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Abstract

The two main and contradicting criteria guiding sampling design are accuracy of estimators and sampling costs. In
stratified random sampling, the sample size must be allocated to strata in order to optimize both objectives.

In this note we address, following a biobjective methodology, this allocation problem. A two-phase method is proposed
to describe the set of Pareto-optimal solutions of this nonlinear integer biobjective problem. In the first phase, all sup-
ported Pareto-optimal solutions are described via a closed formula, which enables quick computation. Moreover, for
the common case in which sampling costs are independent of the strata, all Pareto-optimal solutions are shown to be sup-
ported. For more general cost structures, the non-supported Pareto-optimal solutions are found by solving a parametric
knapsack problem. Bounds on the criteria can also be imposed, directing the search towards implementable sampling
plans. Our method provides a deeper insight into the problem than simply solving a scalarized version, whereas the com-
putational burden is reasonable.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The sample allocation problem for stratified simple random sampling is the following: we are given a pop-
ulation of size N divided into n groups (strata), with population sizes N1, . . . ,Nn. Simple random samples with-
out replacement of sizes x1, . . . ,xn, are to be drawn independently from the different strata. The sampling cost
within each stratum is assumed to be linear in its sample size xi, with unit sampling cost within stratum i equal
to a positive integer ci. The total sampling cost is the sum of the sampling costs within the strata.
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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The drawn sample is used to estimate some parameter of the variable under study Y. Throughout this
paper, we assume that the parameter to be estimated is Y , the average of the variable Y in the population.
Then, the parameter Y will be estimated via its Horvitz–Thompson estimator bY ,
bY ¼Xn

i¼1

Ni

N
yi; ð1Þ
where yi denotes the sample average within stratum i, see e.g. [5] for further statistical details on the problem
considered.

Estimator bY is unbiased, and its variance varðbY Þ is given by
varðbY Þ ¼Xn

i¼1

N i

N

� �2

varðyiÞ ¼
Xn

i¼1

Ni

N

� �2
1

xi
� 1

Ni

� �
r2

c;i; ð2Þ
where r2
c;i is the quasivariance of Y within stratum i.

We assume, as customary in the literature, that the quasivariances r2
c;i are either known from previous sim-

ilar experiments, or replaced by known upper bounds. For instance, if Yi, the values of variable Y within stra-
tum i, is a Boolean variable, we can use the upper bound Ni

Ni�1
1
4
, [5].

The goal is to determine sample sizes x1, . . . ,xn minimizing simultaneously

• The total sampling cost.
• The variance of the Horvitz–Thompson estimator bY .

Two types of constraints are imposed. On the one hand, box constraints are considered on the sample sizes
xi,
li 6 xi 6 ui ð3Þ

for positive integers li 6 ui, for all i = 1,2, . . . ,n.

Constraints (3) are motivated as follows. First, at least one element must be sampled from each stratum,
since, otherwise, the expression (2) is meaningless; moreover, since sampling is without replacement, no more
than Ni individuals can be sampled from stratum i.

These trivial bounds 1 6 xi 6 Ni may not be sharp enough for practical purposes. Indeed, if we are not only
concerned with the variance of the estimator bY , but also with the variance of the estimators yi within the
strata, constraints of the form
varðyiÞ 6 li; ð4Þ

for li > 0 given, may be imposed. Constraint (4) can also be written as
xi P
r2

c;iN i

N ili þ r2
c;i

& ’
;

which, as asserted, yields a constraint of type (3).
On the other hand, the aim of simultaneous minimization of cost and variance may lead to sampling plans

in which one of the two objectives attains a low value at the expense of a very high value on the other. To
avoid this, we include also in the model target constraints in the form
Xn

i¼1

cixi 6 K�;

varðbY Þ 6 B

ð5Þ
for positive K* and B, allowed also to take the value +1.
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The problem under consideration is the following biobjective nonlinear integer program
min
Xn

i¼1

cixi; varðbY Þ !
s.t. li 6 xi 6 ui; i ¼ 1; 2; . . . ; n;Xn

i¼1

cixi 6 K�;

varðbY Þ 6 B;

xi 2 Z; i ¼ 1; 2; . . . ; n.

ð6Þ
Define the constants
Ai ¼ r2
c;i

N i

N

� �2

; i ¼ 1; 2; . . . ; n;

B� ¼ Bþ
Xn

i¼1

Ai

N i
.

Then, by (2), (6) yields after erasing additive constant terms
min
Xn

i¼1

cixi;
Xn

i¼1

Ai

xi

 !
s.t. li 6 xi 6 ui; i ¼ 1; 2; . . . ; n;Xn

i¼1

cixi 6 K�;

Xn

i¼1

Ai

xi
6 B�;

xi 2 Z; i ¼ 1; 2; . . . ; n.

