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Abstract

This paper develops an indirect evolutionary game model with two-vertically integrated channels to study evolution-
arily stable strategies (ESS) of retailers in the quantity-setting duopoly situation with homogeneous goods and analyzes
the effects of the demand and raw material supply disruptions on the retailers� strategies. Every channel consists of one
manufacturer and many (a sufficiently large number of) retailers that sell products in different markets by adopting two
pure marketing strategies: profit maximization and revenue maximization. We find that revenue maximization strategy
may prevail and profit maximization strategy may become extinct. Two strategies may coexist, i.e., all retailers in one
channel will choose profit maximization strategy and all retailers in the other will choose revenue maximization strat-
egy. The ESS of retailers depends on the relative size of the market scale and unit cost. The supply chain disruptions
affect the ESS of retailers. We also introduce a recovery model of the supply chain under disruptions and illustrate the
effect of disruptions on the ESS and on the average profits of channels in a market using a numerical simulation.
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1. Introduction

Recently, there has been a widespread interest in using evolutionary game theory to study economic sys-
tem, which remedies some drawbacks of orthodox game theory. In particular, orthodox game theory as-
sumes that (a) players are fully rational and can take an optimal action (sophisticated); (b) they have
the common knowledge of rationality; (c) they know the rules of the game. But, in reality players often have
bounded rationality, can not take an optimal action (naı̈ve), may not know the others� rationality and the
rules of the game, which are the assumptions made in evolutionary game theory. Even rational players of-
ten make mistakes that will affect the strategies of other players. Other fully rational players often make
noise in the form of mutations or mistakes (see Young, 1993). There may be multiple solutions of general
non-cooperative games. How do players choose among multiple solutions? It is very difficult for orthodox
game theory to answer this question, but rather straightforward for evolutionary game theory. From a par-
ticular starting point, a unique steady state will be reached in a evolutionary game. The selected equilibrium
is path-dependent, and the observed equilibrium depends on the initial condition.

Our study is closely related to the disruption management and evolutionary management of a supply
chain, and duopoly competition. There are literatures studying oligopoly competition from evolutionary
perspective. For the competition of the quantity-setting homogeneous oligopoly, see, for example, Tanaka
(1999) studied the stochastically stable output of the asymmetric homogeneous oligopoly with low cost and
high cost firms and showed that a stochastically stable output equals the competitive (Walrasian) output.
Bischi and Kopel (2001) considered a simple Cournot-type duopoly market where competitors produce
homogeneous goods and offer them at discrete time periods on a common market. They showed that for
the nonlinear model multiple (locally) stable equilibriums may be observed. In this paper, we will study
the quantity-setting homogeneous duopoly. Xiao and Yu (2005) studied the evolutionarily stable marketing
strategies of retailers in two vertically integrated channels with differentiated goods. In the model, they ana-
lyzed the effects of the type of strategic interaction (strategic substitutes or complements). In this paper, we
consider the two vertically integrated channels with homogeneous goods. There are literatures studying the
differentiated goods competition (see, Tanaka, 2000; Xiao and Yu, 2005). Tanaka (2000) presented evolu-
tionary game theoretic analyses of symmetric price-setting and quantity-setting oligopolies with differenti-
ated goods. Jin (2001) showed that a simple and optimal price strategy could lead the market to a unique
steady state. He found that the price convergence does not necessarily require almost perfect information
and full rationality. In our model, we investigate the quantity-setting duopoly other than the price-setting
duopoly. Xiao and Yu (2005) showed that profit maximization is a unique ESS in the price-setting duopoly
situation with differentiated goods and linear inverse demand functions. Hence, we do not consider the
price-setting duopoly situation.

Güth and Yaari (1992) brought forth an indirect evolutionary approach to study the effect of the pref-
erences of individuals on their strategies. They assumed that players rationally take actions based on their
preferences, but their preferences evolve over time. For the indirect evolutionary perspective, one can also
refer to Bester and Güth (1998) and Huck and Oechssler (1999). In our model, we study the evolutionarily
stable strategies (ESS) of preferences of retailers from an indirect evolutionary perspective. The retailers will
maximize their utilities (revenues or profits) based on their preferences.

In general, economic literatures on evolutionary game theory assume the existence of many players and
analyze what percentage of the population would choose a given strategy. Others analyze the change of the
probability for choosing a specific strategy (Morrison, 1996). In our model, we focus on the distribution of
strategies (the fraction of using a corresponding strategy) in the population rather than on the strategies of
rational individuals.

On the evolutionary management of a supply chain, Kosfeld (2002) argued that the �solution� to the
coordination problem between stores and customers depends on the specific cost structure of stores and
the preferences of customers. In his model, the demand is deterministic. However, a typical supply chain
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frequently faces disruptions caused by internal or external factors including demand fluctuations (new or-
ders, order cancellations), raw material shortages, delivery delays due to transportation problems or
inclement weather (such as storm, heavy fog), resource unavailability, natural disasters, etc. The supply
chain disruption management is a new and interesting field. Qi et al. (2004) considered the coordination
of a supply chain with one supplier and one retailer under demand disruptions. In their model, the demand
disruptions incur a penalty to the supplier. Xia et al. (2004b) considered disruption management for a two-
stage production and inventory system. Xia et al. (2004a) introduced a production and inventory manage-
ment model with raw material supply disruptions. Xiao et al. (2005) considered the coordination of a
supply chain with one manufacturer and two competing retailers when the demand is disrupted. Huntington
(2003) studied the effect of energy disruptions on the decision-making of firms and aggregate economy. In
addition to the disruption caused by accidental events, strategic disruption is often used by some firms. Stra-
tegic disruption refers to a firm�s intentional manipulation of its competitor�s transaction cost structure in an
attempt to weaken the competitor�s alignment of its governance structure. Averyt and Ramagopal (1999)
used the auto industry as a case to examine the policy of strategic disruption pursued by American producers
against Japanese competitors since the 1980s. In their model, a firm destroys its competitor�s alignment of
transactions and governance structures but leaves the firm�s own alignment relatively unchanged through
altering governance rules. Thus, its competitor�s cost increases. In 1992, the United States and Japan signed
the �Global Partnership Plan of Action�, which is a strategic disruption management policy of breaking the
established ties between Japanese auto producers and Japanese parts suppliers (Lewis and Weiler, 1996). To
our best knowledge, an evolutionary perspective on the effect of disruptions on a supply chain has not yet
been studied in the literature. This paper will study the effect of the supply chain disruptions including
the raw material supply and demand disruptions on the retailers� strategies by employing an indirect evolu-
tionary game model. We neglect the penalty cost incurred by the supply chain disruptions when we consider
the long-term equilibrium because the manufacturers will adjust their production scales and plans rapidly. In
Section 6, we will also consider the case with a penalty cost. We will illustrate our findings using a numerical
simulation.

