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Abstract

Performance evaluation of complex systems is a critical issue and bounds computa-
tion provides confidence about service quality, reliability, etc. of such systems. The
stochastic ordering theory has generated a lot of works on bounds computation.
Maximal lower and minimal upper bounds of a Markov chain by a st-monotone one
exist and can be efficiently computed. In the present work, we extend simultaneously
this last result in two directions. On the one hand, we handle the case of a maximal
monotone lower bound of a family of Markov chains where the coefficients are given
by numerical intervals. On the other hand, these chains are sub-chains associated
to sub-stochastic matrices. We prove the existence of this maximal bound and we
provide polynomial time algorithms to compute it both for discrete and continuous
Markov chains. Moreover, it appears that the bounding sub-chain of a family of
strictly sub-stochastic ones is not necessarily strictly sub-stochastic. We establish
a characterization of the families of sub-chains for which these bounds are strictly
sub-stochastic. Finally we show how to apply these results to a classical model of
repairable system. A forthcoming paper will present detailed numerical results and
comparison with other methods.

Key words: Markov process, Stochastic bound, Stochastic process, Strong
stochastic ordering, Sub-Markov chain.

1 Introduction

Performance evaluation of complex systems [17,5,15] is a critical issue. Indeed
since the development of such systems is expensive, an estimation of the re-
quirements about their infrastructure is highly valuable for managers. Despite
the continuous increasing of computers capacities, the exact analysis of huge
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models is still out of reach. Alternative families of methods [19,12,16]. include
simulations, approximations and bounds computations.

Bounds computation provides confidence about service quality, reliability, etc.
In essence, the associated methods offer a trade-off between the accuracy of the
bound and the complexity of its computation. Most of the proposed algorithms
operate on Markovian processes either in the framework of Discrete Time
Markov Chains (DTMCs) or in the one of Continuous Time Markov Chains
(CTMCs).

Different theoretical analysis bounding methods [6,7,26,30,21,13,24,4] have
been developed in order to derive efficient algorithms. Among these methods,
the stochastic ordering theory [28,18] has generated numerous works including
generic algorithms [2,11] and methods specific to particular applications [25].
Roughly speaking, this theory states that appropriate inequalities between
the transition matrices (resp. the infinitesimal generators) of two discrete-
time (resp. continuous-time) processes and their initial distribution lead to
similar inequalities between their distribution at any time given that one of
the process is of a special kind called monotone. Furthermore, the maximal
lower and minimal upper bounds of a Markov chain by a monotone one exist
and can be efficiently computed [29].

In the present work, we extend simultaneously this last result in two direc-
tions. On the one hand, we handle the case of a maximal monotone lower
bound of a family of Markov chains where the coefficients are given by nu-
merical intervals. On the other hand, these chains are sub-chains associated
to sub-stochastic matrices. We prove the existence of this maximal bound and
we provide polynomial time algorithms to compute it for both DTMCs and
CTMCs.

Moreover, the management of sub-stochastic matrices raises a new issue. A
sub-chain is said strictly sub-stochastic iff given any initial distribution, the
probability to indefinitely stay in the states of the sub-chain is null. It appears
that the bounding sub-chain of a family of strictly sub-stochastic ones is not
necessarily strictly sub-stochastic. So we have established an useful character-
ization of the families of sub-chains fulfilling this property. This characteri-
zation is qualitative in the sense that it depends on the transitions between
states but not on the rates of these transitions.

Our third contribution is the application of the previous results to a generic
model already studied by numerous authors. In the model, there is one state
variable (e.g. the number of failed machines or the number of remote procedure
calls) which induces a partition of states such that the steady-state probability
mass quickly decreases w.r.t. this parameter. Moreover in a state transition the
variable can arbitrarily increase whereas it can only decrease by one unit (e.g.
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no simultaneous achievements of repair or call). This model admits a “bound-
ing” model where the sets of states associated to values higher than some level
are replaced by single states. The difficult step of this transformation is the
computation of rates of the transitions starting from these aggregated states.
Different solutions have been proposed [26,22,8,3]. The interest of the latter
approach [3] is twofold : it covers realistic applications and the computation of
bounding rates is straightforward. However due to drastic simplifications, the
bounds can be really far from the exact values. We illustrate an application
of our theory with a new solution method for this problem.

The balance of the paper is the following one. In the second section we de-
velop a theory of bounds for families of sub-stochastic matrices of DTMCs.
In section 3 we develop a similar theory for CTMCs. A significant example
of application of these theoretical results is presented in section 4. At last,
we conclude and summarize our results. Numerical experiments of these new
methods will be detailed in a forthcoming paper.

2 Bounding sub-stochastic matrices of DTMCs

This section studies properties of sub-stochastic matrices of DTMC with one
absorbing state when only bounds on these matrices are available. Such matri-
ces are frequently encountered when analysing Markovian systems with large
subsets of states of low probability.

2.1 Context and notations

We consider DTMCs X = (E,P(E)) on state space E = {1, . . . , n + 1}, where
n + 1 is the unique absorbing state. We study sub-stochastic matrices on
C = {1, . . . , n}. In this section, all stochastic and sub-stochastic matrices
correspond to such DTMCs, thus: i) their (n + 1)th row, if any, is the (n + 1)
row vector (0, . . . , 0, 1); ii) any n × n sub-stochastic matrix may be uniquely
“extended” to a (n + 1) × (n + 1) stochastic matrix (the (n + 1)th column
is defined to ensure that the extension is stochastic). Thus, in the rest of
this section, a n × n sub-stochastic matrix will be viewed as it is or as its
(n + 1)× (n + 1) absorbing extension, depending on the context.