ðPK�;B�Þ
In particular, the monotonicity of the criteria implies that, for K� P
Pn

i¼1ciui and B� P
Pn

i¼1
Ai
li

, constraints (5)
are redundant, and (P K�;B� ) reduces to
min
Xn

i¼1

cixi;
Xn

i¼1

Ai

xi

 !
s.t. li 6 xi 6 ui; i ¼ 1; 2; . . . ; n;

xi 2 Z; i ¼ 1; 2; . . . ; n.

ðP1;1Þ
The set PK�;B� of Pareto-optimal solutions of (6), or, equivalently, of (P K�;B�), is sought. We recall that a
feasible solution x = (x1, . . . ,xn) will be Pareto-optimal for (P K�;B�) iff no feasible x* for this problem exists
satisfying
Xn

i¼1

cix�i 6
Xn

i¼1

cixi;

Xn

i¼1

Ai

x�i
6

Xn

i¼1

Ai

xi
;

with at least one of the two inequalities above strict. Alternatively, we could be interested in the set of Pareto
outcomes, i.e.,
Xn

i¼1

cixi;
Xn

i¼1

Ai

xi

 !
: x 2 PK�;B�

( )
.
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See e.g. [11] for further details on Pareto-optimality in general settings and [6,13,15] and the references therein
for results and applications to other combinatorial problems.

It immediately follows that PK�;B� can be obtained from the set P1;1 of Pareto-optimal solutions to
(P1,1),
PK�;B� ¼ x 2 P1;1 :
Xn

i¼1

cixi 6 K�;
Xn

i¼1

Ai

xi
6 B�

( )
. ð7Þ
Hence, we can restrict ourselves to the study of (P1,1).
Although a full description of the Pareto-optimal set for multiobjective integer problems is usually extre-

mely hard, even in the linear case, [6,13], it turns out that the structure of (P1,1) is simple enough to allow
us to obtain an easy characterization of P1;1, and, by (7), of PK�;B� , under certain conditions usually held in
practice. Moreover, when such conditions are not fulfilled, standard Branch-and-Bound techniques can be
customized to construct PK�;B� . As far as the authors are aware, this is the first time this sample allocation
problem is directly addressed as a biobjective problem. See Section 3 and [2,10] for references on related sin-
gle-objective models. We will illustrate with a real-world database that finding PK�;B� provides a deeper
insight into the problem than simply solving a scalarized version, whereas the computational burden is
reasonable.

In what follows we assume that the threshold values K* and B* are such that (P K�;B� ) is feasible. This can be
tested by solving, e.g. with the technique described in Section 3.1, the problem
min
Xn

i¼1

Ai

xi

s.t.
Xn

i¼1

cixi 6 K�;

li 6 xi 6 ui; i ¼ 1; 2; . . . ; n;

xi 2 Z; i ¼ 1; 2; . . . ; n;
and checking whether its optimal value does not exceed B*.
The remainder of the paper is structured as follows. In Section 2 we consider one of the most usual pro-

cedures for generating elements of P1;1, namely the weighting approach. It turns out that the set of optimal
solutions of such problems, the set of supported solutions, can be easily characterized. Sections 3 and 4
address the problem of describing the non-supported Pareto-optimal solutions of (P K�;B� ). First arbitrary cost
structures are considered, and a branch-and-bound algorithm is designed. Finally, the particular case in which
the costs are independent of the strata is studied, showing that the supported solutions are the only Pareto-
optimal solutions. Numerical experiments with a real-world database are presented in Section 5. The paper
ends with a discussion on extensions and lines of further research.

2. Supported solutions for (P‘,‘)

A very popular scalarization strategy in multiple-objective optimization is the so-called weighting method, in
which the objectives are linearly aggregated: m, 0 < m < 1 is given, and therefore (P1,1) is replaced by the scalar
problem
min ð1� mÞ
Xn

i¼1

cixi

 !
þ m

Xn

i¼1

Ai

xi

s.t. li 6 xi 6 ui; i ¼ 1; 2; . . . ; n;

xi 2 Z; i ¼ 1; 2; . . . ; n;
or, setting k :¼ m
1�m 2 ð0;þ1Þ, by
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min
Xn

i¼1

cixi þ k
Xn

i¼1

Ai

xi

s.t. li 6 xi 6 ui; i ¼ 1; 2; . . . ; n;

xi 2 Z; i ¼ 1; 2; . . . ; n.

ð8Þ
By varying k in the interval (0,+1), the set of optimal solutions obtained this way would yield S1;1, the so-
called set of supported solutions of (P1,1).

Obtaining the full set S1;1 of supported solutions has important practical consequences. Indeed, if, as
frequently done in multiple-objective problems, the final sampling allocation plan is chosen by minimizing
a weighted average of the estimator variance and the cost, or, in other words, by solving a problem of type
(8), we know that such a plan is not only Pareto-optimal, but also supported. Hence, if, as a preprocessing
step, S1;1 is obtained, then an optimal solution to (8) can be obtained from S1;1 by complete
enumeration.