Economic literature often assumes that a firm is a profit-maximizer. But, is a profit maximization strat-
egy evolutionary stable? Bester and Güth (1998) argued that altruism preferences may be evolutionarily sta-
ble. In other words, a profit maximization strategy may be evolutionarily unstable (see Bolle, 2000).
Schaffer (1989) applied the finite population evolutionarily stable strategy to study whether profit-maximiz-
ers are the best survivors. He showed that the strategy that survives in an economic natural selection is the
relative, not absolute, payoff maximization strategy. Güth and Peleg (2001) studied when a payoff maximi-
zation strategy will survive by employing an indirect evolutionary game. Xiao and Yu (2005) introduced an
indirect evolutionary game approach to explain why there exists revenue maximization behavior and ar-
gued that a revenue maximization strategy may be a stable strategy and a profit maximization strategy
may be unstable in the quantity-setting duopoly situation with differentiated goods. In this paper, we as-
sume that a retailer has two strategies: profit maximization and revenue maximization. We will study
the stability conditions of the profit maximization strategy. Our dynamic system is a special ordinary dif-
ferential equation system that satisfies the admissible conditions given in Friedman (1991). We find that
profit maximization strategy may become extinct and revenue maximization strategy prevails when the
market scale is large enough. In this case, the retailers choosing revenue maximization strategy will gain
more profit through selling more goods although the unit profit decreases. We also find that the relative
unit cost affects the retailers� strategies and the coexistence phenomenon often happens. Supply chain dis-
ruption is often recovered within a finite desired time, so we also introduce a disruption recovery model.

The rest of the paper is organized as follows. Section 2 gives some basic descriptions. Section 3 presents a
main theorem and a corollary on the stability of equilibrium. Section 4 analyzes the effects of demand
disruptions on the supply chain, in particular, on the retailers. Section 5 analyzes the effects of the raw
material supply disruptions on the supply chain. In this section, we analyze the effects in two cases: the unit
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production cost change synchronously and asynchronously. We also analyze the effects when the demand
and raw material supply are simultaneously disrupted using a numerical example. Section 6 introduces a
recovery model of the supply chain under disruptions and analyzes the effect of the disruptions on the aver-
age profit of channels in a market. Section 7 gives a brief summary and conclusions.
2. The model

Assume that an economic system consists of two vertically integrated channels denoted by A and B.
Every channel consists of one manufacturer and many (a sufficiently large number of) retailers. The man-
ufacturer in channel i denoted by i, i = A, B. The manufacturers need some raw materials to produce homo-
geneous products. The retailers respectively sell products in many (a sufficiently large number of)
independent markets (Boyaci and Gallego, 2002). We call a retailer in channel i an individual in population
i consisting of all retailers in channel i, i = A, B. An individual in population A randomly competes with an
individual in population B in a market (there are exactly two retailers in a given market, we will eliminate a
market if neither a pair of retailers is matched in this market). For simplicity, we do not consider the intra-
population�s competition that two individuals in the same population compete. Every individual has two
(pure) strategies: profit maximization (for short P) and revenue maximization (for short R). In a one-shot
game, two individuals simultaneously determine their marketing strategies, and determine optimal quanti-
ties according to their strategies. Hosomatsu (1969) showed how oligopoly firms reach a Cournot equilib-
rium without knowing the demand function and rivals� costs. Hehenkamp et al. (1999) showed that the
quantity distribution always converges under monotonic selection dynamic system to a distribution with
probability one on a quantity equal or similar to a classical Cournot equilibrium. For simplicity, we assume
that every retailer can take its optimal quantity reaction based on its preference (P or R). We focus on the
ESS of the preferences. In other words, we study the ESS of the populations by employing an indirect evo-
lutionary game. Friedman and Mezzetti (2002) set up a quantity choice model of dynamic oligopoly with
bounded rationality. However, they retained an important feature of rational behavior strategy, profit max-
imization. We also assume that the individuals have bounded rationality. We focus on the distribution of
the individual strategies in the population. In our model, the individuals repeatedly play an evolutionary
game other than a one-shot game with each other. Let the unit production cost of manufacturer i be ci

and the quantity of goods of a retailer in channel i be qi, i = A, B. We normalize the unit cost of retailers
to zero.1 The unit price is p. We assume that every market faces the same inverse demand function and two
channels monopolize markets. Without loss of generality, we assume that cA P cB and the inverse demand
function is p = a � qA � qB, or qA + qB = a � p. The parameter a represents the market scale and
a > max{cA, cB} = cA. The analysis can be extended to the case with nonlinear inverse demand function.

We first consider the one-shot game. According to the above descriptions, in a market the profit function
of channel i is pi(qA, qB) = (a � qA � qB � ci)qi, the revenue function of channel i is Ri(qA, qB) =
(a � qA � qB)qi.

We have assumed that a retailer (individual A) in population A randomly competes with a retailer (indi-
vidual B) in population B for a given market. If both individuals choose strategy P, the Cournot quantities
of individuals A and B are
1 Fo
main r
case w
i = A,
qPP
A ¼ 1

3
ðaþ cB � 2cAÞ; qPP

B ¼ 1
3
ðaþ cA � 2cBÞ.
r the case in which every retailer in a channel has the same constant unit cost �ci, we use ci þ �ci instead of ci and obtain the same
esults. In this paper, the unit production cost can be seen as the total unit production cost of manufacturer and retailer. For the
ith decentralized channels, our main results still hold when we substitute the wholesale price wi for the unit production cost ci,
B.
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Furthermore, the profits of the channels in the market are
Table
Profit

A

P

R

pPP
A ðqPP

A ; q
PP
B Þ ¼ 1

9
ðaþ cB � 2cAÞ2; pPP

B ðqPP
A ; q

PP
B Þ ¼ 1

9
ðaþ cA � 2cBÞ2.
If individual A chooses strategy P and individual B chooses strategy R, the Cournot quantities for indi-
viduals A and B are
qPR
A ¼ 1

3
ða� 2cAÞ; qPR

B ¼ 1
3
ðaþ cAÞ.
The profits of the channels in the market are
pPR
A ðqPR

A ; q
PR
B Þ ¼ 1

9
ða� 2cAÞ2; pPR

B ðqPR
A ; q

PR
B Þ ¼ 1

9
ðaþ cAÞðaþ cA � 3cBÞ.
If individual A chooses strategy R and individual B chooses strategy P, the Cournot quantities for indi-
viduals A and B are
qRP
A ¼ 1

3
ðaþ cBÞ; qRP

B ¼ 1
3
ða� 2cBÞ.
The profits of the channels in the market are
pRP
A ðqRP

A ; qRP
B Þ ¼ 1

9
ðaþ cBÞðaþ cB � 3cAÞ; pRP

B ðqRP
A ; qRP

B Þ ¼ 1
9
ða� 2cBÞ2.
If both individuals choose strategy R, the Cournot quantities of individuals A and B are
qRR
A ¼ qRR

B ¼ 1
3
a.
The profits of the channels in the market are
pRR
A ðqRR

A ; qRR
B Þ ¼ 1

9
aða� 3cAÞ; pRR

B ðqRR
A ; qRR

B Þ ¼ 1
9
aða� 3cBÞ.
Some economists suggested that a linear incentive mechanism is optimal (Groves and Loeb, 1979;
Ugarte and Oren, 2000; Tirole, 1988). We assume that the manufacturers use a linear incentive mechanism
to the individuals in their own populations, respectively, i.e., bi + dipi, i = A, B, where 0 < di < 1 and pi is
the profit of channel i in a given market. Note that the magnitude of bi does not affect the ESS and the
magnitude of di only affects the speed of evolution. However, we focus on the ESS of populations other
than their speeds. Thus, without loss of generality, we assume that the evolution of populations� strategy
is based on the profit bi-matrix given in Table 1.

