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Abstract

We propose a fully sequential indifference-zone selection procedure that is specifically for
use within an optimization-via-simulation algorithm when simulation is costly, and partial or
complete information on solutions previously visited is maintained. Sequential Selection with
Memory guarantees to select the best or near-best alternative with a user-specified probabil-
ity when some solutions have already been sampled, their previous samples are retained, and
simulation outputs are i.i.d. normal. For the case when only summary information on solutions
is retained, we derive a modified procedure. We illustrate how our procedures can be applied
to optimization-via-simulation problems and compare its performance with other methods by
numerical examples.

Keywords: Simulation, Multivariate Statistics, Ranking and Selection and Optimization via
Simulation.

1 Introduction

Discrete-event, stochastic simulation is a widely used tool to analyze dynamic systems that are

subject to uncertainty. In practical problems, the analyst is often interested in finding a system

configuration (i.e., a solution) that optimizes the expected value of some measure or measures of
∗The corresponding author
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system performance. In this paper, we only consider problems with a single performance measure.

Determining these solutions is known as optimization via simulation (see [3, 9, 22] for surveys).

This problem is difficult because there is no closed-form expression for the performance measure;

instead expected performance is estimated via simulation experiments, and is therefore subject

to sampling error. Unfortunately, obtaining precise estimates of the objective function at many

solutions can take so long that time may run out before reaching the optimal, or even a good,

solution if the trade off between searching for improved solutions and controlling the selection error

is managed poorly.

Several general-purpose optimization algorithms that were originally designed for deterministic

problems, including tabu search [10], simulated annealing [23] and the nested partitions method

[20], have been adapted to stochastic problems [1, 7, 21]. Provably convergent algorithms for

stochastic simulation have also been derived [2, 19]. These algorithms are based on a neighborhood

search and selection of the best neighbor from a finite number of alternatives: On each iteration,

the algorithm may move from a current best solution to a better solution that is chosen from among

the neighbors of the current solution. In the deterministic setting, selection of the “best” neighbor

is accomplished by a straightforward evaluation of the objective function. In the optimization-

via-simulation context, however, uncertainty dramatically complicates this selection of the best

neighbor. Because of randomness, multiple replications (or lengthy runs) may be required to

obtain a useful estimate of the objective function. Ideally, we want to obtain enough observations

of the objective function to be confident in our choice of the best neighbor. However, if too much

computational effort is spent in the selection of the best neighbor, then the search may not be

able to make much progress in the time available. Thus, the efficiency of the selection—in terms of

balancing the tradeoff between making a correct selection and the computational effort required—is

critical to the overall performance of an optimization algorithm applied to stochastic simulation.

The goal of our work is to provide an efficient selection-of-the-best scheme to be used during the

neighborhood search.

We have designed a new indifference-zone selection procedure specifically to supplement optimization-

via-simulation algorithms. Sequential Selection with Memory (SSM) guarantees to select the best or

near-best alternative with a user-specified probability when some or all of the solutions have previ-

ously been visited, and individual observations taken on those solutions are maintained. When this

data storage is prohibitive, we propose an alternative procedure in which only summary statistics

of the simulation output are required. SSM is intended to aid optimization algorithms in making

a correct selection of the best neighbor, not to provide any global correct-selection guarantee.

SSM is a highly efficient method for selecting the best because it is fully sequential with elim-

ination, which means that it takes one observation at a time from every solution that is still in

play and eliminates clearly inferior solutions as soon as their inferiority is apparent. A number of
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studies have established the superiority of such procedures over well-known two-stage ranking-and-

selection procedures [5, 14]. The additional feature of SSM is that it utilizes “memory” of solutions

that have been previously sampled to alleviate the need to obtain new simulation outputs every

time it encounters a solution. This approach not only has obvious computational benefits, it also

facilitates establishing convergence properties of optimization algorithms [4].

Neighborhood selection of the best can be considered a comparison with a standard, where

the solutions on which we retain data are the standards. Nelson and Goldsman [16] address such

comparisons when there is a single standard. However, there is no procedure for the case when we

maintain “memory” of more than one solution. Most statistical selection procedures assume that

none of the alternatives, or at most one (a standard), have already been sampled, and that they

have all been sampled equally.

Our procedure is the most recent in a line of fully sequential procedures with elimination.

Paulson [17] proposed fully sequential procedures for the selection-of-the-best problem when all

solutions have equal variances. Under normality and independence within and across solutions,

Paulson’s procedures are applicable for both known and unknown variance cases. Hartmann [11, 12]

improved Paulson’s results by using tighter probability bounds; Boole’s inequality, which Paulson

used, is replaced by a geometric inequality, and a large-deviation bound is replaced by a Brownian-

motion bound. The most recent work by Kim and Nelson [14] further extends Hartmann [11, 12] to

the problem of unequal and unknown variances, with special emphasis on use within the simulation

context. The key difference between their work and ours is that, in their case, no solutions have been

previously sampled. Although our extension sounds straightforward, it is quite difficult to prove

that it is valid (see the Appendix). Further, our procedure not only tolerates previous samples,

it exploits them so that selections are made more and more efficiently as the optimization search

progresses.

The paper is organized as follows: We define the selection-of-the-best problem in Section 2. In

Section 3 we present SSM and prove its properties; we also introduce an alternative version of SSM

that is designed for the case where only summary statistics are maintained. We illustrate how our

procedures can be applied in the optimization-via-simulation context with numerical examples in

Section 4, followed by conclusions in Section 5.

2 Framework

In an iteration of an optimization-via-simulation algorithm, suppose that there are k solutions

under consideration, denoted by {x1,x2, . . . ,xk}. We think of xi as being a vector of decision

variables, say xi = (xi1, xi2, . . . , xid), that define the ith solution. The goal is to select the “best”

from among this finite number of solutions on the current iteration; on the next iteration there will

be another collection of k solutions, which may include some of the ones from this iteration and
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some new ones.

We assume that the simulation output data from solution xi, Yip, are i.i.d. normally distributed

with finite mean µi and variance σ2
i , where µi and σ2

i are unknown and typically unequal for

different solutions. The normality assumption will be reasonable when the simulation output Yip

is actually the average of a large number of more basic outputs, as is frequently the case. For

instance, Yip could be the average delay in queue of all customers on the pth day of service, or the

average inventory costs over 12 months of operation in a supply chain system. Independence will

pertain when Yip, p = 1, 2, . . . correspond to results from different replications.

Independence across systems implies that common random numbers (CRN) is not exploited;

however, this issue may be irrelevant in the context of optimization via simulation because using

CRN may not be practical. Suppose our optimization-via-simulation algorithm retains the current

sample best solution at all times. On a given iteration t of the algorithm, the best solution that it

has seen so far, say xBt , is compared with another candidate solution, xAt . Suppose further that

s simulation outputs have already obtained from xBt , but xAt is visited for the first time. To fully

exploit CRN enough information must be retained to synchronize runs the runs of xAt with all

previous runs of xBt . Depending on the simulation language, the overhead in ensuring this could

be substantial.

Without loss of generality, we assume that the true means of the solutions are (unknown to us)

indexed such that µ1 ≤ µ2 ≤ · · · ≤ µk. The best solution is defined as the one with the largest mean,

which is therefore µk. Our procedure guarantees to select xk with a user-specified probability of at

least 1−α whenever the difference between the best and the next-best solution is worth detecting:

Pr{select xk} ≥ 1− α whenever µk − µk−1 ≥ δ. (1)

The user chooses the indifference-zone parameter δ > 0 to be the smallest important difference

between solutions; for instance, if the user is indifferent between two inventory policies whose

expected costs are less than $200 apart, then the indifference-zone parameter is set to $200. Even

when the indifference-zone condition is not satisfied (i.e., µk−µk−1 < δ), our procedure still selects

a “good” solution whose mean is within δ of µk with probability at least 1− α.

In the context of optimization via simulation, x1,x2, . . . ,xk represent settings of the decision

variables to be compared in a neighborhood selection of the best. Each time SSM is invoked, there

may already be observations available on some of the solutions that were obtained on previous visits

of the search algorithm. For instance, if our optimization algorithm always retains the sample best

solution for comparison with new candidate solutions, then the sample best solution must already

have been simulated.
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Figure 1: The continuation region for SSM.