On the other hand, when the full set of Pareto-optimal solutions is sought, obtaining first the supported
solutions and later the remaining Pareto-optimal ones may lead to important savings in computing times,
as described for other multiple-objective combinatorial problems e.g. in [14,15], and shown for this problem
in Section 5.

Moreover, as described in Section 4, in the important case in which all costs are equal, all Pareto-optimal
solutions are supported, thus a description of the supported solutions yields a description of the full set of
Pareto-optimal solutions.

Two well-known properties of the supported solutions, stated in the following theorem, will be used in the
sequel.

Theorem 2.1. Let x� 2S1;1. One has:

1. x� 2 PK;B for any K P
Pn

i¼1cix�i and B P
Pn

i¼1
Ai
x�i

.

2. x* solves the scalar problem
min
Xn

i¼1

Ai

xi

s.t.
Xn

i¼1

cixi 6

Xn

i¼1

cix�i ;

li 6 xi 6 ui; i ¼ 1; 2; . . . ; n;

xi 2 Z; i ¼ 1; 2; . . . ; n.
Now we address the problem of describing S1;1, which, by Theorem 2.1, consists of Pareto-optimal solu-
tions of (P1,1). To obtain such description, we first explore the structure of (8) for a choice of k > 0.

As already discussed some years back by Aggarwal [1], (8) is a nonlinear convex separable integer problem
with just box constraints, which can be solved analytically.

Indeed, consider for each index i the convex univariate problem
min cixi þ k
Ai

xi

s.t. xi 2 Rþ; ð9Þ
where R+ denotes the set of non-negative real numbers. Problem (9) has as unique optimal solution xi(k),
xiðkÞ ¼

ffiffiffiffiffiffiffi
kAi

ci

s
; i ¼ 1; 2; . . . ; n.
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Hence, the optimal solutions of
min cixi þ k
Ai

xi

s.t. li 6 xi 6 ui;

xi 2 Z

ð10Þ
are given either by the closest feasible point to xi(k), in case xi(k) is outside the range [li,ui], or, else, the point(s)
in the set {bxi(k)c,d xi(k)e}, yielding the lowest objective value.

For any positive integer k, the objective value in (10) at xi = k is not greater than at xi = k + 1 iff
kðk þ 1ÞP kAi

ci
. In other words, the set SiðkÞ of optimal solutions for (10) will be of the form
SiðkÞ ¼

flig; if xiðkÞ 6 li;

fuig; if xiðkÞP ui;

fbxiðkÞcg; if li < xiðkÞ < ui and ðbxiðkÞc þ 1ÞbxiðkÞc >
kAi

ci
;

fdxiðkÞeg; if li < xiðkÞ < ui and ðbxiðkÞc þ 1ÞbxiðkÞc <
kAi

ci
;

fbxiðkÞc; dxiðkÞeg; if li < xiðkÞ < ui and ðbxiðkÞc þ 1ÞbxiðkÞc ¼
kAi

ci
.

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð11Þ
Finally, the set SðkÞ of optimal solutions to (8) is the Cartesian product of the sets SiðkÞ above.
Hence, as soon as the parameter k in (8) is provided, a full description of the whole set SðkÞ of optimal

solutions is at hand. However, in practice, it is not easy to provide a precise value for k (or m), [3].
Nevertheless, it is straightforward from the discussion above to obtain a characterization of the set of sup-

ported solutions S1;1 ¼ [k>0SðkÞ. Indeed, one has

Theorem 2.2. Given x = (x1, . . . ,xn) 2 Zn, with li 6 xi 6 ui "i, define
x ¼ max
i:li<xi6ui

xiðxi � 1Þci

Ai
;

x ¼ min
i:li6xi<ui

xiðxi þ 1Þci

Ai
.

Then, x 2 S1;1 iff x P x.

Proof. By definition, x is supported iff there exists k > 0 such that x solves the corresponding problem (8). By
(11), for each given i, one has
fk : xi 2SiðkÞg ¼

0;
liðli þ 1Þci

Ai

� �
; if xi ¼ li;

uiðui � 1Þci

Ai
;þ1

� �
; if xi ¼ ui;

xiðxi � 1Þci

Ai
;
xiðxi þ 1Þci

Ai

� �
; if li < xi < ui.

8>>>>>>>><>>>>>>>>:
ð12Þ
Hence,
Tn

i¼1fk : xi 2SiðkÞg 6¼ ; iff x, the highest lower bound in (12), does not exceed x, the smallest upper
bound in (12), and the result follows. h

Expressions (11) and (12) enable us to give an algorithm to describe the set S1;1:

Theorem 2.3. The set S1;1 of supported solutions of (P1,1) can be written as the union of at most N sets of the

form S1 · S2 · � � � · Sn, where each Sj is either a singleton or consists of two consecutive integers, Sj = {kj,kj + 1}.

