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Abstract

A well known industry application that allows controllable processing times is the manufacturing operations on CNC
machines. For each turning operation as an example, there is a nonlinear relationship between the manufacturing cost and
its required processing time on a CNC turning machine. If we consider total manufacturing cost (F1) and total weighted
completion time (F2) objectives simultaneously on a single CNC machine, making appropriate processing time decisions is
as critical as making job sequencing decisions. We first give an effective model for the problem of minimizing F1 subject to a
given F2 level. We deduce some optimality properties for this problem. Based on these properties, we propose a heuristic
algorithm to generate an approximate set of efficient solutions. Our computational results indicate that the proposed algo-
rithm performs better than the GAMS/MINOS commercial solver both in terms of solution quality and computational
requirements such that the average CPU time is only 8% of the time required by the GAMS/MINOS.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Most of the scheduling literature assume fixed processing times. However, there are many industry appli-
cations where we can control the processing times. The best known example is the turning operation on a
CNC machine. On a CNC turning machine, we can control the processing time of an operation by controlling
the machining parameters. Since the scheduling problems are sensitive to the processing time data, we need
appropriate processing time decisions to improve the scheduling objectives. When we consider a regular sched-
uling objective, we set processing time of each job as small as possible and then solve the scheduling problem.
However, to achieve shorter processing times we have to use more resource. In a turning operation this
resource is the cutting tool. As we decrease the processing time of an operation we incur more tooling cost.
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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This study considers the situation where both total weighted completion time and cost performance are under
consideration for a CNC turning machine. In order to find a set of efficient solutions for this bicriteria prob-
lem, we first present a mathematical model and derive optimality properties. Then, by utilizing these proper-
ties, we propose a new heuristic method to generate a set of approximate efficient solutions. Our results show
that by integrating the machine scheduling and process planning decisions, we can generate a set of alternative
solutions for the decision maker so that significant time/cost gains can be achieved.

On a CNC turning machine, increasing the cutting speed and/or feed rate decreases the processing time of
an operation whereas it increases the tooling cost. Machining parameters selection problem dealing with this
tradeoff is a well known problem in the literature. There are many studies in the literature that consider dif-
ferent objectives and solution methods. Malakooti and Deviprasad (1989) formulated machine parameter
selection problem as a multiple objective decision making problem. They considered minimizing cost per part,
minimizing production time and minimizing surface roughness objectives. Gopalakrishnan and Al-Khayyal
(1991) provided a geometric programming based method to minimize machining and tooling costs. Choi
and Bricker (1996) discussed the effectiveness of a geometric programming model in machining optimization
problems. Lamond and Sodhi (1997) considered the cutting speed selection and tool loading decisions on a
single cutting machine so as to minimize total processing time. Akturk and Avci (1996) propose a solution
procedure to make tool allocation and machining conditions selection decisions simultaneously. Kayan and
Akturk (2005) provide a mechanism to determine upper and lower bounds for the processing time of a turning
operation.

In the scheduling literature, controllable processing time issue has been receiving increasing attention in
recent studies. They deal with minimizing the processing cost and a scheduling objective simultaneously.
The processing cost of a job is usually defined to be the cost of compressing the processing time of it. The
survey of Nowicki and Zdrzalka (1990) lists results for sequencing problems with controllable processing times
up to 1990. A review on controllable processing times in multi-objective scheduling is included in the recent
review by Hoogeveen (2005). The first study in the area is by Vickson (1980a) which considers the objective of
minimizing the sum of total processing cost and total completion time on a single machine, and also shows
that the problem is polynomially solvable. Chen et al. (1997) show that the discrete controllable case for
the same problem is also polynomially solvable. Daniel Ng et al. (2003) additionally consider batching and
controllable setup times for the same objective. Vickson (1980b) considers total weighted completion time case
which is recently shown to be NP-hard by Wan et al. (2001). Janiak et al. (2005) provide an alternative NP-
hardness proof for the same problem and propose a polynomial time approximation algorithm. Karabati and
Kouvelis (1997) discuss simultaneous scheduling and optimal processing time decision problem to maximize
the throughput for a multi-product, deterministic flow line operated under a cyclic scheduling approach. These
studies assumed linear job compression costs. A nonlinear relationship is considered between processing times
and production resource by Shabtay and Kaspi (2004). They study a single machine scheduling problem to
minimize total weighted flow time subject to a limited resource. Kayan and Akturk (2005) consider the bicri-
teria problem of minimizing the makespan and total manufacturing cost simultaneously on a CNC turning
machine and provide methods to determine an approximate efficient frontier for the problem.

In the literature, most of the research on scheduling has focused on problems with a single objective. How-
ever, in the real world, we usually face a number of objectives. Process planning decisions focus on how to
minimize manufacturing cost, whereas in the scheduling decisions the main aim is to optimize a scheduling
criterion. Usually these two decisions are made independently. Since there is a significant interaction between
the schedule performance and cost, it would be more beneficial to propose a model that combines these deci-
sions to minimize total manufacturing cost and total weighted completion time, simultaneously. We also give
an alternative model for the total completion time case, and present optimality properties for both problems.
In practise, the weights of cost and time objectives for the decision maker may vary over time. If the workload
is heavy, scheduling related objectives become more important. If it is relatively light, the manufacturing cost
is very important. Therefore, we proposed a new method to generate an approximate efficient solution set for
this bicriteria problem.

In multi-objective optimization problems, approximation quality of the generated efficient set is important
to the decision maker. In the literature, there are different approximation quality evaluation metrics devel-
oped. These metrics are useful for comparing different algorithms. Tuyttens et al. (2000) consider the classical
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linear assignment problem with two objectives for which they employ a multi-objective simulated annealing
method, and provide two metrics to compare the results with an exact efficient set. Wu and Azarm (2001) pro-
pose some quality evaluation measures to compare efficient sets generated by different multi-objective optimi-
zation methods. A review and discussion on existing metrics is available in Zitzler et al. (2003). In this paper,
we will employ three different metrics to compare the approximation quality of our proposed methods.

In this study, we basically focus on CNC turning machines, so we have a well defined and realistic manu-
facturing cost function for each job. This manufacturing cost function is nonlinear and convex. In our anal-
ysis, we assume the case where the manufacturing cost function might be different for each job due to different
operational and surface quality requirements, and its required cutting tool. However, all our results are appli-
cable for the cases where there exists sublot of jobs which are identical. Although we specifically consider man-
ufacturing cost function for the turning operation, our results apply to any problem with nonlinear convex
processing cost functions. Furthermore, all the properties and methods that we derive below apply to the lin-
ear cost function case as well. In the literature, to the best of our knowledge, the linear cost function case was
not considered either.

In the next section, the problem definition is given and a mathematical model to find an efficient solution
for a given total weighted completion time level is provided. We give optimality properties for the model.
Based on these properties, an efficient frontier approximation method is presented in Section 3. Then, in Sec-
tion 4, an alternative model for the total completion time problem is discussed. In Section 5, a numerical
example is presented. Finally, in Section 6 the computational results and the performances of the proposed
methods are discussed.

