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Abstract � The classical Wardrop user equilibrium (UE) assignment model assumes 

traveller choices are based on fixed, known travel times, yet these times are known to be 

rather variable between trips, both within and between days; typically, then, only mean 

travel times are represented. Classical stochastic user equilibrium (SUE) methods allow 

the mean travel times to be differentially perceived across the population, yet in a 

conventional application neither the UE or SUE approach recognises the travel times to be 

inherently variable. That is to say, there is no recognition that drivers risk arriving late at 

their destinations, and that this risk may vary across different paths of the network and 

according to the arrival time flexibility of the traveller. Recent work on incorporating risky 

elements into the choice process is seen either to neglect the link to the arrival constraints 

of the traveller, or to apply only to restricted problems with parallel alternatives and 

inflexible travel time distributions. In the paper, an alternative approach is described 

based on the ‘schedule delay’ paradigm, penalising late arrival under fixed departure 

times. The approach allows flexible travel time densities, which can be fitted to actual 

surveillance data, to be incorporated. A generalised formulation of UE is proposed, 

termed a Late Arrival Penalised UE (LAPUE). Conditions for the existence and 

uniqueness of LAPUE solutions are considered, as well as methods for their computation. 

Two specific travel time models are then considered, one based on multivariate Normal 

arc travel times, and an extended model to represent arc incidents, based on mixture 

distributions of multivariate Normals. Several illustrative examples are used to examine 

the sensitivity of LAPUE solutions to various input parameters, and in particular its 

comparison with UE predictions. Finally, paths for further research are discussed, 

including the extension of the model to include elements such as distributed arrival time 

constraints and penalties. 

 

 

 

 

 



1. INTRODUCTION AND REVIEW 

 

Equilibrium traffic assignment models are able to reflect drivers� path choice behaviour 

through a range of devices. The basic static, deterministic Wardrop User Equilibrium (UE) 

model explains the congestion-feedback effect, with the premise that drivers are able 

perfectly to predict the generalized travel times they will experience. The dynamic UE 

model (Ran & Boyce, 1996) takes this level of perfect predictive ability a stage further, 

assuming that drivers are able to perceive actual arc travel times differentiated by entry 

time to the arc. The Stochastic User Equilibrium (SUE) model (Daganzo & Sheffi, 1977) 

and Dual-Criteria UE model (Leurent, 1998) provide counterparts to the basic 

static/dynamic UE models, which include randomly-distributed elements in the drivers� 

perceptions of generalized travel times. This is intended to reflect the fact that as 

modellers, observing the transport system, we cannot hope to explain or observe all the 

factors that motivate path choice (typically only using readily-observed proxies for the 

explained elements, such as travel time, distance and tolls), and that these factors are likely 

to vary in importance across the travelling population.  

 

A comment that may be made regarding all such tools is that they are based very much on 

how the transport planner views the whole transport system. In particular, they allow a 

reflection of (at least some elements of) the great deal of observational uncertainty faced 

by modellers of the transport system, yet provide no hypothesis as to how the drivers in the 

network might consider uncertainty. This latter point is the focus of the present paper. In 

the context of traffic assignment, where drivers are selecting a path from a fixed origin to 

destination, the primary source of uncertainty for the individual driver is surely the fact 

that for any particular trip, the driver will not know in advance the precise traffic 

conditions he/she would encounter on the alternative paths available. While this will partly 

be attributable to a lack of spatial knowledge (an individual driver will only have 

experience of a limited number of alternatives), there will be a good deal of uncertainty 

even for those paths of which the driver has considerable experience. This uncertainty 

derives from the ambient trip-to-trip variation in travel times, both within and between 

days, due to factors such as incidents, breakdowns, weather and the variability in activity 

patterns. These factors lead to variations in, among other things, flows and capacities, 

which in turn impact on travel times. 
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At one level, empirical work is clearly needed to address how drivers respond to such 

variability in particular case-study situations (see, for example, Abdel-Aty et al, 1997; De 

Palma & Rochat, 1999). However, in order to have practical value, such empirical work 

needs appropriate hypothetical models with adjustable parameters, in order that the 

behavioural information may be exploited, as well as a link from the behavioural data to 

applications in a potentially large-scale network assignment model with heterogeneous 

origin-destination movements. The purpose of the present paper is the deduction of such 

hypothetical models. 

 

Research towards the development of such techniques has particular relevance for a 

number of reasons. Firstly, in the emerging topic of network reliability (Asakura, 1996; Du 

& Nicholson, 1997; Chen et al, 1999; Bell & Cassir, 2000), where one can view the traffic 

system as unreliable from an objective perspective, it seems inconsistent to assume that the 

drivers themselves have no view on such unreliability. Therefore, the techniques developed 

in this paper may be viewed as a step on the way towards a comprehensive model for 

network reliability assessment. Secondly, there has been a growing appreciation of the 

�value� of unreliability (Hall, 1993; Porter et al, 1996; DETR, 2000), and the potential 

advantages of understanding, and thereby mitigating against, the impacts of travel time 

variability. Thirdly, the emergence of traveller information systems has provided the 

technology to make a significant impact on the level of drivers� network knowledge, yet 

the full potential of such systems can only be realised if their impact on behaviour can be 

understood and forecast (Mannering et al, 1994; Emmerink et al, 1995). 

 

The purpose of the present paper is therefore to generalise existing equilibrium assignment 

approaches to accommodate travellers� reactions to variability in traffic conditions. As 

motivation, let us consider the simple network example defined below. 

 

Example 1  A network serves a single origin-destination demand of q units through two 

parallel arcs/paths.  The arc travel time functions on each arc a (a = 1,2) are functionally 

identical, i.e. the travel time function for arc a is )(Ș)( aaa vvt = , where  is an arc-

independent function assumed to be monotonically increasing, and where v

Ș

a denotes the 

flow on arc a. Drivers are assumed to perceive travel cost purely in terms of travel time. 