In particular, S1;1 can be described in O(Nn) time.
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Proof. By definition, for each k, the set SðkÞ can be written, as the Cartesian product
Table
Data o

Ni

7068
53856
20450

9812
10835

8331
4808

20714
30142

8864
9010

17519
20665

9260
SðkÞ ¼S1ðkÞ � � � � �SnðkÞ;
where each SiðkÞ is, by (11), either a singleton or consists of two consecutive integers, and can thus be de-
scribed in O(n) time.

By (12), each set SiðkÞ is constant when k varies in an interval whose endpoints are consecutive elements of
the set Ci of critical values of k,
Ci ¼
liðli þ 1Þci

Ai
;
ðli þ 1Þðli þ 2Þci

Ai
; . . . ;

ðui � 1Þuici

Ai

� �
. ð13Þ
The total number of such critical values for k has as upper bound
Pn

i¼1ðui � 1� li þ 1Þ 6Pn
i¼1ðNi � 1Þ ¼ N � n. Hence, O(N) sets of the form SðkÞ need to be constructed, yielding an overall time

complexity of O(Nn). h

Remark 2.4. The proof of Theorem 2.3 gives a procedure to describe S1;1: Construct, for each i = 1,2, . . . ,n,
the set Ci as defined in (13); for each k 2

Sn
i¼1Ci, obtain, following (11), SðkÞ. Then,

Sn
i¼1

S
k2Ci

SðkÞ ¼S1;1.
Moreover, without increasing complexity, the output can be obtained sorted by the first or second criterion.
Indeed, given 0 < k1 < k2, and, for j = 1,2, an optimal solution xj for (8), with k = kj, it then follows thatPn

i¼1
Ai
x2

i
6
Pn

i¼1
Ai
x1

i
and

Pn
i¼1cix1

i 6
Pn

i¼1cix2
i . Hence, if the list of breakpoints in

Sn
i¼1Ci is scanned in increasing

order of k, the corresponding set of optimal solutions obtained will appear sorted in non-decreasing and non-
increasing order for the first and second criterion respectively.

Since, by construction, each of the n lists Ci in (13) is already sorted, a data structure such as a heap will
allow to sort

Sn
i¼1Ci in O(N logn) time. Since the description of S1;1 given in Theorem 2.3 requires O(Nn), it

turns out that a description of S1;1 with the images sorted by one of the two criteria is obtained in
O(Nn) + O(N logn) = O(Nn) time.

Example 2.5. As a simple illustration, we have considered data on number of employees by area of industrial
activity in the region of Andalucı́a, Spain, for the year 2000 as available in the database Tempus of the Spanish
National Statistics Bureau, INE, [12]. The total number of employees is N = 231,334, grouped into n = 14
industrial activities (strata). The number Ni of individuals per stratum is given in the first column of Table 1.

The allocation problem is considered under the commonly used assumption that population quasivariances
are independent of the strata, and then chosen to be fixed at 1. The lower and upper bounds imposed are the
trivial ones: li = 1 and ui = Ni, for all i = 1, . . . ,n.
1
f Example 2.5

ci (2nd scenario)

1
1
4
7
9
8
7
8
5
3
4
9
9
9
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Fig. 1. Output of S1;1 for equal costs.
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Fig. 2. Output of S1;1 for non-equal costs.
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We have considered two scenarios for the costs: in the first scenario, we have assumed all the costs ci to be
equal (and then fixed at 1), and in the latter, different costs ci are randomly associated with the strata, as
depicted in the second column of Table 1.

By using Theorem 2.3, it turns out that for both cost scenarios S1;1 is a set with cardinality 231,321,
obtained in 0.45 seconds in a AMD Athlon XP 2400+ with 1 Gb RAM, running Debian/GNU Linux 3.0 with
kernel 2.4.18. The fact that for these two different cost structures the number of supported solutions is the
same is due to the arbitrary size of the strata.

Figs. 1 and 2 depict in the output space the part of S1;1 in which the first and second objectives do not
exceed K* = 10,000 and B* = 0.001 for the two above-mentioned cost scenarios.

Remark 2.6. Although S1;1 can be described in O(Nn) time, its cardinality can be exponential in n. Indeed,
take for instance l1 = l2 = � � � = ln, u1 = u2 = � � � = un, and c1

A1
¼ c2

A2
¼ � � � ¼ cn

An
.

In this particular case, the sets Ci in (13) coincide for all i. For the critical values of k, each SiðkÞ has two
elements, which means that each SðkÞ has 2n elements.
3. Describing PK�;B� : The case of general costs

Although the set of supported solutions is contained in the set of Pareto-optimal solutions, it is usual in
multiobjective combinatorial problems that such inclusion is strict, [13]. This is also the case of the problem
under consideration, as shown in the following example.