The notation used throughout the paper is as follows:

Decision variables

pi processing time of job i

Xij binary variable to state if job i precedes job j in the sequence
vi cutting speed for operation i (fpm)
fi feed rate for operation i (ipr)
Ui usage rate of the required cutting tool to process operation i
Parameters

pl
i processing time lower bound for job i

pu
i processing time level that gives minimum manufacturing cost for job i

wi weight of job i

fi(pi) manufacturing cost function of processing time for job i

a, b, c speed, feed, depth of cut exponents for the required cutting tool of job i

CTL
i Taylor’s tool life constant for the required cutting tool of job i

Co operating cost of the CNC turning machine ($/min)
Cs, g, h, l specific coefficients of the surface roughness constraint of job i

Cm, b, c, e specific coefficients and exponents of the machine power constraint
Cti cost of cutting tool required to process job i ($/tool)
Di diameter of the generated surface for job i (in)
di depth of cut for job i (in)
H maximum available machine power (hp)
Li length of the generated surface for job i (in)
Si maximum allowable surface roughness for job i (lin.)

2. Problem definition

We have N jobs to be processed, and each job corresponds to a metal cutting operation that will be per-
formed by a given cutting tool on a single CNC turning machine. Each job differs in terms of its manufactur-
ing properties such as diameter, length, depth of cut and maximum allowable surface roughness and its cutting
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tool, and a positive weight which shows its importance relative to the other jobs. The CNC turning machine
can process one job at a time. We have two objectives, minimizing the total manufacturing cost of jobs on a
CNC turning machine and minimizing their total weighted completion time. Therefore, we have to determine
a job sequence and the corresponding processing times simultaneously. In order to solve this bicriteria
problem, we have to consider process planning and scheduling problems simultaneously. One way to inte-
grate these two decision making problems is through the proper selection of job processing times. Assuming
a single pass operation, the processing time of job i on a CNC turning machine can be calculated as
follows:
pi ¼
pDiLi

12vifi
.

On the other hand, the tool usage rate of a job, Ui, is simply the ratio of its processing time to the tool life. If
we use extended Taylor’s tool life equation, Ti, to describe the tool life then
U i ¼
pi

T i
¼ ðpDiLiÞ=ð12vifiÞ

CTL
i =ðvaf bdcÞ

.

The optimum machining parameters of the cutting speed (vi) and the feed rate (fi) for each job can be found
by solving machining conditions optimization problem subject to the tool life, surface roughness and machine
power constraints as discussed in Appendix A. The most commonly used objective function for the manufac-
turing cost of job i is the sum of the operating and tooling costs. Operating cost of job i is the cost of running
the machine for pi. We assume that Co is constant and independent of selected machining parameters. Tooling
cost for job i is the cost of its tool usage Ui. We also assume that setup time and the tool change times are
negligible. In Appendix A, we give the geometric programming model for the problem and the optimality
properties proved by Akturk and Avci (1996) and Kayan and Akturk (2005). They showed that the surface
roughness constraint must be tight at the optimal solution. Using this property, the manufacturing cost of
job i is given below as a function of pi:
fiðpiÞ ¼ Copi þ Cti Ui ¼ Copi þ Cti

dc
i

CTL
i

pDiLi

12

� � ah�bg
h�gð Þ Csd

l
i

Si

� � a�b
h�gð Þ

p
ð1�aÞh�ð1�bÞg

h�gð Þ
i .
Furthermore, Kayan and Akturk (2005) showed that the nonlinear manufacturing constraints that limit the
allowable ranges of the processing times can be replaced by a linear bound of pl

i 6 pi 6 pu
i for each job i when

there is a regular scheduling performance measure, such as makespan or total completion time. For the deter-
mination of pl

i and pu
i values, we refer to Kayan and Akturk (2005). A typical manufacturing cost function

behavior for a job is given in Fig. 1. Since jobs have different manufacturing properties, they will have different
nonlinear convex manufacturing cost functions and different bounds on their processing times.
pl pu

co
st

processing time

Fig. 1. A typical manufacturing cost function for a turning operation.
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The mathematical model for the problem is as below:
min F 1:
XN

i¼1

fiðpiÞ ¼
XN

i¼1

Copi þ Cti Ui

min F 2:
XN

j¼1

XN

i¼1

wjpiX ij þ
XN

j¼1

wjpj

subject to X ij þ X ji ¼ 1; i ¼ 1; . . . ;N and j ¼ iþ 1; . . . ;N ; ð1Þ
X ij þ X jk þ X ki P 1; j; k; l ¼ 1; . . . ;N ; and j 6¼ k 6¼ l; ð2Þ
pl

i 6 pi 6 pu
i 8i; ð3Þ

X ij 2 f0; 1g 8i; j and i 6¼ j. ð4Þ
In the mixed integer nonlinear programming (MINLP) model above, the first objective function (F1) is the
total manufacturing cost. The second objective function (F2) is the total weighted completion time. Constraint
set (1) is the precedence constraints to ensure that two jobs cannot precede each other at the same time. Con-
straint set (2) satisfies the triangular inequality among the jobs such that if job i precedes job j and job j pre-
cedes job k then job i precedes job k. We have constraint set (3) that sets the upper and lower bounds on the
processing time of each job.

For the weighted completion time problem, the minimum value is attained when we set the processing times
to their lower bounds, pl

i. On the other hand, the manufacturing cost decreases when we increase the process-
ing times, and the minimum manufacturing cost is attained at pu

i for each job i. That means if we increase the
processing time of a job, the manufacturing cost decreases but completion time of the job itself and all the
following jobs increase. Therefore, we cannot minimize both objectives F1 and F2 at the same time, and hence
the overall problem is to generate an efficient solution set for the decision maker. A solution x (F1(x),F2(x)) is
said to be efficient with respect to the given bicriteria if there does not exist another solution y (F1(y), F2(y))
such that F1(y) 6 F1(x) and F2(y) 6 F2(x) with at least one holding as a strict inequality. The following lemma
states that there are infinitely many efficient solutions for the problem.

Lemma 1.1. The efficient solution set for the problem includes infinitely many points.

Proof. This is due to the fact that the processing times of jobs are continuous and can take any value satisfying
pl

i 6 pi 6 pu
i . If we slightly decrease the processing time of any job i that will increase the total manufacturing

cost (as shown in Fig. 1), but at the same time it will decrease the total weighted completion time. Hence, there
are infinitely many possible F2 (or F1) levels for the problem and we can find infinitely many efficient solutions.
Furthermore, efficient frontier can be represented as a continuous function on a (F1,F2) plot. h

In Fig. 2, an example for a set of efficient solutions is given. Solution Z1 is the ideal solution for F2 where
F2(Z1) = Kl where the superscript l implies that Kl is achieved by setting pi ¼ pl

i for each job i and applying the
Z

Z2

1

u
Kl K

TWCT (F )

cost (F )

2

1

Fig. 2. An example set of efficient solutions.
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weighted shortest processing time first (WSPT) rule by Smith (1956). According to the WSPT rule the jobs are
ordered in the decreasing order of wi/pi to minimize total weighted completion time. At Z1, total manufactur-
ing cost is F 1ðZ1Þ ¼

PN
i¼1fiðpl

iÞ. On the other hand, solution Z2 is the ideal solution for F1 where
F 1ðZ2Þ ¼

PN
i¼1fiðpu

i Þ and it is achieved by setting pi ¼ pu
i for each job i and jobs are ordered by the WSPT rule.

At Z2, total weighted completion time is F2(Z2) = Ku, where the superscript u implies that the solution is
achieved where all jobs are machined at processing time upper bounds.

In order to find a set of efficient solutions other than Z1 and Z2, we can consider F2 as a constraint as in the
formulation below and solve the resulting Single Criterion Problem (SCP) for different values of K.
min F 1:
XN

i¼1

fiðpiÞ

subject to
XN

j¼1

XN

i¼1

wjpiX ij þ
XN

j¼1

wjpj 6 K; ð5Þ

and (1)–(4).
Constraint (5) guarantees that the total weighted completion time (F2) of the schedule is less than or equal
to a predefined value K. We can solve this model by the MINLP solvers like GAMS/BARON (Brooke et al.,
2004). To generate an efficient solution set of n points between Z1 and Z2 we can employ the following algo-
rithm denoted as the SCP-based method:

Step 1. Calculate Ku and Kl by using the WSPT rule for pu and pl values, respectively.
Step 2. Set � = (Ku � Kl)/(n + 1).
Step 3. For k = 1 to n, solve the SCP model for K = Kl + k�.

