM: Nelder and Mead (1965) Algorithm

F: number of function evaluations

Jac: number of Jacobian evaluations

With the exception of five test problems, the algorithm displays the behavior predicted
by the theoretical analysis outlined above. In problems Tishler-Zang (40 × 5) , Hald and
Madsen 1 LC, and Biggs I, the algorithm ran into numerical difficulties. In the problems
Powell Badly Scaled Function and Osborne I Function, only a single value of µ was used
with a large number of Newton iterations.

In the remaining twenty problems, superlinear µ sequences were used successfully. On
the other hand, it is observed that the Hald-Madsen algorithm is the fastest in a larger
number of test problems while our algorithm is fastest in some test cases. The reason for the
larger number of function and Jacobian evaluations in our case is that in some test cases the
algorithm takes many Newton steps for the initial value of µ . This indicates that the choice
of initial µ along with a suitable starting point deserves further research. Another point
that deserves further research is the choice of the search direction when the Newton system
of Step 1.2 does not have any solution, or when it does have multiple solutions. The use of
doncs results in poor directions of descent in the algorithm. In fact, we observed that the
algorithm was competitive with the Hald-Madsen algorithm whenever doncs were not used.
A stable and efficient alternative to doncs has to be carefully researched in the future. A
trust region type algorithm may be investigated as an alternative here.
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Table 1:Computational Results

Problem PH(6) PH(8) HM NM
Description m n F Jac F Jac F Jac F
Tishler and Zang: 1982 40 6 146 40 180 44 10 10 716
Tishler and Zang: 1982 40 3 192 115 236 119 22 22 701
Tishler and Zang: 1982 40 5 - - - - 27 27 1202
El-Attar (1979) (G & M; 1989, p. 49) 3 2 72 26 91 28 11 11 153
Madsen (1975) (G & M; 1989, p. 51) 3 2 37 25 57 33 49 49 78
Hald and Madsen (1985): 0 LC 3 2 35 21 32 24 12 12 106
Hald and Madsen (1985): 1 LC 3 2 - - - - 11 11 77
Jennrich and Sampson (1968) 10 2 122 61 133 63 33 33 125
Rosenbrock Function 2 2 57 46 61 47 31 31 428
Freudenstein and Roth Function 2 2 18 17 19 18 28 28 58
Powell (1970) Badly Scaled Function 2 2 230 103 238 103 126 126 878
Brown Badly Scaled Function 3 2 30 23 31 24 63 63 303
Beale (1958) Function 3 2 25 21 32 24 12 12 106
Helical Valley 3 3 45 36 49 38 14 14 305
Bard (1970) Function 15 3 52 33 147 51 10 10 165
Gauss Function 15 3 67 33 227 127 11 11 176
Gulf Research and Development 100 3 63 37 63 37 21 21 293
Box (1966) Threedimensional Function 10 3 124 75 137 75 20 20 437
Powell (1962) Singular Function 4 4 31 23 53 28 90 90 405
Wood (Cox, 1969) Function 6 4 77 61 78 62 12 12 368
Kowalik & Osborne (1968) Function 11 4 108 57 186 71 10 10 279
Brown & Dennis (1971) Function 20 4 16 16 17 17 41 41 302
Osborne I (1972) Function 33 5 414 209 542 235 10 10 1218
Biggs (1971) Function 13 6 - - - - 150 150 789
Osborne II (1972) Function 65 11 146 72 244 88 16 16 1508
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