We introduce the following notations:

• The restriction of a matrix L to rows in U and columns in V is denoted by
L|U×V and L|U if U = V .
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• For two vectors or matrices, usual comparison operators are taken compo-
nentwise.

• P− and P+, with P− ≤ P+ are two (n + 1)× (n + 1) positive matrices. P−

is assumed to be sub-stochastic.
• M(P−,P+) is the set of transition probability matrices of DTMCs X such

that P− ≤ P(E) ≤ P+. We assume that M(P−,P+) 6= ∅.

There are several equivalent definitions of the strong stochastic ordering (≤st)
for DTMCs and stochastic matrices. However all these definitions are not
appropriate to sub-chains comparison. Indeed, sub-chains comparison requires
to use relations between terms of stochastic matrices involving summation of
only n among n + 1 states of the chain. Since our subset corresponds to the
first n states, we will use left to right summation in the definitions. Hence we
rewrite standard definitions in this context.

Definition 2.1 (Strong stochastic ordering for stochastic matrices) Let
A and B be n×m matrices (or vectors) with positive coefficients.

• A is st-monotone iff
∀ 1 ≤ i < j ≤ n, ∀ 1 ≤ k ≤ m,

∑k
l=1 A[i, l] ≥ ∑k

l=1 A[j, l].
• B is st-lower than A (denoted by B≤stA) iff

∀ 1 ≤ i ≤ n, ∀ 1 ≤ k ≤ m,
∑k

l=1 B[i, l] ≥ ∑k
l=1 A[i, l].

2.2 Existence and computation of an optimal st-lower bound P? ofM(P−,P+)

In this section we prove the following theorem.

Theorem 2.2 Let P−,P+ be as above. There is an st-monotone matrix P?

such that:
∀ P ∈M(P−,P+), P?≤stP.

P? is st-maximal among st-monotone, st-lower bounds of M(P−,P+).
Moreover, P? can be built from P− and P+ in linear time w.r.t. their size (see
algorithms 1 and 2).

The proof is postponed until the presentation of the algorithm building P?.

2.2.1 Building P?

Building P? involves two steps. First we define a st-lower bound P• ofM(P−,P+)
starting from P− and P+. Then, P? is built from P• to be st-monotone.

Algorithm 1 first builds a matrix P(acc) where P(acc)[i, j] is the best computable
upper bound of Σj

k=1P[i, k] w.r.t. the inputs. Due to the second argument of
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Algorithm 1 - Build P•

Input: P−,P+: (n + 1)× (n + 1) matrices
begin

for i ← 1 to n do
// compute the “accumulation” matrix P(acc):
for j ← 1 to n do

P(acc)[i, j] ← min
{∑j

k=1 P+[i, k], 1−∑n+1
k=j+1 P−[i, k]

}

// (Ih) if i = j and P(acc)[i, j] = 1 then halt (see section 2.3)
endfor
// compute the bounding matrix P•:
P•[i, 1] ← P(acc)[i, 1]
for j ← 2 to n do

P•[i, j] ← P(acc)[i, j]−P(acc)[i, j − 1]
endfor

endfor
end

the min function, P(acc)[i, n] ≤ 1 (note that P+ could be non stochastic).
Then by “differentiating” this matrix we obtain P• which is a sub-stochastic
st-lower bound of any P ∈ M(P−,P+). The meaning of statement (Ih) will
be explained in the handling of the strict sub-stochasticity (see theorem 2.6).

For instance, if P+[i, .] = [0.2, 0.4, 0.5 0.3], P−[i, .] = [0.1, 0.15, 0.3 0.2]
(n = 3), we obtain P•[i, .] = [0.2, 0.15, 0.45].

Lemma 2.3 gives the key properties of P?.

Lemma 2.3 Let P• be the matrix computed by algorithm 1.

(1) P• is a st-lower bound of M(P−,P+), i.e., ∀P ∈M(P−,P+), P•≤stP.
(2) P• belongs to M(P−,P+) i.e., P− ≤ P• ≤ P+.

Proof.
Assertion (1)
Let P ∈M(P−,P+) and P(cum)[i, j] =

∑j
k=1 P[i, k].

Since P ≤ P+, P(cum)[i, j] =
∑j

k=1 P[i, k] ≤ ∑j
k=1 P+[i, k] and as P− ≤

P, P[i, j] = 1 − ∑n+1
k=j+1 P[i, k] ≤ 1 − ∑n+1

k=j+1 P[i, k]. Hence P(acc)[i, j] ≥
P(cum)[i, j].

Assertion (2)
• For i = 1, P•[i, 1]

def
= P(acc)[i, 1] ≤ P+[i, 1], and since P•≤stP, P•[i, 1] ≥

P[i, 1] ≥ P−[i, 1].
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Algorithm 2 - Build a st-monotone version of a st-lower bound
Input: P• (see algorithm 1)
begin

P?[n, ·] ← P•[n, ·]
for i ← n− 1 downto 1 do

(I0) x ← 0; y ← 0; ∆ ← 0
for j ← 1 to n do

(I1) P?[i, j] ← max {P•[i, j]−∆, y + P?[i + 1, j]− x}
(I2) y ← y + P?[i + 1, j]
(I3) x ← x + P?[i, j]
(I4) ∆ ← ∆ + P?[i, j]−P•[i, j]

endfor
endfor

end

• For i > 1,P•[i, j]
def
= P(acc)[i, j]−P(acc)[i, j − 1].