The SCP-based method finds a set of efficient points by solving the SCP model iteratively, so we investi-
gated the SCP model and found some useful properties for the problem.

Lemma 1.2. When K 6 Ku, the constraint (5) on F2 must be tight at the optimal solution. This implies that the

optimal schedule must satisfy the WSPT rule.

Proof. When K > Ku, total manufacturing cost can be minimized by setting all jobs to their minimum cost
processing times (pu) and ordering them by the WSPT rule. In this case, the constraint (5) can be loose at opti-
mality. When K 6 Ku, if constraint (5) is loose, then by increasing the processing time of a job, we can decrease
the total manufacturing cost of the schedule. Therefore, a solution cannot be optimal if constraint (5) is loose.
As a consequence of this result we can also state that the WSPT rule must be satisfied by an optimal schedule.
Otherwise, we can reorder the jobs and find a better solution which violates the optimality. h

We proved that an optimal solution for the SCP must satisfy the constraint (5) as an equality and it must
also satisfy the WSPT rule. The next property for the problem is about the non-cycling constraint set (2).

Lemma 1.3. The non-cycling constraints, constraint set (2), are redundant for the SCP.

Proof. Consider the SCP model without constraint set (2). We can easily see that Lemma 1.2 still holds for the
new problem, otherwise we can improve the solution by resequencing the jobs and increasing the processing
times. Lemma 1.2 states that the optimal solution must satisfy the WSPT rule which implies that the optimal
solution cannot have cycles and always satisfies the constraint set (2). h

By using this result we can eliminate constraint set (2) when solving the SCP model in SCP-based method.
Since constraint set (2) is defined for each job triple, removing it reduces most of the constraints in the model
so that MINLP solvers can solve the problem more efficiently. From this point on, SCP will denote the single
criterion problem without constraint set (2). Further, we consider the relaxation of the problem where the inte-
grality assumption of Xij’s is relaxed. Relaxation results a nonlinear programming (NLP) model for which we
can state the following two properties.
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Lemma 1.4. For the relaxed SCP, in a local optimal solution, if wi/pi > wj/pj for any job pair (i, j), then job i must

precede job j, i.e. the solution must have Xij = 1. This implies that a local optimal solution to the relaxed SCP must

have binary Xij’s.

Proof. Suppose that there is a local optimal solution S which has non-integer Xij values. We will show that by
modifying S in a way to achieve an integer solution, we can improve F2.

Consider a job pair (i, j) in S for which wi/pi > wj/pj holds. Suppose that the precedence variables for the job
pair (i, j) are as follows: Xij = k, Xji = 1 � k, where 0 6 k < 1. Then,

P
wiCi for S is as below:
F 2ðSÞ ¼ Uþ wi � pj � ð1� kÞ þ wj � pi � k;
where U is a constant value.
If we form a new solution S 0 from S by setting Xij = 1 and Xji = 0, we get
F 2ðS0Þ ¼ Uþ wj � pi.
Obviously, F2(S 0) < F2(S) and S 0 is a feasible solution to the SCP. This proves that a solution S with non-
integer Xij variables cannot be a local optimal solution. h

Considering Lemma 1.2 and the arguments above together, we conclude that in a local optimal solution to
the relaxed problem all Xij variables are binary. However, to be rigorous, we must also point out that in case
wi/pi = wj/pj for some job pair (i, j), we may have alternative optimal solutions where Xij and Xji are non-inte-
ger. This is because when wi/pi = wj/pj, Xij = k and Xji = 1 � k, whatever value k takes such that 0 6 k 6 1,P

wiCi calculated by the mathematical model remains the same. In practice, it is highly unlikely to face this
situation since in our case pi’s are controllable variables that take real values.

Lemma 1.4 is an extremely important result to reduce the computational burden since we do not need
MINLP solvers to solve the SCP. The problem can be solved by an NLP solver. However, NLP solvers
can only guarantee to achieve local optimal solutions. From nonlinear programming theory we know that
if the objective function of a problem is convex and the feasible region for the problem is a convex set, then
a local optimum is a global optimum. Therefore, we investigated if the feasible region for the relaxed SCP is a
convex set or not to see if NLP solvers could give us the global optimum.

Lemma 1.5. The feasible region for the relaxed SCP is not a convex set, i.e. NLP solvers cannot guarantee
global optimality for the problem.

Proof. Consider two jobs i1 and i2 such that i1 immediately precedes i2, X i1i2 ¼ 1, in a solution called A1. Let us
suppose that pi1 ¼ s1 and pi2 ¼ s2 with weights w1 and w2, respectively. We also have w1

s1
> w2

s2
.

F2(A1) = Q + w2s1 + w1s1 + w2s2 = K, where Q is a constant. Next, consider another solution A2 which is
identical to A1 except that i1 and i2 were pairwise interchanged and processing times were set to q1 and q2,
respectively, and w2

q2
> w1

q1
holds. F2(A2) = Q + w1q2 + w1q1 + w2q2 = K.

Now consider a convex combination of A1 and A2 as the solution A = kA1 + (1 � k)A2. At A, X i1i2 ¼ k,
X i2i1 ¼ 1� k, pi1 ¼ ks1 þ ð1� kÞq1 and pi2 ¼ ks2 þ ð1� kÞq2. Then,
F 2ðAÞ ¼ Qþ w1X i2i1 pi2 þ w2X i1i2 pi1 þ w1pi1 þ w2pi2

¼ Qþ ðw1ð1� kÞ þ w2Þðks2 þ ð1� kÞq2Þ þ ðw2kþ w1Þðks1 þ ð1� kÞq1Þ
¼ Qþ kðs1ðw1 þ kw2Þ þ s2ðw2 þ ð1� kÞw1ÞÞ þ ð1� kÞðq1ðw1 þ kw2Þ þ q2ðw2 þ ð1� kÞw1Þ
¼ Qþ kðs1w1 þ s2w2 þ ks1w2 þ ð1� kÞs2w1Þ þ ð1� kÞðq1w1 þ q2w2 þ kq1w2 þ ð1� kÞq2w1Þ
> Qþ kðK � QÞ þ ð1� kÞðK � QÞ > K
since s2w1 > s1w2 and q1w2 > q2w1. This shows that the feasible region for the relaxed SCP is not a convex
set. h

Lemma 1.5 implies the potential existence of multiple local optimal solutions for the relaxed SCP. Although
it does not prove NP-hardness of the SCP, we know that in general, computing a global minimum in a non-
convex NLP is an NP-hard problem due to Murty and Kabadi (1987).
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Lemma 1.5 is a direct consequence of the nonlinear terms piXij in constraint (5), so that the MINLP solvers
may terminate with an integer local optimal solution. In order to find the global optimum for the SCP model,
we propose the following linearized single criterion problem (LSCP) model below. In this model, we replace
the constraint (5) with a set of linear constraints (6)–(10) and the term piXij is replaced with the variable Yij,
where M is a large positive number.
min F 1:
XN

i¼1

fiðpiÞ

subject to
XN

j¼1

XN

i¼1

wjY ij þ
XN

j¼1

wjpj 6 K; ð6Þ

Y ij P pi þ ðX ij � 1ÞM 8i; j and i 6¼ j; ð7Þ

Y ij 6 pi þ ð1� X ijÞM 8i; j and i 6¼ j; ð8Þ

Y ij 6 MX ij 8i; j and i 6¼ j; ð9Þ

Y ij P 0 8i; j and i 6¼ j; ð10Þ

and (1), (3) and (4).
In this model, constraint (6) is the constraint on F2. Constraint sets (7)–(10) assure that if Xij = 0 then
Yij = 0 and if Xij = 1 then Yij = pi, so that Yij = piXij always holds. Unfortunately, the computational perfor-
mance of this linearization is very poor because Lemma 1.4 no longer holds so we cannot relax the integrality
constraint of Xij. Therefore, we have to use computationally less efficient GAMS/BARON solver instead of
GAMS/MINOS.

