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Abstract

In this paper we propose a biobjective model for two-group classification via margin maximization, in which the
margins in both classes are simultaneously maximized. The set of Pareto-optimal solutions is described, yielding a
set of parallel hyperplanes, one of which is just the solution of the classical SVM approach.

In order to take into account different misclassification costs or a priori probabilities, the ROC curve can be used to
select one out of such hyperplanes by expressing the adequate tradeoff for sensitivity and specificity. Our result gives a
theoretical motivation for using the ROC approach in case misclassification costs in the two groups are not necessarily
equal.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decade, support vector machine (SVM), e.g., [1–5], has shown to be a powerful tool for the
two-group classification problem. This method attempts to build a hyperplane with maximal margin that
linearly separates the two groups, in the sense that it correctly classifies the whole set I of objects in the
database, and the distance to the closest point is maximized. When linear separation is not possible, per-
turbations in the model are allowed. Moreover, the use of SVM is theoretically justified by the dependence
on the margin of certain bounds on the probability of misclassifying a forthcoming object, e.g., [6–8].
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However, crude SVM cannot take into account different misclassification costs or known a priori prob-
abilities. In this work, we formulate a new model in which margins between each class and the hyperplane
are dealt independently. We study the simultaneous maximization of both margins, i.e., the distance to the
closest point in each group. This yields a biobjective problem, whose Pareto-optimal solutions are sought.
In other words, we seek the set of hyperplanes such that there is not any other hyperplane having greater
margin for both classes, thus we expect their performance cannot be improved simultaneously with respect
to both classes.

Our main result states that the set of all Pareto-optimal solutions is described as a set of parallel hyper-
planes, which can be easily computed.

The paper is organized as follows: In Section 2, the problem is formally introduced, and notation is set.
As in classical SVM approaches, we deal separately with the linearly separable case (Section 3) and the case
in which the two classes are not linearly separable (Section 4). Some illustrative examples, as well as a visual
procedure for choosing b based on the receiver operating characteristic (ROC) curves are given in Section 5,
ending with some concluding remarks.
2. The problem

We have a set of objects X, each object u having two components u = (xu, yu). The first component xu is
called the predictor vector and takes values in Rp, whose components xl, l = 1, 2, . . . , p, are called predictor

variables. The other component yu, takes values in the set of classes C ¼ f�1; 1g and is called the class-
membership of object u. Object u is said to belong to class yu.

In general, class-membership of objects in X is known only for a subset I, called the training sample: both
predictor vector and class-membership are known for u 2 I, whereas only xu is known for u 2 XnI.

Denote by Ic = {u 2 I : yu = c}, the set of objects of class c, for every c 2 C. We assume throughout this
paper that each class is represented in the training sample, i.e., Ic 5 ;, 8c 2 C.

Our framework to classify objects is as follows. We are seeking a score function of the form:
f ðxÞ ¼
Xp

k¼1

xkxk þ b ¼ x>xþ b; ð1Þ
where x = (x1,x2, . . . ,xp) 5 0. Such a function defines a hyperplane in the predictor space Rp, given by
fx 2 Rp : x>xþ b ¼ 0g. We identify with (x,b) such a hyperplane.

An object u 2 X will be allocated to class �1 if f(xu) < 0, i.e., if xu belongs to the halfspace
fx 2 Rp : x>xþ b < 0g. Analogously, u will be allocated to class 1 if f(xu) > 0, i.e., if xu belongs to the half-
space fx 2 Rp : x>xþ b > 0g. In case of ties, i.e., when xu belongs to the hyperplane, objects can be allo-
cated randomly or by a prefixed order.

Our problem is to find a hyperplane (x,b) correctly classifying all (or at least, most) objects u 2 I, and
enjoying good generalization properties, in the sense that one can expect the good behavior obtained in I to
be generalized to X.

In this paper, as done in classical SVM [2–4,6,7], we address first the case in which a hyperplane correctly
classifying all objects in the training sample exists, and consider later the case in which such hyperplane
does not exist. Let us give a formal definition of linear separability.

Definition 1. A hyperplane (x,b), is said to separate linearly I if
yuðx>xu þ bÞ > 0; 8u 2 I . ð2Þ
Moreover, I is said to be linearly separable if there exists a hyperplane (x,b) linearly separating I.