We have P•[i, j] ≥ max{P(acc)[i, j]−∑j−1
k=1 P+[i, k], P(acc)[i, j]−(1−∑n+1

k=j P−[i, k])}.
If P(acc)[i, j] =

∑j
k=1 P+[i, k], taking the first term of the max we have P•[i, j] ≥

P+[i, j] ≥ P−[i, j]. If P(acc)[i, j] = 1−∑n+1
k=j+1 P−[i, k], we take the second term

of the max and we have P(acc)[i, j] ≥ P−[i, j].

In the same way, P•[i, j] ≤ min{∑j
k=1 P+[i, k]−P(acc)[i, j−1], 1−∑n+1

k=j+1 P−[i, k]−
P(acc)[i, j − 1]}.
If P(acc)[i, j − 1] =

∑j−1
k=1 P+[i, k], taking the first term of the min we have

P•[i, j] ≤ P+[i, j] and if P(acc)[i, j−1] = 1−∑n+1
k=j P−[i, k], we take the second

term of the min so that again P•[i, j] ≤ P−[i, j] ≤ P+[i, j]. 2

In the general case, P• built above is not st-monotone. So we now build a
monotone version P? of P•. Algorithm 2 is a “sub-stochastic version” of the
one proposed by [29,1]. It is based on the lemma 2.4 below.

Lemma 2.4 At the ith iteration of the outer loop and at the beginning of the
jth iteration of the inner loop of algorithm 2, one has the following equalities.
These equalities also hold for j = n + 1 with the meaning that the program is
exiting the inner loop.

(1) y = Σj−1
k=1P

?[i + 1, k]

(2) x = max
{
Σj−1

k=1P
•[i, k], y

}
= Σj−1

k=1P
?[i, k]

(3) ∆ = x− Σj−1
k=1P

•[i, k]

Furthermore the item P?[i, j] will take a positive value during the execution of
the next statement.

6



Proof.
We prove the lemma by induction on j.
For j = 1, the three equalities are due to statement (I0).
Let us suppose that we have proven the lemma until some value j. In order to
analyze the effect of statement (I1), we substitute to y and ∆ the right-hand
side of the equalities. This gives us:
P?[i, j] ← max

{
Σj

k=1P
•[i, k]− x, Σj

k=1P
?[i + 1, k]− x

}
=

max
{
Σj

k=1P
•[i, k], Σj

k=1P
?[i + 1, k]

}
− x ≥ 0

The latter inequality is due to the first expression of x. The equality (1) is
inductively proved due to statement (I2). Let us analyze the new value of x
after statement (I3). We substitute to P?[i, j] the expression we have obtained
in our previous analysis. This gives us:
x ← max

{
(Σj

k=1P
•[i, k], Σj

k=1P
?[i + 1, k]

}

which is exactly the first expression of x. The second one is inductively proved
by a simple examination of (I3).
Now we analyze the value taken by ∆ during the execution of statement (I4).
We substitute the old value of ∆ by the expression of the third equality which
gives us:
∆ ← x − Σj−1

k=1P
•[i, k] + P?[i, j] − P•[i, j] = Σj−1

k=1P
?[i, k] − Σj−1

k=1P
•[i, k] +

P?[i, j]−P•[i, j].
The last equality has been obtained by the second expression of x in the second
equality. 2

At first, algorithm 2 sets the last row of the new matrix to the same row of
the old one. Then it sets each other row in decreasing ordering in such a way
that a partial sum of the row is the least upper bound of the corresponding
sum of the original matrix and the corresponding partial sum of the next row
(which has already been set). The variable ∆ of the algorithm represents the
excess of the current partial sum w.r.t. the original partial sum. The previous
lemma (more precisely the second equality and the last assertion) proves that
the transformed matrix is the minimal one satisfying the required property. It
is straightforward that this new matrix is still a sub-stochastic matrix. Note
that this algorithm could be implemented with a single matrix but we have
chosen the current presentation in order to simplify the proof.

Suppose for example that (the (n + 1)th row is omitted)

P− =




0.3 0.3 0.2 0.1 0.1

0.2 0.3 0.2 0.1 0.0

0.2 0.2 0.1 0.2 0.1

0.1 0.0 0.2 0.1 0.2




, and P+ =




0.5 0.5 0.5 0.5 0.2

0.4 0.4 0.4 0.4 0.2

0.4 0.4 0.4 0.4 0.2

0.3 0.3 0.3 0.3 0.2




.
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Then algorithms 1 and 2 give:

P(acc) =




0.3 0.6 0.8 0.9

0.4 0.7 0.9 1.0

0.4 0.6 0.7 0.9

0.3 0.5 0.7 0.8




, P• =




0.3 0.3 0.2 0.1

0.4 0.3 0.2 0.1

0.4 0.2 0.1 0.2

0.3 0.2 0.2 0.1




, and P? =




0.4 0.3 0.2 0.1

0.4 0.3 0.2 0.1

0.4 0.2 0.1 0.2

0.3 0.2 0.2 0.1




.