Suppose additionally that there are variations in the actual travel times on arc 1, but not 

on arc 2, such that the distribution of travel times at a given flow v1 on arc 1 has mean 

t1(v1) and variance σ1
2
 (for simplicity assumed flow-independent). 
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How might a conventional traffic assignment model deal with this example? If it is 

assumed, as is usual, that the population of drivers is a homogeneous group of risk-neutral, 

fully-informed travellers, then it would be natural to assume that drivers make their choice 

decision based on the expected travel costs (which equal expected travel times, if cost and 

time are perceived to be the same). Therefore, σ1
2
 would have no role, and in fact the split 

of demand between the two arcs/paths would be 50%/50% regardless of the value of σ1
2
, 

and regardless of whether a UE or SUE model is adopted. 

 

This independence from σ1
2
 derives from a number of assumptions underlying 

conventional applications of traffic assignment models, be they UE or SUE. The first key 

assumption is the premise that all drivers are risk-neutral, whereas in reality there are likely 

to be a variety of drivers, risk-averse, risk-prone and risk-neutral (Yin & Ieda, 2001). A 

risk-prone driver is likely to gamble on being �lucky�, and would therefore see the variance 

σ1
2
 as a positive attribute of arc 1, providing him/her with the chance of getting a lower 

travel time than arc 2. The risk-averse driver would look at the variance σ1
2
 in a negative 

way
1
, concerned that they might be one of the �unlucky� ones who experiences a higher 

travel time than that on arc 2. If there are more risk-prone than risk-averse drivers in the 

population, and the travel time density on arc 1 is symmetric, then one would expect in 

aggregate arc 1 to be used more than arc 2, and vice versa if risk-averse drivers out-

numbered risk-prone ones. The degree of asymmetry of the travel time density function 

would be a further confounding factor. 

 

A second key assumption is that variability itself is not valued as an inconvenience 

(Noland et al, 1998). The issue here is that while individuals may have flexibility in re-

arranging the arrival and departure times of their trips and associated activities, that all 

other things being equal they prefer not to incur the inconvenience of such re-scheduling. 

Therefore, they would tend to avoid the risk of having to do this wherever possible. For 

example, it may well be possible to bring forward or delay a meeting in response to travel 

conditions on the journey to work, but such re-arranging would have a nuisance value that 

might be avoided.  

 

A third key assumption is that while being risk-neutral, drivers are also neutral to the time 

at which they arrive at their destination. In practice, it seem logical that, while any kind of 

perception of �lateness� is likely to be valued negatively, the degree of negativity will 

                                                           
1
 The response of such a group may also be a reluctance to experiment with alternatives, a habit/inertia effect. 
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depend partly upon the flexibility of the activity at the end-point of the trip (Noland et al, 

1998; Noland, 1999). 

 

In the literature, a number of works can be found that address the issue of travel time 

variability in a traffic assignment context. The �rational expectations� approach of Arnott et 

al (1991) was developed for modelling driver information systems, in which uninformed 

drivers perceive expected, day-averaged costs and informed drivers day-specific costs. 

Emmerink et al (1995) developed this method further to include some kind of proxy to risk 

aversion, by supposing that utility was a linear combination of the travel time mean and 

standard deviation. In a similar vein, Van Berkum & Van der Mede (1999) defined utility as 

a combination of the travel time mean and variance. Mirchandani & Soroush (1987) and 

Watling (2002) developed generalised characterisations of equilibrium for cases in which 

travel times vary stochastically, yet both assumed risk-neutral decision-making.  

 

More recently, Yin & Ieda (2001) proposed a three user-class model, to reflect different 

attitudes to risk, in combination with a network assignment model with stochastically 

varying travel times. In order to reflect risk, they assumed disutility to be a user-specified, 

increasing function of the stochastic travel times, with drivers aiming to minimise expected 

disutility. Finally, Noland et al (1998) and Noland (1999) proposed a method that differs 

from Yin & Ieda�s in that there is an explicit link to users� preferred arrival times, and the 

penalty that might be incurred by late arrival. For problems with parallel alternative paths, 

and either uniform or exponential travel time densities, it was shown that a simple analytic 

form for the expected disutility could be derived. 

 

The approach developed in the present paper draws on aspects of the references in the 

latter paragraph. Like Yin & Ieda (2001), the aim is to develop a general network model 

based on arc travel time densities (which infer path travel time densities). However, 

following Noland et al, the utility function is developed from the user�s arrival time at the 

destination relative to some preferred schedule. In addition, the aim is to develop an 

approach that accommodates a flexible range of travel time densities, that are more 

plausible than the uniform/exponential, and incorporate both distributional asymmetries 

and correlation between arcs. 

 

The paper is structured as follows. Section 2 is concerned with the basic notation and 

model formulation, including a consideration of issues of existence, uniqueness and 

computation of the extended equilibrium model proposed. In section 3, specific examples 
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are presented of the general travel time density considered in section 2, and the appropriate 

functional forms deduced. Section 4 consists of numerical results from a number of 

illustrative examples, with conclusions and areas for further research in section 5. 

 

2. NOTATION AND MODEL FORMULATION 

 

The transportation network is considered as a directed graph consisting of A arcs indexed 

. The arc travel times are represented as stochastic variables, to represent the 

actual trip-to-trip variability in travel times. Thus, the actual travel time on arc a is denoted 

. The mean arc travel times are assumed themselves to be functions of the arc flows. 

Thus, if  denotes the flow on arc 

Aa ,...,2,1=

aT

av ),...,2,1( Aaa = , with v the A-vector of flows across all 

arcs, then the mean travel time on arc a is denoted . When all such functions are 

collected together across arc into an A-vector, the resulting vector function is denoted t(v). 