Table 1 has the same form as that in Xiao and Yu (2005). But, Xiao and Yu (2005) focused on differ-
entiated goods (substitutes or complements) and the ESS of the marketing objectives without considering
the supply chain disruptions. However, in this paper, we focus more on the effect of the raw material supply
and demand disruptions on the ESS of retailers with homogeneous products. The most fitting strategy be-
comes more prevalent and the other strategies may gradually become extinct.

Since individuals random compete, the matched individuals play a one-shot game other than a multi-
stage game. Aggregate strategies of populations do not change too abruptly, and they continuously update
their strategies over time. Let the fraction of individuals using strategy P in population i be si, so the frac-
tion of individuals using strategy R in population i is 1 � si, i = A, B. The fraction differs from the prob-
1
bi-matrix

B

P R

pPP
A , pPP

B pPR
A , pPR

B

pRP
A , pRP

B pRR
A , pRR

B
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ability in the mixed-strategy. The former emphasizes the relative size of subpopulation using a strategy in
the population, and the latter emphasizes the stochasticity of using a strategy. The change of the fraction
reflects the evolution of the population�s strategies, and the change of the probability reflects the change of
the individuals� subjective beliefs or strategy. In the former case, the evolution of the population�s strategies
is based on the fitness of a strategy. The fitness depends only on the individual�s strategy set and the strategy
fractions of two populations. In the latter case, the individual makes decisions based on the expected payoff.

We may see that there are simultaneously two Nash equilibriums (P, R) and (R, P) for the one-shot
game. Individual A chooses strategy P when individual B chooses strategy R for equilibrium (P, R). Indi-
vidual A chooses strategy R when individual B chooses strategy P for equilibrium (R, P). However, individ-
ual A does not know if individual B chooses P or R. But, which equilibrium will be selected? Moreover,
which equilibrium will an initial state evolve to? Without loss of generality, we assume that the population�s
strategy evolve in the form of a Malthusian dynamic system (or replicator dynamic system) which is a very
general dynamic system in evolutionary game theory (for detailed, see Friedman, 1991; Cressman, 1992;
Xiao, 2004). In a replicator dynamic system, the growth rate _sA=sA equals the strategy P�s fitness
e1A(sB, 1 � sB)T less the average fitness (sA, 1 � sA)A(sB, 1 � sB)T of population A, where _sA ¼ dsA=dt,

e1 = (1, 0), represents that all individuals in population A choose strategy P, and A ¼ pPP
A pPR

A

pRP
A pRR

A

� �
, repre-

sents the payoff matrix of individual A. Hence, the replicator dynamic system for population A is
_sA ¼ sAðe1 � ðsA; 1� sAÞÞAðsB; 1� sBÞT;

Inserting the profits into _sA and rewrite the dynamic system, we have
_sA ¼ 1
9
cAsAð1� sAÞð4cA � a� cBsBÞ. ð1Þ
Similarly, the replicator dynamic system for population B is
_sB ¼ 1
9
cBsBð1� sBÞð4cB � a� cAsAÞ. ð2Þ
Eqs. (1) and (2) are the continuous frequency dynamic systems for the two populations consisting of the
retailers in channels A and B, respectively.
3. Evolutionarily stable strategies under normal operation

The populations are said to be at ESS, if they cannot be invaded by a small (relative to the number in the
initial population) subpopulation of individuals using a different individual strategy. ESS is a static concep-
tion of evolutionary game theory. In order to study the dynamic characteristic of an evolutionary game, a
dynamic system is often incorporated such as replicator dynamic system. An equilibrium of the replicator
dynamic system (1)–(2) is a point (sA, sB) 2 [0, 1] · [0, 1] such that _sA ¼ _sB ¼ 0. ESS of two populations dif-
fers from that of one population (Cressman, 1992). In the one population model, ESS and payoff matrix
must be symmetrical for two individuals. But, in the two populations model, ESS and payoff matrix
may be asymmetric for two individuals in different populations. For example, for hawk-dove game, two
types of models have different ESS even when there are the same payoff bi-matrixes (Xiao, 2004).

From Eqs. (1) and (2), we derive the following.

Theorem 1. For the replicator dynamic system given by Eqs. (1) and (2), we have the following:

(i) (0, 0), (0, 1), (1, 0) and (1, 1) are its equilibriums (fixed points).
(ii) If the unit costs satisfy cB 6 cA 6

5
4
cB, ðs�A; s�BÞ is also an equilibrium of the replicator dynamic system (1)–

(2) on [0, 1] · [0, 1] for 4cA � cB 6 a 6 4cB, where
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s�A ¼ ð4cB � aÞc�1
A ; s�B ¼ ð4cA � aÞc�1

B .
Proof. It is obvious that Part (i) holds. We now show Part (ii). A point (sA, sB) is an equilibrium of the rep-
licator dynamic system (1)–(2) if and only if
4cA � a� cBsB ¼ 0 and 4cB � a� cAsA ¼ 0;
where (sA, sB) 2 [0, 1] · [0, 1], i.e.,
s�A ¼ ð4cB � aÞc�1
A ; s�B ¼ ð4cA � aÞc�1

B .
From cB 6 cA 6
5
4
cB, it follows that ðs�A; s�BÞ is an equilibrium point if and only if
4cA � cB 6 a 6 4cB;
i.e., Part (ii) holds. h

From Theorem 1, the point ðs�A; s�BÞ becomes the point (0, 0) if a = 4cB = 4cA; the point ðs�A; s�BÞ becomes
the point (0, 1) if a = 4cB and cA ¼ 5

4
cB; the point ðs�A; s�BÞ becomes the point (1, 1) if a = 4cA � cB and

cA = cB. From Theorem 1 and cA P cB, we know that s�A 6 s�B. Hence, the point ðs�A; s�BÞ does not become
the point (1, 0).

Hofbauer and Sigmund (1998) gave the linearization method of using a Jacobian matrix. We linearize
the system (1)–(2) using the Jacobian method. The Jacobian matrix of the system is
J ¼
1
9
cAð1� 2sAÞð4cA � a� cBsBÞ �1

9
cAcBsAð1� sAÞ

�1
9
cAcBsBð1� sBÞ 1

9
cBð1� 2sBÞð4cB � a� cAsAÞ

" #
.

The local stability of linear differential equations is determined by both determinant and trace. The deter-
minant of the Jacobian matrix is
det J ¼ 1
81

cAcB ð1� 2sAÞð1� 2sBÞð4cA � a� cBsBÞð4cB � a� cAsAÞ � cAcBsAsBð1� sAÞð1� sBÞ½ �;
the trace of the Jacobian matrix is
trJ ¼ 1
9
cAð1� 2sAÞð4cA � a� cBsBÞ þ 1

9
cBð1� 2sBÞð4cB � a� cAsAÞ.
Furthermore, we can derive the following.

Theorem 2. Assume that cB 6 cA 6
5
4cB and 4cA � cB 6 a 6 4cB, we have the following:

(i) The equilibrium (0, 0) is unstable if a < 4cB or a = 4cB < 4cA but stable if a = 4cB = 4cA.

(ii) The equilibrium (0, 1) is an ESS if 4cA � cB < a < 4cB, stable if a = 4cB > 4cA � cB or

a = 4cA � cB < 4cB; but unstable if a = 4cB = 4cA � cB.