Example 3.1. Consider a three-strata allocation problem, where the data are given in Table 2.
Representing all feasible points in the value space, we obtain the plot given in Fig. 3.



Table 2
Data to illustrate S1;1ˆP1;1

Ni r2
c;i ci li ui

10 1 3 2 5
20 1 12 2 7
5 1 9 1 4
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Fig. 3. Value space for Example 3.1.
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Then, x = (5, 2,1) yields the point (48, 0.2) in the value space, represented as an empty square in the figure,
and x 2 P1;1 nS1;1. Indeed, it is straightforward to check by complete enumeration (and evident from the
picture) that x 2 P1;1. However,
x ¼ x1ðx1 � 1Þc1

A1

¼ 735;

x ¼ min
x2ðx2 þ 1Þc2

A2

;
x3ðx3 þ 1Þc3

A3

� �
¼ 220:5.
Hence, x < x, thus, by Theorem 2.2, x 62 S1;1, as asserted.

In this section we describe a procedure to obtain the set PK�;B� , under no assumptions on the costs excepting
their integrality. To do that, we first consider a parametric class of scalar problems,
min
Xn

i¼1

Ai

xi

s.t.
Xn

i¼1

cixi 6 K;

li 6 xi 6 ui; i ¼ 1; 2; . . . ; n;

xi 2 Z; i ¼ 1; 2; . . . ; n;

ð14Þ
which amounts to finding the sampling allocation of minimal variance whose cost does not exceed a threshold
value K.

We discuss in Section 3.1 how to solve (14) for K fixed, and devote Section 3.2 to show how the resolution
of (14) for different right-hand sides yields a description of PK�;B� . Moreover, we show, following ideas of
[14,15], how the knowledge of S1;1 can be exploited to alleviate the computational burden needed for con-
structing PK�;B� .

3.1. Solving the constrained problems

Since the pioneering work of Neyman [10] in 1934, different solution approaches, both exact or heuristics,
have been proposed in the last 70 years for (14). The most popular method is a heuristic which yields a closed-
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formula: if both integrality and box constraints are dropped from (14), we come up with a separable strictly
convex linearly-constrained problem, the optimal solution of which is given by x*,
x� ¼ KPn
i¼1

ffiffiffiffiffiffiffiffi
ciAi
p

ffiffiffiffiffi
A1

c1

r
; . . . ;

ffiffiffiffiffi
An

cn

r� �
;

see [5].
Although more efficient procedures could be used, see e.g. [8], an integer solution satisfying the cost con-

straint is found by rounding down fractional components. This heuristic solution is considered in textbooks as
satisfactory, since, being usually the objective fairly flat around the optimum [5] its gap is expected to be small,
and box constraints will be automatically satisfied unless very small or very large strata have respectively high
or small variances.

In our opinion, this argument is misleading. First, there is no guarantee that the gap will be small enough.
Hence, optimal instead of suboptimal solutions should be provided, as soon as they can be obtained with rea-
sonable computational effort.

Moreover, if the analyst does not care too much about the precise value of the variance (or the cost), instead
of just using an allocation heuristic, a full parametric analysis, provided by the set of outcomes of PK�;B� , as
described below, would be of much more use in order to find the right trade-off between variances and costs.

Several branch-and-bound methods have been suggested in the literature to solve exactly (14). These meth-
ods differ in the way they obtain the lower bounds and the way feasible (suboptimal) solutions are generated.

For instance, in [2], the continuous relaxation,
z1 ¼ min
Xn

i¼1

Ai

xi

s.t.
Xn

i¼1

cixi 6 K;

li 6 xi 6 ui; i ¼ 1; 2; . . . ; n

ð15Þ
is proposed. This is a convex problem with box and one linear constraints, and can be solved via its Lagran-
gean dual
max
hP0

min
Xn

i¼1

Ai

xi
þ h

Xn

i¼1

cixi � K

 !
s.t. li 6 xi 6 ui; i ¼ 1; 2; . . . ; n.

ð16Þ
A second bounding procedure directly follows from the reformulation as knapsack problems of convex sep-
arable integer problems, [7]. Introducing, for each i = 1,2, . . . ,n and each j = 1,2, . . . ,ui � li the Boolean vari-
ables yij and coefficients gij ¼ Aið 1

liþj� 1
liþj�1

Þ, (14) can be reformulated as the knapsack problem
min
Xn

i¼1

Ai

li
þ
Xui�li

j¼1

gijyij

 !

s.t.
Xn

i¼1

ci

Xui�li

j¼1

yij 6 K; ð17Þ

yij 2 f0; 1g; j ¼ 1; 2; . . . ; ui � li; i ¼ 1; 2; . . . ; n.
Let z2 denote the optimal value of the linear programming (hereafter LP) relaxation of this knapsack problem,
z2 ¼ min
Xn

i¼1

Ai

li
þ
Xui�li

j¼1

gijyij

 !

s.t.
Xn

i¼1

ci

Xui�li

j¼1

yij 6 K; ð18Þ

0 6 yij 6 1; j ¼ 1; 2; . . . ; ui � li; i ¼ 1; . . . ; n.
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In the following result we show that this relaxation is at least as good as the continuous relaxation of the
original problem, (15).