In this section, we defined the problem and proposed the SCP-based method that can utilize commercial
NLP solvers to solve the SCP and generate an approximation for the efficient frontier for the problem.
We also gave the LSCP model which can be solved to global optimum by the MINLP solvers. However,
since the MINLP and NLP solvers are not yet widely used and they are not as much computationally
efficient as LP solvers, we also aimed to develop an effective approximation method to find a set of effi-
cient points. In the next section, we define a heuristic method to approximate the efficient frontier for the
problem.
3. Cost index based approximation (CIBA) method

In Section 2, we showed some optimality properties and simplifying characteristics for the SCP. In this sec-
tion, we further present another very important optimality property in Lemma 1.6. This property will be help-
ful to design a heuristic method. This property basically tells us that if a solution is locally optimal then we
cannot improve the total manufacturing cost by only changing the processing times of the jobs. It can also
be explained as follows: for a given job sequence there is a unique processing time vector
pH ¼ ðpH

1 ; p
H

2 ; . . . ; pH

N Þ that minimizes the total manufacturing cost for a given total weighted completion time
(K). This property is as follows:

Lemma 1.6. For any job pair i, j, a local optimal solution must satisfy the following conditions:

(i) If pi > pl
i and pj > pl

j then ofiðpiÞ
opi

1
W i
¼ ofjðpjÞ

opj

1
W j

, where W i ¼ wi þ
PN

k¼1X ikwk (i.e. the sum of the weights of job

i and jobs that job i precedes).

(ii) If pi ¼ pl
i and pj > pl

j then ofiðpiÞ
opi

1
W i

P ofjðpjÞ
opj

1
W j

.



Proof. Suppose that ofiðpiÞ 1 <
ofjðpjÞ 1 for some i, j. Then,
opi W i opj W j � �0 1
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lim
Dp!0

fiðpi þ DpÞ � fiðpiÞ
W iDp

�
fjðpjÞ � fj pj � W i

W j
Dp

W j
W i
W j

Dp
@ A < 0;

lim
Dp!0

fiðpi þ DpÞ � fiðpiÞ þ fjðpjÞ � fj pj � W i
W j

Dp
� �

Dp

0
@

1
A < 0.

� �

Then, $Dp > 0 s.t. fiðpi þ DpÞ � fiðpiÞ þ fjðpjÞ � fj pj � W i

W j
Dp < 0, which means the current solution can be

improved without violating the total weighted completion time constraint. This proves that if there exists a job
pair that does not satisfy the given conditions, then the solution is not locally optimal. h

The heuristic approach (CIBA) starts with the solution Z1 (Fig. 2) and generates new approximate efficient
points by using the information in Lemma 1.6. After taking the solution Z1, by slightly increasing the process-
ing times of the jobs one at a time at each iteration, we decrease F1 while increasing F2. The critical issue is
which job to choose to perturb at each iteration so that the achieved decrease in F1 over the increase in F2

is at the maximum (i.e. the ‘biggest bang for the buck’). To make the most appropriate choice, we propose
a new cost index ri for each job i, such that
ri ¼
ofiðpiÞ

opi

1

W i
.

It is the estimated manufacturing cost change per unit total weighted completion time loss to be achieved by
increasing the processing time of job i. Note that this index definition comes from Lemma 1.6. Next, we choose
the job with the minimum ri value. It is important to note that fi(pi) is decreasing and ri < 0 when pl

i 6 pi < pu
i

for all i. Then, the processing time of the selected job is increased by a predefined D amount. Increasing processing
time of a job may result in a schedule that violates Lemma 1.2. We check if the WSPT rule is violated or not and if
so we reorder the jobs according to the WSPT rule. After reordering, F new

2 and F new
1 are calculated. For the updated

and re-sequenced jobs, their ri’s are updated. This job selection and update process is applied until F new
2 reaches to

Ku. Each schedule achieved at the end of an iteration is kept as an approximate efficient solution. By keeping D as
small as possible we can achieve solutions which are more close to the optimality property defined by Lemma 1.6.

Having discussed the basic approach, the proposed cost index based approximation (CIBA) method is
given below:

Step 1. Find the non-dominated solutions Z1 and Z2.
Step 2. Start with the solution Z1, set F new

1 ¼ F 1ðZ1Þ and F new
2 ¼ F 2ðZ1Þ. While F new

2 < Ku do the following:
Step 2.1. Select the job m with the minimum rm. If there are more than one such jobs, select the last one in

the sequence.
Step 2.2. Set pm = pm + D.
Step 2.3. If the WSPT rule is violated, re-sequence the jobs by the WSPT rule.
Step 2.4. Update ri indices for job m and for all other jobs whose position in sequence is changed in Step 2.3.
Step 2.5. Update F new

1 ¼ F new
1 � ½fmðpmÞ � fmðpm þ DÞ� and recalculate F new

2 .
Step 2.6. Report the current schedule with F new

1 and F new
2 as an approximate efficient solution.

In each iteration of the CIBA method, we want to improve total manufacturing cost by slightly losing from
the total weighted completion time. Since we want to minimize both criteria at the same time, we always prefer
to update the job with the maximum manufacturing cost gain per unit increase in the total weighted comple-
tion time (Step 2.1). This is due to Lemma 1.6 which states the optimality conditions on pi’s. By choosing the
job with minimum ri each time we try to keep the achieved solutions to be close as possible to hold the con-
ditions given in Lemma 1.6. After increasing the processing time of the selected job, the sequence of jobs is
updated (Step 2.4), if necessary, by the WSPT rule. This is due to Lemma 1.2 which states that in an optimal
schedule the job sequence must satisfy the WSPT rule. Then, for the perturbed job and for all re-sequenced
jobs, ri values are updated. At each iteration, the schedule achieved is reported as an approximate efficient
solution. An important property that holds for the solution set generated by the CIBA is the following:
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Lemma 1.7. Each iteration of the CIBA method generates a new approximate efficient solution.

Proof. As discussed earlier, we have a nonlinear convex manufacturing cost function and the processing times
can take any real value between pl

i 6 pi 6 pu
i . At each iteration of the CIBA method, the processing time of a

selected job is increased by a D amount, that means the total manufacturing cost is strictly decreasing in each
iteration as shown in Fig. 1. Moreover, the total completion time strictly increases even if the job sequence
changes. Therefore, in each iteration we generate a new approximate efficient solution that cannot dominate
previously generated solutions. h

The solution quality of the CIBA method depends on the selected D value. Since we are making decisions

based on ofiðpiÞ
opi

’s, if we choose a small D value, we get a better approximation to an efficient solution. Further-

more, a smaller D leads to more solution points to be generated which implies a better approximation of the
efficient frontier.