(iii) The equilibrium (1, 0) is an ESS if cB < cA, or both cA = cB and 4cA � cB < a < 4cB, and it is stable if

cA = cB and either a = 4cA � cB or a = 4cB.

(iv) The equilibrium (1, 1) is unstable if 4cA � cB < a 6 4cB or both a = 4cA � cB and cA > cB, but stable if
a = 4cA � cB and cA = cB.

(v) The equilibrium ðs�A; s�BÞ is a saddle point if 4cA � cB < a < 4cB, unstable if a = 4cA � cB and

cB < cA <
5
4
cB, but stable if a = 4cB and cB < cA <

5
4
cB.
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Proof of Theorem 2 is given in Appendix A. According to Cressman (1992), a locally and asymptotically
stable equilibrium of a bi-matrix game with two players and two strategies is an ESS. Hence, in this paper,
we can use ESS instead of the locally and asymptotically stable property. From Theorem 2, we derive the
following.

Corollary 1. If 4cA � cB < a < 4cB and cB 6 cA 6
5
4cB, the equilibriums (0, 1) and (1, 0) are ESS.

From Corollary 1. we know that all individuals in one population will choose profit maximization strat-
egy and all individuals in the other will choose revenue maximization strategy when 4cA � cB < a < 4cB and
cB 6 cA 6

5
4
cB. It follows from Corollary 1 that sA = sB is a trajectory of the system (1)–(2) if cA = cB and

4cA � cB < a < 4cB. The initial state (sA0, sB0) evolves to the equilibrium (1, 0) if sA0 > sB0, to the equilib-
rium ðs�A; s�BÞ if sA0 = sB0 and to the equilibrium (0, 1) if sA0 < sB0. But, the equilibrium ðs�A; s�BÞ is not an
ESS and it is even unstable. In other words, when the fraction of individuals using profit maximization
strategy in a population is larger than the fraction for the other population, its ESS is profit maximization
and the other�s ESS is revenue maximization. We know roughly the equilibrium into which a point will
evolve by using numerical simulation. For example, for the value of parameters:
a ¼ 3.9; cA ¼ 1.2 and cB ¼ 1; and initial state ð0.5; 0.3Þ;

which are used throughout the paper (unless otherwise stated). We can depict Fig. 1 for the system (1)–(2).

For different values of parameters, the evolutionary paths often are different. But, the basic character-
istics of the effect of the disruptions on the evolutionary paths are similar. In the above, we have studied
the evolution of the populations� strategies, which will affect the average profits and production quantities
of the channels in a market. The average profit of channel A is (sA, 1 � sA)A(sB, 1 � sB)T and its average
quantity is
ðsA; 1� sAÞ
qPP

A qPR
A

qRP
A qRR

A

� �
ðsB; 1� sBÞT.
Similarly, we can write the average profit and average quantity of channel B in a market. We assume that
the production of a manufacturer allows a small flexibility such that a small production deviation does not
incur a deviation cost, but a large production deviation will incur a deviation cost. Thus, a manufacturer
Fig. 1. The fractions of individuals using strategy P as a function of time.
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will not be penalized with a deviation cost when the fractions sA and sB change continuously. We will con-
sider two types of disruptions including the demand disruption and the raw material supply disruption,
respectively.
4. Demand disruptions and evolutionary stable strategies of retailers

In practice, the demand is often disrupted by technological innovation, haphazard event, new policy, en-
trance of a new firm, promotional events of the firm and/or its competitors, etc. The factors will result in the
increase or decrease of demand for the channels. For example, Severe Acute Respiratory Syndrome (SARS)
has been reported in Asia, North America, and Europe in 2003. SARS affected to a large degree the de-
mand for tourism, recreation, food, medicine and the related industries in the regions. Some rumors on
the fact that vinegar can prevent SARS were released after SARS was discovered in Guangzhou, China,
and then the demand for vinegar increased dramatically. People feared to catch SARS in the recreational
place, which has resulted in the decrease of the demand for recreation. We assume that Da is the changed
amount of the market scale, i.e., the market scale after disruptions is a + Da. In this section, we will study
how the demand disruptions affect a supply chain, and in particular, the retailers. We assume that there are
only demand disruptions and other settings are unchanged. Note that the retailers do not concern the pro-
duction deviation cost. The change of a retailer�s quantity may not incur a penalty cost for the manufac-
turer because the change may not result in the deviation of the total production quantity of the
manufacturer. In this section, we can neglect the penalty cost incurred due to the supply chain disruptions
because we consider long-term equilibrium without disruption recovery.

According to Corollary 1, we know that the equilibriums under disruptions have the same local stability
as that without disruptions when 4cA � cB � a < Da < 4cB � a. But, the incremental demand Da is some-
times either more than 4cB � a or less than 4cA � cB � a. When Da = 4cB � a, the equilibriums have the
same stability as the case a = 4cB in Section 3. Similar argument applies to the case Da = 4cA � cB � a.
Thus, we only consider the cases Da > 4cB � a and Da < 4cA � cB � a. Similar to Theorem 2, we can derive
the following.

Theorem 3. Assume that cB 6 cA 6
5
4cB and Da > 4cB � a. For the system (1)–(2), we have

(i) If Da > 4cA � a, the equilibrium (0, 0) is a unique ESS.

(ii) If 4cB � a < Da < 4cA � a, the equilibrium (1, 0) is a unique ESS.

(iii) If Da = 4cA � a, there is no ESS.
From Corollary 1 and Theorem 3, the disruptions will induce the population whose strategies originally
evolved to profit maximization to choose revenue maximization strategy if Da > 4cA � a. In other words,
although profit maximization strategy for a population prevails currently, it may become extinct and rev-
enue maximization strategy will prevail in the case that the incremental demand is sufficiently large. The
disruptions will induce the retailers in the channel with lower cost to choose revenue maximization strategy
and the retailers in the channel with higher cost to choose profit maximization strategy if 4cB � a <
Da < 4cA � a. In other words, the initial state originally evolved to the equilibrium (0, 1) will evolve to
the equilibrium (1, 0) when the demand increases within the above range. Similar to Theorem 2, we can also
derive the following from Theorem 1.

Theorem 4. Assume that cB 6 cA 6
5
4cB and cA � a < Da < 4cA � cB � a. For the system (1)–(2), we have

(i) If Da < 4cB � cA � a, the equilibrium (1, 1) is a unique ESS.
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(ii) If 4cB � cA � a < Da < 4cA � cB � a, the equilibrium (1, 0) is a unique ESS.

(iii) If Da = 4cB � cA � a, there is no ESS.
In Theorem 4, cA � a < Da or a + Da > cA, assures that the equilibrium price and quantity are positive.
From Corollary 1 and Theorem 4, we know that the disruptions will induce the population whose strategies
originally evolved to revenue maximization to choose profit maximization strategy if Da < 4cB � cA � a. In
other words, although revenue maximization strategy for one population prevails currently, it may become
extinct and profit maximization strategy will prevail when the decrement in demand is sufficiently large. The
populations� strategies evolve to profit maximization when the demand is sufficiently small. Similar to The-
orem 3, the disruptions will induce the retailers in the channel with lower cost to choose revenue maximi-
zation strategy and that with higher cost to choose profit maximization strategy if the demand decreases
within the above range.