2.2.2 Proof of theorem 2.2

First, algorithm 2 ensures that P? is st-monotone. Moreover, the analysis of
the algorithm proved that P? is the st-greatest matrix st-monotone and st-
lower than P•.
Assume now that a st-monotone matrix A satisfies the relation of the theorem.
Then A≤stP

• since P• ∈ M(P−,P+) by assertion (2) of lemma 2.3, hence
A≤stP

?.
Note that in fact the last column of P+ is not used to build P?.

2.3 Strict sub-stochasticity of P?

In order to deduce from P? bounds on the mean number of visits to states of
C before leaving C, P? must be strictly sub-stochastic.

Definition 2.5 (Strict sub-stochasticity for stochastic matrices) A sub-
stochastic matrix P of a DTMC X is strictly sub-stochastic iff whatever the
starting state i in C, X will eventually leave C with probability 1.
This is equivalent to convergence of the series

∑
k≥1 Pk.

Translating the definition in the graph theory context, we check strict sub-
stochasticity of P?, in linear time w.r.t. the number of non null items of the
matrix, with the following procedure:

(1) Define an oriented graph where the set of nodes is I ∪ {n + 1}
(2) There is an arc between i ∈ I and j ∈ I iff P?[i, j] 6= 0
(3) There is an arc between i ∈ I and n + 1 iff Σn

j=1P
?[i, j] 6= 1

(4) Check whether n + 1 is reachable from any node. This can be done by a
breadth-first backward search starting from n + 1.

The interested reader will find in [9] proof of the correctness of this algorithm.
The important point here is that strict sub-stochasticity depends on structural
criteria: whether an item is null and whether a row sum is 1. It would be
interesting to have a similar structural characterization depending on P+ and
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P− as it would give insight on which kind of rates bounds could be handled
by our method. This is the goal of the next theorem.

Theorem 2.6 The following assertions are equivalent:

(1) P? is strictly sub-stochastic
(2) ∀i ∑

j≤i P
•[i, j] < 1

(3) ∀i ∑
j≤i P

+[i, j] < 1 or
∑

j>i P
−[i, j] > 0

Consequently, P? is strictly sub-stochastic iff condition (Ih) of algorithm 1 is
never satisfied.

Proof.
The assertions 2 and 3 are equivalent due to the construction of P•. Thus we
will prove equivalence of 1 and 2.

At first, let us suppose that assertion 2 is satisfied. We claim that the same
condition is satisfied for P?. We prove it by a reverse induction on i. If i = n
then it is immediate since the last rows of the two matrices are identical. Let
us suppose that the inequalities are satisfied for the rows k > i. Then we know
(see lemma 2.4) that:∑

j≤i P
?[i, j] = max

{∑
j≤i P

•[i, j],
∑

j≤i P
?[i + 1, j]

}
≤

max
{∑

j≤i P
•[i, j],

∑
j≤i+1 P?[i + 1, j]

}
< 1

Thus in the graph associated to P? :

• either
∑

j>i P
?[i, j] = 0 and there is an arc from i to n + 1

• or
∑

j>i P
?[i, j] > 0 and there is an arc from i to j > i

So starting from any node i and following these arcs, the node n + 1 will be
eventually reached.

Now suppose that assertion 2 is not satisfied i.e.; ∃i ∑
j≤i P

•[i, j] = 1. Thus
since P? is an adapted bound of P•, we have

∑
j≤i P

?[i, j] = 1 and since
P? is monotone, ∀k ≤ i

∑
j≤i P

?[k, j] = 1 holds. But this means that in the
associated graph of the above procedure, the subset of nodes {1, . . . , i} has no
outgoing arc. Then n + 1 is unreachable from this subset of states. 2

Thus we directly check on the inputs whether our method is applicable. This
is done without extra-computation by statement (Ih) of algorithm 1 which
builds P•. Roughly speaking the criterion means that in the system, for any
i there is either a j with j > i which any state of i can enter or i can exit
C. More informally, the criterion states that if the ordering of the indices i
is related to some progress measure then the system has always a non null
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probability to progress. Of course, this does not preclude the probability of
“regression”.

3 Bounding sub-generators of CTMCs

We follow an almost identical outline to the DTMC case to study properties
of sub-generators of CTMCs with one absorbing state when only bounds on
these matrices are available.

3.1 Context and notations

We consider CTMCs X = (E,P(E)) on state space E = {1, . . . , n + 1}, where
n + 1 is the unique absorbing state. We study sub-stochastic generators on
C = {1, . . . , n}. A sub-generator is a n × n matrix Q such that: Q[i, j] ≥ 0
for i 6= j and Q[i, i] ≤ −∑

j 6=i Q[i, j]. In this section, all generators and sub-
generators correspond to such CTMCs, thus: i) their (n+1)th row, if any, is the
(n+1) null row vector; ii) any matrix without explicit diagonal terms may be
completed with adapted diagonal terms to be a generator (qi,i = −∑

j 6=i qi,j);
iii) any n×n sub-generator may be uniquely “extended” to a (n+1)× (n+1)
generator.