It is supposed then the joint density of arc travel times 

)(vat

},...,,{ 21 ATTT=T  has a known 

distributional form which is parameterised by the arc flow vector v, through t(v).
2

 

To the arcs of the network are joined W origin-destination (O-D) movements indexed 

, each with a demand of . It is assumed that the drivers that make up this 

demand make their path choice decision with a longest possible travel time in mind for 

their journey, which if exceeded would incur them some inconvenience. Since in the 

proposed model drivers have an already-fixed departure time, their perception of such a 

longest travel time implies a latest acceptable arrival time at their destination given their 

choice of departure time.  

Wk ,...,2,1= kq

 

Therefore, while the interest here is in incorporating a penalty for late arrival, we may 

equivalently incorporate a penalty for the travel time being longer than some acceptable 

level. For each O-D movement k, there is assumed to be a single, constant longest 

acceptable travel time  kĲ ),...,2,1( Wk = . It is noted that by division of the actual O-D 

movements into a larger number of virtual O-D movements representing �user classes� by 

movement, this approach can be generalised to reflect (say), differing arrival time 

flexibilities by trip purpose. Since this adds nothing to the problem mathematically, and 

only serves to make the notation more complex, such user classes are not explicitly 

                                                           
2The joint density of T may be parameterised by v in a very general sense, rather than v just parameterising 

the mean. See, for example, Watling (2002).  
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represented here, in the understanding that the proposed approach is trivially adapted to 

accommodate them through such �virtual� O-D movements. 

 

Having introduced the arcs and O-D movements, we move on to the paths of the network. 

The acyclic paths of the network are indexed by Nr ,...,2,1= , with the subset of path 

indices relating to O-D movement k denoted ),...,2,1( WkRk = . The flow on path r is 

denoted  and the N-vector of path flows across the whole network denoted f. In order to 

be feasible for the demand, we clearly must have 

rf

D∈f  where D is the convex set: 

 .           (1) 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=≥=== ∑
∈

),...,2,1(0 and ),...,2,1(: NrfWkqfD rk
Rr

r

k

f

The path flows are related to the arc flows by: 

                   (2) ǻfv =

where  is an ǻ NA×  arc-path incidence matrix, with elements  the 0/1 indicators equal 

to 1 only if arc a is part of path r. The convex set of demand-feasible link flow vectors is 

similarly denoted: 

arį

 { }DD ∈== fǻfvv and:
~

.                

 

The path travel times are assumed to be random variables, with the travel time  on path 

r related to the arc travel time variables by the transformation: 

rC

                 (3) ),...,2,1(į
1

NrTC
A

a
aarr ==∑

=

which (if C denotes the random vector of path travel times) may be written in vector form: 

  TǻC ′=

where  denotes the transpose of the matrix . Through such logic, the marginal 

distributions of the , which will be needed below, are parameterised by v (through the 

distribution of T and its mean t(v)).  

ǻ′ ǻ

rC

 

The final, important element of the approach is the specification of the path selection 

model of drivers. The basis of this model is the formation of a composite disutility function 

which, for each path in the network, is able to reflect both: 

• a driver�s valuation of the path�s expected attributes (distance, expected travel time, 

tolls, etc.); and 
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• the extent to which following that path is likely, in the light of travel time 

variability, to satisfy a traveller on that O-D movement in achieving an �acceptable� 

arrival time at the destination. 

 

The approach is based on the �schedule delay� concept proposed by Vickrey (1969). This 

has enjoyed some considerable use in travel choice problems in the transportation field, 

primarily in a deterministic travel time setting (e.g., Alfa, 1986; Ben-Akiva et al, 1986; 

Arnott et al, 1990; Ran et al, 1996; Yang & Huang, 1997), with a handful of contributions 

in a stochastic setting (Sumi et al, 1990; Noland et al, 1998). In this way, it is supposed 

that an individual considering path kRr ∈ , and perceiving a given path travel time of , 

may be represented as forming a composite path disutility, incorporating both the standard 

�generalized travel time� (

rc

rr cd 10 θ+θ  in (4) below) and the travel time acceptability in the 

form of a lateness penalty: 

 ur = θ0 dr + θ1 cr + θ2 max(0, cr  − τk)       ),...,2,1;( WkRr k =∈  .                      (4) 

where dr  represents the composite of attributes (such as distance) that are independent of 

time/flow and θ0 is the value placed on these attributes, θ1 is the value-of-time, and θ2 

reflects the value of being later than acceptable, Clearly, since ur is a disutility, it would 

generally be expected to value both variable components negatively, i.e. θ1 > 0 and θ2 > 0. 

 

Expression (4) then may be generalised by presuming that individuals now have a view of 

the likely variability in travel times. Indeed, they are assumed to possess such information 

that they perceive (or can be represented as perceiving) the full joint probability 

distribution for the actual path travel time random variables. Replacing cr with the random 

variable Cr in (4), and taking expectations, leads to an expected composite path disutility:  

ur =  θ0 dr + θ1 E[Cr] + θ2 E[max(0, Cr  − τk)]       ),...,2,1;( WkRr k =∈  .            (5) 

If  denotes the marginal density function of Crȥ r then (4) may be written: 

 ur =  θ0 dr + θ1 E[Cr] + θ2  .                       (6) ccc
k

rk d)(ȥ)Ĳ(

Ĳ
∫
∞

−

The expected disutility represents the average disutility this particular individual would 

attach to path r. This point is emphasized since the term �expected utility/ disutility� is in 

common use in transport to reflect an expectation across a population of individuals. 

Above, it is something rather different, namely an expectation across the range of trip-to-

trip travel times that could occur, relative to the desires of a particular individual.  
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Based on the components described above, a characterization of equilibrium may then be 

specified, extending the conventional concept of Wardrop User Equilibrium (Smith, 1979): 

 

Definition  Consider the definition of expected path disutility (6), and write this as  

to reflect a sequence of causalities: namely, the fact that the path disutility  is computed 

from the marginal density of C

)(fru

ru

rȥ r , which depends on the path flows f through the link 

flows v (from (2)), which impact on the mean travel times through t(v), which in turn 

parameterise the joint density of T, from which the marginal density  is imputed 

through (3). Then, a path flow vector 

rȥ

D∈*
f  is termed a Late Arrival Penalised User 

Equilibrium (LAPUE), if is a Wardrop equilibrium based on path cost functions . 

