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Abstract: Discrete time queueing models have been shown previously to be of practical use for 

modelling the approximate time-dependent behaviour of queue length in systems of the form M(t)/G/c. In this 

paper we extend these models to include the time-dependent behaviour of virtual waiting time. 

Key components of this research are the derivation of exact (algorithmic) expressions for virtual waiting time 

behaviour. Statistical approximations for the distributional form of virtual waiting times are then developed and 

tested. These approximations reduce the computational effort involved in the evaluation of the exact 

expressions by a factor of over 1000 whilst still maintaining very high accuracy levels. 

The models have been implemented for use on a PC and are shown to be capable of modelling the time-

dependent virtual waiting time behaviour of realistic queueing systems in just a few seconds. 

Results from the models are compared with results obtained by the Simple Stationary Approximation, the 

Pointwise Stationary Approximation and Modified Offered Load approximations.  They clarify further some of 

the strengths and weaknesses of these approaches and demonstrate the potential of the Discrete Time Modelling 

approach. 

Keywords: Queueing, Discrete Time Models, Time Dependent Queues, Customer Waiting Time 

1. Introduction 

Queueing theory and queueing models have provided insights into many industrial and service situations. Most 

of this analysis assumes constant parameter values and that steady-state results are appropriate. However there 

are many real queueing situations where parameters vary with time, or where, although parameters are constant, 

the effects of starting conditions are important.  

Analytic models have been developed to examine basic queueing systems that are not in equilibrium. Examples 

of such models for M(t)/M(t)/∞, M(t)/M(t)/1/1 and M(t)/M(t)/1/∞ are discussed by Gross and Harris [12] and 

Zhang [25]. Sharma [20] has produced a solution for the transient behaviour of M/M/1 queues. However even 

for these relatively simple systems, the models are quite complex. If the lack-of-memory property is relaxed or 

the number of servers increased, the models become more complicated, Choudhury et al. [3]. 

In practice the choice for queue modelling of time-dependent systems is often between steady-state based 

approximations and Monte Carlo simulation. In Monte Carlo simulation, the entire distribution of state 

probabilities can be approximated to within a defined statistical tolerance level. Most performance measures can 

then be estimated by direct calculation from this distribution, thus, this method is very flexible. Also, it requires 
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no assumptions about the types of arrival and service distributions. However, a lot of computational effort is 

required to get results. 

On the other hand steady-state results are typically much easier to obtain and can provide results that, whilst 

often biased, are nevertheless sufficiently accurate for decision-making. One popular method of using steady-

state results is as a Simple Stationary Approximation (SSA), in which a simple average arrival rate is used to 

derive steady-state results as an approximation for the overall behaviour of the system. This approach can be 

valuable if used carefully, but it can also lead to serious errors. For example Eick, Massey & Whitt [6] show 

that using the steady-state result for the M/G/∞ queue to approximate the M(t)/G/∞ queue with sinusoidal 

arrival rates provided the correct overall mean number in the system. However it obviously misses the time 

dependent and hence distributional form of number in the system. For systems with finite numbers of servers, 

particularly when the servers are often all busy, the non-linear relationship between congestion and traffic 

intensity implies that the overall congestion in the system for a M(t)/G/c model will generally be underestimated 

by a M/G/c approximation. For example Green, Kolesar & Svoronos [10] found that using the steady-state 

M/M/c model to approximate an M(t)/M/c system where actual arrival rate was sinusoidal and varied by only 

10% about its average resulted in significant underestimations. 

Green, Kolesar & Svoronos [11] and Green & Kolesar [9], in two linked papers, go on to describe and evaluate 

a Pointwise Stationary Approximation (PSA). Basing their arguments on extensive empirical results for 

M(t)/M/c systems, they concluded that when it existed the PSA would provide an upper bound on a number of 

performance measures, and that for a broad range of systems it could be expected to provide reasonably 

accurate estimates of performance measures. They also identified circumstances in which it was expected to 

provide poor results. 

One clearly identified weakness of a PSA is that it implies that peaks of congestion coincide with peaks in 

arrival rates, whereas in many real systems the congestion peak lags behind the arrival rate peak. Various 

methods stemming from the modified offered load (MOL) work of Jennings, Mandelbaum, Massey & Whitt 

[13], attempt to correct for this by using some weighted average of arrival rates during some period close to 

time t as an ‘effective’ arrival rate for the PSA model at time t. See for example Green and Kolesar [8] and 

Green, Kolesar & Soares [10]. 