In Theorems 3 and 4, we have studied the effects of the demand disruptions on the ESS of the retailers
from the theoretical point of view. Although some results are given, it is difficult for us to understand the
results. For a given initial state, it is very difficult to understand the effects of the demand disruptions on its
evolutionary path from a theoretical point of view. Now, we study the effect by using numerical simulation,
which may also facilitate the readers. When the demand is disrupted, we can depict Fig. 2. In Fig. 2, �delta a�
denotes Da.

Theorems 3 and 4 study the effects of demand disruptions on the ESS of retailers. In fact, the demand
disruptions also indirectly affect the supplier due to the change of order quantity of manufacturers. For the
demand disruptions, see Fig. 3.
Fig. 2. The ESS of retailers under demand disruptions with t 2 [0, 100].

Fig. 3. The effects of the demand disruptions on the supply chain.



Table 2
The effects of the demand disruptions on the supply chains

Da qA qB pA pB

�1.2 0.43 0.63 0.19 0.40
0 0.50 1.70 0.25 1.19
1 1.63 1.63 0.70 1.03
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In Fig. 3, the demand disruptions affect the retailer�s order quantity on which the manufacturer�s order
quantity depends. In order to induce a right order quantity of the retailer, the manufacturer may change the
incentive mechanism. Furthermore, the raw material supplier will be affected by the change of the manu-
facturer�s order quantity. At the ESS point, the quantities and the profits of the channels in a market are
given in Table 2.

In Table 2, we only give the (ESS) equilibrium quantities and the equilibrium profits of the supply
chains. We can also give the equilibrium profits of the raw material suppliers if we know the production
functions of the manufacturers and the cost functions of the raw material suppliers. Furthermore, we know
the effects of the demand disruptions on the raw material suppliers. In this paper, we do not consider the
latter.
5. The raw material supply disruptions and evolutionary stable strategies of retailers

Besides demand disruptions, the raw material supply is often disrupted. In the real world, the disruptions
of raw material supplies often result in the change of raw material price. If the raw material supplier
launches a promotion, it will reduce price. The material supplier desires to earn more profit by increasing
its unit price. Sometimes, the raw material price increases due to a shortage. When some crises are antic-
ipated, the price will increase although there is ample supply currently. Examples on the raw material price
increase could be seen from the crude oil price change in our daily life (the oil supply disruptions from the
Middle East often result in the change of the crude oil price). We assume that Dci, is the changed amount of
the unit production cost of manufacturer i, i = A, B, i.e., the unit production cost after disruptions is
ci + Dci. For example, the production cost of a manufacturer whose raw material supply depends on other
countries increases (decreases) if the tariff increases (decreases). In general, we have sign (DcA) = sign(DcB),
i.e., the unit production costs of the two manufacturers increase or decrease simultaneously because they
produce homogeneous goods. But, the changed amounts can be different. In this section, we will study
how the raw material supply disruptions affect the ESS of retailers without considering recovery. We as-
sume that the demand is not disrupted. We can also regard the case in which the manufacturers do not
know the recovery time as the case without considering recovery. In this case, the manufacturers do not
expect recovery and thus adjust their production scale rapidly. Although they will suffer loss, the loss is
transient and it does not affect the ESS of retailers. For example, according to the Canada–US Free Trade
Agreement, the manufacturers will receive lower tariff even zero-tariff is applied in the free trade area, this
results in a lower cost in the long run.

We first consider the case DcA = DcB, i.e., the disruptions have the same effects on the unit production
costs of the manufacturers. Similar to Theorem 2, we derive from Theorem 1 and Corollary 1 the following.

Theorem 5. When 4cA � cB < a < 4cB and cB 6 cA 6
5
4cB, we have

(i) If 0 < DcA ¼ DcB <
1
3
ða� 4cA þ cBÞ, the equilibriums (0, 1) and (1, 0) are ESS.

(ii) If DcA ¼ DcB >
1
3
ða� 4cB þ cAÞ, the equilibrium (1, 1) is a unique ESS.
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(iii) If 1
3
ða� 4cA þ cBÞ < DcA ¼ DcB <

1
3
ða� 4cB þ cAÞ, the equilibrium (1, 0) is a unique ESS.

(iv) If max 4cA � 5cB;
1
4
ða� 4cBÞ

� �
< DcA ¼ DcB < 0, the equilibriums (0, 1) and (1, 0) are ESS.

(v) If 4cA � 5cB < DcA ¼ DcB <
1
4
ða� 4cAÞ, the equilibrium (0, 0) is a unique ESS.

(vi) If max 1
4
ða� 4cAÞ; 4cA � 5cB

� �
< DcA ¼ DcB <

1
4
ða� 4cBÞ, the equilibrium (1, 0) is a unique ESS.
For the decreased unit cost case, Theorem 5 implies that ci + Dci > 0, i = A, B, i.e., the raw material
price is always positive. Moreover, Theorem 5 also assures that the assumption a > cA + DcA, holds. In
Theorem 5, we do not consider some critical cases due to the fact that these cases are not ESS. From Cor-
ollary 1, Theorems 1 and 5, we know that the system (1)–(2) under disruptions has the same ESS as that
without disruption if the changed amounts of the unit production costs jDcij are equal and sufficiently
small. The disruptions induce the individual originally inclining revenue maximization strategy to choose
profit maximization if the increased amounts Dci are equal and sufficiently large. In other words, the syn-
chronous and large increase of the unit production costs results in the profit maximization strategies of the
two manufacturers.

We also find that the proper and synchronous increase or decrease of the unit production costs may in-
duce the retailers in the channel with higher cost to choose profit maximization strategy and the retailers in
the other to choose revenue maximization strategy. The sufficiently large and synchronous decrease of the
unit production costs may induce the retailers to choose revenue maximization strategy. In other words, the
profit maximization strategies will gradually become extinct if the unit costs decrease sufficiently and
synchronously.

When the unit production costs synchronously increase or decrease, i.e., DcA = DcB = Dc, we depict the
results in Fig. 4.

In practice, we often see that the resulting effects of the disruptions on the two manufacturers are differ-
ent, i.e., DcA 5 DcB. jDcij > jDcjj means that the resulting effect of the disruptions on manufacturer i is lar-
ger than on manufacturer j, where i 5 j and i, j = A, B. With the increased unit cost, we derive the
following.

Theorem 6. When 4cA � cB < a < 4cB, cB 6 cA 6
5
4cB and 0 < DcA < DcB 6 2cA, we have

(i) If cA þ DcA � cB 6 DcB 6
5
4
ðcA � cBÞ þ 1

4
DcA, the equilibriums (0, 1) and (1, 0) are ESS.
Fig. 4. The ESS of retailers under raw material supply disruptions with t 2 [0, 500].
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(ii) If max 5
4
ðcA � cBÞ þ 1

4
DcA; cA þ DcA � cB

� �
< DcB <

1
4
ðcA þ DcAÞ, the equilibriums (1, 0) and (0, 1) are

ESS for a 2 (4(cB + DcB) � (cA + DcA), 4cB); the equilibrium (0, 1) is a unique ESS for

a 2 (max{4cA � cB, 4(cA + DcA) � (cB + DcB)}, 4(cB + DcB) � (cA + DcA)).