748 E. Carrizosa, B. Martin-Barragan / European Journal of Operational Research 173 (2006) 746–761
3. The linearly separable case

In this section, we address the case in which I is linearly separable, i.e., (2) is satisfied by some (x,b).
Although this condition may be rather restrictive, it is usually fulfilled in practice by mapping the data

into a vector space of higher dimension, in such a way that the predictor vectors become linearly separable.
See, e.g., [4,5].

The theoretical basis of SVM was developed by Vapnik et al. [3,6,7], where they gave bounds on the gen-
eralization ability of a linear classifier in terms of the margin, as defined, e.g., in [4].

Definition 2. Given the hyperplane (x,b), the margin of an object u, is defined as the Euclidean distance
between xu and the hyperplane (x,b), with positive sign if u is correctly classified, and negative sign
otherwise, i.e.,
quðx; bÞ ¼ yuðx>xu þ bÞ
kxk ; ð3Þ
where k Æk stands for the Euclidean norm. The margin of a class c 2 C in the training sample I is the min-
imum margin over all objects u 2 Ic,
qcðx; bÞ ¼ min
u2Ic

quðx; bÞ; ð4Þ
and the margin of the training sample I, is the minimum over all the objects u in I
qIðx; bÞ ¼ min
u2I

quðx;bÞ. ð5Þ
Under the assumption that I is linearly separable, we can construct the so-called hard margin hyperplane

[3,6,7], which is the hyperplane which linearly separates I and has maximal margin qI. This is usually
obtained by solving the problem
min kxk2

s.t. yuðx>xu þ bÞP 1; 8u 2 I ;

x 2 Rp; b 2 R.

ð6Þ
It is shown in [6,7] that (6) always has just one optimal solution.
This approach does not take into account different misclassification costs or known a priori

probabilities.
We propose a novel approach, in which instead of maximizing the margin on I, we simultaneously max-

imize the margin on both classes as defined in (4). This yields the following biobjective optimization prob-
lem with open feasible region:
max fq1ðx; bÞ; q�1ðx; bÞg
s.t. yuðx>xu þ bÞ > 0; 8u 2 I ;

x 2 Rp; b 2 R; x 6¼ 0.

ð7Þ
We seek the set of Pareto-optimal solutions to (7), i.e., the set of feasible solutions ð�x; �bÞ such that no
(x,b) exists such that
q1ðx; bÞP q1ð�x; �bÞ;
q�1ðx; bÞP q�1ð�x; �bÞ;

ð8Þ
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with at least one inequality strict. Note that, for u 2 I,
quðlx; lbÞ ¼ quðx; bÞ; 8l > 0; 8x 2 Rp; x 6¼ 0; 8b 2 R. ð9Þ

Hence, for all l > 0, x 2 Rp, x 5 0, b 2 R, one has that
q1ðlx; lbÞ ¼ q1ðx; bÞ;
q�1ðlx; lbÞ ¼ q�1ðx; bÞ.

ð10Þ
Hence, if (x,b) is a Pareto-optimal solution to (7), then, for any l > 0, (lx,lb) is also feasible for (7), and,
by (10), it is also a Pareto-optimal solution to (7).

Our final aim is to construct classifiers with adequate tradeoff of misclassification costs in the two groups
in X. In other words, we ideally would solve the biobjective problem
max fq1ðx;bÞ; q�1ðx; bÞg
s.t. yuðx>xu þ bÞ > 0; 8u 2 X;

x 2 Rp; b 2 R; x 6¼ 0,

ð11Þ
by describing the set of Pareto-optimal solutions.
Since the class yu of u 2 X is known only for the objects u 2 I, we consider (7) as a surrogate of (11), and

thus the set of Pareto-optimal solutions of (7) is seen as an approximation to the set of Pareto-optimal solu-
tions of (11).

First let us recall that ð�x; �bÞ is a weakly efficient solution of Problem (7) if no feasible (x,b) exists that is
strictly better than ð�x; �bÞ for both objectives, i.e.,
q1ðx; bÞ > q1ð�x; �bÞ;
q�1ðx; bÞ > q�1ð�x; �bÞ.