3 Procedure SSM

In SSM, we sequentially take at most one observation at a time from surviving solutions, imme-

diately followed by screening. Screening eliminates the solutions whose cumulative sums fall short

of the best of the rest minus some positive tolerance level. As more observations are taken, this

tolerance level decreases. The continuation region (see Figure 1) illustrates the elimination step

(Step 3 below shows how the slope λ and the intercept aij are chosen). Suppose we have only two

solutions in contention, xi and xj . Our procedure continues as long as the sum of the difference

between solution i and solution j,
∑r

p=1(Yip − Yjp), stays within the triangular region. The sum

can leave this region in three ways: First, if the sum drifts below the lower boundary, we eliminate

xi (recall that bigger is better). Second, if the sum goes above the upper boundary, we eliminate

xj . Lastly, if the sum exits the continuation region to the right of the triangular area, we select

the solution with the maximum average as the better one. The procedure is finite; at most, SSM

takes one step beyond the end of the continuation region. When there are more than 2 solutions in

contention, we do pairwise comparisons of all surviving solutions. If all solutions enter SSM with

the same number of observations, then our procedure becomes Kim and Nelson [14].

Procedure SSM

1. Initialization: SSM is given k solutions from which to choose the best. Let ni0 be the

number of observations already obtained on solution i before SSM starts, and let n0 ≥ 2 be

the minimum number of observations that we require on any solution before starting SSM.

For any solution i with initial number of observations ni0 < n0, we obtain n0 − ni0 more
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observations before SSM begins.

Choose confidence level 1/k < 1− α < 1 and indifference-zone parameter δ > 0.

2. Variance estimation: Let n0 = min1≤i≤k ni0 and nij = min{ni0, nj0} for all i 6= j. Estimate

σ2
ij = Var(Yip − Yjp) with

S2
ij =

1
nij − 1

nij∑

p=1

(
Yip − Yjp − [Ȳinij

− Ȳjnij
]
)2

(2)

for all i 6= j, where Ȳin = (1/n)
∑n

p=1 Yip. The corresponding degrees of freedom are

fij = nij − 1. (3)

3. Computing procedure parameters: Let c be a positive integer. We choose λ and aij as follows:

λ =
δ

2c
and aij =

ηfijS
2
ij

4(δ − λ)
(4)

where η satisfies

c∑

`=1

(−1)`+1

(
1− 1

2
I(` = c)

)(
1 +

(2c− `)`η
2c− 1

)−fij/2

=
α

k − 1
. (5)

The indicator function I(ε) is one when ε is true and zero otherwise. Equation (5) has a closed-

form solution for c = 1, which is the value of c that we recommend: η = ((k − 1)/(2α))2/fij−1.

4. Define continuation region: Let Nij = baij/λc , Ni = maxj 6=i{Nij}, and N = max1≤i≤k Ni. If

n0 > N , then stop and select the solution with the largest Ȳini0 as the best. Otherwise, let

I = {1, 2, . . . , k} be the set of surviving solutions, set step counter r = n0, and set nir = ni0

for 1 ≤ r ≤ n0. Proceed to Screening.

5. Screening: Set Iold = I and update I as

I =
{
i : i ∈ Iold and rȲinir ≥ max

j∈Iold,j 6=i

(
rȲjnjr − aij

)
+ rλ

}
.

Notice that Ȳinir is simply a sample average over all available observations, and the set I

records the indices of solutions still in contention.

6. Stopping rule: If |I| = 1, then stop and report the only survivor as the best; otherwise

continue as follows:

(a) For each i ∈ I such that nir < r + 1, take one additional observation from solution xi

and set ni,r+1 = nir + 1.

(b) For i ∈ I such that nir ≥ r + 1, set ni,r+1 = nir.
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(c) Set r = r + 1. If r = N + 1, terminate the procedure and select the solution in I with

the largest sample average as the best; otherwise, go to Screening.

We now show that our procedure satisfies the probability guarantee in (1), and it selects a

solution whose mean is within δ of the best when µk − µk−1 < δ. See the Appendix for all of the

proofs.

Theorem 1 Suppose that Yip, p = 1, 2, . . ., are i.i.d. normally distributed, and that Yip and Yjq are

independent for i 6= j. Then SSM guarantees that condition (1) holds.

In Corollary 1 below, we extend Theorem 1 to show that SSM also provides a guaranteed good

selection when the indifference-zone condition is not satisfied.

Corollary 1 Suppose µk − µk−1 < δ. Then SSM selects a solution whose mean is within δ of µk

with probability at least 1− α.

Theorem 1 and Corollary 1 also imply that if a user chooses to terminate SSM with more than

one solution on hand, the best or a near-best solution will be in the set of surviving solutions with

probability at least 1 − α. This is because SSM is designed to select the best (or a near-best)

solution with some user-specified probability, which requires that the best (or a near-best) is one of

the surviving solutions whenever SSM is terminated. This feature is useful when an optimization

algorithm only needs to identify a group of good solutions during the neighborhood search.

Consider what happens when the optimization algorithm has visited solution i (perhaps it is the

current sample best solution) and then encounters a solution j that it has not visited previously. In

order for SSM to compute the sample variance of the difference, S2
ij , based on pairwise differences,

we need to have retained all of solution i’s individual observations, not just a summary statistic.

This could require substantial data storage when the number of feasible solutions is large. Therefore,

we next offer an alternative procedure that avoids saving the raw data by estimating σ2
ij from the

marginal variance estimators for each solution, denoted S2
i and S2

j . Instead of (Yi1, Yi2, . . . , Yini0),

we are only required to maintain the summary statistics (ni0,
∑ni0

p=1 Yip,
∑ni0

p=1 Y 2
ip). Notice that the

alternative procedure allows us to estimate σ2
ij using all available observations, not just min(ni0, nj0)

paired observations from each solution, xi and xj (see (2)). Therefore, the new variance estimator

may be more precise than (2).

The alternative procedure differs from the one presented above only through aij . Procedure

SSM is modified at the first step Variance estimation: the variance of Yip − Yjp is now estimated

from the marginal variance estimators for each solution as

S2
i (ni0) =

1
ni0 − 1




ni0∑

p=1

Y 2
ip − ni0Ȳ

2
ini0




S2
ij = S2

i (ni0) + S2
j (nj0). (6)
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The resulting degrees of freedom is fij as shown in (3). We substitute S2
ij and fij into (4) to

yield aij .

Theorem 2 Under the same conditions as in Theorem 1, SSM using the variance estimator (6)

guarantees to select µk or a solution whose mean is within δ of µk with probability at least 1− α.

Equation (3) may underestimate the true degrees of freedom of S2
ij in (6), resulting in the bound

on the probability of incorrect selection being too conservative. This causes SSM to obtain more

data than are really necessary to provide the correct-selection guarantee. One alternative is to use

the approximate degrees of freedom given by

fi = ni0 − 1

νij =



(
S2

i (ni0) + S2
j (nj0)

)2 − 2
(

S4
i (ni0)
fi+2 +

S4
j (nj0)

fj+2

)

S4
i (ni0)
fi+2 +

S4
j (nj0)

fj+2

 , (7)

(see Welch [24]). The shortcoming of using (7) to approximate the degrees of freedom of (6) is that

we can no longer guarantee the probability of correct selection as in Theorem 2.

4 Illustrative Examples

In this section we show how SSM can be applied to select the best alternative in a neighborhood via

numerical examples, and we also compare the performance of SSM against other selection-of-the-

best schemes. For simplicity, we use a random search (RS) algorithm as our optimization strategy

(see [19] where SSM is embedded in other more sophisticated global search schemes). We use RS

because it allows us to easily examine the impact of (or lack of impact of) SSM. We do not intend

to suggest that pure RS is the best, or even a good, choice for practical optimization-via-simulation

problems (although some forms of adaptive RS can be quite effective).

We consider the following optimization problem:

max
x∈Θ

µ(x),

where µ(x) is a scalar, x is a vector or a scalar decision variable, and the feasible space Θ is

finite. The finiteness of Θ allows us (conceptually) to index the solutions x and the corresponding

performance measures as follows: Θ = {x1,x2, . . . ,xv}, where v denotes the number of feasible

solutions in Θ. Let µi ≡ µ(xi), which is unknown (in practice) but can be estimated via a simulation

experiment.