Theorem 3.2. Let z denote the optimal value of (14), and z1, z2 as defined respectively in (15), (18). Then,
z1 6 z2 6 z.
Proof. It is enough to show that z1 6 z2. The value z2 can be obtained by solving the Lagrangean dual of (18),
max
hP0

min
Xn

i¼1

Ai

li
þ
Xui�li

j¼1

gijyij

 !
þ h

Xn

i¼1

ci

Xui�li

j¼1

yij � K

 !
;

s.t. 0 6 yij 6 1; j ¼ 1; 2; . . . ; ui � li; i ¼ 1; . . . ; n.

ð19Þ
Problem (19) yields the same optimal value as its 0–1 version, which is simply a 0–1 reformulation of the
problem
max
hP0

min
Xn

i¼1

Ai

xi
þ h

Xn

i¼1

cixi � K

 !
s.t. li 6 xi 6 ui; i ¼ 1; 2; . . . ; n;

xi 2 Z; i ¼ 1; 2; . . . ; n.

ð20Þ
Moreover, it is an upper bound of its continuous relaxation, namely (16) and the result follows. h

Both inequalities above can be strict, as shown in the following example.

Example 3.3. Consider the data given in Table 2, with K = 46. Then (14) can be solved by complete
enumeration, yielding (4, 2,1) as optimal solution and z = 0.2041 as optimal value. On the other hand, (15) has
as optimal solution x1 ¼ ð222

90 ;
222
90 ; 1Þ, with optimal value z1 = 0.1859, whereas (18) has x2 ¼ ð3; 7

3 ; 1Þ as optimal
solution, and z2 = 0.1927 as optimal value. Hence, z1 < z2 < z, as asserted.

As pointed out in [7], (17) is a knapsack problem which can be solved rather efficiently by a number of pro-
cedures, see [9]. In particular, we have implemented the depth-search branch-and-bound algorithm of Horo-
witz and Sanhi, in which bounds are obtained by solving (18), the variable to branch is the one with the lowest
cost per unit weight

gij

ci
among those which are not yet fixed, (observe that we are solving a minimization ver-

sion of the knapsack problem), and the search continues from the node with the branching variable fixed to
one. As already pointed out in [7], for a given optimal solution y* of (17) and a stratum i, the convexity of (14)
implies that if y�î| ¼ 0, then y�ij ¼ 0 for all j P |̂. We use this property of the knapsack formulation explicitly in
the branching scheme to reduce the tree search.

Remark 3.4. The discussion in this section relies upon the fact that one of the two objectives, namely the cost,
is put as constraint and the other one remains as objective. If instead it is the cost the one remaining as
objective and the sampling variance is put as constraint, a similar analysis can be done, since problems of the
form
min
Xn

i¼1

cixi

s.t.
Xn

i¼1

Ai

xi
6 B;

li 6 xi 6 ui; i ¼ 1; 2; . . . ; n;

xi 2 Z; i ¼ 1; 2; . . . ; n

ð21Þ
can also be reformulated as 0–1 knapsack problems and solved via a branch-and-bound technique in a similar
way.
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3.2. Enumerating the set PK�;B�

As detailed below, a full description of PK�;B� can be obtained by solving a series of problems of type (14)
and (21). Moreover, significant savings will be obtained when the information supplied by S1;1 is used.

For any x, feasible for (P K�;B� ), the constraints imply that
K 6
Xn

i¼1

cixi 6 K;
with
K ¼ min
Xn

i¼1

ciui;K�
( )

;

K ¼ min
Xn

i¼1

cixi :
Xn

i¼1

Ai

xi
6 B�; x 2 Zn

þ; li 6 xi 6 ui 8i
( )

.

Observe that, since (P K�;B�) is, by assumption, feasible, K is well defined.

Theorem 3.5. One has

1. For any K 2 fK;K þ 1; . . . ;K � 1;Kg, (14) is feasible. Moreover, any optimal solution for (14) is feasible for

(P K�;B� ).

2. For any K 2 fK;K þ 1; . . . ;K � 1;Kg, if there exists only one optimal solution to (14), say xK, then xK is Par-

eto-optimal for (P K�;B� ). Otherwise, any optimal solution to (21) with right-hand side coefficient
Pn

i¼1
Ai
xK

i
is Par-

eto-optimal for (P K�;B� ).