Given a (n + 1)× (n + 1) strictly upper triangular positive matrix Q− and a
(n+1)× (n+1) strictly lower triangular positive matrix Q+ (hence diagonals
of Q− and Q+ are undefined),M(Q−,Q+) is the set of generators of CTMCs
X = (E,Q(E)) where n + 1 is the unique absorbing state X and such that:

Q− ≤ Q(E)
u and Q

(E)
l ≤ Q+

with Q(E)
u and Q

(E)
l the strict upper triangle and the strict lower triangle of

Q(E).

Since we study sub-generators, we rewrite in this context the standard defini-
tion of the strong stochastic ordering. This definition is expressed differently
in the full chains context [28].

Definition 3.1 (st-monotonicity of generators) A generator Q is st-monotone
iff, ∀ 1 ≤ i ≤ n, we have:

∀ 1 ≤ v < i,
∑

u≤v Q[i, u] ≥ ∑
u≤v Q[i + 1, u],

∀ i < v ≤ n + 1,
∑

u≥v Q[i, u] ≤ ∑
u≥v Q[i + 1, u].
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Note that it is sufficient to compare two successive rows of Q to check if it is
st-monotone.

Definition 3.2 (Strong stochastic ordering for generators) Let Q(1) and
Q(2) be two generators on E. Q(1) is st-lower than Q(2) (denoted by Q(1)≤stQ

(2))
iff, ∀ 1 ≤ i ≤ n :

∀ 1 ≤ v < i,
∑

u≤v Q(1)[i, u] ≥ ∑
u≤v Q(2)[i, u],

∀ i < v ≤ n + 1,
∑

u≥v Q(1)[i, u] ≤ ∑
u≥v Q(2)[i, u].

As for DTMCs, st-relation between generators allows us to derive st-relation
of their steady-state probabilities.

Theorem 3.3 ([28], Th. 4.2.8, p.67) Let X(1) and X(2) be two CTMCs on
{1, . . . , n} with generators Q(1) and Q(2) and probabilities vectors π(1)(t),π(2)(t)
at time t. Assume that ∀ 1 ≤ i < j ≤ n,

∀ 1 ≤ v < i,
∑

u≤v

q
(1)
i,u ≥

∑

u≤v

q
(2)
j,u

and
∀ j < v ≤ n,

∑

u≥v

q
(1)
i,u ≤

∑

u≥v

q
(2)
j,u

Then for any initial probabilities vectors π(1)(0)≤stπ
(2)(0), we have π(1)(t)≤stπ

(2)(t)
for all t ≥ 0.

The first relation states that for any pair of states i ≤ j, the transition rate
in X(1) to go to the set {1, . . . , v} with v < i from state i is bigger than
the transition rate in X(2) to go to the same set from state j. Symmetrically,
the second relation states that the transition rate in X(1) to go to the set
{v, . . . , n + 1} with v > j from state i is smaller than the transition rate in
X(2) to go the same set from state j. Roughly speaking, X(1) is more likely to
go backwards and X(2) is more attracted to go forwards. Thus, theorem 3.3
intuitively means that, given an initial distribution of X(1) more concentrated
than X(2) on the subsets of states with small indices, at any time in the future
the distribution of X(1) will still be more concentrated on such subsets.

From theorem 3.3, we have immediately the corollary:

Corollary 3.4 Let Q(1) and Q(2) be two generators on E such that Q(1)≤stQ
(2).

If Q(1) is st-monotone then for any initial probabilities vectors π(1)(0)≤stπ
(2)(0),

we have π(1)(t)≤stπ
(2)(t) for all t ≥ 0.
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3.2 Existence and computation of an optimal st-lower bound Q? ofM(Q−,Q+)

In the same way as for DTMCs, we establish the following result.

Theorem 3.5 Let Q− and Q+ be as above. There is an st-monotone gener-
ator Q? such that:

∀ Q ∈M(Q−,Q+), Q?≤stQ.

Q? is st-maximal among st-monotone, st-lower bounds of M(Q−,Q+).
Q? can be built from Q− and Q+ in linear time w.r.t. their size (see algo-
rithm 3).

The proof is postponed until the presentation of the algorithm building Q?.

3.2.1 Building Q?

Let Q ∈M(Q−,Q+). We restate conditions of theorem 3.3 in terms of matri-
ces Q? and Q making a little transformation in the presentation which gives
the key idea of the construction:

∀ 1 ≤ i ≤ n, ∀ 1 ≤ v < i,
∑

u≤v

Q?[i, u] ≥ max
i≤j≤n+1





∑

u≤v

Q[j, u]



 ,

and

∀ 1 ≤ i ≤ n, ∀ i < v ≤ n + 1,
∑

u≥v

Q?[i, u] ≤ min
i≤j<v





∑

u≥v

Q[j, u]



 .

With this set of inequalities, we build Q? row per row in decreasing ordering.
Row n + 1 is irrelevant since ∀ j, Q[n + 1, j] = 0. Thus we can set ∀ j, Q?[n +
1, j] = 0 and building this row will be skipped in the algorithm. We will use
the bounding matrices Q− and Q+ in the construction of remaining rows of
Q?.

Now looking for building row n and examining the above inequalities it ap-
pears that only row n of Q is relevant. We must upper bound the partial sums
“from the left” until the diagonal term (excluded) and lower bound the partial
sums “from the right” until the diagonal term (excluded). This gives directly:

∀j < n, Q?[n, j] = Q+[n, j] and Q?[n, n + 1] = Q−[n, n + 1].