After the tth iteration of the RS algorithm, let Bt ∈ {1, 2, . . . , v} denote the index of the sample

best solution on hand, and let St be the set of indices of solutions that were under consideration

on iteration t. In our experiments we consider the simplest possible neighborhood around xBt ,

Θ \ {Bt}. RS proceeds as follows:
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1. Initialization: Set t = 0, Bt to the index of a user-provided solution (if not given, randomly

sample a solution from Θ), and St = {Bt}.

2. Search: Repeat Steps 2a–2c until the simulation effort is exhausted:

(a) Randomly sample ω candidate solutions over Θ\{Bt}. Add the indices of these sampled

solutions into a set St.

(b) Use a selection-of-the-best method (from the list below) to choose the best solution from

St.

(c) Increment t: t = t + 1. Let Bt be the index of the solution selected in Step 2b, and set

St = {Bt}.

3. Estimating the optimal solution: Upon termination return xBt .

Note that RS always keeps the best solution that it has seen so far, xBt , on hand. We consider

the following four selection-of-the-best schemes:

1. SSM: Before we run SSM, as described in Section 3, we take ∆n observations from each

xi, i ∈ St. This prevents the search loop (Step 2 above) from running indefinitely in cases

where the number of solutions in Θ is small, and RS is able to visit every solution in Θ.

In such scenarios, after RS has seen all solutions in Θ, SSM does not need to take any new

observations to select the best because it re-uses past observations. From that point onward,

unless we take some observations from each xi, i ∈ St, Step 2 is an infinite loop. Aside from

this practical reason, the addition of new observations also makes the estimates of µi more

precise, and it helps in establishing the global convergence of RS (see [4]).

2. Nelson and Goldsman’s [16] comparison with a standard method (NG): We consider NG be-

cause xBt can be viewed as a standard and we want to determine whether any of the ω sampled

solutions beats it. NG is a two-stage indifference-zone ranking-and-selection procedure. Simi-

lar to SSM, NG exploits the concept of an indifference zone and using the first-stage sampling

to assess the variability of the simulation output. However, SSM is sequential (i.e., having

multiple stages), whereas NG has only two stages. NG decides either that no alternative is

better than the standard or that one or more of them is better.

3. Naive approach (NA): NA is an intuitive scheme that one may employ instead of a statistical

procedure. In the naive approach, we take n observations from each xi, i ∈ St, and select

the one with the best sample average (the one with largest average if the objective is to

maximize).
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4. Sequential t-test (TT): TT is motivated by Costa and Silver’s [7] neighborhood selection

method which was developed in the context of applying tabu search in the presence of ran-

domness. For each xi, i ∈ St, we take n observations, and then xi, i 6= Bt, competes with

xBt on a 1-1 basis using a two-sided null hypothesis and a t-test: Let Zp = YBtp − Yip,

Z̄(n) = (1/n)
∑n

p=1 Zp, and

V̂ar[Z̄(n)] =
1

n− 1




n∑

p=1

Z2
p − nZ̄(n)2


 .

If the upper bound of the 100(1− α) percent confidence interval

Z̄(n)± tn−1,1−α/2

√
V̂ar[Z̄(n)]

is negative (assuming a maximization context), then TT declares xi as better than the current

best solution xBt , and Bt is replaced by i. This comparison continues until every solution

xi, i ∈ St, is examined.

Among the selection-of-the-best methods considered above, SSM is the only one that stores and

reuses past observations (the others sample anew each time a solution is encountered). Each method

is embedded in RS as Step 2b, and the resulting algorithm is given the same computational budget

(number of observations). We then repeat the entire optimization run m∗ times. On the mth run,

1 ≤ m ≤ m∗, RS provides an estimate of the optimal solution xBm
t

which has corresponding true

performance measure µBm
t

. The results that we present below are the averaged values across m∗

optimization runs, specifically,

µ̄Bt(m
∗) =

1
m∗

m∗∑

m=1

µBm
t

.

We compare the performance of the selection-of-the-best selection methods by observing µ̄Bt(m∗)

as the simulation effort increases. We consider an (s, S) inventory problem and a three-stage buffer

allocation problem. Table 1 shows parameter settings that we used in the numerical experiment.

The variance estimator (2) is employed in SSM (the results are essentially unchanged when we use

the variance estimator (6)).

4.1 (s, S) Inventory Problem

In this classic problem [15], the level of inventory of some discrete unit is periodically reviewed.

Let s ≡ x1 and S ≡ x2 so that a solution is x = (x1, x2). If the inventory position (units in

inventory plus units on order minus units backordered) at a review is found to be below x1 units,

then an order is placed to bring the inventory position up to x2 units; otherwise, no order is placed.

Demand per period is Poisson with mean 25. The goal is to select (x1, x2) such that the steady-

state expected inventory cost per review period is minimized. The constraints on x1 and x2 are

10



Table 1: Parameters used in the numerical experiments.

Parameter (s, S) inventory Three-stage buffer
problem allocation problem

Number of searches (m∗) 1000 50

Number of candidate
solutions (ω) 2 2

NA and TT number of
observations per solution(n) 10 10

SSM minimum number of observations
taken from a sampled solution (∆n) 2 1

SSM and NG indifference-zone
parameter (δ) 1.0 0.5

SSM and NG first-stage
number of observations (n0) 10 4

SSM and NG Confidence level
(1− α) 0.9 0.9

x1 − x2 ≤ 0, 20 ≤ x1 ≤ 80, 40 ≤ x2 ≤ 100, and x1, x2 ∈ Z+, where Z+ denotes the positive

integers. The number of feasible solutions is 2,901. The optimal inventory policy is (20, 53) with

expected cost/period of 111.1265. To reduce the initial-condition bias, the average cost per period

is computed after the first 100 review periods and averaged over the subsequent 30 periods.

Figure 2 shows the performance comparison of the local selection methods (if confidence intervals

were placed around all points, they would not be visible because they are narrower than the size

of the series symbols). NA and TT perform slightly better than SSM in the early phase of the

search. However, SSM quickly wins as the simulation effort increases. After an initial period

of rapid improvement, NA and TT do not seem to get close to the optimal solution even with

increasing simulation effort. This suggests that if a statistical test (in this case, a t-test) is naively

incorporated into a search scheme without taking into consideration the multiplicity effect (the

number of alternatives in the selection pool), the resulting scheme may not do any better than one

without a statistical test at all. Furthermore, if a selection-of-the-best scheme does not adapt to

the level of randomness, a global search (i.e., RS, in this experiment) may have great difficulty in

finding an optimal solution.

NG is clearly outperformed by the other algorithms because it requires a large number of obser-

vations to do a selection, and, therefore, uses up its computational budget before approaching the

optimum. This is a consequence of how NG is designed: it is a two-stage procedure whose second-
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Figure 2: Evolution of µ̄Bt(m∗) as the simulation effort increases for the (s, S) inventory problem.

stage sample size is based on the first-stage variance estimates but not the relative performance of

the other solutions under consideration.

We can also assess the search performance in terms of the number of searches that find an

optimal solution. Figure 3 shows that SSM distinctly outperforms other selection methods; it is

most likely to discover the optimal solution. In contrast, NA appears to find the optimal solution

only to lose it later.

4.2 Three-Stage Buffer Allocation Problem

We consider a three-stage flow line with finite buffer storage space in front of stations 2 and 3

(denoted by x4 and x5, respectively) and an infinite number of jobs in front of station 1. There is

a single server at each station, and the service time at station h is exponentially distributed with

service rate xh, h = 1, 2, 3. If the buffer of station h is full, then station h−1 is blocked (production

blocking) and a finished job cannot be released from station h − 1. The total buffer space and

the service rates are limited. The goal is to find a buffer allocation and service rates such that

the throughput (average output of the flow line per unit time) is maximized. We obtained the

balance equations for the underlying Markov chain from [6]. The constraints are: x1 + x2 + x3 ≤
20;x4 + x5 = 20; 1 ≤ xh ≤ 20, h = 1, 2, . . . , 5;xh ∈ Z+.

The number of feasible solutions is 21,660. The optimal solutions are (6, 7, 7, 12, 8) and (7, 7,

6, 8, 12) with an expected throughput of 5.776. In the simulation, the throughput is estimated after

the first 2000 units have been produced, and it is averaged over the subsequent 50 units released.