That is to say, if  denotes the N-vector with elements the functions 

, then  is a LAPUE if and only if  

*
f )(fru

)(fu

),...,2,1()( Nrur =f D∈*
f

  .              (7) D∈∀≥−′ ffffu 0)()( **

 

As in UE models, our interest is typically not in the path flows themselves, but in the 

induced link flows through the application of (2) to a LAPUE path flow solution.  

 

Existence  Consider the marginal path travel time density function for path r, and write it 

as );( rrr c μψ  to denote its (partial) parameterisation by the mean path travel time rμ . 

Suppose that the functions xist and 

are continuous. Suppose further that t(v) is a continuous mapping. Then LAPUE solutions 

exist. 

∫
∞

=∈−=
k

WkRrdcccF krkr

τ

μψτμ ),...,2,1;();()()(  e

 

Proof   The proof is a minor modification to the proof of Smith (1979) to apply to the path 

flow, as opposed to arc flow, domain. In outline, since D is a closed, convex subset, then 

for any D∈g  there exists a unique point D∈)(gp  which is nearest to g. A mapping may 

then be introduced  such that DD →:ș ))(()(ș fufpf += . As established by Smith 

(1979), f is then a UE if and only if ff =)(ș . Then, applying Brouwer�s fixed point 

theorem, such a solution exists if  is a continuous mapping. But ș  is continuous if u is, 

and by hypothesis u is a continuous composition of continuous functions (the  and the 

expectation of (3)), and so the result is established. 

ș

t,rF
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Uniqueness  Suppose that the conditions of the Existence result above hold, and that in 

(6),  and . Suppose further that the arc travel time functions are strictly 

monotone, in the sense that 

0ș1 > 0ș2 ≥

0)())()(( >−′− wvwtvt  for any . Finally 

suppose that the functions  (as defined above) are non-decreasing. Then there is a 

unique induced LAPUE arc flow solution. 

)(
~

, wvwv ≠∈D

)ȝ( rrF

 

Proof  Again the proof involves a modification of that given by Smith (1979).  Since the 

conditions of the Existence result hold, LAPUE solutions exist. Consider any two such 

LAPUE (path flow) solutions f and g, with distinct induced arc flows, i.e. ǻgǻf ≠ . 

Consider the function  relating path flows to mean path travel times, )(fȡ )()( ǻftǻfȡ ′= . 

Then for such an f and g: 

 
0)())()(()())()((                                 

)()))()((()())()((

>−′−=−′−=
−′−′=−′−

ǻgǻfǻgtǻftgfǻǻgtǻft

gfǻgtǻftǻgfgȡfȡ
 

since t(.) strictly monotone and by hypothesis ǻgǻf ≠ . Since by the assumptions of the 

theorem, the functions  are non-decreasing, and  and , then the path 

disutility function  also satisfies this strict monotonicity-like condition for path flow 

pairs inducing distinct arc flows, being a montonically increasing, linear combination of 

strictly and weakly monotone-like functions: 

)ȝ( rrF 0ș1 > 0ș2 ≥

)(fu

 ).(,0)())()(( ǻgǻfgfgfgufu ≠∈>−′− D             (8) 

On the other hand, consider and expand the following expression: 

 0)())()(()()()()( >−′−+−′=−′ gfgufugfgugffu  

where the >0 condition holds because the first term in the expansion is non-negative (since 

g is a LAPUE by hypothesis, using the LAPUE definition) and the second term is positive 

(by (8)). But since f is also a LAPUE by hypothesis, then applying the LAPUE definition 

for f yields , i.e. 0)()( ≥−′ fgfu 0)()( ≤−′ gffu , giving a contradiction. Hence the original 

hypothesis, of two LAPUE solutions with distinct arc flows, must be false. 

 

 

Having formulated the LAPUE model, a natural next question is that of computation of 

LAPUE solutions. This is not entirely straightforward, since in general the expected path 

disutility (6) is not expressible as a sum of arc disutilities. This has the effect that standard 

shortest path methods are not readily applied, and that the usual computational strategy, of 

avoiding explicit storage of path flows (as in the Frank-Wolfe algorithm, for example), is 
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not viable
3
. Recently, several authors have developed algorithms for non-additive 

equilibrium problems of this general kind (Gabriel & Bernstein, 1997; Scott & Bernstein, 

1998; Lo & Chen, 2000), extending previous work that had used �gap� functions and path 

flow variables for the standard additive equilibrium problem. The approach proposed by 

Lo & Chen (2000) is particularly attractive, whereby recent advances in the use of �merit 

functions� in the non-linear complementarity field are applied to obtain a problem with a 

smooth (continuously differentiable) gap function under mild conditions. This allows 

standard algorithms for unconstrained optimisation to be applied.  

 

In order to apply Lo & Chen�s algorithm, the LAPUE model is reformulated as a 

complementarity problem ( 0)(,)(, =′≥≥ xFx0xF0x ) by introducing the  vectors: WN +

      (⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

y

f
x ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

)(

)(
)(

xF

xF
xF

y

f

WNiFx ii += ,...,2,1),(and elementswith x ) 

where 

   y =  W-vector of minimum O-D disutilities, ),...,2,1(}:min{ WkRruy krk =∈=  

   =  N-vector function of elements (.)f
F ),...,2,1;()( WkRryu kkr =∈−f  

   =  W-vector function of elements (.)y
F ),...,2,1( Wkqf k

Rr
r

k

=−∑
∈

 . 

LAPUE solutions may then be determined by minimising the gap function: 

    where   ∑
+

=

ϕ=
WN

i
ii FxG

1

))(,()( xx ( )222

2
1 )(),( bababa +−+=ϕ  . 