An alternative approach for time-dependent queues is to approximate the behaviour using discrete time 

queueing models. The study of discrete time queues can be traced back to Meisling [14], who studied a single-

server system with binomial arrival distribution. Single-server systems with random arrivals were analysed 

algebraically by Dafermos and Neuts [5] and in terms of numerical analysis by Neuts [17]. The Discrete Time 

Modelling (DTM) approach in which discrete time models are used to approximate the behaviour of continuous 

time queues was investigated by Omosigho & Worthington [18, 19] for single-sever queues. Brahimi & 

Worthington [2] and Worthington & Wall [24] have shown that the DTM approach is capable of providing high 

quality approximate results for the time-dependent behaviour of the queue length for a variety of single-server 

and multi-server queues. A key feature of this approach is that good quality results are achieved for continuous 

time queues by using discrete distributions to match the moments of the continuous service time distribution. 
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Whitt [22, 23] has also found moment matching between continuous service time distributions to be a valuable 

approach for steady-state behaviour of queueing networks.  

From the viewpoint of the customer, waiting time and queueing time are generally more important than queue 

length. Indeed, for many practical queueing systems service standards are set or monitored in terms of 

customers’ queueing time, often with a target of X% of customers needing to start service within T minutes of 

arrival. The main purpose of this paper is therefore to develop models for the time-dependent behaviour of 

waiting time for discrete time queues. 

This paper restricts its analysis to queues with a simple time-dependent Markovian arrival rate, a general service 

distribution and FIFO (First In/First Out) queue discipline. Whilst these models have wide general application 

in practice, more complex discrete time models also warrant attention. For example, researchers have studied 

steady-state waiting time of discrete batch arrival distributions with different queue disciplines, Frigui et al. [7], 

and a discrete time priority queue, Alfa [1]. 

The remainder of this paper is organised as follows. Assumptions, notation and definitions are introduced in 

section 2. Waiting time is to be studied in terms of virtual waiting time, which is introduced in section 3. The 

development of the virtual waiting time model is in section 4. A crucial element of the set of equations that are 

obtained are expressions for the distribution of waiting time conditional on the system state. Unfortunately 

whilst these expressions, and hence the set of equations, are in principle straightforward to solve, in practice 

they become a prohibitively large computational task for anything but very small parameter values. Section 5 

therefore proposes an easily computed statistical approximation for the conditional waiting time distributions, 

which are shown in section 6 to provide highly accurate results for a tiny fraction of the computational cost. 

Section 7 is used to demonstrate some of the potential of the DTM approach by using it to calculate the ‘exact’ 

time-dependent behaviour of virtual waiting time for a discrete time queueing system. This example is also used 

to shed further light on the strengths and weaknesses of the SSA, PSA and MOL approximation as methods to 

analyse the time-dependent behaviour of queueing systems. Finally the main conclusions from the paper are 

summarised in section 8. 

 

2. Assumptions and Definitions 

2.1 Assumptions 

The discrete time multi-server queue with time-dependent arrival rate and discrete service distribution has the 

following assumptions: 

(i) The time of operation of the system is divided into a set of equal non-overlapping intervals, often 

referred to as slots. The epochs (i.e. slot boundaries) of each slot are labelled by the integers t = 0, 1, 2,... 

, where 0 is the beginning of the operation and the length of each interval represents one unit of time. 

The system is only observed at each epoch.  
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(ii) The arrival process has a fairly general distribution; the only requirement on the arrival process is that 

the probability distribution of the number of arrivals in a slot can be calculated and is independent of arrivals in 

other slots. The arrivals are assumed to enter the system at the end of the slot in which they arrive. This 

assumption allows for quite a wide class of arrival processes; e.g. homogeneous and inhomogeneous Poisson 

processes, scheduled arrivals. 

(iii) The service times of successive customers are independent and identically distributed random variables 
measured in terms of the basic unit defined above, with maximum value m. Si = probability (service time takes i 

discrete time units), for i = 1, 2, .....m. Because arrivals only enter the system at epochs, all services also start 

and finish at epochs. 

(iv) The arrival and service processes are independent. 

(v) The service system consists of c channels. 

(vi) At most one customer can be served in one channel at one time. 

(vii) If a customer arrives to find all servers busy he joins a FCFS (First come, first served) queue. 