Figure 4 shows the evolution of µ̄Bt(m∗) as the search progresses. Unlike the (s, S) inventory
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Figure 3: Plot of the number of searches (out of 1000) that finds the optimal solution as the search
progresses for the (s, S) inventory problem.

problem, SSM dominates the other selection schemes at all levels of simulation effort considered in

this problem. SSM performs well in the buffer allocation problem relative to our other selection

schemes because, once SSM has good solutions on hand, it uses them to quickly eliminates inferior

solutions. Figure 5 also supports this finding; it shows the number of searches that finds the optimal

solution as the search evolves. The RS with SSM is able to find an optimal solution more often

than RS which is embedded with other local selection methods.

5 Conclusions

We have designed Sequential Selection with Memory specifically for use in a context that is common

in optimization via simulation: Due to expensive simulation, an optimization algorithm maintains

some information on solutions previously visited. In addition, there is a continuing need to select

the best from a number of (neighboring) solutions. SSM is highly efficient in this problem setting

because it is fully sequential; every solution is allowed to simultaneously eliminate every other

solution, and one observation at a time is taken from each surviving solution. Moreover, SSM

lets the search re-use the past information it has gained, thereby avoiding re-sampling at every

encounter. We expect that SSM will similarly enhance the performance of better search algorithms

than the RS algorithm employed here, and have shown this to be the case in a version of the nested

partitions algorithm described in [18, 19].
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Figure 4: Evolution of µ̄Bt(m∗) as the search progresses for the buffer allocation problem.

Figure 5: Plot of the number of searches (out of 50) that finds the optimal solution as the search
progresses for the buffer allocation problem.
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Appendix

Our proof of Theorem 1 is based on controlling the probability of incorrect selection of a continuous-

time Brownian-motion processes, rather than the discrete-time output process SSM actually ob-

serves. However, Jennison, Johnstone and Turnbull [13] showed that under very mild conditions—

satisfied by SSM—the probability of incorrect selection for a Brownian-motion process observed

at discrete points in time is no greater than the corresponding probability for the continuous-time

process. Thus, all of our results provide upper bounds on the probability of incorrect selection for

SSM. Before providing the specific results, we present an overview of the approach.

We begin by considering a one-to-one elimination between the best solution xk and a non-best

solution xi for i 6= k. We use B(t; δ, σ2) to denote the Brownian-motion process with E[B(t; δ, σ2)] =

δt and Var[B(t; δ, σ2)] = σ2t. Hartmann [12] shows that the Brownian-motion process B(t; δ, σ2)

with δ > 0,m > 0, λ > 0, with stopping time defined as

T = inf{t : |B(t; δ, σ2)| ≥ λ(m− t)}, (A1)

exits toward the lower boundary of the continuation region with probability

Pr{B(T ; δ, σ2) < 0} =
∫ ∞

−∞
e−2λξ/σ

1 + e−2λξ/σ
φ

(
ξ − (mδ/σ)√

m

)
dξ√
m

, (A2)

where φ(x) is the probability density function of the standard normal distribution. We use this

result to provide a bound on the probability of incorrect selection (PICS) of SSM in one-to-one

elimination between xk and xi, i 6= k.

Define

σ2
ki ≡ σ2

k + σ2
i (A3)

δki ≡ µk − µi (A4)

and a stochastic process

A(t; δ, σ2
ki, nk, ni) ≡ I{t ≤ nk} tBk(nk; δ, σ2

k)
nk

+ I{t > nk}Bk(t; δ, σ2
k)

−I{t ≤ ni} tBi(ni; 0, σ2
i )

ni
− I{t > ni}Bi(t; 0, σ2

i ), (A5)

where Bk(t; δ, σ2
k) and Bi(t; 0, σ2

i ) are two independent Brownian-motion processes, and I(·) is the in-

dicator function. The process A(t; δ, σ2
ki, nk, ni) corresponds to having already observed Bk(t; δ, σ2

k)

and Bi(t; 0, σ2
i ) up to times nk and ni, respectively. The process A(·) can be thought of as a

continuous-time counterpart of the process
{
rȲknkr

− rȲinir ; r ≥ 1
}

that SSM considers during the

screening step. Similar to (A1), we also define the stopping time of A(t; δ, σ2
ki, nk, ni) as

T ∗ = inf{t : |A(t; δ, σ2
ki, nk, ni)| ≥ λ(m− t)}. (A6)
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In the context of SSM, “incorrect selection” corresponds to the event {A(T ∗; δ, σ2
ki, nk, ni) < 0},

and we are interested in three cases of ni when nk = 0: (a) ni = m, (b) ni < m, and (c) ni > m.

We will derive the PICS of one-to-one elimination for the first case in detail (Lemmas A.1–A.2),

and also consider the scenario where the roles of i and k are reversed (Lemma A.2). We extend

these results for the remaining cases of nk and ni (Lemma A.3). In the last step, we use the PICS

of one-to-one elimination to get the overall PCS guarantee (1).

The proofs of Theorems 1–2 depend on a sequence of lemmas whose proofs are available from

the authors on request.

Lemma A.1 When nk = 0 and ni = m, we have that

Pr {A(T ∗; δ, σ2
ki, 0,m) < 0}

=
∫ ∞

−∞

∫ ∞

−∞
e−2λξ/σk

1 + e−2λξ/σk
φ

(
ξ −m(δ − y)/σk√

m

)
dξ φ

(√
my

σi

)
dy

σi
. (A7)

Lemma A.2 For the Brownian-motion process B(t; δ, σ2
ki) with δ > 0, m > 0, λ > 0, and the

stopping times T and T ∗ defined in (A1) and (A6), respectively,

Pr{A(T ∗; δ, σ2
ki, 0,m) < 0} ≤ Pr{B(T ; δ, σ2

ki) < 0}, (A8)

and

Pr{A(T ∗; δ, σ2
ki,m, 0) < 0} ≤ Pr{B(T ; δ, σ2

ki) < 0}. (A9)

Lemma A.2 shows that, for the cases nk = 0, ni = m and nk = m,ni = 0, the PICS of SSM is

bounded by the probability that the corresponding Brownian-motion process exits the continuation

region. In Lemma A.3, we show that this is also true for the remaining cases.

Lemma A.3 For the Brownian-motion process B(t; δ, σ2
ki) with δ > 0, m > 0, λ > 0, and the

stopping times T and T ∗ defined in (A1) and (A6), respectively,

Pr{A(T ∗; δ, σ2
ki, nk, ni) < 0} ≤ Pr{B(T ; δ, σ2

ki) < 0}. (A10)

In Lemma A.4, we show that, with all other parameters being equal, the probability of incor-

rectly exiting the triangular region is nonincreasing in the positive drift parameter of the process.

Lemma A.4 For nk = 0, ni = m, with δki defined in (A4) and δ ≤ δki, we have that

Pr{A(T ∗; δki, σ
2
ki, 0, m) < 0} ≤ Pr{A(T ∗; δ, σ2

ki, 0, m) < 0}. (A11)

We use Lemmas A.1–A.4 to prove Theorem 1.
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Proof of Theorem 1

Define the discrete exit time

r∗ ≡ inf
{

r :
∣∣rȲknkr

− rȲinir

∣∣ ≥ aki − rλ, r = 1, 2, . . . ,

⌊
aki

λ

⌋}
,

and rewrite Definition (A6) as

T ∗ = inf{t : |A(t; δ, σ2
ki, nk, ni)| ≥ aki − tλ}.