4. Total completion time problem

All the models, properties and algorithms that we have given above also apply for the total completion time
problem, which is a special case where the weights of jobs are equal. Instead, we present a new model for the
total completion time problem. In this section, we proved that this new model holds the same properties as the
previous one. Moreover, we performed a set of trial runs and showed that the new model is computationally
more efficient in terms of the CPU times in solving the total completion time problem. In this model, we intro-
duce a new binary decision variable Xij to control if job i is assigned to position j in the sequence. The new
formulation for the SCP is as below:
min F 1:
XN

i¼1

fiðpiÞ ð11Þ

subject to
XN

i¼1

XN

j¼1

ðN � jþ 1ÞX ijpi 6 K; ð12Þ

XN

j¼1

X ij ¼ 1 8i; ð13Þ

XN

i¼1

X ij ¼ 1 8j; ð14Þ

pl
i 6 pi 6 pu

i 8i; ð15Þ
X ij 2 f0; 1g 8i; j. ð16Þ
In the above model, the objective function corresponds to the total manufacturing cost. The constraint (12)
gives the total completion time. Constraints (13) and (14) are the assignment constraints which guarantee that
each job is assigned to a position in the schedule and each position has a job assigned. Constraints (15) and
(16) are same as in the previous model.

We could have used a similar model with the assignment variables Xij to solve the weighted total completion
time problem. In that case, we will not be able to use the property stated in Lemma 1.4, and hence the relaxed
SCP model cannot be solved by the NLP solvers. It turns out that the way we model the problem affects the
solver to be used and the computational requirements. We now check the characteristics of this new formu-
lation as we did for the previous model before.

Lemma 2.1. When K 6 Ku, the total completion time constraint (12) must be tight at the optimal solution. This

implies that the optimal schedule must satisfy the shortest processing time first (SPT) rule.

The proof for Lemma 2.1 is similar to the proof of Lemma 1.2, so we skip it due to the space limitations.
We next consider the NLP relaxation of the new SCP formulation and look for the optimality conditions for
the relaxed problem.
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Lemma 2.2. For the relaxed SCP, in a local optimal solution, if pi1 < pi2 for any job pair (i1, i2), then job i1 must

be assigned to an earlier position than i2. This implies that a local optimal solution to the relaxed SCP must have

binary Xij’s.

Proof. Suppose that we have a solution S for the relaxed problem where we consider two jobs i1 and i2 with
processing times pi1

< pi2
. Further consider two positions j1 and j2 in the schedule such that j1 < j2. Suppose

that assignment variables in S are as follows:
X i1j1
¼ q1 and X i2j1

¼ q2;

X i1j2
¼ n1 and X i2j2

¼ n2; where q1; q2; n1 and n2 are positive.
Since we relaxed the integrality constraint, a solution to the relaxed problem may contain non-binary Xij val-
ues. This means, the same job could be allocated to multiple positions in the schedule, which is infeasible for
our original problem.

Total completion time value calculated for S is as below:
F 2ðSÞ ¼
XN

i¼1

XN

j¼1

ðN � jþ 1ÞX ijpi ¼ Uþ ðN � j1 þ 1Þ½q1pi1
þ q2pi2

� þ ðN � j2 þ 1Þ½n1pi1
þ n2pi2

�

¼ Uþ ½ðN � j1 þ 1Þq1 þ ðN � j2 þ 1Þn1�pi1 þ ½ðN � j1 þ 1Þq2 þ ðN � j2 þ 1Þn2�pi2 ;
where U is a constant value. Suppose that without changing the processing times, we change the assignment
variables to get a new solution S 0. Setting d = min(n1,q2), new values for the assignment variables are as
follows:
X i1j1
¼ q1 þ d; X i2j1

¼ q2 � d;

X i1j2
¼ n1 � d and X i2j2

¼ n2 þ d.
By this arrangement we reallocate these two jobs to positions j1 and j2 such that we increase job i1’s ratio in the
preceding position j1 without disturbing the assignment constraints.

Total completion time of the solution after this arrangement is
F 2ðS0Þ ¼ Uþ ½ðN � j1 þ 1Þðq1 þ dÞ þ ðN � j2 þ 1Þðn1 � dÞ�pi1

þ ½ðN � j1 þ 1Þðq2 � dÞ þ ðN � j2 þ 1Þðn2 þ dÞ�pi2 .
Then, F 2ðS0Þ � F 2ðSÞ ¼ dðj2 � j1Þðpi1 � pi2Þ < 0, because j2 > j1 and pi1 < pi2 .
This proves that there is always an integer optimal solution for the relaxed problem. h

According to Lemma 2.2, a local optimal solution must have integer Xij’s. Although for the case where
pi1 ¼ pi2 , we could have alternative non-integer local optimal solutions. As in the previous formulation for
the weighted case we do not need a MINLP solver to solve the relaxed problem, and an NLP solver would
be sufficient.

Lemma 2.3. The feasible region for the relaxed SCP is not a convex set.

Proof. Consider two jobs i1 and i2 in a schedule called A1. They are assigned at positions k and k + 1, respec-
tively. Their processing times are pi1

¼ s1 and pi2
¼ s2 where s1 < s2.

F2(A1) = Q + (N � k + 1)s1 + (N � k)s2 = K, where Q is a constant.
Consider another schedule A2 which is identical to A1 except that job i1 is at position k + 1 and i2 is at

position k with processing times pi1 ¼ q1 and pi2 ¼ q2 where q2 < q1. F2(A2) = Q + (N � k + 1)q2 +
(N � k)q1 = K.

Next, define a point A which is a convex combination of A1 and A2 as follows:
A = kA1 + (1 � k)A2 where 0 < k < 1. At point A, pi1 ¼ ks1 þ ð1� kÞq1 and pi2 ¼ ks2 þ ð1� kÞq2. Also,

X i1k ¼ k, X i1ðkþ1Þ ¼ ð1� kÞ, X i2k ¼ ð1� kÞ and X i2ðkþ1Þ ¼ k.
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F 2ðAÞ ¼ Qþ ½ðN � k þ 1Þkþ ðN � kÞð1� kÞ�pi1 þ ½ðN � k þ 1Þð1� kÞ þ ðN � kÞk�pi2

¼ Qþ k2½ðN � k þ 1Þs1 þ ðN � kÞs2� þ ð1� kÞ2½ðN � k þ 1Þq2 þ ðN � kÞq1�
þ kð1� kÞ½ðN � k þ 1Þq1 þ ðN � kÞq2� þ kð1� kÞ½ðN � k þ 1Þs2 þ ðN � kÞs1� > K
since s1 < s2 and q2 < q1.
This example shows that the feasible region for the problem is not convex and this implies that a local

optimum found by an NLP solver may not be the global optimum. The complexity discussion for the weighted
case in Section 2 holds for this case, too. h

The SCP model for the total completion time case also includes nonlinear terms in constraint (12). We can
linearize constraint (12) in the model by replacing the nonlinear term piXij in constraint (12) with a variable Yij

and adding constraints (7)–(10) to the model as we did in Section 2. By this way we can achieve the LSCP
model for the unweighted case and solve it to global optimum by using the MINLP solver GAMS/BARON.

Next, we give another property analogous to Lemma 1.6.

Lemma 2.4. For any job pair i, j a local optimal solution must satisfy the following conditions:

(i) If pi > pl
i and pj > pl

j then ofiðpiÞ
opi

1
ni
¼ ofjðpjÞ

opj

1
nj

, where ni ¼
PN

j¼1X ijðN � jþ 1Þ.

(ii) If pi ¼ pl
i and pj > pl

j then ofiðpiÞ
opi

1
ni

P ofjðpjÞ
opj

1
nj

.