ð12Þ
We refer the reader to, e.g., [9] for further details on these concepts of vector optimization.
Since all feasible solutions (x,b) satisfy that q1(x,b) > 0 and q�1(x,b) > 0 one can generate all weakly

efficient solutions by solving max–min type scalarizations [9].
For the sake of completeness we state the following technical result:

Lemma 3. The set of weakly efficient solutions of Problem (7) is obtained as the set of optimal solutions of
max min fq1ðx; bÞ; hq�1ðx; bÞg
s.t. yuðx>xu þ bÞ > 0; 8u 2 I ;

x 2 Rp; b 2 R; x 6¼ 0;

ð13Þ
when h 2 (0, +1), in the sense that

(1) any optimal solution of Problem (13) is weakly efficient for Problem (7),

(2) for every weakly efficient solution (xh,bh) of Problem (7) there exists h 2 (0, +1), such that (xh,bh) is

optimal for Problem (13).

For h 2 (0, +1), define
Ah ¼
2h

hþ 1
;

yu
h ¼

1 if u 2 I1;

�h if u 2 I�1;

(
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and consider the convex quadratic problem
min kxk2

s.t. yu
hðx>xu þ bÞP Ah; 8u 2 I ;

x 2 Rp; b 2 R.

ðPhÞ
Observe that Problem (6) is a particular case, since it corresponds to the case h = 1.

Lemma 4. One has:

(1) For each h 2 (0, +1), Problem (Ph) has a unique optimal solution (xh,bh), satisfying xh 5 0.

(2) Given ðx; bÞ 2 Rp � R, the following statements are equivalent:

(a) There exists h 2 (0, +1) such that (x,b) is optimal for Problem (Ph).
(b) x = x1 and jb � b1j < 1, where (x1,b1) is the optimal solution for Problem (Ph) for h = 1.
Proof. For h given, since the function x # kxk2 is strictly convex, there exists a unique xh such that any
optimal solution (x,b) for Problem (Ph) has x = xh. We show now that the set of optimal solutions of
Problem (Ph) is a singleton.

For Problem (Ph), KKT conditions at (xh,b), which are necessary and sufficient for optimality, are given
by
ku
h P 0; 8u 2 I ;

2xh �
X
u2I

khuyu
hxu ¼ 0;

X
u2I

ku
hyu

h ¼ 0;

ku
h½yu

hðx>h xu þ bÞ � Ah� ¼ 0; 8u 2 I .

ð14Þ
First of all, note that kh 5 0. Indeed, if ku
h ¼ 0 for all u 2 I, one would have xh = 0, which simultaneously

implies, since (xh,b) is feasible, that b P Ah > 0 and b 6 Ah
�h < 0. This is a contradiction, and hence kh 5 0.

Hence, for any (xh,b), optimal for (Ph) there exists u 2 I such that
yu
h x>h xu þ b
� �

� Ah ¼ 0; ð15Þ
i.e.,
b ¼ Ah

yu
h

� x>h xu. ð16Þ
This means that the set of optimal solutions of Problem (Ph) is finite. On the other hand, by convexity, for
any two different optimal solutions of Problem (Ph), all the solutions in the segment between them are opti-
mal. This contradicts the finiteness of the set of optimal solutions of Problem (Ph), yielding the conclusion
that such a set has an unique solution, (xh,bh), with bh of the form (16) for some u 2 I.

In order to prove the second part of the Lemma we show that for h 2 (0, +1) the unique optimal
solution (xh,bh) of Problem (Ph) is given by
xh ¼ x1;

bh ¼ b1 þ
h� 1

hþ 1
.
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To show this, let k1 be the multipliers in (14) for h = 1 and define the multipliers kh as
ku
h ¼ ku

1; 8u 2 I1;

ku
h ¼

1

h
ku

1; 8u 2 I�1.
It is easy to see that (xh,bh, kh) satisfies (14). Indeed,
X
u2I

ku
hyu

hxu ¼
X
u2I1

ku
1xu �

X
u2I�1

1

h
ku

1hxu ¼
X
u2I

ku
1yu

1xu ¼ 2x1;
and
X
u2I

ku
hyu

h ¼
X
u2I1

ku
1 �

X
u2I�1

1

h
ku

1h ¼
X
u2I

ku
1yu

1 ¼ 0.
Since, ku
h is equal to zero iff ku

1 ¼ 0, and in such a case, they trivially satisfy the last set of equations of (14),
we just have to prove that for all u 2 I with ku