SSM eliminates solutions (i.e., we inspect the process
{
rȲknkr

− rȲinir ; r ≥ 1
}
) only at discrete steps

r ∈ {n0, n0 + 1, . . . , baki/λc}, whereas the process A(t; δki, σ
2
ki, nk, ni) can leave the continuation

region at any continuous time t, 0 ≤ t ≤ aki/λ. Using Jennison, Johnstone and Turnbull’s result

[13], we have that

Pr{r∗Ȳknkr∗ − r∗Ȳinir∗ < 0|S2
ik} ≤ Pr

{
A(T ∗; δki, σ

2
ki, nk, ni) < 0

}

(conditioning on S2
ik is needed to fix the parameter aik). Now we prove the PCS guarantee:

Pr{incorrect selection}

= Pr{xk is eliminated}

≤
k−1∑

i=1

Pr{xi eliminates xk} (by Boole’s inequality)

=
k−1∑

i=1

E[Pr{xi eliminates xk|S2
ik}]

≤
k−1∑

i=1

E
[
Pr

{
A(T ∗; δki, σ

2
ki, nk, ni) < 0

}]

≤
k−1∑

i=1

E
[
Pr

{
A(T ∗; δ, σ2

ki, nk, ni) < 0
}]

(by Lemma A.4)

≤
k−1∑

i=1

E
[
Pr

{
B(T ; δ, σ2

ki) < 0
}]

(by Lemma A.3)

=
k−1∑

i=1

E

[
c∑

`=1

(−1)`+1
(

1− 1
2
I(` = c)

)
exp

{
(2c− `)`
2c− 1

(
−2aik

σ2
ik

)
(δ − λ)

}]
(A12)

=
k−1∑

i=1

c∑

`=1

(−1)`+1
(

1− 1
2
I(` = c)

)
E

[
exp

{
−(2c− `)`

2c− 1
η

2

(
fikS

2
ik

σ2
ik

)}]
(by (4)) (A13)

=
k−1∑

i=1

c∑

`=1

(−1)`+1
(

1− 1
2
I(` = c)

) [
1 +

(2c− `)`η
2c− 1

]−fik/2

(A14)
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(since fikS
2
ik/σ2

ik ∼ χ2
fik

and E[etχ2
f ] = (1− 2t)−f/2)

= (k − 1)α/(k − 1) (by (5))

= α.

We get (A12) by using Fabian’s [8] result which shows that when λ = δ/(2c) and m = aik/λ, the

expression on the right of (A2) is given by:

c∑

`=1

(−1)`+1
(

1− 1
2
I(` = c)

)
exp

(
−2

λ2

σ2
m(2j − `)`

)
.

Proof of Corollary 1

Suppose µk ≥ µk−1 ≥ · · · ≥ µ1. The statement is trivially true if µk − µ1 < δ, as we can select any

system to satisfy the claim. Thus, let t > 1 be the first system index within δ of µk, i.e., µk−µt < δ,

and µk−µt−1 ≥ δ. The correct selection in this context is when one of {xt,xt+1, . . . ,xk} is selected.

Pr{correct selection} = Pr{x1,x2, . . . ,xt−1 are eliminated}
≥ Pr{xk eliminates x1,x2, . . . ,xt−1}
= 1− Pr{xk is eliminated by xi for some i, 1 ≤ i ≤ t− 1}

≥ 1−
t−1∑

i=1

Pr{xk is eliminated by xi}

≥ 1− t− 1
k − 1

α ≥ 1− α.

The second-to-last inequality follows from the way aik and λ are chosen in (5).

We need Lemma A.5 in the proof of Theorem 2.

Lemma A.5 The function f(x) = (1 + a/x)−x, where a > 0 and x > 0, is decreasing in x.

Proof of Theorem 2

Define

τ =
(2c− `)`
2c− 1

η

2
. (A15)

From (6) and (A13), we have that

Pr{incorrect selection}

≤
k−1∑

i=1

c∑

`=1

(−1)`+1
(

1− 1
2
I(` = c)

)
E

[
exp

{
−τfik(S2

i + S2
k)

σ2
i + σ2

k

}]

=
k−1∑

i=1

c∑

`=1

(−1)`+1
(

1− 1
2
I(` = c)

)
E

[
exp

{
− σ2

i

σ2
i + σ2

k

τfikS
2
i

σ2
i

}]
E

[
exp

{
− σ2

k

σ2
i + σ2

k

τfikS
2
k

σ2
k

}]

(A16)
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by independence of S2
i and S2

k . First, we consider the case where nk0 ≥ ni0, and by (3), fik = ni0−1.

We have that

(A16) =
k−1∑

i=1

c∑

`=1

(−1)`+1

(
1− 1

2
I(` = c)

)
E

[
exp

{
− σ2

i

σ2
i + σ2

k

τ(ni0 − 1)S2
i

σ2
i

}]

E
[
exp

{
−

(
ni0 − 1
nk0 − 1

)
σ2

k

σ2
i + σ2

k

τ(nk0 − 1)S2
k

σ2
k

}]

=
k−1∑

i=1

c∑

`=1

(−1)`+1

(
1− 1

2
I(` = c)

)[
1 + 2τ

σ2
i

σ2
i + σ2

k

]−(ni0−1)/2 [
1 + 2τ

(
ni0 − 1
nk0 − 1

)
σ2

k

σ2
i + σ2

k

]−(nk0−1)/2

(because (ni0 − 1)S2
i /σ2

i ∼ χ2
ni0−1 and (nk0 − 1)S2

k/σ2
k ∼ χ2

nk0−1)

≤
k−1∑

i=1

c∑

`=1

(−1)`+1

(
1− 1

2
I(` = c)

)[
1 + 2τ

σ2
i

σ2
i + σ2

k

]−(ni0−1)/2 [
1 + 2τ

(
ni0 − 1
ni0 − 1

)
σ2

k

σ2
i + σ2

k

]−(ni0−1)/2

(by Lemma A.5 and ni0 ≤ nk0)

=
k−1∑

i=1

c∑

`=1

(−1)`+1

(
1− 1

2
I(` = c)

) [
1 + 2τ + 4τ2

(
σiσk

σ2
i + σ2

k

)2
]−(ni0−1)/2

≤
k−1∑

i=1

c∑

`=1

(−1)`+1

(
1− 1

2
I(` = c)

)
[1 + 2τ ]−(ni0−1)/2 (A17)

because τ > 0. Notice that (A17) is identical to (A14); therefore, the rest of the proof proceeds

similar to that of Theorem 1. The case where ni0 > nk0 can also be proven in the same manner

as above since (A16) is unchanged when the role of i and k are reversed. The proof that SSM

selects a near-best solution with probability at least 1−α immediately follows from Theorem 2 and

Corollary 1.
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[1] M. H. Alrefaei and S. Andradóttir. A simulated annealing algorithm with constant temperature

for discrete stochastic optimization. Management Science, 45:748–764, 1999.
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Supplemental document to the Appendix
(not intended for publication)

Let ∼ denote to “is distributed as,” N(µ, σ2) denote the normal distribution with mean µ and

variance σ2, and let D= denote equality in distribution. We will refer to the following equality many

times:

e−U

1 + e−U
=

1
1 + eU

. (A18)

Lemma A.1 When nk = 0 and ni = m, we have that

Pr {A(T ∗; δ, σ2
ki, 0,m) < 0}

=
∫ ∞

−∞

∫ ∞

−∞
e−2λξ/σk

1 + e−2λξ/σk
φ

(
ξ −m(δ − y)/σk√

m

)
dξ φ

(√
my

σi

)
dy

σi
. (A19)

Proof: For nk = 0, ni = m and 0 < t ≤ m, Equation (A5) becomes

A(t; δ, σ2
ki, 0,m) = Bk(t; δ, σ2

k)− t
Bi(m; 0, σ2

i )
m

. (A20)

Define Y ≡ Bi(m; 0, σ2
i )/m; therefore, Y ∼ N(0, σ2

i /m), and we have that

Pr{A(T ∗; δ, σ2
ki,m) < 0} = Pr{Bk(T ∗; δ, σ2

k)− T ∗Y < 0}

=
∫ ∞

−∞
Pr{Bk(T ∗; δ, σ2

k)− T ∗Y < 0|Y = y}fY (y)dy

=
∫ ∞

−∞
Pr{Bk(T ∗; δ − y, σ2

k) < 0}fY (y)dy, (A21)

where fY (y) = (
√

m/σi) φ(
√

my/σi).