2.2 State-space definition 

With these assumptions, discrete time multi-server queues can be formulated as time-inhomogeneous Markov 

chains, as shown by Brahimi & Worthington [2], using a state system that consists of all possible vectors of the 

form 

   ( , , ..n x x xm :  1 2 )

c

subject to 

   x ni
i

m

=
=
∑

1

min( , )

where n = 0, 1, 2, ......  records the number in the system, and the  are non-negative integers recording the 

number of services in process that have exactly i units of time remaining. 

xi

For ease of notation we then simply list the states associated with any number (n) in the system so that they can 

be numbered j=1, 2, .......The number of states associated with each n is: 
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!( )!
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( )!
!( )!
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Hence the state-space { ( , }can now be abbreviated to {(n,j)}, where for any given n value, 

each j value corresponds to a unique combination of service times remaining. The stochastic behaviour of the 
system over time can then be described by {pn,j,t}, where  

, ..n x x xm :  1 2 )

 pn,j,t = probability (system being in state (n,j) at time t). 
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Methods to find {pn,j,t} are already known, see for example Brahimi & Worthington[2]. 

2.3 Other Definitions 

Two probability functions based on the service time distribution are required later and are introduced here for 

convenience. 

Ω(T): the probability that a service time lasts more than T. Thus: 

  Ω( )T S T

T m
i

i T

m

= −

≥

⎧
⎨
⎪

⎩⎪
= +
∑                   for = ,  ,...,

                               for 

0 1 1

0
1

m

Ψ(N)(T): the probability that N service times take a total of exactly T time units. As this is the Nth convolution of 

the service time distribution, Ψ(N)(T) can be calculated as: 

 Ψ( ) ( ) !
!

N i
N

ii

m

T N S
N

i

=
=
∏∑

1

        for T = N, N+1,…..,Nm  

where the summation is taken over all combinations of non-negative integers {Ni} for which  

  

 

 .      and    ,
11
∑∑
==

==
m

i
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m

i
i TNiNN

3. Virtual Waiting Time Distribution 

Virtual waiting time at time t is defined to be the time that an imaginary customer would have to wait before 

service if they arrived in a queueing system at instant t. Gross and Harris [12, section 2.3] give a derivation of 

the steady-state virtual waiting time distribution for an M/M/c model. However the virtual waiting time concept 

does not just apply to steady-state systems as shown by Minh [16] for M(t)/G/1. The virtual waiting time 

distribution was first formulated for discrete time queues by Neuts [17] for the single server case. 

Combining these ideas, the probability distribution of virtual waiting time at time t, wt( ), in a c server discrete 

time system with system states as defined earlier can be expressed as:  

(4b)     .
 at time ),( statein  system found arrival                            

/ at time occurs completion serviceth )1( 
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0>for  and
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Given that the {pn,j,t} are known, expression (4a) is easy to compute. It is the second expression which requires 

detailed examination. For convenience here and later, we now define a conditional waiting function WCn,j( ): 
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⎭
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⎧ +

=
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/   timein  s completion  service  )1(exactly 
Pr)(. n,j

Tn-c
TWC q

qjn  (5) 

so that (4b) simplifies to: 

w T p WC T Tt q n j t n j q
jn c

q

c m
c m

( ) ( ), , ,

( ) !
!( )

=
=≥

+ −
−

∑∑
1

1
1

0      for >  (6) 

 
Note that WCn,j(Tq) is conditional only on the state (n,j) and is independent of t. Hence conversion of the queue 

length distributions into time dependent virtual waiting time behaviour reduces to the non-trivial problem of 
deriving methods for obtaining the conditional waiting time distribution WCn,j(Tq) for all (n,j). This step is 

developed next in sections 4, 5 and 6. 

4.  An Exact Method 

4.1 Single Server Formulation and Solution 

We first consider the single server queue, as previously formulated by Neuts [17]. Our formulation differs a 

little from that of Neuts in preparation for the multi-server formulation that follows. For the single server system 

the state (n,j) when n>0 indicates that there are n in the system and that the residual service time of the one 
customer in service is j. Hence there will be exactly n-c+1 = n completions in time Tq if and only if there are n-1 

complete service times in the time remaining after the customer in service has completed its current service, i.e. 
in time (Tq - j). Using the probability function introduced earlier, this has probability Ψ(n-1)(Tq - j).  

This formulation is shown diagrammatically in figure 1 for the case of a virtual customer arriving to find the 

system in state (n,j) = (10,3), i.e. 3 time units left for customer in service and another 9 customers ahead in 

queue. 
 
Figure 1: Single-server example of virtual waiting time 
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  WC T T jn j q
n

q,
( )( ) ( )= −−Ψ 1

4.2 Multi-Server Formulation and Solution 

In the multi-server system the problem is more complicated in two main ways. Firstly, there are now c channels 

contributing to the total number of completed service times. The second consideration is that only one of the c 

servers needs to complete a service at the time Tq of interest. The other (c-1) servers may complete their 

contributing service times at time Tq or before. This second consideration adds greatly to the complexity of the 

formulation of the problem. An algorithmic form of solution has been developed and is outlined below. For 

further details see Wall [21].  