Proof. Suppose that in a solution ofiðpiÞ
opi

1
ni
<

ofjðpjÞ
opj

1
nj

for jobs i, j. Then
lim
Dp!0

fiðpi þ DpÞ � fiðpiÞ
niDp

�
fjðpjÞ � fj pj � ni

nj
Dp

� �
nj

ni
nj

Dp

0
@

1
A < 0;

lim
Dp!0

fiðpi þ DpÞ � fiðpiÞ þ fjðpjÞ � fj pj � ni
nj

Dp
� �

niDp

0
@

1
A < 0.
Then, $Dp > 0 s.t. fiðpi þ DpÞ � fiðpiÞ þ fjðpjÞ � fj pj � ni
nj

Dp
� �

< 0, which means the current solution can be

improved by increasing pi by Dp and decreasing pj by ni
nj

D. This proves that if a solution does not satisfy
the conditions above, then it is not locally optimal. h

As we have shown that similar properties as the weighted case apply to the alternative formulation for the
total completion time case we can employ similar approaches to find an approximation for the efficient fron-
tier. We can generate approximate efficient solution set by solving the new model in the SCP-based method as
described in Section 2. We can also employ our CIBA method by just modifying the cost index ri as ri ¼ ofiðpiÞ

opi

1
ni

where ni is the number of jobs that job i precedes including itself.

5. Numerical example

In this section, we give a numerical example for the total weighted completion time problem and apply the
SCP-based method and the CIBA method to generate an approximate efficient frontier. In this problem we
have five jobs and the design attributes (Di, Li, di and Si) of each job along with the required cutting tool type
are given in Table 1. We first calculated pl

i and pu
i values for each job as given in the same table. They are used

to define a manufacturing cost function for each job. For example, the manufacturing cost function for job 1 is
f1 ¼ 0:25� p1 þ 0:35� p�1:32

1

To find the solution Z1 and the corresponding schedule, we first set all jobs’ processing times to their lower
bounds and apply the WSPT rule as shown in Table 2. Total manufacturing cost, F1, for this initial schedule is
5.105 and the corresponding optimal total weighted completion time, F2, is 4.820. The initial schedule gives us



Table 1
Specifications of the jobs in the numerical example

Job Di Li di Si Tool wi pl
i pu

i

1 1.9 4.6 0.211 168 5 1.2 0.295 1.302
2 2.0 4.9 0.151 156 1 1.3 0.447 1.138
3 1.6 4.3 0.204 180 9 1.1 0.297 0.594
4 1.9 4.6 0.138 156 5 1.9 0.203 1.029
5 1.6 4.2 0.170 175 9 1.0 0.251 0.530

Table 2
Schedules at Z1 and Z2

Position Z1 Z2

Job p w/p ri fi(pi) Job p w/p ri fi(pi)

1 4 0.203 9.38 �1.63 1.713 5 0.530 1.89 0.0 0.210
2 1 0.295 4.06 �1.64 1.822 3 0.594 1.85 0.0 0.235
3 5 0.251 3.99 �0.49 0.341 4 1.029 1.85 0.0 0.452
4 3 0.297 3.71 �0.58 0.359 2 1.138 1.14 0.0 0.483
5 2 0.447 2.91 �1.68 0.870 1 1.302 0.92 0.0 0.572

S. Gurel, M.S. Akturk / European Journal of Operational Research 177 (2007) 325–343 337
the ideal total weighted completion time and the nadir manufacturing cost. We also have the schedule (Z2) cor-
responding to the minimum manufacturing cost in Table 2. For the minimum cost settings, F1 = 1.952 and
F2 = 15.646. This schedule gives us the ideal manufacturing cost and the nadir total weighted completion time.

As stated in the proposed CIBA method, we start with the solution Z1, and perturb the job with the min-
imum ri in each iteration, such as job 2 at the first iteration. In this example, we set the step size D = 0.1. In
Table 3, we present the perturbed job (j), and after each perturbation the new pj, wj/pj, sequence and ri’s along
with the F1 and F2 values. As an example, after we perturb job 1 in iteration 2, we need to re-sequence the jobs
to satisfy the WSPT rule. The algorithm progresses in this way by perturbing one job at a time until we reach
to solution Z2. As can be seen in Table 3, at each iteration we improve the total manufacturing cost (F1) while
losing from the total weighted completion time (F2) (i.e. generate a new efficient solution) as discussed in
Lemma 1.7.

Using the CIBA method, we generated 34 approximate efficient solutions for the example problem. As dis-
cussed before, we could also use a commercial NLP solver to find the minimum manufacturing cost for a given
total weighted completion time level. In this study, we model the problem in GAMS and use the MINOS sol-
ver as the SCP-based method. In Table 4, there are two schedules generated for the total weighted completion
time of 7.660. The first schedule is found by the CIBA method at iteration 10 given in Table 3. We also solved
the same problem by MINOS. It can be seen from Table 4 that two schedules are different in terms of job
sequences and job processing times. When we consider the schedule found by the SCP-based method using
Table 3
Results of the first 10 iterations by the CIBA method

Iter. Pert. job (j) pj wj/pj Sequence ri F2 F1

1 2 3 4 5

1 2 0.547 2.376 4 1 5 3 2 �1.64 �0.95 �0.58 �1.63 �0.49 4.950 4.939
2 1 0.395 3.037 4 5 3 1 2 �1.49 �0.95 �0.39 �1.63 �0.36 5.238 4.406
3 4 0.303 6.279 4 5 3 1 2 �1.49 �0.95 �0.39 �0.62 �0.36 5.888 3.748
4 1 0.495 2.423 4 5 3 1 2 �0.84 �0.95 �0.39 �0.62 �0.36 6.138 3.467
5 2 0.647 2.009 4 5 3 1 2 �0.84 �0.57 �0.39 �0.62 �0.36 6.268 3.370
6 1 0.595 2.016 4 5 3 1 2 �0.51 �0.57 �0.39 �0.62 �0.36 6.518 3.205
7 4 0.403 4.720 4 5 3 1 2 �0.51 �0.57 �0.39 �0.30 �0.36 7.168 2.923
8 2 0.747 1.740 4 5 3 1 2 �0.51 �0.34 �0.39 �0.30 �0.36 7.298 2.865
9 1 0.695 1.726 4 5 3 2 1 �0.68 �0.18 �0.39 �0.30 �0.36 7.540 2.761

10 1 0.795 1.509 4 5 3 2 1 �0.45 �0.18 �0.39 �0.30 �0.36 7.660 2.694



Table 4
Schedules generated by different methods when F2 = 7.660

Position Schedule by CIBA method Schedule by SCP-based method

Job (i) pi wi/pi ri fi(pi) Job (i) pi wi/pi ri fi(pi)

1 4 0.403 4.720 �0.30 0.773 4 0.395 4.81 �0.32 0.788
2 5 0.251 3.987 �0.36 0.341 5 0.261 3.83 �0.32 0.325
3 3 0.297 3.708 �0.39 0.359 3 0.316 3.48 �0.32 0.335
4 2 0.747 1.740 �0.18 0.549 1 0.704 1.70 �0.32 0.731
5 1 0.795 1.509 �0.45 0.672 2 0.763 1.70 �0.32 0.542
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MINOS, we see that it satisfies Lemma 1.2, which states that total weighted completion time must be tight at
optimality and it also satisfies the WSPT rule. The MINOS solution has integer Xij’s, so that it gives a feasible
schedule (Lemma 1.4). For this particular solution, the CIBA method gives a slightly better solution
(F1 = 2.694) than the GAMS/MINOS solver (F1 = 2.721), which is an example for the case that a solution
found by MINOS may not be a global optimal (Lemma 1.5). Finally, when we check the ri values of the
MINOS solution, we see that they satisfy Lemma 1.6 which states that a local optimal solution cannot be
improved by just changing the processing times of jobs. In order to find the global optimum of F1 for a given
F2 = 7.660, we solve the LSCP model by GAMS/BARON, which gives F1 = 2.664 with the job sequence of 4–
5–3–2–1 (the same sequence with the CIBA), and the processing times (0.402, 0.265, 0.321, 0.643, 0.886),
respectively.