Let us suppose that we have built rows i + 1, . . . , n of Q?. Then for row i, the

12



Algorithm 3 - Build Q?

Input: Q− an upper triangular (n + 1)× (n + 1) matrix,
Q+ a lower triangular (n + 1)× (n + 1) matrix

begin
for j ← 1 to n− 1 do Q?[n, j] ← Q+[n, j] endfor
Q?[n, n + 1] ← Q−[n, n + 1]
Q?[n, n] ← −∑

j 6=n Q?[n, j]
for i ← n− 1 downto 1 do

x ← 0; y ← 0; ∆ ← 0 //lower triangle
for j ← 1 to i− 1 do

Q?[i, j] ← max{Q+[i, j]−∆, (y − x) + Q?[i + 1, j]}
∆ ← ∆ + (Q?[i, j]−Q+[i, j])
x ← x + Q?[i, j]
y ← y + Q?[i + 1, j]

endfor
x ← 0; y ← 0; ∆ ← 0 //upper triangle
for j ← n + 1 downto i + 2 do

Q?[i, j] ← min{Q−[i, j] + ∆, (y − x) + Q?[i + 1, j]}
∆ ← ∆ + (Q−[i, j]−Q?[i, j])
x ← x + Q?[i, j]
y ← y + Q?[i + 1, j]

endfor
Q?[i, i + 1] ← Q−[i, i + 1] + ∆
//(Ih) if x + Q?[i, i + 1] = 0 then halt (see section 3.3)
Q?[i, i] ← −∑

j 6=i Q
?[i, j]

endfor
end

previous inequalities lead straightforwardly to the definitions:

∀ 1 ≤ v < i,
∑

u≤v

Q?[i, u] = max





∑

u≤v

Q+[i, u],
∑

u≤v

Q?[i + 1, u]



 , (1)

∀ i + 1 < v ≤ n + 1,
∑

u≥v

Q?[i, u] = min





∑

u≥v

Q−[i, u],
∑

u≥v

Q?[i + 1, u]



 ,(2)

and
∑

u≥i+1

Q?[i, u] =
∑

u≥i+1

Q−[i, u]. (3)

Starting from these expressions and “differentiating” them one obtains algo-
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rithm 3. Statement (Ih) will be explained below (see theorem 3.8).

Note that building Q? indeed starts from the (n + 1) × (n + 1) matrix Q•,
“concatenation” of Q− and Q+.

Lemma 3.6 Let Q• be the matrix:

∀ 1 ≤ i ≤ n,




∀ 1 ≤ j ≤ i, Q•[i, j] = Q+[i, j],

∀ i < j ≤ n + 1, Q•[i, j] = Q−[i, j],

(i = n + 1), ∀ 1 ≤ j ≤ n + 1, Q•[n + 1, j] = 0.

(1) Q• is a st-lower bound ofM(Q−,Q+), i.e., ∀Q ∈M(Q−,Q+), Q•≤stQ.
(2) Q• belongs to M(Q−,Q+) i.e., Q− ≤ Q• ≤ Q+.

The proof derives straightforwardly from the definitions.

3.2.2 Proof of Theorem 3.5

From (1), (2) and algorithm 3, Q? is st-monotone and it is the st-greatest
matrix among st-monotone, st-lower bounds of Q•.

Assume that matrix A is a st-lower bound of M(Q−,Q+). Then A≤stQ
•

since Q• ∈M(Q−,Q+), hence A≤stQ
?.

3.3 Invertibility of Q?
|C

The second result is related to Q?
|C . The overall algorithm used for bounding

rates out of C (see section 4) includes the inversion of Q?
|C . Invertibility of

sub-generator indeed characterizes strict sub-stochasticity in the context of
CTMCs.

Definition 3.7 (Strict sub-stochasticity for generators) A sub-generator
Q of a CTMC X is strictly sub-stochastic iff whatever the starting state i in
C, X will eventually leave C with probability 1.

A necessary and sufficient condition for Q?
|C to be invertible, is that the absorb-

ing state n + 1 must be reachable from any other state [10]. Thus one checks
in linear time w.r.t. the number of non null items of the matrix whether it is
invertible with the following procedure:

(1) Define a oriented graph where the set of nodes is {1, . . . , n + 1}

14



(2) There is an arc between i ∈ C and j ∈ {1, . . . , n + 1} iff Q?[i, j] 6= 0
(3) Check whether n + 1 is reachable from any node. This can be done by a

breadth-first backward search starting from n + 1.

The important point here is that non singularity depends on a structural
criterium: whether an item is null or not. It would be interesting to have a
similar structural characterization depending on Q+ and Q−. This is the goal
of the next theorem which shows that Q− is the single significant factor.

Theorem 3.8 The following assertions are equivalent:

(1) Q?
|C is invertible

(2) ∀i ∈ C
∑n+1

j=i+1 Q−[i, j] > 0

Consequently, Q?
|C is invertible iff condition (Ih) of algorithm 3 is never sat-

isfied.

Proof.
At first, let us suppose that the assertion 2 is satisfied. Then we know (see the
introduction of this section) that: ∀i ∈ C

∑n+1
j=i+1 Q?[i, j] =

∑n+1
j=i+1 Q−[i, j] >

0. Thus in the graph associated to Q?, given i ∈ C, there is an arc from i to
some j > i. So starting from any node i ∈ C and following these arcs the node
n + 1 will be eventually reached.