The minimisation may be carried out by any standard technique. The remaining 

complication is how to deal with the resulting non-additive shortest path problems. Lo & 

Chen (2000) suggest two alternative strategies, either using a pre-defined path set or 

building a path set as required using a kind of heuristic column generation method. In the 

case of the pre-defined path set, the paths may be generated by the application of a 

standard UE or SUE algorithm. 

 

3. FORM OF THE ARC TRAVEL TIME DENSITY FUNCTIONS 

 

The LAPUE approach introduced in section 2 is �generic�, in the sense that no particular 

form of travel time density function is assumed. It is natural to examine the impact of 

                                                           
3Gordon et al (2001) developed heuristics for problems of the kind considered in the present paper, whereby 

arc-additive Taylor-series approximations to the path disutilities are used in a shortest path method, but in 

numerical tests these had limited success.  

 11



alternative forms of density function, in order to understand better the implications of the 

modelling approach proposed. For the case of parallel paths, each consisting of a single 

arc, Noland & Small (1995) derived the appropriate expression resulting from (6) for the 

cases of exponential and uniform travel time distributions. In practice, it would seem 

unlikely that the uniform would be a reasonable fit to actual travel time variations. The 

exponential distribution is rather inflexible, having only a single parameter, and so again 

might be expected to be troublesome in fitting to real data.  

 

In the general network case, one of the most straightforward and flexible assumptions is to 

assume that arc travel times follow a Multivariate Normal distribution, with a flow-

dependent mean vector t(v) based on the arc performance functions, and a constant 

covariance matrix. This implies that the joint density of path travel times is (for fixed v) 

also a Multivariate Normal, and so the marginal densities for individual paths (needed in 

(6)) will be univariate Normals. Such an approach has a number of advantages and 

disadvantages. The advantages are: 

• The convolution of arc travel times gives marginal path travel time densities of a 

simple form. 

• Correlations between arcs can be specified. Such correlations might be expected when 

the variation reflects, say, the impact of rain or snow, or a traffic incident with far-

reaching consequences. Variations in demand, such as that due to a special event for 

example, are also likely to have a correlating effect. In such cases, on any single trip, 

one would tend to expect all travel times to be higher than average.  

• While arc correlations naturally arise, actually estimating them is a different problem. 

If they can be assumed to be small in relation to the variances, then we might justify 

neglecting them. A special case of the distribution suggested is when the arc travel 

times follow independent Normal distributions (as assumed by Yin & Ieda, 2001). 

• A quite different issue is that of route travel time correlations. It could be argued that, 

from the viewpoint of logical model consistency, these are considerably more 

important than the arc travel time correlations. Whether or not the arc travel times are 

independent or correlated, the path travel times will be correlated due to the fact that 

paths overlap, and so share some common arcs. Thus, a driver who perceives one arc to 

be �risky� will perceive it as risky for all paths using that arc. The network structure 

means that these correlations must exist. The fact that the path densities are formed 

from component link densities ensures that such correlations are automatically taken 

account of. 
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Some disadvantages of the multivariate Normal assumption are: 

• Negative link travel times are in principle permitted, though if the model fits well to 

observed data then the impact will be negligible (see the point below about fit). 

• The implicit assumption of univariate Normal link density functions assumes 

symmetry. However, many of the sources of variability (in traffic flows and link 

capacities, for example) will likely have an asymmetric effect on travel times, yielding 

a positively skewed distribution.  

 

We shall see how the disadvantages noted above may be overcome later in the section, by 

an extension of the basic Normality assumption. For the moment, however, we explore the 

implications of the multivariate Normal assumption for the expected utility function (6). In 

particular, this assumption implies that the marginal route travel times follow a (univariate) 

Normal distribution, say Cr ~ Normal(μr ,σr
2
) for each route r. It is worth remembering that 

although we require only the marginal route travel time densities for (6), we are not 

assuming routes to be statistically independent. Under this model, (6) then can be shown to 

be expressible as: 

ur =  θ0 dr + θ1  + θrμ 2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
μ−τ

σ
r

rk
r L .                             (9) 

The function L, known as the unit normal linear loss integral, arises among other 

applications in inventory and stock control (e.g. Johnson & Montgomery, 1974; 

Dunkerley, 2000), and is defined as: 

 L(x)  =    =   φ(x)  +  x Φ(x)  − x         (−∞ < x < ∞)        (10) ∫
∞

φ−
x

uuxu d)()(

where φ(.) and Φ(.) are respectively the probability density function and cumulative 

distribution function of a Normal(0,1) variate. It is noted that L is a continuous, decreasing 

function, and thus (since the argument of L is monotonically decreasing in rμ ) the 

conditions of the Existence and Uniqueness results in section 2 are met. 

 

A number of properties of (9) may be readily observed. In particular, as τk is increased, 

reflecting greater arrival time flexibility, then since L is a decreasing function, the expected 

late arrival time ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
μ−τ

σ
r

rk
r L  will decrease, and therefore have a lesser impact on the 

overall route disutility. This happens regardless of the size of rσ ; in the LAPUE model, it 

is not variability itself that is unattractive to drivers, only its potential impact on late 
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arrival. As , ∞→τk 0→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
μ−τ

r

rkL  and the LAPUE model approaches a standard UE 

model. Similarly, as  then 0→σr 0→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
μ−τ

σ
r

rk
r L , and again a standard UE model is 

recovered.  

  

It should be emphasised, however, that (9) does not provide support for a utility function 

that is linear in μr and σr , since the �loss� terms are themselves functions of μr and σr . 