Proof. Part (i). From DcB 6
5
4
ðcA � cBÞ þ 1

4
DcA and 4cA � cB < a < 4cB, it follows that
4ðcB þ DcBÞ � ðcA þ DcAÞ < a < 4ðcA þ DcAÞ.
Furthermore, it follows from cA + DcA � cB 6 DcB that
cA þ DcA 6 cB þ DcB <
5
4
ðcA þ DcAÞ.
Similar to Corollary 1, it follows that the equilibriums (0, 1) and (1, 0) are ESS. This case exists only when
DcA 6

1
3
ðcA � cBÞ. Note that 1

4
ðcA þ DcAÞ < 5

4
ðcA þ DcAÞ � cB. Similarly, it follows Part (ii). h

Since in the real world it is almost impossible for cB þ DcB >
5
4
ðcA þ DcAÞ, we do not consider the case in

Theorem 6. In Theorem 6, the conditions 0 < DcA < DcB 6 2cA and a > 4cA � cB assure that assumption
a > cB + DcB = max{cA + DcA, cB + DcB} holds. From Corollary 1, Theorems 1 and 6, with the increased
unit cost, we know that the retailers have the same ESS as that without disruption when DcB > DcA and the
incremental unit cost DcB, is sufficiently small. If the incremental unit cost DcB is within a certain range, the
equilibrium the initial state evolves to depends on the market scale a. In this case, one population�s ESS is
the profit maximization strategy and the other�s ESS is the revenue maximization strategy. Similar to The-
orem 6, we have the following.

Theorem 7. When 4cA � cB < a < 4cB, cB 6 cA 6
5
4cB and 0 < DcB < DcA 6 2cA, we have

(i) When DcA P max 1
4
DcB þ 5

4
cB � cA; 4DcB � cA

� �
, the equilibrium (1, 0) is a unique ESS if

4cA � cB P 4(cB + DcB) � (cA + DcA), or 4cA � cB < 4(cB + DcB) � (cA + DcA) and 4(cB + DcB) �
(cA + DcA) < a < 4(cA + DcA) � (cB + DcB), the equilibrium (1, 1) is a unique ESS if 4cA � cB <
a < 4(cB + DcB) � (cA + DcA).

(ii) When 4DcB � 5ðcA � cBÞ 6 DcA <
1
4
DcB þ 5

4
cB � cA, the equilibriums (0, 1) and (1, 0) are ESS if 4(cA +

DcA) � (cB + DcB) < a < 4cB, and the equilibrium (1, 0) is a unique ESS if 4cA � cB <
a < 4(cA + DcA) � (cB + DcB).

Proof. Part (i). From DcA P max 1
4
DcB þ 5

4
cB � cA; 4DcB � cA

� �
and 4cA � cB < a < 4cB, it follows that

a < 4cB 6 4(cA + DcA) � (cB + DcB) and 4(cB + DcB) � (cA + DcA) < 4cB. If 4cA � cB P 4(cB +
DcB) � (cA + DcA), we have 4(cB + DcB) �(cA + DcA) < a < 4(cA + DcA) � (cB + DcB).

If 4cA � cB < 4(cB + DcB) � (cA + DcA), we should consider two cases:
4ðcB þ DcBÞ � ðcA þ DcAÞ < a < 4ðcA þ DcAÞ � ðcB þ DcBÞ
and
4cA � cB < a < 4ðcB þ DcBÞ � ðcA þ DcAÞ.

Similar to Theorem 2, we can show that the equilibrium (1, 0) is a unique ESS if 4(cB + DcB) � (cA + D-

cB + DcB) � (cA + DcA) < a < 4(cA + DcA) � (cB + DcB), the equilibrium (1, 1) is a unique ESS if
4cA � cB < a < 4(cB + DcB) � (cA + DcA).

Part (ii). From DcA <
1
4DcB þ 5

4cB � cA, it follows that 4(cA + DcA) � (cB + DcB) < 4cB. From
DcA > DcB > 0 and DcA <

1
4DcB þ 5

4cB � cA, it follows that cB þ DcB < cA þ DcA <
5
4ðcB þ DcBÞ. Similar to

Part (i), it follows that the equilibrium (0, 1) and (1, 0) are ESS if 4(cA + DcA)� (cB + DcB) < a < 4cB.
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From DcA P 4DcB�5(cA � cB), we know that 4(cB + DcB) � (cA + DcA)64cA � cB. Furthermore,
similar to Theorem 2, it follows that the equilibrium (1, 0) is a unique ESS if 4cA� cB < a <
4(cA + DcA) � (cB + DcB). h

In Theorem 7, the conditions 0 < DcB < DcA 6 2cA and a > 4cA � cB assure that the Assumption
a > cA + DcA = max{cA + DcA, cB + DcB} holds. Similar to the explanations of Theorems 5 and 6, we
can also give an explanation of Theorem 7.

Theorems 6 and 7 study the case with the increased unit production cost. In the real world, we often find
the case with the decreased unit production cost. For the latter, we have the following.

Theorem 8. When 4cA � cB < a < 4cB, cB 6 cA 6
5
4cB, DcB < DcA < 0 and Dci + ci > 0, i = A, B, we have

(i) If cA þ DcA >
5
4
ðcB þ DcBÞ and DcB P 4DcA P 4(cB � cA), the equilibrium (1, 0) is a unique ESS.

(ii) If DcA > max 5
4
ðcB þ DcBÞ � cA; 4DcB � 5ðcA � cBÞ

� �
and cA � 5

4
cB < DcB < 4DcA, the equilibrium (1, 0)

is a unique ESS for a 2 (4cA � cB,4(cB + DcB)) or a 2 (4(cB + DcB), min{4cB, 4(cA + DcA) � (cB +
DcB)}).

(iii) If cB þ DcB 6 cA þ DcA 6
5
4
ðcB þ DcBÞ and DcB P max 4DcA; cA � 5

4
cB

� �
, the equilibriums (0, 1) and

(1, 0) are ESS for a 2 (4cA � cB, 4(cB + DcB)), the equilibrium (1, 0) is a unique ESS for

a 2 (4(cB + DcB), min{4cB, 4(cA + DcA)}).

Proof. Part (i). From cA þ DcA >
5
4
ðcB þ DcBÞ and DcB P 4DcA, it follows that
4ðcB þ DcBÞ < 4ðcA þ DcAÞ � ðcB þ DcBÞ 6 4cA � cB.
From DcA P cB � cA, we know that 4cB 6 4(cA + DcA). Similar to Theorem 2, it follows that the equilib-
rium (1, 0) is a unique ESS. Similarly, we can also follow Part (ii) and Part (iii). h

In Theorem 8, the condition Dci + ci > 0 means that the raw material price and the unit cost after dis-
ruptions are positive. From a > 4cA � cB, cA P cB and DcB < DcA < 0, we know that the Assumption
a > max{cA + DcA, cB + DcB} holds.

Theorems 5–8 study the effects of the raw material supply disruptions on the retailers. In practice, the
raw material supply disruptions also affect the suppliers due to the change of the needed raw material quan-
tities of manufacturers. For the raw material supply disruptions, see Fig. 5.

In Fig. 5, the raw material supply disruptions will result in the change of the raw material price, which
will affect the order quantity of the manufacturer and the incentive mechanism. The change of the incentive
mechanism will affect the retailer�s order quantity. Furthermore, the raw material supplier will be affected.