1 > 0, it holds
yu
h x>1 xu þ bh

� �
� Ah ¼ 0. ð17Þ
Let u 2 I1 such that ku
1 6¼ 0. By (14), one has x>1 xu þ b1 ¼ 1. After substituting it into (17), it yields
yu
h x>1 xu þ bh

� �
� Ah ¼ x>1 xu þ b1 þ

h� 1

hþ 1
� 2h

hþ 1
¼ 1� 1 ¼ 0. ð18Þ
Analogously, let u 2 I�1 such that ku
1 6¼ 0. Then, x>1 xu þ b1 ¼ �1, and by substituting it into (17) it yields
yu
hðx>1 xu þ bhÞ � Ah ¼ �h x>1 xu þ b1 þ

h� 1

hþ 1

� �
� 2h

hþ 1
¼ 0. ð19Þ
Hence, we conclude that (x1,bh) with bh ¼ b1 þ h�1
hþ1

, is the unique optimal solution of Problem (Ph). It
means that the set of all optimal solutions of Problem (Ph) for all h 2 (0, +1), is given by
fðx1; bhÞ : h 2 ð0;þ1Þg ¼ ðx1; bÞ : b ¼ b1 þ
h� 1

hþ 1
for some h 2 ð0;þ1Þ

� �
¼ fðx1; bÞ : jb� b1j < 1g. �
Theorem 5. The set W of weakly efficient solutions of the biobjective Problem (7) is given by
W ¼ fðlx1; lbÞ : jb� b1j < 1; l > 0g;

where (x1,b1) is the optimal solution of Problem (P1).

Proof. Let ð�x; �bÞ 2 Rp � R. By Lemma 3, ð�x; �bÞ is weakly efficient for Problem (7) if and only if there exists
h 2 (0, +1) such that ð�x; �bÞ is an optimal solution of Problem (13). This is equivalent to ð�x; �bÞ being opti-
mal for
min
kxk

min minu2I1
yuðx>xu þ bÞ; hminu2I�1

yuðx>xu þ bÞ
� 	

s.t. yuðx>xu þ bÞ > 0; 8u 2 I ;

x 2 Rp; b 2 R; x 6¼ 0.

ð20Þ
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Observe that (x,b) is optimal for (20) if and only if (lx,lb) is optimal for (20) for any l > 0. Hence, by
normalizing the denominator in the objective of (20) we have that ð�x; �bÞ is optimal for (20) if and only if
there exist h 2 (0, +1) and l > 0 such that ðl�x; l�bÞ is optimal for the following problem:
min kxk

s.t. min min
u2I1

ðx>xu þ bÞ; h min
u2I�1

ð�x>xu � bÞ
� �

¼ Ah;

x 2 Rp; b 2 R; x 6¼ 0;

ð21Þ
where Ah ¼ 2h
hþ1

. Such a problem is equivalent to the following one
min kxk2

s.t. min min
u2I1

ðx>xu þ bÞ;min
u2I�1

hð�x>xu � bÞ
� �

P Ah;

x 2 Rp; b 2 R;

ð22Þ
which can be rephrased as
min kxk2

s.t. yu
1ðx>xu þ bÞP Ah; 8u 2 I1;

hyu
1ðx>xu þ bÞP Ah; 8u 2 I�1;

x 2 Rp; b 2 R; x 6¼ 0.

ð23Þ
Since
yu
1 ¼ yu

h; 8u 2 I1

hyu
1 ¼ yu

h; 8u 2 I�1.
Problem (23) is actually Problem (Ph). Hence, ð�x; �bÞ is weakly efficient iff there exists l > 0 such that
ðl�x; l�bÞ solves (Ph) for some h 2 (0, +1). By Lemma 4, this is equivalent to ð�x; �bÞ having the form
(lx1,lb) with jb � b1j < 1. h

Corollary 6. The set of Pareto-optimal solutions of the biobjective Problem (7) is given by W,
W ¼ fðlx1; lbÞ : jb� b1j < 1;l > 0g.
Proof. Any Pareto-optimal solution is, by definition, weakly efficient. Let us show the converse. Let ð�x; �bÞ
be weakly efficient. By Lemma 4 and Theorem 5, there exist h 2 (0, +1) and l > 0 such that ðl�x; l�bÞ solves
(Ph).