However, it is noted in passing that if we modified our approach so that drivers had a path-

specific (rather than trip-specific) expectation of an acceptable travel time, then some 

considerable simplification is possible. In particular, if the latest path-specific acceptable 

arrival time rτ
~  for path r is supposed to be a path-independent function of the travel time 

standard deviation, rrr bσ+μ=τ  for some constant b, then the coefficient of rσ  in (9) 

would collapse to the constant )(2 bLθ . However, the link to late arrivals for performing 

activities at the destination is then lost, for suppose 2=b  and consider two paths, with 

μ1=μ2=10, σ1=3 and σ2=2. Then a lateness penalty is incurred on path 1 if the travel time 

exceeds 16, whereas on path 2 a lateness penalty is incurred with a travel time of only 

more than 14. Since departure times are fixed, this implies that the penalty incurred 

depends not only on the arrival time but also on the particular path followed. Thus the 

�lateness penalty� incurred by a trip arriving at the destination on path 2 may be greater 

than that of a later arrival on path 1. This may be said to occur as path 2 was not expected 

to give such an extreme travel time relative to its own distribution, even though the time 

may be a lesser one than that on path 1. This alternative formulation is mentioned only for 

the purposes of contrast, and will not be considered further in the paper. 

 

As noted earlier, while the Normal distribution has a number of advantages, it also has 

some disadvantages, in particular its assumption of symmetry. Even if it could be argued 

that sources such as variation in the demand matrix might lead to an approximately 

symmetric arc flow probability distribution, this would not imply that the arc travel time 

distribution is also symmetric.  This is due to the fact that the impact of high flow days on 

travel times would be expected to be more pronounced than the impact of low flow days. 

For similar reasons, capacity-reducing incidents also typically have an asymmetric effect 

on travel times. The problem is that, although it is entirely logical that variance increases 

with unreliability, this does not imply that variance is sufficiently fundamental to describe 

unreliability. In particular, with the Normal distribution, as we increase the variance, we 
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are not only increasing the probability of particularly long journey times, but at the same 

rate are increasing the probability of particularly short journey times.  

 

A more logical travel time distribution, it seems therefore, is an asymmetric distribution, 

and in particular some form of positively skewed distribution. While there are clearly a 

number of standard candidate forms, such as the Lognormal or gamma, for fitting to data it 

would seem particularly useful to hypothesise a distribution with a good deal of control (in 

terms of parameters) over the right-hand tail. Such a distribution could be a mixture 

distribution, as described below.  

 

Suppose that part of the variation of the continuous random variable X is explained by 

knowledge of the value of some categorical/discrete variable Y, which can take one of a 

finite number of values . Suppose that the probability distribution of Y is 

denoted , where , and that the conditional 

probability densities of 

m,...,y,yy 21

)21(   )Pr( ,...,m,iyYp ii === 1
1

=∑
=

m

i
ip

YX are denoted ( ) )21()( ,...,m,ixgyYxg ii === . Then the 

unconditional density g(x) of the variable X is given by , and is known 

as a mixture distribution.  

∑
=

=
m

i
ii xgpxg

1

)()(

 

As a simple example, suppose that an arc has two possible distinct states, which we might 

term �incident� and �non-incident�. The probability of an incident occurring is denoted p. 

Suppose that the travel time probability density in the non-incident state is  and in the 

incident state is . The resultant distribution is a mixture distribution with density 

function . 

)(1 tg

)(2 tg

)()()1()( 21 tpgtgptg +−=

 

For example, suppose that in the two-state example above,  is a Normal(10,21g 2
) density, 

and  a Normal(15,22g 2
) density. The resultant density functions, for four choices of p, are 

illustrated in Figure 1, with summary statistics given in Table 1, illustrating the control 

possible over the right-hand tail. 
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Figure 1: Density functions corresponding to mixture of  Nor(10,2
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) and Nor(15,2

2
) 

  

p Mean St dev Mode 

0 10.0 2.0 10.0 

0.1 

0.2 

0.3 

10.5 

11.0 

11.5 

2.5 

2.8 

3.0 

10.0 

10.1 

10.1 

 

Table 1: Summary statistics for mixture of Nor(10,2
2
) and Nor(15,2

2
)  

 

If we suppose, for example, that the arc travel times are statistically independent, each 

following Normal mixture distributions, then the joint path travel times density will be a 

mixture of multivariate Normals, with the marginal path travel time densities univariate 

Normal mixtures. If the resulting travel time density for path r is then a mixture of m 

Normal(μir ,σir
2
) densities (i = 1,2,�,m)  with mixing parameters pir  (i = 1,2,�,m), then the 

generalisation of (9) is: 

ur =  θ0 dr + θ1 + θ∑
=

m

i
irirp

1

ȝ 2 ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −τm

i ir

irk
irir Lp

1 ı
ȝ

ı  .                    (11) 

Correlations between arcs can be introduced by grouping arcs and assuming multivariate 

Normal mixtures; again marginal univariate Normal mixtures arise for the path travel 

times. 

 

4. ILLUSTRATIVE EXAMPLES 

 

As a first step, we consider the two path network in Figure 2, and in Figure 3 the effect of 

changing the path 1 travel time variance on the LAPUE solution is examined. In the special 
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case θ2 = 0, no value is placed on late arrival, and LAPUE collapses to a standard UE. 

Similarly, as τ1→∞, then even for non-zero θ2, LAPUE approaches UE as drivers increase 

in flexibility. In the example, it can be seen how an increasing travel time standard 

deviation on path 1 leads, in the LAPUE model, to an increasingly deterrent effect on the 

flow using path 1, this flow substantially different from the UE solution. However, this 

result also depends on the late arrival flexibility τ1; as τ1 is increased the LAPUE graph 

will approach the UE line, as the perceived lateness penalty diminishes. 