In practice, we often find that the raw material supply disruptions and the demand disruptions coexist.
According to the above ideas, we can study the case where both disruptions occur. We can also give a sim-
ilar figure on the effects of disruptions on the supply chain. A formal analysis of the coexisting case is be-
yond the scope of this paper. Now, we illustrate the effects of the disruptions in this case on the ESS of
retailers by using numerical simulation. We depict Fig. 6 with t 2 [0, 1000].

At the ESS point, the quantities and the profits of channels are given in Table 3.
Fig. 5. The effects of the raw material supply disruptions on the supply chain.



Fig. 6. The ESS of retailers under demand and raw material supply disruptions.

Table 3
The effects of the disruptions on channels

Da DcA DcB qA qB pA pB

�0.9 0.2 0.15 0.45 0.70 0.20 0.49
0 0 0 0.50 1.70 0.25 1.19
0.3 0.2 0.15 0.47 1.87 0.22 1.34
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In Fig. 6 and Table 3, we consider the case in which the effects of the raw material supply disruptions on
manufacturer A is larger than that on manufacturer B. Similarly, we can also consider the contrary case.
6. A recovery model with supply chain disruptions

Sections 4 and 5 studied the effects of the supply chain disruptions on the ESS of the populations without
considering the recovery of disruptions. In fact, in the real world, the supply chain will gradually recover
after the disruptions. In this section, we introduce a recovery model. Trimarchi (2003) suggested that, irre-
spective of any consideration of subjective utility, unexpected and substantial wealth transfers lead to a dis-
ruption cost. Disruptions often cause extra damage. The disruptions of a supply chain also incur extra cost
for its members, and we call the extra cost a penalty cost. In this section, we assume that a unit penalty cost
is cu for the increased production and a unit penalty cost is cs, for the decreased production quantity, cu > 0
and cs > 0.

We assume that the retailers do not bear any production deviation cost, i.e., the manufacturers bear fully
the production deviation costs. We leave the case in which the retailers bear a part of deviation costs for
future research.

6.1. A recovery model with demand disruptions

In this subsection, we introduce a recovery model of the supply chain with demand disruptions. Without
loss of generality, we assume that the demand disruptions happen at time t = 0 and are fully recovered at
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time T. Let a(t) denote the market scale at time t. Moreover, we assume that the demand recovers uni-
formly, i.e., we have a(t) = a + Da(T � t)/T for t 2 [0, T] and a(t) = a for t > T. Thus, the evolutionary
dynamic system of the populations� strategies for t 2 [0, T] is
_sA ¼ 1
9
cAsAð1� sAÞf4cA � cBsB � ½aþ DaðT � tÞ=T �g; ð3Þ

_sB ¼ 1
9
cBsBð1� sBÞf4cB � cAsA � ½aþ DaðT � tÞ=T �g. ð4Þ
The evolutionary dynamic system is the same as the system (1)–(2) for t > T. Note that the stability of
the four corner equilibriums of the system (3)–(4) is the same as that of the system (1)–(2) if T is finite, but
the initial state of the system (1)–(2) has become the state at time T. Hence, our task is to describe the evo-
lutionary path of the initial state of the system (3)–(4) and give the state at time T using numerical simu-
lation. We assume that Da = �1, T = 10 and t 2 [0, 500]. In order to well illustrate the effect of the demand
disruptions on the evolutionary path, we assume that the initial state is (0.02, 0.75). The evolutionary paths
of the retailers� strategies are shown in Fig. 7.

From Fig. 7, we know that the evolutionary path is distorted by the demand disruptions. Sometimes, the
initial state even evolves to a different equilibrium due to the demand disruptions. For the manufacturer
with higher (lower) cost, the retailers� strategies should evolve to profit maximization (revenue maximiza-
tion), but may evolve to revenue maximization (profit maximization) due to the demand disruptions.

Similar to Xiao et al. (2005), we know that the profit function of channel i in a market for t 2 [0, T] is
~pMN
i ~qMN

A ; ~qMN
B

� �
¼ aþ DaðT � tÞ=T � ~qMN

A � ~qMN
B � ci

� 	
~qMN

i � cu
�~qiðsA; sBÞ � �qiðsA; sBÞð Þþ

� cs �qiðsA; sBÞ � �~qiðsA; sBÞð Þþ; i ¼ A;B; M ;N ¼ P ;R; ð5Þ
where
�qAðsA; sBÞ ¼ sA sBqPP
A þ ð1� sBÞqPR

A

� 	
þ ð1� sAÞ sBqRP

A þ ð1� sBÞqRR
A

� 	
¼ 1

3
a� 2

3
cAsA þ 1

3
cBsB;

�qBðsA; sBÞ ¼ 1
3
aþ 1

3
cAsA � 2

3
cBsB
and (x)+ = max{x, 0}. �qiðsA; sBÞ represents the average production quantity of channel i in a market without
disruption. We substitute a + Da(T � t)/T for a in the expression of qMN

i , we can obtain the expression of
~qMN

i for t 2 [0, T], and ~qMN
i ¼ qMN

i for t P T, i = A, B, M, N = P, R. Similar to the average production quan-
tity �qAðsA; sBÞ, we have for t 2 [0, T]
Fig. 7. The ESS of retailers under demand disruptions with recovery consideration.
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�~qAðsA; sBÞ ¼ 1
3
½aþ DaðT � tÞ=T � � 2

3
cAsA þ 1

3
cBsB;

�~qBðsA; sBÞ ¼ 1
3
½aþ DaðT � tÞ=T � þ 1

3
cAsA � 2

3
cBsB.
Furthermore, it follows from Eq. (5) that
~pMN
i ~qMN

A ; ~qMN
B

� �
¼ ½aþ DaðT � tÞ=T � ~qMN

A � ~qMN
B � ci�~qMN

i � 1
3
ðT � tÞT�1½cuðDaÞþ þ csð�DaÞþ�;

for t 2 ½0; T �; i ¼ A;B; M ;N ¼ P ;R. ð6Þ
Thus, the average profit of channel i in a market is for t 2 [0, T]
�~pAðsA; sBÞ ¼ sA½sB~pPP
A þ ð1� sBÞ~pPR

A � þ ð1� sAÞ½sB~pRP
A þ ð1� sBÞ~pRR

A �;
�~pBðsA; sBÞ ¼ sB½sA~pPP

B þ ð1� sAÞ~pRP
B � þ ð1� sBÞ½sA~pPR

B þ ð1� sAÞ~pRR
B �.
We assume that cu = cs = 0.1 and T = 10. We obtain Figs. 8 and 9 for the average profits in a market.
From Figs. 8 and 9, we find that the average profit of the channel with higher (lower) cost decreases (in-

creases) as time increases if the demand is not disrupted, which means that the cost advantage of the chan-
nel with lower cost gradually materializes. For the increased demand, the average profit will decrease as
time increases in the in-disruption period, even lower than the average profit without disruption. But,
for the decreased demand, the average profit will increase as time increases in the in-disruption period, even
higher than the average profit without disruption. For the demand disruption cases, we also see that the
average profits of the channels will converge to the average profit without disruption, but the average prof-
its at the end of the disruption period are not equal to the average profit without disruption.
6.2. A recovery model with the raw material supply disruptions

In Section 6.1, we set up a recovery model of supply chain with demand disruptions. In this subsection,
we will study the effects of recovery of the raw material supply disruptions on the supply chains. For sim-
plicity, we assume that DcA = DcB = Dc and the costs recover uniformly, i.e., we have ci(t) = ci +
Dc(T � t)/T for t 2 [0, T] and ci(t) = ci, for t > T, i = A, B. Similar to the dynamic system (3)–(4), we have
for t 2 [0, T]
Fig. 8. The average profit of channel A as a function of time under demand disruptions with recovery consideration.