6. Computational results

In this study, we considered two bicriteria production optimization problems with a scheduling objective
and manufacturing cost objective. The scheduling objectives we considered were total completion time and
total weighted completion time. For each case, we provided two different efficient frontier approximation algo-
rithms: namely the SCP-based method and the CIBA method. The SCP-based method is modeled in GAMS
2.5 using solver MINOS 5.51. The CIBA method is coded in C and compiled with Gnu C compiler. All codes
were run on a computer with 1294 MB memory and Pentium III 1133 MHz CPU. In this section, we discuss
the results of the computational study.

There are three experimental factors that can affect the efficiency of the proposed methods as listed in Table
5. The number of jobs is an important factor that affects the solution quality and computational requirements.
The machine type is considered since different machines have different cutting power levels and different oper-
ating costs. Machines with higher maximum cutting power, H, are more expensive to buy so operating cost of
them, Co, is higher. Co and H affect the pl and pu levels as well as the shape of the manufacturing cost function.
Ct, the tooling cost level, affects the pu and the shape of the manufacturing cost function too. We also consider
10 different cutting tool types with the specific coefficients given in Table 6. Each job can be manufactured by
one of these cutting tools. For each experimental setting (3 * 3 * 2), we took five replications resulting in 90
different problem settings. Furthermore, we generated jobs’ technical specifications as follows: Di are selected
from U[1,4], Li from U[4, 6], di from U[0.05, 0.3], Si from U[150, 250], where U[a,b] is a uniform distribution in
interval [a,b]. For the weighted case we generated a weight for each job from U[1,10]. Finally, we used two
different levels of step size D, such as 0.01 and 0.03.

We first present the results for the total weighted completion time problem. The number of approximate
efficient points generated by the CIBA method depends on the experimental factors, job specifications and
Table 5
Experimental design factors

Factor Definition Level 1 Level 2 Level 3

N Number of jobs 50 100 150
m/c Machine type Co = 1, H = 5 Co = 2, H = 10 Co = 4, H = 20
Ct Tooling cost level U[6,10] U[15,19]



Table 6
Technical coefficients of the cutting tools

Tool a b c K b c e Cm g h l Cs

1 4.0 1.40 1.16 40,960,000 0.91 0.78 0.75 2.394 �1.52 1.004 0.25 204,620,000
2 4.3 1.60 1.20 37,015,056 0.96 0.70 0.71 1.637 �1.60 1.005 0.30 259,500,000
3 3.7 1.30 1.10 13,767,340 0.90 0.75 0.72 2.315 �1.45 1.015 0.25 202,010,000
4 3.7 1.28 1.05 11,001,020 0.80 0.75 0.70 2.415 �1.63 1.052 0.30 205,740,000
5 4.1 1.26 1.05 48,724,925 0.80 0.77 0.69 2.545 �1.69 1.005 0.40 204,500,000
6 4.1 1.30 1.10 57,225,273 0.87 0.77 0.69 2.213 �1.55 1.005 0.25 202,220,000
7 3.7 1.30 1.05 13,767,340 0.83 0.75 0.73 2.321 �1.63 1.015 0.30 203,500,000
8 3.8 1.20 1.05 23,451,637 0.88 0.83 0.72 2.321 �1.55 1.016 0.18 213,570,000
9 4.2 1.65 1.20 56,158,018 0.90 0.78 0.65 1.706 �1.54 1.104 0.32 211,825,000

10 3.8 1.20 1.05 23,451,637 0.81 0.75 0.72 2.298 �1.55 1.016 0.18 203,500,000
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D. We cannot determine the number of points to be generated by the CIBA method in advance. Therefore, to
compare these two approaches we first run the CIBA method and generate a set of approximate efficient
points. Then, we choose a subset of this solution set and run the SCP-based model for this subset. As discussed
earlier, we generate points with total weighted completion time values in [Kl,Ku]. Out of these points, we chose
50 points other than Z1 and Z2 such that each successive point pair has equal (or almost equal) separation.
This is because we want to test the algorithms at different total weighted completion time levels along the effi-
cient frontier.

We measured the relative difference between the F1 values for a given F2 value, R = (F1(CIBA) � F1(SCP))/
F1(SCP). Another critical issue to consider is the computational requirements of both methods. In Table 7, we
summarize the R level and the required CPUs. The given CPUs in this table are measured for the entire solu-
tion sets. The data shows that the relative difference between two methods on the average is very small in favor
of the CIBA. We can say that on the average the CIBA performs slightly better than the commercial NLP
solver MINOS in terms of the solution quality. The maximum R values show that there are cases where
the SCP-based method performs better. Moreover, we conclude that the CIBA method can find significantly
higher number of efficient points than the SCP-based method in a much shorter computational time. For
D = 0.01, the SCP-based method used 352.91 CPU seconds on the average to solve for 50 solution points,
but the CIBA method just spent 29.56 CPU seconds on the average to generate 354,597 points. In an eighth
of MINOS’ CPU requirement, the CIBA method can generate 7000 times more alternatives. It is important to
note that we originally had a nonlinear mixed-integer programming formulation. Due to Lemmas 1.4 and 2.2,
we were able to solve these problems by using the MINOS solver by relaxing the integrality requirements. Still,
the CPU needed to solve the SCP-model is quite high. As expected, when we increase the step size, D, we loose
from the solution quality at each point but gain from the CPU time. Moreover, for a higher D value, the size of
the approximate efficient solution set decreases. When we check the results for different levels of N, we observe
that increase in the number of jobs increases the SCP-based method’s CPU much more than the CIBA
method, but the relative difference between two methods, R, slightly improves in favor of the CIBA method.
Table 7
Performance measures for the weighted case

D Min Max Mean Std. dev.

0.01 R �0.003970 0.001559 �0.000108 0.000665
SCP-based CPU 16.86 961.59 352.91 356.88
CIBA CPU 0.78 125.59 29.56 35.17
CIBA set size 32,084 1,066,094 354,597 296,026

0.03 R �0.000936 0.000216 �0.000041 0.000177
SCP-based CPU 17.30 955.57 354.19 355.70
CIBA CPU 0.26 41.24 9.76 11.56
CIBA set size 10,693 355,344 118,188 98,674
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Next, we discuss the computational results for the total completion time case. In Table 8, we present the
results for the unweighted case for different D values. We see that the overall performance of CIBA is very
close to the SCP-based method but the SCP-based method performs slightly better than the CIBA in terms
of solution quality. The minimum R values indicate that there are cases where the CIBA performs better.
Results show that both methods require less computation time for the unweighted case compared to the
weighted case as expected. Moreover, the CIBA method generated less number of efficient points for the
unweighted case. This is because when the weights of completion times are selected from the interval [1, 10]
we achieve a larger [Kl,Ku] interval so that the CIBA can generate more points for the weighted case if the
same D value is used as in the total completion time case.