3. Any Pareto-optimal solution for (P K�;B� ) solves (14) for some integer K 2 fK;K þ 1; . . . ;K � 1;Kg.

Proof. Let K 2 fK;K þ 1; . . . ;K � 1;Kg. Any x*, optimal to
min
Xn

i¼1

cixi :
Xn

i¼1

Ai

xi
6 B�; x 2 Zn

þ; li 6 xi 6 ui 8i
( )

;

is feasible for (14) for right-hand side K, and thus also for right-hand side K.
In particular, any x optimal for (14) with right-hand side K is feasible for (14), thus
Xn

i¼1

cixi 6 K 6 K 6 K�;
and, since x* is also feasible,
Xn

i¼1

Ai

xi
6

Xn

i¼1

Ai

x�i
6 B�;
showing that x is feasible for (P K�;B� ). Hence, part 1 holds. Part 2 follows trivially by the definition of the con-
strained problems. For part 3, observe that, by definition of Pareto-optimality, any x 2 PK�;B� solves (14) for
right-hand side K ¼

Pn
i¼1cixi. Since by assumption, the coefficients ci are integer,
Xn

i¼1

cixi 2 fK;K þ 1; . . . ;K � 1;Kg;
and the desired result follows. h

This yields the following procedure to describe PK�;B� . Initially, we calculate all the supported solutions,
which will be the first Pareto-optimal solutions at hand. Then, we find the possible Pareto-optimal solutions
associated with each value K in fK;K þ 1; . . . ;K � 1;Kg. We go through this list in decreasing order. Given K,
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we first check whether it corresponds to the sampling cost of any supported solution. If that is the case, by
Theorem 2.1, the corresponding Pareto-optimal solution is supported and already found in the initialization.
Otherwise, we solve (14). If there exists exactly one optimal solution to this problem, we add it to PK�;B� .
Otherwise, we solve (21) with right-hand side coefficient

Pn
i¼1

Ai
xK

i
. All the optimal solutions to this problem

are Pareto-optimal.

Algorithm. Describing PK�;B�

Step 0. Set P :¼ fx 2S1;1 :
Pn

i¼1cixi 6 K�;
Pn

i¼1
Ai
xi
6 B�g and set K :¼ K.

Step 1. If K 2 f
Pn

i¼1cixi : x 2S1;1;
Pn

i¼1
Ai
xi
6 B�g, set K :¼ K � 1 and GoTo Step 4.

Step 2. Find one optimal solution xK to (14) with right-hand side coefficient K.
Step 3. If xK is the unique optimal solution, then set P ¼ P [ fxKg. Else, find the set OK of all optimal solu-

tions of (21) with right-hand side coefficient
Pn

i¼1
Ai
xK

i
, set P :¼ P [ OK and K :¼

Pn
i¼1cixK

i � 1.
Step 4. If K P K, then GoTo Step 2. Else set PK�;B� :¼ P and STOP.

Some technical implementation issues follow. First, by Remark 2.4, one does not need to fully construct in
Step 0 the set S1,1: if, at some breakpoint k an optimal solution x for (8) is obtained by (11) withPn

i¼1cixi > K� (respectively
Pn

i¼1
Ai
xi
> B�) then no breakpoint k 0 > k (respectively no k 0 < k) can yield solutions

feasible for (P K�;B�).
For those values of K for which the associated problem must be solved in Step 2, the computational bur-

den can be alleviated by doing some simple preprocessing at Step 0 as well as by using some extra informa-
tion from the cases already studied of this parametric problem. Indeed, (14) is reformulated in (17), as a
knapsack problem, to be solved by a branch-and-bound algorithm, in which the LP-relaxation (18) is used
as a bounding scheme. The first step performed to solve such LP-relaxation of the root node is to calculate
all ratios,

gij

ci
, and sort them in increasing order. This sorted list of ratios is independent of the parameter K,

and can thus be already calculated in Step 0. Moreover, before solving (14), one may already have feasible
solutions (obtained from S1;1) and upper bounds (the optimal values previously obtained in Step 2 for
higher values of K).

Step 3 is the hardest part. First, we must check whether the xK obtained in Step 2 is the unique optimal
solution to (14). This can be tested in Step 2, by pruning in the branch-and-bound tree only those nodes whose
lower bound is strictly worse than the best incumbent. Moreover, we have to keep all optimal solutions of (14)
with minimal variance.

If instead of finding all optimal solutions to (21) with right-hand side coefficient
Pn

i¼1
Ai
xK

i
, we just take one of

its optimal solutions, the algorithm above will finally stop with a set P � PK�;B� describing the Pareto
outcomes.
4. Describing PK�;B� : The case of equal costs

In this section we address the important particular case of (P K�;B� ) where the costs ci are independent of the
stratum, showing that, contrary to the general case discussed in Section 3, all Pareto optima are supported. By
Theorem 2.3, this yields a closed characterization of PK�;B� as well as an O(Nn)-time procedure.