Now suppose that assertion 2 is not satisfied i.e., ∃i ∑n+1
j=i+1 Q−[i, j] = 0. Thus

by definition of Q?, we have ∀ k ≤ i,
∑n+1

j=i+1 Q?[k, j] = 0, but this means that
in the associated graph of the above procedure, the subset of nodes {1, . . . , i}
has no outgoing arc. Then n + 1 is unreachable from this subset of states.

Due to relation (3) above, the test in algorithm 3 actually corresponds to the
second assertion. 2

Thus we directly check on the inputs whether our method is applicable. This
is done without extra-computation by the instruction (Ih) of the algorithm 3.
It should be emphasized that this criterion is really close to the one of the
discrete time case.

We may derive from the method used to compute lower bounding rates, a
similar approach to compute upper bounding rates out of C. Without provid-
ing technical details, let us point out that this can be achieved by defining a
st-monotone and upper bound of matrices Q, starting from matrices Q+ (a
upper-triangular matrix, and Q− (a lower-triangular matrix). Note that de-
spite similar notations, these matrices are not the same ones as the matrices
of the previous paragraph.
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Figure 1. From bounds on rates to bounds on steady-state probabilities

4 Applications to reward bounding

Results established in sections 2 and 3 aim to devise bounds of rewards on
subsets of DTMCs or CTMCs with small steady-state probability. In a forth-
coming paper (see [14] for a first set of results) we will provide various appli-
cations of these results to DTMCs as well as to CTMCs. In this section, we
only give an overview of the approach for bounding output rate of a subset
of a CTMC, a problem already studied by several authors, especially in the
context of reliabity/performability of systems. We first describe the general
approach, based on the polyhedral method of Courtois and Semail [6] and on
stochastic bounds. Then we give the sketch of our method to provide lower
bounds of output rates from aggregates of states involved in this approach.

4.1 Bounding steady-state distribution in large CTMCs

As stated in the introduction, we would like to develop an a priori (i.e. from
the model parameters) aggregated Markov chain on the irrelevant states w.r.t.
the probability distribution in order to reduce the combinatory explosion in-
duced by complex systems. Ideally the steady-state probability of the reduced
chain should be the aggregation of the original steady-state probability. Such a
chain exists and is called the exact aggregation of the original chain. However
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Figure 2. Aggregation around a subset C

since rates between aggregated states Si involve computation of the original
steady-state probability (i.e. qi,j = π(Si)

−1 · Σs∈Si
π(s) · Σs′∈Sj

qs,s′), this exact
aggregation seems to be useless.

Fortunately in some typical cases, knowing bounds on these rates is sufficient
to deduce bounds on the steady-state probabilities. As one of the possible
applications of our work is a better handling of such cases, we briefly describe
in figure 1 a generic model and the appropriate bounding algorithm. In the
model, there is one state variable (e.g. the number of failed machines or the
number of remote procedure calls) which induces a partition of states S =⊎K

k=1 Sk such that the probability mass quickly decreases w.r.t. this parameter.
Moreover in a state transition the variable can arbitrarily increase whereas it
can only decrease by one unit (e.g. no simultaneous achievements of repair or
call). Following the notations of the figure, we informally justify the method
(see the references for a more detailed presentation).

(1) Given a subset of states, we substitute a Markov chain (MC) X for a
family of MC Xi indexed by the entry points of the subset where in each
Xi, all entries in the subset are redirected to si. Then the steady-state
probability of X is a barycenter of the family of steady-state probabilities
corresponding to Xi (see [6,7]).

(2) The second step is simply the application of the exact aggregation on Xi

producing Yi such that the steady-state probability vector restricted to⊎k0
k=1 Sk in the MC Xi is identical to the corresponding vector in Yi

(3) The last step is specific to this kind of MC and states that the steady-
state probability vector restricted to

⊎k0
k=1 Sk in the MC Zi is a lower

bound of the corresponding vector in Yi if ∀i, j λ+
i,j ≥ λi,j and µ−i,j ≤ µi,j

(see [26,20]).

Summarizing the method, we first obtain bounds on the firing rates by a
structural analysis of the model, then we compute steady-state probabilities
of MCs Zi and finally we deduce a lower bound of the probability vector of
the original MC restricted to

⊎k0
k=1 Sk.
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4.2 Lower bounding output rate of a subset of states

Let us concentrate on bounding the rate out of subsets using only the param-
eters of the model and not using the whole CTMC.

In order to structurally bound the rates, different solutions have been pro-
posed: the simplest solution [26] consists in taking λ+

i,j = maxs′∈Si

{
Σs”∈Sj

qs′,s”

}

and µ−i = mins′∈Si

{
Σs”∈Si−1

qs′,s”

}
. Such a solution has a serious drawback: in

numerous models µ−i = 0 which forbids the use of the method. Alternatively
in particular cases [22], analytical expressions can be found for a general lower
bound of µ−i , but the application area is still very limited. At last, Carrasco [3]
has proposed a general solution when activities inside the Sk subsets corre-
spond to special phase-type distributions. The interest of the latter approach
is twofold : it covers realistic applications and computation of bounding rates
is straightforward. However due to drastic simplifications, these lower bounds
can be really far from the exact values.