Another important question is the absolute performance of the SCP-based method from the global mini-
mum due to Lemmas 1.5 and 2.3. We could solve the LCSP model only for 5 and 8 job problems within the
reasonable CPU times by using the GAMS/BARON solver version 7.2.3. We applied the same experimental
setting as above. We took five replications for each setting. For each replication, we applied the SCP-based
approach for five efficient points that the CIBA generated. So, we solved a total of 300 MINLP problems
by BARON and MINOS. Table 9 shows the relative difference values for the SCP-based methods using
MINOS versus BARON and the CIBA versus the SCP-based method using BARON. Results show that both
MINOS and CIBA find solutions very close to global optimal. There are some cases where MINOS finds the
global optimal. The computational requirements of MINOS and CIBA are negligible for the considered num-
ber of jobs levels. We observe that when we increase the number of jobs from 5 to 8, the CPU time required by
BARON increases by 300 times.

Up to this point we have compared the pointwise quality of individual solutions generated by different
methods. However, since this is a multi-objective optimization problem, we also check the approximation
quality of solution sets generated by the CIBA and SCP-based methods. In the literature, there are different
metrics used to compare the approximation quality of solution sets generated by different methods. In this
paper, we will use three of them. The first one is the area method proposed by Zitzler and Thiele (1998), which
measures the size of the objective value space covered by a solution set. The second metric is the coverage dif-
ference of two sets, CD(A,B), by Zitzler (1999), such that CD(A,B) = Area(A [ B) � Area(B). This measure
shows the contribution of solution set A to the area covered by solution set B. These two metrics use the ideal
and nadir values of the objective functions in order to normalize the objective values of solutions and calculate
Table 8
Performance measures for the unweighted case

D Min Max Mean Std. dev.

0.01 R �0.000076 0.001232 0.000313 0.000309
SCP-based CPU 12.70 509.43 201.60 194.72
CIBA CPU 0.01 0.14 0.06 0.03
CIBA set size 1324 9731 4471.7 2286.3

0.03 R �0.019599 0.010221 0.002610 0.003642
SCP-based CPU 11.42 522.29 202.65 195.51
CIBA CPU 0.01 0.05 0.021 0.01
CIBA set size 444 3247 1494.6 763.2

Table 9
Comparison with the global optimal solutions

N Min Max Mean Std. dev.

5 R(CIBA-BARON) 0.000014 0.005895 0.001007 0.001433
R(MINOS-BARON) 0.0 0.006673 0.001258 0.002132
BARON CPU 5.51 13.32 10.07 1.79

8 R(CIBA-BARON) 0.000010 0.004125 0.000105 0.000109
R(MINOS-BARON) 0.0 0.004552 0.000092 0.001348
BARON CPU 993.90 4627.83 3010.53 943.08



Table 10
Comparison of the approximation algorithms for D = 0.01

Metric Mean Min Max

Area(CIBA) 0.843 0.816 0.867
Area(SCP) 0.833 0.805 0.856
CD(CIBA,SCP) 0.011 0.010 0.012
CD(SCP,CIBA) 0.000002 0.0 0.000029
P(CIBA,SCP) 0.995 0.975 1.000
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the corresponding areas. In our problem, ideal and nadir values are achieved at solutions Z1 and Z2. The last
metric we use is the probability, P(A,B), that an algorithm, A, gives a better solution than another algorithm,
B. This metric is proposed by Hansen and Jaszkiewicz (1998). It is calculated as P ðA;BÞ ¼R

u2½0;1� CðAðuÞ;BðuÞÞdu, where
CðAðuÞ;BðuÞÞ ¼
1; f ðAðuÞÞ < f ðBðuÞÞ;
1=2; f ðAðuÞÞ ¼ f ðBðuÞÞ;
0; f ðAðuÞÞ > f ðBðuÞÞ

8><
>:
and f ðAðuÞÞ ¼ minx2AfmaxðuF 01ðxÞ; ð1� uÞF 02ðxÞÞg where F 01ðxÞ ¼
F 1ðxÞ�F 1ðZ2Þ

F 1ðZ1Þ�F 1ðZ2Þ
which is a normalization of F1.

Here u is the weight of the normalized objective function F1 for the decision maker. The method basically tries
a number of u values between 0 and 1 and estimates the decision maker’s probability to choose a solution gen-
erated by method A. The results in Table 10 show that on the average area covered by the CIBA algorithm is
larger than the area covered by the SCP-based method. Although there is a small difference, paired t-test re-
sults show that CIBA is significantly better than SCP-based method in terms of the area measure. When we
check the coverage difference results, we see that the contribution of CIBA to the area covered by the SCP-
based method is much more than the opposite measure. Finally, we check the probability measure, which
shows that for the 99.5% of the cases on the average, the decision maker would prefer to implement a solution
achieved by the CIBA method.

Computational results show that the CIBA method has almost same pointwise cost quality with the SCP-
based approach despite the much less computational time requirement. More than that, the CIBA method can
generate significantly higher number of efficient solutions than the SCP-based methods in a short computation
time. As a result, the approximation quality measures that we calculated for both methods show that CIBA
achieves significantly better approximations of the efficient frontiers than the SCP-based method.

7. Conclusion

In this study, we dealt with controllable processing times where processing time decisions affect the man-
ufacturing cost as well as the scheduling performance. We considered the bicriteria problem with the objectives
of minimizing the manufacturing cost and the total weighted completion time. We proposed a very effective
single criterion model to find efficient solutions for different levels of total weighted completion time. This
model can be solved to integer local optimality by just using a commercial NLP solver. Additionally, we have
derived important optimality properties for the model which led us to design a very quick and effective algo-
rithm which generates an approximate efficient solution set. Although we focus on the CNC turning machines
for practical purposes, our results are valid for any nonlinear convex processing cost function. This study is an
important step to integrate the process planning and scheduling decisions since it copes with job sequencing
and processing time decisions simultaneously. For the future research, we consider the minimizing manufac-
turing cost objective with different scheduling objectives and different machine environments.
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Appendix A. Single machining operation problem (SMOP)

SMOP is the manufacturing cost minimization problem for the turning operation. Decision variables for
the problem are the cutting speed (vi) and the feed rate (fi). The job to be machined has certain specifications
like job diameter, length, depth of cut and maximum allowable surface roughness and a selected cutting tool.
A cutting tool has certain technical coefficients.

There are three constraints in the problem. The first one is the tool life constraint which comes from the
limitation that each job can use at most one tool. The second constraint is the machine power constraint that
comes from the maximum applicable cutting power by the machine. The last one, the surface roughness con-
straint, satisfies the surface quality requirement for the operation. The geometric programming model for the
problem to minimize manufacturing cost (i.e. the sum of the operating and the tooling costs) for job i is as
follows:
Minimize Cost ¼ Co � pi þ Ct � Ui ¼ C1v�1
i f �1

i þ C2vða�1Þ
i f ðb�1Þ

i

Subject to C0tv
a�1
i f b�1

i 6 1 ðTool life constraintÞ;
C0mvb

i f c
i 6 1 ðMachine power constraintÞ;

C0sv
g
i f h

i 6 1 ðSurface roughness constraintÞ;
vi; fi > 0;
where C1 ¼ pDiLiCo

12
, C2 ¼

pDiLid
c
i Cti

12CTL
i

, C0t ¼
pDiLid

c
i

12CTL
i

, C0m ¼
Cmde

i
H and C0s ¼

Csd l
i

Si
.

Theorem 1 (Akturk and Avci, 1996). At least one of the surface roughness and machine power constraints is

binding at optimality for SMOP.

Theorem 2 (Kayan and Akturk, 2005). The surface roughness constraint must be tight at the optimal solution.
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