To apply Hartmann’s result (A2) to (A21), we need the drift to be positive. Therefore, let
∫ ∞

−∞
Pr{Bk(T ∗; δ − y, σ2

k) < 0} fY (y)dy = Υ1 + Υ2

where

Υ1 =
∫ δ

−∞

∫ ∞

−∞
e−2λξ/σk

1 + e−2λξ/σk
φ


ξ − m(δ−y)

σk
)√

m


 dξ√

m
φ

(√
my

σi

) √
m

σi
dy

Υ2 =
∫ ∞

δ
Pr{Bk(T ∗; δ − y, σ2

k) < 0}fY (y)dy

=
∫ ∞

δ
[1− Pr{Bk(T ∗; δ − y, σ2

k) > 0}]fY (y)dy

=
∫ ∞

δ
[1− Pr{Bk(T ∗; y − δ, σ2

k) < 0}]fY (y)dy

=
∫ ∞

δ


1−

∫ ∞

−∞
e−2λξ/σk

1 + e−2λξ/σk
φ


ξ − m(y−δ)

σk√
m


 dξ√

m


 fY (y)dy, (A22)
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by (A2). Notice that

1−
∫ ∞

−∞
e−2λξ/σk

1 + e−2λξ/σk
φ


ξ − m(y−δ)

σk√
m


 dξ√

m
=

∫ ∞

−∞

[
1− e−2λξ/σk

1 + e−2λξ/σk

]
φ


ξ − m(y−δ)

σk√
m


 dξ√

m

=
∫ ∞

−∞
e2λξ/σk

1 + e2λξ/σk
φ


ξ − m(y−δ)

σk√
m


 dξ√

m

= −
∫ −∞

∞
e2λ(−ξ)/σk

1 + e2λ(−ξ)/σk
φ


−ξ − m(y−δ)

σk√
m


 dξ√

m

=
∫ ∞

−∞
e−2λξ/σk

1 + e−2λξ/σk
φ


ξ − m(δ−y)

σk√
m


 dξ√

m

because φ(x) = φ(−x). Thus, Equation (A22) becomes

Υ2 =
∫ ∞

δ

∫ ∞

−∞
e−2λξ/σk

1 + e−2λξ/σk
φ


ξ − m(δ−y)

σk√
m


 dξ√

m
φ

(√
my

σi

) √
m

σi
dy,

and this completes the proof.

We need the following lemma to prove Lemma A.2.

Lemma A.6 Let V ∼ N(µ, σ2), where µ and σ2 > 0 are fixed, and let a ≥ 1. Then,

E[e−aV /(1 + e−aV )] is maximized at a = 1.

Proof: Notice that

1
1 + ev

− 1
1 + eav

=
1

1 + e−av
− 1

1 + e−v
. (A23)

Let fV (v) be the density of V . Because V is normally distributed with µ > 0, for v ≥ 0, we have

that

fV (−v) ≤ fV (v). (A24)

Consider

E

[
e−V

1 + e−V

]
− E

[
e−aV

1 + e−aV

]

= E
[

1
1 + eV

]
− E

[
1

1 + eaV

]
by (A18)

=
∫ 0

−∞

(
1

1 + ev
− 1

1 + eav

)
fV (v)dv +

∫ ∞

0

(
1

1 + ev
− 1

1 + eav

)
fV (v)dv

≥
∫ 0

−∞

(
1

1 + ev
− 1

1 + eav

)
fV (−v)dv +

∫ ∞

0

(
1

1 + ev
− 1

1 + eav

)
fV (v)dv

=
∫ ∞

0

[
1

1 + ev
− 1

1 + eav
−

(
1

1 + e−av
− 1

1 + e−v

)]
fV (v)dv = 0 by (A23).
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The inequality holds because of Equation (A24) and 1/(1 + ev) − 1/(1 + eav) < 0 for V < 0 and

a ≥ 1.

Lemma A.2 For the Brownian-motion process B(t; δ, σ2
ki) with δ > 0,m > 0, λ > 0, and the

stopping times T and T ∗ defined in (A1) and (A6), respectively,

Pr{A(T ∗; δ, σ2
ki, 0,m) < 0} ≤ Pr{B(T ; δ, σ2

ki) < 0}, (A25)

and

Pr{A(T ∗; δ, σ2
ki,m, 0) < 0} ≤ Pr{B(T ; δ, σ2

ki) < 0}. (A26)

Proof: From Lemma A.1, Equation (A19) can be written as

Pr{A(T ∗; δ, σ2
ki, 0,m) < 0} = E

[
e−U

1 + e−U

]
, (A27)

where U ∼ (2λ/σk)N(m(δ − Y )/σk, m), and Y ∼ N(0, σ2
i /m). For Z1 and Z2 i.i.d. N(0,1) random

variables, we can express U as follows:

U
D= 2

λ

σk
N

(
m

σk
(δ − Y ),m

)

D= 2
λ

σk

[
m

σk

(
δ − σi√

m
Z1

)
+
√

mZ2

]
.

In the context of SSM (see (4)), we are interested in

m =
η̃2σ2

ki

δ2
and λ =

δ

2c
, (A28)

where η̃ is a proportionality constant. Therefore, we have that

U
D=

(
η̃2σ2

ki

cσ2
k

)
+

η̃σki

cσk

(
− σi

σk
Z1 + Z2

)
(A29)

D=

(
η̃2σ2

ki

cσ2
k

)
+

η̃σ2
ki

cσ2
k

Z3 where Z3 ∼ N(0, 1)

D=

(
σ2

ki

σ2
k

)
V where V ∼ 1

c
N(η̃2, η̃2). (A30)

Thus,

Pr{A(T ∗; δ, σ2
ki,m) < 0} = E

[
e−σ2

kiV/σ2
k

1 + e−σ2
ki

V/σ2
k

]
. (A31)

By (A2), (A28), and V as defined in (A30), we have that

Pr{B(T ; δ, σ2
ki) < 0} = E

[
e−V

1 + e−V

]
.
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From Definition (A3), we know that σ2
ki/σ2

k ≥ 1. Lemma A.6 shows that

E

[
e−σ2

kiV/σ2
k

1 + e−σ2
ki

V/σ2
k

]
≤ E

[
e−V

1 + e−V

]
,

and this completes the proof of (A25).

We will use the result above to show (A26). Notice that

B(t; δ, σ2) D= Bk(t; δ, σ2
k) + Bi(t; 0, σ2

i )
D= Bk(t; 0, σ2

k) + Bi(t; 0, σ2
i ) + δt.

For the case we just considered, nk = 0 and ni = m, we examined

A(T ∗; δ, σ2
ki, 0,m) = Bk(t; δ, σ2

k)− t
Bi(m; 0, σ2

i )
m

D= Bk(t; 0, σ2
k)− t

Bi(m; 0, σ2
i )

m
+ δt. (A32)

With nk = m and ni = 0, we are interested in

A(T ∗; δ, σ2
ki,m, 0) = t

Bk(m; δ, σ2
k)

m
− Bi(t; 0, σ2

i )
D= t

Bk(m; 0, σ2
k)

m
− Bi(t; 0, σ2

i ) + δt. (A33)

Due to the similarity of (A32) and (A33), the problem of determining Pr{A(T ∗; δ, σ2
ki, 0,m) ≤ 0}

and Pr{A(T ∗; δ, σ2
ki, m, 0) ≤ 0} are the same, except that the ratio σ2

ki/σ2
k in (A31) becomes σ2

ki/σ2
i .

Lemmas A.7–A.10 provide the basis for the proof of Lemma A.3.

Lemma A.7 Let W ∼ N(µ, α2σ2), where µ and σ2 > 0 are fixed, and let 0 ≤ α ≤ 1. Then,

E[e−W /(1 + e−W )] is maximized at α = 1.

Proof: Let V ∼ N(µ, σ2). Lemma A.7 is equivalent to the following statement:

E

[
e−V

1 + e−V

]
− E

[
e−W

1 + e−W

]
≥ 0. (A34)

Let g(x) ≡ e−x/(1 + e−x) = 1/(1 + ex) by (A18). The left-hand side of Equation (A34) can be

expressed as

E

[
e−V

1 + e−V

]
− E

[
e−W

1 + e−W

]

=
∫ ∞

0
[g(µ + ε) + g(µ− ε)]φ

(
ε

σ

)
dε

σ
−

∫ ∞

0
[g(µ + αε) + g(µ− αε)]φ

(
ε

σ

)
dε

σ

=
∫ ∞

0
[g(µ + ε) + g(µ− ε)− (g(µ + αε) + g(µ− αε))]φ

(
ε

σ

)
dε

σ
. (A35)

Notice that g(µ + ε) + g(µ− ε) is a non-decreasing function with respect to ε for ε ≥ 0 when µ > 0.