Suppose ð�x; �bÞ is not Pareto-optimal. Then ðl�x; l�bÞ would not be Pareto-optimal either. Hence there
would exist (x 0,b 0) such that
q1ðx0; b0ÞP q1ðl�x; l�bÞ ¼ q1ð�x; �bÞ;

q�1ðx0; b0ÞP q�1ðl�x; l�bÞ ¼ q�1ð�x; �bÞ;
ð24Þ
with at least one of those inequality strict.
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Without loss of generality we can suppose that kx0k ¼ kl�xk. Then (24) is equivalent to
min
u2I1

yuðx0>xu þ b0ÞP min
u2I1

yuðl�x>xu þ l�bÞP Ah;

min
u2I�1

yuðx0>xu þ b0ÞP min
u2I�1

yuðl�x>xu þ l�bÞP Ah.
ð25Þ
Hence, (x 0,b 0) would be feasible for Problem (Ph). Since its objective value at (x 0,b 0) is kx0k2 ¼ kl�xk2, we
would have that (x 0,b 0) is also optimal for Problem (Ph). By Lemma 4, (Ph) has a unique optimal solution.
Thus x0 ¼ l�x, contradicting that at least one of the inequalities in (24) is strict. h
4. The nonseparable case

When the set I is not linearly separable, no hyperplane exists classifying correctly all data points, and
thus problem (6) is infeasible. One can try to find a hyperplane minimizing the number of misclassified
points. However, this problem is known to be NP-hard, and very difficult to solve in practice [10].

For these cases, the margin maximization approach can be extended to the so-called soft margin
approach, e.g., [3–5], which consists of allowing some objects in I to be misclassified, by perturbing (6)
in order to make it feasible. In particular, one can replace (6) by its soft counterpart
min kxk2 þ C
X
u2I

ðnuÞ2;

s.t. yuðx>xu þ bÞ þ nu P 1; 8u 2 I ;

x 2 Rp; b 2 R; n 2 RjIj;

ð26Þ
where C is a constant which is usually chosen by crossvalidation techniques, see, e.g., [11–13] and is used in
order to tradeoff the perturbations nu and the classification scores x>xu + b.

More generally, we can follow [14], where a more general approach is proposed, in which the perturba-
tions are weighed by different parameters C1 and C�1, yielding the problem
min kxk2 þ C1

X
u2I1

ðnuÞ2 þ C�1

X
u2I�1

ðnuÞ2;

s.t. yuðx>xu þ bÞ þ nu P 1; 8u 2 I ;

x 2 Rp; b 2 R; n 2 RjIj.

ð27Þ
The parameters C1 and C�1 allow the incorporation of different a priori probabilities or misclassification
costs in an approximate way [5]. The class c having smaller a priori probability (or classification cost)
should have the large Cc value. For instance in [5] Cc ¼ 1

nc
, where nc denotes the number of objects in Ic,

for c 2 {1,�1} is suggested. With this, a priori probabilities, as well as different misclassification costs
for each class, can be taken into account to weight the perturbations, but not the margin itself, which is
the main aim of this paper.

As a generalization of Definition 2, now, the margin of an object u 2 I, is defined as
quðx; b; nÞ ¼ yuðx>xu þ bÞ þ nu

kðx; nÞk� ; ð28Þ
where k Æk* stands for the weighted Euclidean norm given by
kðx; nÞk� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxk2 þ C1

X
u2I1

ðnuÞ2 þ C�1

X
u2I�1

ðnuÞ2
s

.
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The margin of a class c 2 {+1,�1} in a training sample I, and the margin of a training sample are defined
as in Definition 2 for the linearly separable case.

We will study now the Pareto-optimal solutions for the problem of simultaneous maximization of the
margin in both classes, under the constraint that all the objects in the training sample are correctly classified
in the feature space
max fq1ðx; b; nÞ; q�1ðx; b; nÞg
s.t. yuðx>xu þ bÞ þ nu > 0; 8u 2 I ;

x 2 Rp; b 2 R; n 2 RjIj.