Let us consider a given subset Si, renamed as C in the sequel to make easier the
link with results of section 3. Our method is based on the main hypothesis that
C can be partitioned into subsets Ci and that bounds on cumulated rates from
a state to some Ci can be obtained by a structural analysis of the model. Such
a situation is illustrated in figure 2: the chain will eventually jump from C to
A or to B (figure 2a). The sets are aggregated as C = {1, . . . , n}, A = {n+1}
and B = {n + 2} (figure 2b). Examples of the application paper will show
that these are weak restrictions and moreover that often different partitions
are possible where the choice of the appropriate partition is a trade-off between
accuracy of the bounds and complexity of the computation.

In the sequel, D = C
⋃{n+1, n+2}, X = (D,Q(D)) is the aggregated CTMC

with unique absorbing states n + 1 and n + 2. Let µn+1 be the output rate
from C to A. The successive steps of our bounding method for µn+1 are the
following.

1. In the CTMC X, we have:

µn+1 =
p

(C)
n+1

h(C)

where p
(C)
n+1 is the steady-state probability to reach n + 1 when leaving C and

h(C) is the holding time of X in C.

2. Let us denote by α the steady-state probability vector of entering C. The
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next equations relate the previous quantities (see for instance [27,23]):

p
(C)
n+1 =

n∑

i=1

αip
(i)
n+1 and h(C) =

n∑

i=1

αih
(C,i).

p
(i)
n+1 is the steady-state probability to reach n + 1 when leaving C, starting

from i, and h(C,i) is the holding time in C, when entering C in i.

3. We deduce that:

µn+1 =
n∑

i=1

αih
(C,i)

∑n
i=1 αih(C,i)

(p
(i)
n+1/h

(C,i)) ≥ min
i

p
(i)
n+1

h(C,i)
. (4)

So in the sequel, we focus on lower bounding p
(i)
n+1 and upper bounding h(C,i).

4. Lower bound of p
(i)
n+1.

Let P be the transition matrix of the embedded DTMC of X. We obtain the
probability p

(i)
n+1 to leave C for n + 1, when starting from i by conditioning

this probability on the number of transitions before leaving C. Thus:

p
(i)
n+1 =

∑

j≤n


∑

k≥0

(P|C)k


 [i, j]×P[j, n + 1].

Let us assume that we know a (n + 1) × (n + 1) matrix P− ≤ P. Since the
right-hand side of the above equation is composed by positive terms, sums
and products, we only have to lower bound each item of this expression by
the corresponding item of P− in order to obtain a lower bound of p

(i)
n+1.

5. Upper bound of h(C,i).
Let us denote by X(C) = (E,Q(E)) the CTMC X restricted to E and with
output rates to states n+1 and n+2 merged: Q(E) is (n+1)×(n+1) and its last
column is the sum of last two columns of Q(D). If π(C,i)(t) is the probability
distribution of X(C) at time t with initial distribution π(C)(0) = 1i, i.e. with
X(C) starting in i, then by definition:

h(C,i) =

+∞∫

0

∑

j∈C

π(C,i)(t)[j]dt.

Due to the aggregation procedure, Q(E) cannot generally be computed without
solving the whole (large) CTMC. However in several cases, like repairable
systems for instance, componentwise (triangular) bounding matrices Q− and
Q+ (see section 3) may be derived from the parameters of the model. Thus
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we can apply results of section 3. If Y = (E,Q?) we get:

h
(C,i)
Y =

∞∫

0

∑

j≤n

π
(C,i)
Y (t)[j] dt ≥

∞∫

0

∑

j≤n

π(C,i)(t)[j] dt = h(C,i)

where π
(C,i)
Y (t) is the probability distribution of Y at time t with initial dis-

tribution π
(C)
Y (0) = 1i.

Finally, we know that in a CTMC (E,Q) with n+1 as unique absorbing state,
the vector h of holding times hi in C starting from i satisfies: −Q|C · h = 1T

n ,
1T

n being the n row vector of 1. Thus, if the matrix Q?
|C is non singular (see

theorem 3.8), we define upper bounds for holding times as:

h+ = −
(
Q?
|C

)−1 · 1T
n (5)

Full details of the method and numerical results will be presented in a paper
dedicated to applications. We simply note here (see the report [14]) that com-
parisons of this method with the one presented in [3] have shown that these
bounds are significantly better with a manageable extra-cost of computation.

5 Conclusion

Computation of bounds is known to be useful for managing some strategic
choices with a high degree of confidence. The stochastic ordering theory [28]
has generated numerous works related to such computations. Motivated by
bounding steady-state averaged rewards of subsets of states of a large Markov
chain, we have enlarged some features of this theory in order to handle the case
of a maximal monotone lower bound of a family of Markov sub-chains where
the coefficients are given by numerical intervals. We have proved the existence
of this maximal bound and we have provided polynomial time algorithms to
compute it for both DTMCs and CTMCs.

Moreover, we have solved a specific problem, i.e. we have characterized the
families of sub-chains whose maximal lower bound is strictly sub-stochastic.

In order to give an insight to the applicability of our results, we have revisited
a bounding method for a standard model of Markov chain.

In a forthcoming paper we will present several applications of these results in
the discrete case as well as in the continuous case. The paper will include de-
tailed numerical results and comparisons with other approaches. In particular,
we will show that, with low computation overhead, application of our results
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to a repairable Markov model gives significantly better bounds that the ones
obtained by the method presented in [3].
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