For any state (n,j), where n≥c, it is possible to define a unique numbering of the servers (i = 1, 2, .. c) by 
requiring that they are ordered  s s sj j, ,1 2≤ j c,≤ ≤K , where sj,i is the residual service time of the customer 

currently with server i. Ties are settled by some predefined order of the servers. The imaginary customer 

arriving to find the system in state (n,j) is then assumed to go into service with the lowest numbered server 

available at time Tq. We can therefore consider each of the c servers individually for i = 1, 2, ......c and define a 

probability function:  

 
 

SC T n TF server i n T

TF n j
n j i q i i i q

i

, , ( , , ) Pr{

, )}

=  completes  services by time  and last completion

                                        occurs at  / arrival found system in state (

(where TFi = 0 if ni = 0) 

Note that this probability function specifically recognises the possibility that the time TFi at which server i 

completes his ni
th service may well be before the time Tq that is of interest. 

This formulation is shown diagrammatically in figure 2 for the case of a c=3 server system and a virtual 

customer arriving to find the system in state (n,j) = (17,jj) where jj implies that the three residual service times 

are 2, 3 and 3 units respectively (sjj.1 = 2, sjj.2 = sjj.3 = 3). In this example as there are 17-3=14 customers ahead, 

the virtual customer will end up in service with server 1, with this combination of services. 

 
Figure 2: Multi-server example of virtual waiting time 
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For the general case for any server i, if sj,i > Tq, (i.e. the residual service time of server i, given system starts in 
state (n,j), is larger than Tq) then trivially: 
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Now considering all c servers together, define 
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Because of the independence of the c service processes when they are all working continuously, we can say 
that: 
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Finally, we note that 

∑=
**

/
,, }),{,()( iiqjnqjn TFnTWCTWC

 (7) 
**where the summation is over all combinations of {ni, TFi} such that 

      and { } ∑
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+−≥==
c

i
iiq cnknTFT

1

c
1=i 1   , max

qi TTF =  for more than  )1( −−− cnk   servers. 

Hence the conditional waiting time distribution WC  can also be evaluated for multi-server systems. 

Note that the evaluation of equation (7) requires all feasible combinations of {ni,TFi} to be generated once.  

Tn j q, ( )

 

4.3 The Need to Approximate the Conditional Waiting Time Distributions. 

Neuts [17] noted that his single server discrete time algorithms needed further approximations particularly with 

regard to the waiting time distribution in order to make the technique practical on a mainframe computer. 

Nowadays, the increased computing power of a personal computer means that the methods described above are 

practical for single server systems. However for multi-server systems the time to compute the conditional 

waiting time probabilities increases dramatically, and becomes prohibitively long for modest numbers of 

servers. We therefore developed a practical approximation approach to reduce the computational requirements 

and hence extend the range of c that can be analysed for any given level of computing power. This approach is 

described next. 

5. Overview of the Approximation Approach 

The major time-consuming aspect of the methods presented earlier is the calculation of the probability 
distribution WCn,j(Tq) for ‘high’ values of n. The typical form of WCn,j(Tq) for various n and an example j is 
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shown in figure 3. As n increases from 6, through 10, 15 and 25 to 40 the shape can be seen to start rather 

skewed and irregular but becoming more regular and more symmetric. The approximation approach therefore 
sought to fit a standard distribution to WCn,j(Tq) for ‘high’ n (i.e. for n>Q, where Q is some ‘high’ value chosen 

by the analyst) which could then be used to estimate the individual probabilities directly, rather than calculate 

them from the exact equations given earlier. 

 
Figure 3: Typical Conditional Waiting Time Distributions WCn,j(Tq) For One Example j. 
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The requirement was therefore for a family of distributions which could represent this type of distributional 

behaviour and for which the pdf or cdf could be evaluated easily. Discrete distributions would be consistent 

with the discrete time basis of the models, but the obvious candidates were computationally expensive to 

evaluate. Hence continuous distributions were considered, and in particular the Gamma distribution, with pdf: 

 f x k x e
k

x k
k k k x

( ) ( )
( )

, , , , ....= > >
− −θ θ

θ1

0 0 1 2
Γ

      for   =  

which is well-known to have the observed shape characteristics. 

In order to discretize a Gamma distribution the probability of a discrete value Tq was taken to be the probability 

of the continuous variable taking values in the range (Tq-0.5, Tq+0.5), i.e. 