ð29Þ
This is a nonlinear nonconvex biobjective problem whose feasible region is not closed.
Analogously to the hard-margin approach one obtains the following result:

Theorem 7. The set of Pareto solutions of the biobjective Problem (29) is given by W*
W � ¼ fðlx1; lb; ln1Þ : jb� b1j < 1; l > 0g

for (x1,b1,n1) optimal solution of Problem (27).

Proof. Since all feasible solutions (x,b,n) satisfy that q1(x,b,n) > 0 and q�1(x,b,n) > 0 one can generate,
as in Lemma 3, all weakly efficient solutions by solving max–min type scalarizations [9] of the form
max min fq1ðx;b; nÞ; hq�1ðx; b; nÞg
s.t. yuðx>xu þ bÞ þ nu > 0; 8u 2 I ;

x 2 Rp; b 2 R; n 2 RjI j;

ð30Þ
for h varying in (0, +1). For h given, this problem is homogeneous. Hence, as we did in the linearly sep-
arable case, (x,b,n) is an optimal solution of (30) iff there exists l > 0 such that (lx,lb,ln) is optimal for
the following problem:
min kxk2 þ C1

X
u2I1

ðnuÞ2 þ C�1

X
u2I�1

ðnuÞ2

s.t. ðx>xu þ bÞ þ nu P Ah; 8u 2 I1;

ð�hÞðx>xu þ bÞ þ hnu P Ah; 8u 2 I�1;

x 2 Rp; b 2 R; n 2 RjIj;

ð31Þ
where Ah ¼ 2h
hþ1

.
Problem (31) is convex quadratic with linear constraints and KKT conditions are necessary and

sufficient. Such conditions at the unique optimal solution (xh,bh,nh) can be expressed as
ku
h P 0; 8u 2 I ;

2xh �
X
u2I1

ku
hxu þ

X
u2I�1

hku
hxu ¼ 0;

2C1n
u
h � ku

h ¼ 0; 8u 2 I1;

2C�1n
u
h � hku

h ¼ 0; 8u 2 I�1;X
u2I

ku
hyu

h ¼ 0;

ku
h ðx>h xu þ bhÞ þ nu

h � Ah

� �
¼ 0; 8u 2 I1;

ku
h ð�hÞðx>h xu þ bhÞ þ hnu

h � Ah

� �
¼ 0; 8u 2 I�1.

ð32Þ



Table 1
Parameters of the databases

Database Filename jXj p

bupa bupa.data 345 5
ionosphere ionosphere.data 351 34
pima pima-indians-diabetes.data 768 8
sonar sonar.all-data 208 60
wdbc wdbc.data 569 30
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Let (x1,b1,n1) be the optimal solution of Problem (27), which coincides with Problem (31) for h = 1.
Then, there exist (x1,b1,n1) and k1 satisfying (32) for h = 1. For each h 2 (0, +1), let (xh,bh,kh) be given
by
xh ¼ x1;

nu
h ¼ nu; 8u 2 I ;

bh ¼ b1 þ
h� 1

hþ 1
;

ku
h ¼ ku

1; 8u 2 I1;

ku
h ¼

1

h
ku

1; 8u 2 I�1.

ð33Þ
It is easy to see, that such choice of (xh,bh,nh) and kh satisfy (32). Hence, we conclude that (x1,bh,n1) with
bh ¼ b1 þ h�1

hþ1
, is the unique optimal solution of Problem (31). By homogeneity, all optimal solutions of

Problem (31) for all h 2 (0, +1), are given by W* and then the set of weakly efficient solutions of Problem
(29) coincide with W*. The proof of the equality between W* and the set of Pareto-optimal solutions of
Problem (29) is identical to the proof of Corollary 6, and will not be repeated here. h
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Fig. 1. ROC curve. Database: bupa, C = 0.03125.
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Fig. 2. ROC curve. Database: ionosphere, C = 2.0.
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Fig. 3. ROC curve. Database: pima, C = 0.03125.
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5. Illustrative examples

As has been proven in the preceding sections, the best classification rules, in the Pareto sense, are
obtained by varying the value b in the optimal solution of the classical SVM. The choice of such a value
b is up to the decision maker, who should take into account the tradeoff between the misclassification costs
and a priori probabilities in both classes.