 

 

 

 
 

                    T1 ~ Nor(8+(v1/200)
2
 , σ1

2
) 

 

 

 

         q1 = 2000 

  

 

 
                     T2 ~ Nor (10+ v2/350 , 4) 

 

    Figure 2: Test Network 1 (θ0 = 0, θ1 = 1, θ2 = 2, τ1 = 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F 

 

 

200

220

240

260

280

300

320

340

360

380

400

0 2 4 6 8 10

Path 1 travel time standard deviation

P
at

h
 1

 e
q

u
ili

b
ri

u
m

 f
lo

w

UE

LAPUE

Figure 3: Impact of travel time variability on LAPUE solution, Network 1 

 

An application of the normal mixture model specified in section 3 is now considered. With 

probability pa an incident occurs on arc a. When an incident does not occur, the travel time 

density is Nor(μa,σa
2
) (by an abuse of notation, we here allow μ and σ to denote properties 
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of an arc, rather than a path). When an incident does occur, the density is Nor(kaμa,σa
2
), for 

some given ka ≥ 1. The overall mean travel time for each arc a is then (1− pa) μa + pa kaμa , 

and it is these values that are equilibrated with the arc travel time functions in LAPUE.   

 

Test network 2 is illustrated in Figure 4, with the three possible paths also labelled for 

reference. The UE path flows are (300, 100, 600) at path travel times of 22.0. For pure 

Normal arc travel times, LAPUE path flows are (338, 0, 662) at disutilities (22.0, 22.1, 

22.0). Therefore the active paths are different in the UE and LAPUE cases. Also, in the 

LAPUE state, the path mean travel times are unequal (20.9, 20.7, 21.9), with the unused 

path actually having the lowest mean time (but unappealing as it uses two �risky� arcs).  
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Figure 4: Test Network 2 

 

 

For the same example, but assuming incidents now occur on arc 1 with probability p1 = 0.1, 

the graphs in Figure 5, 6 and 7 illustrate respectively the LAPUE path flows, path 

disutilities and path mean travel times at varying values of k1, the inflation factor for mean 

travel times on the �incident� arc, arc 1. In all cases, path 2 remains unused. While an 

increase in k1 would increase the path 1 mean travel time at fixed flows, it can be seen from 

Figure 5 that the LAPUE model predicts that drivers would mitigate this effect by diverting 

away from the risky route, to the extent that the equilibrium path 1 travel time decreases 

with k1 on the used paths (see Figure 7). This is because, as illustrated in Figure 6, it is the 

path disutilities that are being equilibrated, not mean path travel times: therefore, in Figure 

6 the disutilities for the used paths coincide, the disutility for the unused path (path 2) is 

higher than the disutility on the used path.  
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Figure 5: LAPUE used path flows for Network 2, under various values of  1k
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Figure 6: LAPUE path disutilities for Network 2, under various values of  1k
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Figure 7: LAPUE used path mean travel times for Network 2, under various values of  1k

 

4. STOCHASTIC USER EQUILIBRIUM AND THE LAPUE MODEL 

 

A generalisation of the conventional UE model⎯termed LAPUE⎯has been presented, to 

reflect driver responses to stochastically-varying travel times. It is then natural to ask how 

the concepts introduced relate to the established method for incorporating stochastic 

elements in an equilibrium framework known as Stochastic User Equilibrium (SUE), due 

to Daganzo & Sheffi (1977). The purpose of the present section is contrast the treatment of 

�stochasticity� in a LAPUE model with that in a conventional SUE model. 

 

Definition (Daganzo & Sheffi, 1977) D∈*
f  is a SUE if and only if  
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             (12) 

where for each , the column vectors  and , of dimension Wk ,...,2,1= *
][kf )( *

][ fc k kR , 

respectively denote the flows and costs on paths serving movement k , and 

kk RR
k ]1,0[:][ →ℜp  is a given mapping from the space of path cost vectors to the space 

of path choice fraction vectors for movement k.  
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This is a rather general definition, yet the specific forms proposed in the literature presume 

the path choice fractions to be given by a random utility model: 

 ( )kssrrkr Rsccp ∈∀+≤+= İİPr)(][ c ),...,2,1;( WkRr k =∈         (13) 

where the  are elements of the vector function , and where the )().(][ kkr Rrp ∈ ).(][kp rİ  

terms ),...,2,1;( WkRr k =∈  are random variables, conventionally assumed to have zero 

mean, following a given joint probability distribution. The two commonest examples of 

such a model in the literature are the logit SUE (derived from an assumption of 

independent Weibull random disturbance terms) and the probit SUE (derived from 

multivariate normal random disturbance terms); see Sheffi (1985). 

 

Now, in practice the generalised cost of any path r is typically assumed to be a linear 

composition of travel time rt  and other attributes that are independent of flow/travel-time; 

without loss of generality, we simply refer to these latter attributes in a composite form rd  

(e.g. distance). Then the premise behind the application of random utility theory to SUE is 

that a randomly-distributed perceived cost is associated with each alternative path r, of the 

form: 

 Perceived cost of path r  =  rrr td İșș 10 ++             (14) 

where  and  are constants, 0ș 1ș rd  and rt  are deterministic attributes of path r, and rİ  is 

a random �error� term. Equivalently, since only path differences in cost are relevant in the 

random utility model (13), we may divide (14) throughout by  and instead consider: 1ș

 Perceived generalised travel time of path r = rrr td İ~ș~0 ++           (15) 

where 
1

0
0 ș
șș~ =  and 

1ș
İİ~ r

r = . 

 

An obvious question to ask then is: what exactly do the random error terms in (14) or (15) 

represent? In practice, they are likely to represent a composition of a number of 

components, with plausible interpretations of the components including: 

̌ Representation of unexplained attributes, i.e. factors that affect route choice which are 

not included in  or . rd rt

̌ Taste variation in the sense of driver-to-driver differences in the weights attached to 

the explained attributes. While in structural terms this would more properly be 

reflected by postulating a multiplicative random error term such as variation in  (see, 

for example, Leurent, 1998; Nielsen et al, 2002), in models where  is assumed 

constant part of the additive variation may be attempting to explain this facet. 

1ș

1ș
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̌ Lack of model fit other than the two sources noted above, ranging from lack-of-fit of 

the random utility paradigm to actual decision processes, through to mis-specification, 

mis-recording and coding errors in the network and demand data. 