We have

Theorem 4.1. If c1 = c2 = � � � = cn, then S1;1 ¼ P1;1. Moreover,
PK�;B� ¼ x 2S1;1 :
Xn

i¼1

cixi 6 K�;
Xn

i¼1

Ai

xi
6 B�

( )
. ð22Þ
Proof. Any supported solution is Pareto-optimal, so we only need to show the converse. Given x� 2 P1;1, x*

solves (14) for K :¼
Pn

i¼1cix�i . The result can then be derived from Theorem 4.1.1. and Section 4.7 of [8]; how-
ever, for the sake of self-containedness, a complete proof is derived here.
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Define, for i = 1,2, . . . ,n, and j = 1,2, . . . ,ui � li, the Boolean variables y�ij as
y�ij ¼
1; if j 6 x�i � li;

0; else.

�

Then, y* is optimal for (17), which, since c1 = � � � = cn, is equivalent to its continuous relaxation (18). In par-
ticular, h* P 0 exists such that (h*,y*) is a saddle-point pair for (19) and for its 0–1 reformulation. Moreover,
h* > 0, since we have strong duality and the optimal value of (14) is strictly positive.

By construction of y*, we have that (h*,x*) is a saddle-point pair for (20), which shows in particular that
x� 2 Sðh�Þ � S1;1.
Then, (22) follows from (7). h

Under the assumption of equal costs, the set SK�;B� of supported solutions of (P K�;B�) can also be obtained
directly from the set S1;1 ¼ P1;1:

Corollary 4.2. If c1 = c2 = � � � = cn, then
SK�;B� ¼ x 2 S1;1 :
Xn

i¼1

cixi 6 K�;
Xn

i¼1

Ai

xi
6 B�

( )
. ð23Þ
Proof. We only need to show the inclusion,
SK�;B� � x 2 S1;1 :
Xn

i¼1

cixi 6 K�;
Xn

i¼1

Ai

xi
6 B�

( )
.

Given x 2 SK�;B� ; x satisfies by construction the constraints, and is Pareto-optimal for (P K�;B� ). Hence
x 2 P1;1 ¼ S1;1, showing the result. h
5. Numerical results

In this section we illustrate the two-phase algorithm proposed in Section 3.2 to describe the set of Pareto-
optimal solutions for the database presented in Example 2.5. We only consider here the second scenario of
costs, since for the first one the set of Pareto-optimal solutions is equal to the set of supported solutions which
has been already calculated in Example 2.5. We have imposed budget and accuracy constraints to the sample
allocation problem (6). In particular, we have enumerated the set PK�;B� , where K* = 10,000 and B* = 0.001. In
phase 1, 1394 supported solutions were found, which took 0.05 seconds. In phase 2, we found a total number
of 3967 non-supported solutions and the computation time was equal to 741.33 seconds. The number of Par-
eto-optimal solutions is equal to 5361, and the two-phase algorithm took 741.38 seconds. To illustrate the sav-
ings reached by applying the knowledge of S1;1, we have calculated the same Pareto-optimal solutions
without performing phase 1 of the algorithm. This took a total of 905.81 seconds, which incurs in a
22.18% increase in the computation time with respect to our two-phase algorithm.

We are also interested in extracting some information about the optimization of the linear knapsack prob-
lem (17). We may recall that this problem has been solved using a branch-and-bound algorithm. In Fig. 4, we
have plotted the error bound of the integer solution of (17) available at the root node of the branch-and-bound
tree. We observe that this error bound decreases when the right-hand side of the cost constraint, K, increases.
Next to the error bound, we have also plotted the computation time per knapsack problem solved, see Fig. 5.
From this plot we can see that the computation time per knapsack problem solved tends to increase with the
parameter K, probably due to the fact that, when the parameter K increases, the number of variables with
positive value in the LP-relaxation of (17) also increases and the minimum number of nodes which we should
inspect to prove optimality in the branch-and-bound scheme of Horowitz and Sanhi increases. Finally, we
have observed that the optimal solution of (17) is found in a very early stage of the branch-and-bound tree
and most of the nodes are pruned because they are integer or they are not promising.
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Fig. 4. Plot of integrality gap for knapsack problem (17).
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Fig. 5. Plot of time to find non-supported solutions when K* = 10,000 and B* = 0.001.
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6. Further research

The results obtained in this paper directly apply also to allocation problems for other estimators or other
estimation settings, see Carrizosa and Romero Morales [4].

A very challenging extension of the sample allocation model we have dealt with is considering Y as an ‘-
dimensional variable, Y = (Y1, . . . ,Y‘), thus the ‘-dimensional parameter Y ¼ ðY 1; Y 2; . . . ; Y ‘Þ must be esti-
mated from a single stratified random sample. The technique developed in this article is still applicable when,
for instance, all ‘ variables are 0–1 or under the very common assumption that the population quasivariance
r2

c;Y j;i of the variables Yj are independent of the strata, see Carrizosa and Romero Morales [4]. The case where
none of these reductions can be made will be addressed in a forthcoming paper.
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