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

specificity

se
ns

iti
vi

ty

Fig. 4. ROC curve. Database: sonar, C = 0.5.
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Fig. 5. ROC curve. Database: wdbc, C = 2.0.
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In order to choose a value for the parameter b, some authors (see, e.g., [15]) have suggested the use of the
ROC curve. The ROC curve shows the sensitivity, i.e., the proportion of correctly classified objects of the
positive class, against the specificity, proportion of correctly classified objects of the negative class, for dif-
ferent values of the parameter b. The ROC curves can help the decision maker in the choice of b, due to the
fact that the only free parameter is the scalar b, as shown by the characterization given in Corollary 6 and
Theorem 7.
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Fig. 6. Specificity and sensitivity of (x1, b1 � D), for a threshold D and (x1, b1) optimal solution of (27). Database: bupa,
C = 0.03125.
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Fig. 7. Specificity and sensitivity of (x1, b1 � D), for a threshold D and (x1, b1) optimal solution of (27). Database: ionosphere,
C = 2.0.
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In order to show how to guide the choice of b in real-life settings, we have performed various experi-
ments using databases publicly available at the UCI Machine Learning Repository [16]. We have used those
databases having two classes and no missing data whose predictor variables are all continuous, as detailed
in the summary table [16], namely, the BUPA Liver-disorders Database, called here bupa; the Ionosphere
Database, called here ionosphere; the Pima Indians Diabetes Database, called here pima; the
Sonar Database, called here sonar; and the New Diagnostic Database contained in the Wisconsin Breast
Cancer Databases, called here wdbc.

For each database, the filename (as called in the database repository [16]), the total number of objects jXj
and the number of variables (all quantitative) p is given in Table 1.
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Fig. 8. Specificity and sensitivity of (x1, b1 � D), for a threshold D and (x1, b1) optimal solution of (27). Database: pima,
C = 0.03125.
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Fig. 9. Specificity and sensitivity of (x1, b1 � D), for a threshold D and (x1, b1) optimal solution of (27). Database: sonar, C = 0.5.
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From each database, a random sample of 100 objects is drawn and used as training sample I and the
remaining is used as testing sample in order to validate the model.

All the numerical results have been performed by using the SVM toolbox for Matlab [17]. Data were not
preprocessed and a linear kernel was used in all the experiments. The parameters C1 and C�1 where set to be
equal, and their value chosen by crossvalidation, as implemented in the popular SVM library LIBSVM [18].

With this information at hand, we can draw the ROC curve in the training sample, i.e., the plot, when b
varies, of the proportions of misclassified objects in both classes in the available set of data. This is not the
ROC curve for the whole population, which is unknown in real applications. We then use the former as a
surrogate of the latter. In Figs. 1–5 we give the ROC curves for the training sample (thick lines) and testing
sample (thin lines). The SVM solution is marked with a star. However, it is not evident to see from ROC



-1 -0.5 0 0.5 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Δ
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curves the effect of the b in the tradeoff between sensitivity and specificity, since the value b yielding each
pair is not plotted.

In Figs. 6–10, specificity and sensitivity are shown for both training and testing sample (training in thick)
in such a way that the decision maker can choose a value for the parameter b. Sensitivity and specificity
values for the classical SVM correspond to the case D = 0. The higher D, the higher q�1(x,b,n), at the
expense of decreasing q1(x,b,n). This, as empirically illustrated in the graphics, translates into saying that
the higher the value chosen for D, the higher the specificity and the lower the sensitivity.
6. Conclusion

In this paper, the concept of margin in a training sample I has been generalized to the margin in a class,
in order to deal separately with them via a biobjective program. Then, it has been shown that the set of
hyperplanes which are Pareto-optimal in the simultaneous optimization of the margin in both classes, is
given by a set of parallel hyperplanes, one of which is just the optimal margin hyperplane as defined by
the usual SVM approaches [3].

This paper proposes a simple way for taking into account different misclassification costs, or known a
priori probabilities of the classes. Our main result gives a theoretical foundation for the commonly used
ROC approach for tuning the parameter b.
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