Because 0 ≤ αε ≤ ε we have that g(µ + αε) + g(µ − αε) ≤ g(µ + ε) + g(µ − ε) when 0 ≤ α ≤ 1;

hence, Equation (A35) becomes

E

[
e−V

1 + e−V

]
− E

[
e−W

1 + e−W

]
≥

∫ ∞

0
[g(µ + ε) + g(µ− ε)− (g(µ + ε) + g(µ− ε))]φ

(
ε

σ

)
dε

σ
= 0,
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and the proof is complete.

Lemma A.8 For the Brownian motion process B(t; δ, 1) with δ > 0,m > 0, λ > 0, n < m, and the

stopping time defined as

T ′ = min(n, T ), where T = inf{t : |B(t; δ, 1)| ≥ λ(m− t)}, (A36)

we have that

Pr{B(T ′; δ, 1) < 0| T ′ < n} ≤
∫ ∞

−∞
e−2λξ

1 + e−2λ
φ

(
ξ − nδ√

n

)
dξ√
n

.

Proof: For the sake of brevity, let B(t; δ, 1) be denoted by B(t). Motivated by Hartmann’s proof

[A1] we condition on B(n) = ξ > 0. Because B(n) is sufficient for δ, Pr{B(T ′) < 0, T ′ < n|B(n) = ξ}
does not depend on δ. When ξ > 0, Proposition 3.12 of Siegmund [A2] yields

Pr{B(T ′) < 0, T ′ < n|B(n) = ξ} = E[e2ξB(T ′)/(m−T ′)I(B(T ′) < 0, T ′ < n)|B(n) = −ξ]

≤ e−2λξ Pr{B(T ′) < 0, T ′ < n|B(n) = −ξ}

because the event {B(T ′) < 0, T ′ < n} implies that B(T ′) ≤ −λ(m−T ′), and, therefore, 2ξB(T ′)/(m−
T ′) ≤ −2λξ. In addition, because Pr{B(T ′) < 0, T ′ < n|B(n) = ξ} is independent of δ, it is also

true that

Pr{B(T ′) < 0, T ′ < n|B(n) = −ξ} = Pr{B(T ′) > 0, T ′ < n|B(n) = ξ}. (A37)

Thus,

Pr{B(T ′) < 0, T ′ < n|B(n) = ξ}
≤ e−2λξ Pr{B(T ′) > 0, T ′ < n|B(n) = ξ}
= e−2λξ (

1− Pr{B(T ′) < 0, T ′ < n|B(n) = ξ} − Pr{T ′ = n|B(n) = ξ}) ,

After rearranging, we get

Pr{B(T ′) < 0, T ′ < n|B(n) = ξ} ≤ e−2λξ

1 + e−2λξ

[
1− Pr{T ′ = n|B(n) = ξ}]

=
e−2λξ

1 + e−2λξ
Pr{T ′ < n|B(n) = ξ}, (A38)

from which we obtain

Pr{B(T ′) < 0|T ′ < n,B(n) = ξ} =
Pr{B(T ′) < 0, T ′ < n|B(n) = ξ}

Pr{T ′ < n|B(n) = ξ} ≤ e−2λξ

1 + e−2λξ
. (A39)
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Now we uncondition B(n):

Pr{B(T ′) < 0|T ′ < n}
=

∫ ∞

−∞
Pr{B(T ′) < 0|T ′ < n,B(n) = ξ}φ

(
ξ − nδ√

n

)
dξ√
n

=
∫ 0

−∞

(
1− Pr{B(T ′) < 0|T ′ < n,B(n) = −ξ}) φ

(
ξ − nδ√

n

)
dξ√
n

+
∫ ∞

0
Pr{B(T ′) < 0|T ′ < n,B(n) = ξ}φ

(
ξ − nδ√

n

)
dξ√
n

= Pr{B(n) < 0}+
∫ ∞

0
Pr{B(T ′) < 0|T ′ < n,B(n) = ξ}

[
φ

(
ξ − nδ√

n

)
− φ

(−ξ − nδ√
n

)]
dξ√
n

≤ Pr{B(n) < 0}+
∫ ∞

0

e−2λξ

1 + e−2λξ

[
φ

(
ξ − nδ√

n

)
− φ

(−ξ − nδ√
n

)]
dξ√
n

=
∫ ∞

−∞
e−2λξ

1 + e−2λξ
φ

(
ξ − nδ√

n

)
dξ√
n

,

where the inequality follows from (A39) and the fact that φ((ξ − nδ)/
√

n) > φ((−ξ − nδ)/
√

n) for

ξ > 0.

Lemma A.9 (Slepian’s Inequality, see [A3] ) Let Y = (Y1, Y2 . . . , Yr) be distributed according

to N(0,Σ), where Σ is a correlation matrix. Let R = (ρij) and T = (τij) be two positive semidefinite

correlation matrices. If ρij ≥ τij holds for all i, j, then

PrΣ=R

[
r⋂

i=1

{Yi ≤ ai}
]
≥ PrΣ=T

[
r⋂

i=1

{Yi ≤ ai}
]

holds for all a = (a1, a2, . . . , ar)′. The inequality is strict if R and T are positive definite and if

the strict inequality ρij > τij holds for some i 6= j. Furthermore, under the same conditions, the

inequality below also holds

PrΣ=R

[
r⋂

i=1

{Yi ≥ ai}
]
≥ PrΣ=T

[
r⋂

i=1

{Yi ≥ ai}
]

.

We use Slepian’s Inequality to prove the following result:

Lemma A.10 For n < m, we have that

Pr{A(t; δ, σ2
ki, 0, n) ≥ −λ(m− t), 0 ≤ t < n} ≥ Pr{B(t; δ, σ2

ki) ≥ −λ(m− t), 0 ≤ t < n},

and

Pr{A(t; δ, σ2
ki, 0, n) ≤ λ(m− t), 0 ≤ t < n} ≥ Pr{B(t; δ, σ2

ki) ≤ λ(m− t), 0 ≤ t < n}.
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Proof: Suppose we consider the stochastic processes A(t; δ, σ2
ki, 0, n) and B(t; δ, σ2

ki) at discrete

times {tp : tp < tp+1, p = 1, 2, . . . , nd}. For the sake of brevity, we denote A(t; δ, σ2
ki, 0, n) by A(t).

Let Corr(X,Y ) denote the correlation between random variables X and Y . Notice that

A(t) = Bk(t; δ, σ2
k)−

tBi(n; 0, σ2
i )

n
∼ N

(
δt, σ2

kt +
t2σ2

i

n

)
,

Corr(A(tp),A(tq)) =

√√√√√
(

tq
n

)
σ2

i + σ2
k

tp
n σ2

i + σ2
k

√
tp
tq

, for p < q, (A40)

and B(t; δ, σ2
ki) ∼ N(δt, σ2

kit). For p = 1, 2, . . . , nd, let Zp ∼ N(0, 1), Qp ∼ N(0, 1), with

Corr(Zp, Zq) = Corr(A(tp),A(tq)),

and

Corr(Qp, Qq) = Corr(B(tp),B(tq)) =

√
tp
tq

for p < q.

From (A40), the Corr(Qp, Qq) ≤ Corr(Zp, Zq). Therefore, we have that

Pr{A(tp) ≥ −λ(m− tp), p = 1, 2, . . . , nd} = Pr





nd⋂

p=1

{A(tp) ≥ −λ(m− tp)}




= Pr





nd⋂

p=1





A(tp)− δtp√
σ2

ktp + t2pσ
2
i /n

≥ −λ(m− tp)− δtp√
σ2

ktp + t2pσ
2
i /n









= Pr





nd⋂

p=1



Zp ≥ −λ(m− tp)− δtp√

σ2
kt + t2pσ

2
i /n









≥ Pr





nd⋂

p=1



Qp ≥ −λ(m− tp)− δtp√

σ2
ktp + t2pσ

2
i /n









≥ Pr





nd⋂

p=1



Qp ≥ −λ(m− tp)− δtp√

σ2
kitp









= Pr





nd⋂

p=1

{B(tp) ≥ −λ(m− tp)}




= Pr{B(tp) ≥ −λ(m− tp), p = 1, 2, . . . , nd}.

The first inequality follows from Lemma A.9, and the second inequality holds because σ2
kt+t2σ2

i /n ≤
σ2

kit, and −λ(m− t)− δt is negative.