Fig. 9. The average profit of channel B as a function of time under demand disruptions with recovery consideration.
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_sA ¼ 1
9
sAð1� sAÞ½cA þ DcðT � tÞ=T �½4cA � cBsB � aþ ð4� sBÞDcðT � tÞ=T �; ð7Þ

_sB ¼ 1
9
sBð1� sBÞ½cB þ DcðT � tÞ=T �½4cB � cAsA � aþ ð4� sAÞDcðT � tÞ=T �. ð8Þ
The evolutionary dynamic system is the same as the system (1)–(2) for t > T.
We assume that Dc = 1, T = 10 and t 2 [0, 1000]. In order to well illustrate the effect of the raw material

supply disruptions on the evolutionary path, we assume that the initial state is (0.03, 0.82). Fig. 10 describes
the evolutionary path of the system with the raw material supply disruptions.

From Corollary 1, we know that the equilibriums (0, 1) and (1, 0) are ESS for the system without disrup-
tion. From Fig. 10, we find that the initial state (0.03, 0.82) will evolve to ESS (0, 1) if the supply chain is not
disrupted, but it may evolve to ESS (1, 0) if the supply chain is disrupted. Fig. 10 illustrates that the disrup-
tions may affect the ESS of populations for a given initial state. The disruptions may result in a reverse ESS
for a population.
Fig. 10. The ESS of retailers under raw material supply disruptions with recovery consideration.
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Similar to Eq. (6), it follows that for t 2 [0, T]
~pMN
i ð~qMN

A ; ~qMN
B Þ ¼ a� ~qMN

A � ~qMN
B � ½ci þ DcðT � tÞ=T �

� �
~qMN

i � 1
3
cuðT � tÞT�1ðDcðsj � 2siÞÞþ

� 1
3
csðT � tÞT�1ðDcð2si � sjÞÞþ; i; j ¼ A;B; j 6¼ i; M ;N ¼ P ;R. ð9Þ
Given the same parameter values and the initial state as that in Fig. 8, we can depict similar Figures and
give a similar explanation. In this paper, we only consider the case that disruptions occur at only one time.
In practice, the disruptions may occur from lime to time. In the latter case, the populations continually ad-
just their Strategies.
7. Conclusions

The strategies of a firm affects to a large degree its success or survival. A good strategy is beneficial to its
development. What is a good strategy? The answer depends on the market environment. The good strategy
in one market may be unacceptable in another. Even the answer may be different for the same market at
different times. For example, the demand disruptions often affect the retailer�s strategy. The raw material
supply disruptions also affect the retailer�s strategy. The indirect evolutionary approach does not deny ra-
tional decision-making. This paper employs the usual rationality assumptions of game theory to endogenize
preference strategies (revenue maximization and profit maximization), and analyzes the ESS of preference.
In our model, the retailers can maximize their utilities, revenue or profit of the channel, based on their pref-
erences. And then we focus on the preference strategies.

In a quantity-setting duopoly situation with homogeneous goods, the ESS of the populations consisting
of retailers depends on the relative sizes of the market scale and unit costs. We find that there may be two
evolutionarily stable strategies under some conditions. Revenue maximization strategy may coexist with
profit maximization strategy. Revenue maximization strategy may prevail in the situation that the demand
is large enough. We find that the disruptions affect not only the ESS of the retailers, but also the optimal
strategies of manufacturers and suppliers.

There are several directions that this research could continue. First, an important extension of the paper
will be the case with multiple manufacturers by employing a finite population evolutionary game. Second,
one can also consider a model with a nonlinear demand function and the effects of the disruptions on the
members of a decentralized supply chain. Finally, the effect of the disruptions on the ESS of populations in
other economic systems is an interesting field for future research.
Appendix A

Proof of Theorem 2. Part (i). At the equilibrium point (0, 0), it follows from cB 6 cA that if a < 4cB, we
have det J ¼ 1

81cAcBð4cA � aÞð4cB � aÞ > 0, and trJ ¼ 1
9cAð4cA � aÞ þ 1

9cBð4cB � aÞ > 0. Hence, the equilib-
rium (0, 0) is unstable if a < 4cB.

If a = 4cB, we have det J = 0 and tr J P 0, and further analysis is required. The further analysis is
divided into two cases:

When a = 4cB < 4cA. the system (1)–(2) becomes
_sA ¼ 1
9
cAsAð1� sAÞð4cA � 4cB � cBsBÞ; _sB ¼ �1

9
cAcBsAsBð1� sBÞ.
Given function V1(sA, sB) = sAsB, it follows from cA > cB that there exists a sufficiently small e > 0 such that
dV 1ðsA; sBÞ
dt

¼ 1

9
cAsAsBð4cA � 4cB � cBsBÞ �

1

9
cAs2

AsBð4cA � 3cBÞ þ
2

9
cAcBs2

As2
B > 0
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for all (sA, sB) 2 (0, e) · (0, e). sAsB equals zero on the boundary sA = 0 or sB = 0. According to XeTaeB The-
orem, we know that the equilibrium (0, 0) is unstable if a = 4cB < 4cA.

When a = 4cB = 4cA, the system (1)–(2) becomes
_sA ¼ �1
9
cAcBsAsBð1� sAÞ; _sB ¼ �1

9
cAcBsAsBð1� sBÞ.
The function V2(sA, sB) = �ln(1 � sA)(1 � sB) is a Lyapunov function since
dV 2ðsA; sBÞ
dt

¼ _sA

1� sA
þ _sB

1� sB
¼ � 2

9
cAcBsAsB 6 0
for all (sA, sB) 2 [0, 1) · [0, 1). Note that all trajectories for the system (1)–(2) lie in the square [0, 1] · [0, 1],
which allows us to only consider the points in the square [0, 1] · [0, 1]. Hence, the equilibrium (0, 0) is stable
but not asymptotically stable if a = 4cB = 4cA. Similarly, we can follow Parts (ii) through (V). h
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Bester, H., Güth, W., 1998. Is altruism evolutionarily stable? Journal of Economic Behavior and Organization 34, 193–209.
Bischi, G.I., Kopel, M., 2001. Equilibrium selection in a nonlinear duopoly game with adaptive expectations. Journal of Economic

Behavior and Organization 46, 73–100.
Bolle, F., 2000. Is altruism evolutionarily stable. And envy and malevolence? Journal of Economic Behavior and Organization 42, 131–

133.
Boyaci, T., Gallego, G., 2002. Coordinating pricing and inventory replenishment policies for one wholesaler and one or more

geographically dispersed retailers. International Journal of Production Economics 77, 95–111.
Cressman, R., 1992. The Stability Concept of Evolutionary Game Theory. Springer-Verlag, Berlin, Heidelberg.
Friedman, D., 1991. Evolutionary games in economics. Econometrica 59, 637–666.
Friedman, J.W., Mezzetti, C., 2002. Bounded rationality, dynamic oligopoly, and conjectural variations. Journal Economic Behavior

and Organization 49, 287–306.
Groves, T., Loeb, M., 1979. Incentives in a divisionalized firm. Management Science 15 (23), 221–230.
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