̌ Drivers’ estimation errors, in the sense of their inability to estimate correctly the actual 

mean travel times. For example, if the actual variance in travel times on a particular arc 

were , and if drivers� past trip experiences could be represented as a process of 

random sampling of realised actual travel times in a sample of size n, then the variance 

in their estimation of mean travel times would be 

2ı

n
2ı .  

 

Aside from such philosophical discussions, it may be tempting nevertheless to adopt a 

pragmatic approach whereby the term rrt İ~+  in expression (15) is equated with the actual 

variation in travel times. Even if difficult to justify on behavioural/philosophical grounds, 

it may seem that this would provide a device for representing the impact of travel time 

variability in a similar spirit to the LAPUE model.  However, consider Example 1 

introduced in §1. Assuming that the actual travel time variation in arc 1 follows a Normal 

distribution, and equating the actual travel time distribution with the perceptual distribution 

of an SUE model, a probit SUE model arises: 

 ( ) )ıNor(0,~İ;;)(İ)(Pr
2

1112221111 vqvvtvtqv −=≤+=  

which implies 

 )0(
ı

)()(ĭ 1
1

1112
1 qv

vtvqt
qv ≤≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−
=   

where  denotes the unit normal cumulative distribution function. By inspection, the 

unique SUE solution to this problem may be verified to be 

).(ĭ

221
qvv == , regardless of  

(recalling that as the travel times are functionally identical, 

1ı

)()(
2221
qq tt = ). Therefore, the 

existence of the variance  has no effect.  2
1ı

 

The example above represents an extreme case, but is chosen to illustrate that there is 

nothing intrinsic in the basic SUE model to deal with risk-aversion. An interpretation of 

the situation being modelled here is one in which each driver randomly samples a single 

travel time for each path from the distribution of actual travel times, and makes a decision 

on that basis. Yet this seems inconsistent with the hypothesis of equilibrium analysis, with 

the justification being that an equilibrium state may be assumed to prevail after some 

period of experimentation, adaptation and stabilisation of the system, in which drivers� 

experiences are implicitly more extensive than that of making a single previous journey. 
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This can be contrasted with a more logical interpretation of the SUE distributions, as 

representing differences across the population in their estimation of expected travel times; 

in that case, sampling from the distribution would now represent sampling different 

individuals across the population and their perception of expected travel time 

 

In contrast to the SUE solution noted above, the LAPUE solution for this problem would 

be (neglecting the possibility that 01 =v  could be a LAPUE) the solution in  to: 1v

 )0()(
ı

)(Ĳı)( 112
1

11
111 qvvqt

vt
Lvt ≤≤−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+ . 

Since, as noted previously, the correction term on arc 1 is non-negative, then 

, and since the travel time functions are functionally identical and 

monotonically increasing, this implies 

)()( 1211 vqtvt −≤

11 vqv −≤ , i.e. 
21

qv ≤ . Moreover, since the 

correction term is an increasing function of , then the arc 1 LAPUE flow will be a 

decreasing function of  (see also the example illustrated in Figure 3).  

1ı

1ı

 

Therefore, it is appropriate to consider LAPUE and SUE as two distinct approaches. 

Effectively, the stochastic element in LAPUE deals with trip-to-trip variation in actual 

travel times and its effect on risk-taking strategies, whereas the stochastic element in SUE 

essentially deals with differences in perceptions of utility across the driver population. 

Indeed, the elements represented by the two modelling approaches are sufficiently distinct 

that (as explained in the conclusion section) it would be attractive to consider combining 

the LAPUE and SUE models into a single approach. 

 

5. CONCLUSIONS AND FUTURE RESEARCH 

 

A generalised form of the UE model, termed LAPUE, has been presented in this paper, 

which is able to reflect drivers aversion to the risk of late arrival, in the face of uncertain 

travel times. Existence and uniqueness of LAPUE solutions is guaranteed under mild 

extensions to the sufficient conditions for the UE case. While the non-additive path 

disutilities make the application of standard equilibrium algorithms problematic, it has 

been suggested that recent advances in smooth, gap-function based methods allow such 

problems to be solved, at least for small to moderate sized networks (though this has yet to 

be tested in practice). Two specific forms of the model, based on multivariate normal travel 

times and normal mixture distributions, have been investigated, and have been seen to 
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produce plausible effects, which nevertheless differ substantively from those predicted by a 

UE model. Whether the LAPUE or UE model is the most realistic is an open question, but 

the preliminary results here indicate that this is a question that is worthwhile addressing 

through empirical studies, given the potential differences in model forecasts. 

 

Aside from empirical work to understand individuals� attitudes to risk/variability, and 

numerical tests of the algorithm proposed on larger scale networks, there are many further 

areas for methodological research with this approach. In the basic model described it has 

been assumed that travel time variability is an exogenously-defined feature of the transport 

system, whereas in practice a primary source of travel time variation is the variation in 

activities. This variation manifests itself in variable link flows, which could in turn impact 

on the distribution of travel times; as shown in Watling (2002), such endogenous sources 

of variation may in principle be capture using generalised notions of equilibrium. The 

potential is attractive for combining such a model, or an approximation thereto, with the 

late arrival/travel time variability considerations proposed in the present paper 

 

On the behavioural side, the realism of the LAPUE model would be greatly improved by 

reflecting the differences in individuals and trips, perhaps through randomly distributed 

model elements. Such an approach could be used to reflect: differing valuations of late 

arrival by journey purpose, for example, given a purpose-specific demand matrix; 

perceptual differences/errors in actual travel times between individuals; and, perhaps most 

significantly, a profile of preferred arrival times (through randomly-distributed  values). 

In the spirit of current developments in mixed logit models, these elements might be 

combined to represent a single randomly utility model, with equilibrium then 

corresponding to an SUE counterpart to the LAPUE model (LAPSUE?).  

kĲ

 

Finally, the representation of the user�s approach to network reliability can be viewed as 

one element of an overall framework for reliability assessment. It seems that a number of 

tools developed for the present application will also be useful in providing network 

performance measures of reliability, which is a highly active research topic. 
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