This shows the result for any discrete collection of times. By taking a finer and finer grid of

times between 0 and n, we can show that the probability of never crossing the lower boundary

converges to the corresponding probability for the continuous-time process. Thus, we have proved

the first statement of Lemma A.10. The proof of the second statement can be achieved in a similar
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manner.

Lemma A.3 For the Brownian-motion process B(t; δ, σ2
ki) with δ > 0,m > 0, λ > 0, and the

stopping times T and T ∗ defined in (A1) and (A6), respectively,

Pr{A(T ∗; δ, σ2
ki, nk, ni) < 0} ≤ Pr{B(T ; δ, σ2

ki) < 0}. (A41)

Proof: We have already shown (A41) for the case where nk = 0 and ni = m (and the reverse)

in Lemmas A.1 and A.2. Now we prove it for the remaining cases. First, we consider nk = 0 and

ni = m′ ≥ m. For 0 < t ≤ m, Equation (A5) becomes

A(t; δ, σ2
ki, 0, m′) = Bk(t; δ, σ2

k)− t
Bi(m′; 0, σ2

i )
m′ . (A42)

Due to the similarity of (A42) to (A20), the derivation of the PICS, Pr{A(T ∗; δ, σ2
ki, 0,m′) < 0} for

T ∗ defined in (A6), is almost the same as in Lemma A.1, except that Y in (A21) is replaced by

Y ′ ≡ Bi(m′; 0, σ2
i )

m′ ∼ N

(
0,

σ2
i

m′

)
D=

√
m

m′ N

(
0,

σ2
i

m′

)
.

After going through steps similar to what we have done in Lemmas A.1 and A.2, we get

Pr{A(T ∗; δ, σ2
ki, 0,m′) < 0} = E

[
e−σ2

kiV
′/σ2

k

1 + e−σ2
ki

V ′/σ2
k

]
,

where

V ′ ∼ 1
c

N
(
η̃2, aη̃2

)
and a =

√
m

m′
σ2

i

σ2
ki

+
σ2

k

σ2
ki

.

But since
√

m/m′ ≤ 1 and because of (A3), we know that 0 ≤ a ≤ 1. Lemmas A.7 and A.6,

respectively, state that, for V ∼ (1/c) N(η̃2, η̃2),

E

[
e−σ2

kiV
′/σ2

k

1 + e−σ2
ki

V ′/σ2
k

]
≤ E

[
e−σ2

kiV/σ2
k

1 + e−σ2
ki

V/σ2
k

]
≤ E

[
e−V

1 + e−V

]
.

Because Pr{B(T ; δ, σ2
ki) < 0} = e−V /(1 + e−V ), the proof of (A41) is complete for the case nk = 0

and ni > m.

Now we consider nk = 0 and ni = n < m. For 0 < t ≤ n, Equation (A5) becomes

A(t; δ, σ2
ki, 0, n) = Bk(t; δ, σ2

k)− t
Bi(n; 0, σ2

i )
n

. (A43)

In this scenario, the process A(t; δ, σ2
ki, 0, n) differs from the process B(t; δ, σ2

ki) only up to time

t = n, after which they are the same process. In other words, we are interested in the events that

these two processes exit a region of the type shown in Figure 6.
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n

λ (m - t)

−λ (m - t)

t

Figure 6: The truncated continuation region of SSM with n < m.

We have defined the exit time T ′ of B(t; δ, σ2
ki) from the Figure 6 region in (A36). Similarly, we

define the exit time T ∗∗ of the process A(t; δ, σ2
ki, 0, n) as

T ∗∗ = min(n, T ∗), where T ∗ = inf{t : |A(t; δ, σ2
ki, 0, n)| ≥ λ(m− t)}. (A44)

Proving (A41) for the case where nk = 0 and ni = n < m is equivalent to showing that

Pr{A(T ∗∗; δ, σ2
ki, 0, n) < 0, T ∗∗ < n} ≤ Pr{B(T ′; δ, σ2

ki) < 0, T ′ < n}.

Lemma A.8 and the arguments similar to what we have described in Lemma A.2 allow us to get

Pr{A(T ∗∗; δ, σ2
ki, 0, n) < 0|T ∗∗ < n} ≤ Pr{B(T ′; δ, σ2

ki) < 0|T ′ < n}. (A45)

Lemma A.10 states that the probability that the process A(t; δ, σ2
ki, 0, n) will stay above the upper

(or lower boundary) at all times t, 0 < t ≤ n, is at least the probability that the process B(t; δ, σ2
ki)

does. This implies that Pr{T ∗∗ = n} ≥ Pr{T ′ = n}. By Definitions (A36) and (A44),

Pr{T ∗∗ = n}+ Pr{T ∗∗ < n} = Pr{T ′ = n}+ Pr{T ′ < n} = 1,

therefore,

Pr{T ∗∗ < n} ≤ Pr{T ′ < n}, (A46)

and we have that

Pr{A(T ∗∗; δ, σ2
ki, 0, n) < 0, T ∗∗ < n} = Pr{A(T ∗∗; δ, σ2

ki, 0, n) < 0|T ∗∗ < n}Pr{T ∗∗ < n}
≤ Pr{B(T ′; δ, σ2

ki) < 0|T ′ < n}Pr{T ′ < n}
= Pr{B(T ′; δ, σ2

ki) < 0, T ′ < n}, (A47)
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where the inequality follows from (A45) and (A46). This completes the proof of (A41) for the case

nk = 0 and ni = n < m.

We have considered the cases nk = 0 and all possible ni. The remaining cases are when the

roles of i and k are reversed. The proof of (A41) in such cases can be done in a similar way (see

Lemma A.2, for example).

Lemma A.4 For nk = 0, ni = m, with δki defined in (A4) and δ ≤ δki, we have that

Pr{A(T ∗; δki, σ
2
ki, 0, m) < 0} ≤ Pr{A(T ∗; δ, σ2

ki, 0, m) < 0}. (A48)

Proof: Let U ′ ∼ (2λ/σk)N(m(δki − Y )/σk,m). Using Lemma A.1 and (A18), we have that

Pr{A(T ∗; δki, σ
2
ki, 0,m) < 0} − Pr{A(T ∗; δ, σ2

ki, 0,m) < 0}

= E
[

1
1 + eU ′

]
− E

[
1

1 + eU

]

=
∫ ∞

−∞

∫ ∞

−∞


 1

1 + eξ
φ


ξ − m(δki−y)

σk√
m





 dξ√

m
φ

(√
my

σi

)
dy

σi/
√

m
.

−
∫ ∞

−∞

∫ ∞

−∞


 1

1 + eξ
φ


ξ − m(δ−y)

σk√
m





 dξ√

m
φ

(√
my

σi

)
dy

σi/
√

m
. (A49)

Conditional on Y , the density of U and U ′ differ only in location with respect to ξ. Because

0 ≤ δ ≤ δki, we have that φ
(

ξ−m(δki−y)/σk√
m

)
is a right location shift of φ

(
ξ−m(δ−y)/σk√

m

)
. In addition,

1/(1 + eξ) is decreasing with ξ; therefore, we have that

∫ ∞

−∞

∫ ∞

−∞


 1

1 + eξ
φ


ξ − m(δki−y)

σk√
m





 dξ√

m
φ

(√
my

σi

)
dy

σi/
√

m

≤
∫ ∞

−∞

∫ ∞

−∞


 1

1 + eξ
φ


ξ − m(δ−y)

σk√
m





 dξ√

m
φ

(√
my

σi

)
dy

σi/
√

m
.

Lemma A.5 The function f(x) = (1 + a/x)−x, where a > 0 and x > 0, is decreasing in x.

Proof: The first derivative of f(x) is

f ′(x) =
(

1 +
a

x

)−x [
a

a + x
− log

(
1 +

a

x

)]
. (A50)

Because (1 + a/x)−x > 0, for a > 0, x > 0, we only need to determine if the second term is negative.

Define

g(x) ≡
[

a

a + x
− log

(
1 +

a

x

)]
.
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We have that

g′(x) =
a

(1 + a/x)x2
− a

(a + x)2
=

a

x2 + ax
− a

x2 + 2ax + a2
> 0

for a > 0, x > 0. Thus, g(x) is an increasing function. Notice that limx→∞ g(x) = 0, which implies

that g(x) < 0 for a > 0, x > 0. This result, together with (A50), concludes the proof.
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