 

 (8) WC T f x dxn j q
T

T

q

q

,
.

.

( ) ( )=
−

+

∫
0 5

0 5

Equation (8) can be conveniently approximated using numerical integration as long as f(x) can be evaluated 

easily. For the Gamma distribution in general this is not the case, but by restricting the values of the k parameter 

to multiples of 0.5 it is. 
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The selection of an appropriate Gamma distribution was done on the basis of matching its mean, 1
θ  to a target 

mean, and matching its variance, 1
2kθ

 as closely as possible to a target variance. Once θ and k were 

calculated, evaluation of (8) using numerical integration quickly led to a discretized version of the Gamma 

distribution (referred to as ‘Uncorrected Variance’ later). 

Miller and Rice [15] have shown that the mean of a discretized distribution will not always equal the continuous 

mean, 1
θ , but more interestingly that its variance will be larger than the continuous variance, 1

2kθ
. Hence 

a system with a slightly larger k than the one chosen by the method outlined above may provide a slightly better 

match. Our second method of choosing a discretized Gamma distribution (referred to as ‘Corrected Variance’ 

later) investigates this effect. 

In addition two methods of performing the numerical integration were investigated. In the first the area under 

the curve is approximated by a single trapezoidal shape using: 

 [ ])5.0()5.0(
2
1)(. ++−≈ qqqjn TfTfTWC  

In the second, the accuracy of integration is improved by taking an additional point (i.e. midpoint). This takes 

about twice as long to compute. Assuming the curve through the three points is a parabolic shape (as in 

Simpson’s First Rule) we therefore use: 

 [ ])5.0()(4)5.0(
6
1)(. +++−≈ qqqqjn TfTfTfTWC  

Finally, and crucially, reasonably accurate estimates of the mean and variance of the distribution WCn,j(Tq) are 

required so that a Gamma distribution can be chosen. A near exact equation for predicting the mean is described 

in section 5.1. A similar equation for the variance is described in section 5.2.  

Overall we observe that this approach to approximating the conditional waiting time distribution for higher 

values of n turns out to be highly practical for three important reasons: 

1) The time spent obtaining the conditional waiting time distribution in the full model is mainly spent 

running that portion which contains higher values of n. Hence the runtime savings from a scheme that 

only runs the full model for small n will be very large. 

2) In many practical queueing systems (e.g. those with low and medium loads), most of the customer 

probability is associated with low n. It is therefore more important to model the system as accurately as 

possible for low n. Any errors due to approximating the high n portion of the system will have a much less 

significant effect. This was also an observation of Neuts [17] for single server systems. 

3) As will be seen later, the mean and variance of conditional waiting times showed strong patterns with 

increasing n, perhaps associated with Central Limit Theorem behaviour Thus it was possible to deduce 

very good predictive models for the mean and variance. 

5.1 Estimating the Mean of the Conditional Waiting Time Distribution 

 10



In order to obtain estimates of the mean of the conditional waiting time distribution we derive an expression 

for sum of all the remaining services times to be experienced by the customers in the system when an arbitrary 
arrival arrives to find state (n,j) where j implies the unique set of residual service times , 

which for ease of notation in this section are simplified as s

s s sj j, ,1 2≤ ≤ ≤K j c,

1,…..,sc. 

The sum of the remaining service times will be: 

∑∑
−

==

+
cn

i
i

c

i
i Ss

11

 

Another way of deriving the same total amount of time would be to use the total wait experienced by the 

arbitrary arrival Tq, and the residual service time on the remaining (c – 1) servers who are still busy when the 

arrival goes into service: 

∑
−

+
1c

i
iq RcT   

where Ri is the residual service time on server i.  

Therefore: 
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Taking the expected values of (9) gives: 
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To find  an approximation for  E(R) we make the assumption that the values of Ri (for i= 1,2, …,c-1) are 

independent of each other and of Tq , and hence are equivalent to the limiting forward recurrence times in a 

renewal process where the renewal time is our service time. Hence, as shown by Cox [4], the pdf of R is: 
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where the expression for Var(R) can be simplified as: 

 

)(3
)()(

))(()()(
3

2

22

SE
SERE

RERERVar

=

−=
 

 11



Substituting (11) in (10) and rearranging gives our estimate of  E(Tq): 

 
∑
=

+⎟
⎠
⎞

⎜
⎝
⎛ −−++−

=
c

i
iq s

c
SE

c
SCVccnTE

1

2
1 1)()1)(1()12()(ˆ

 (13)
 

Extensive empirical results supporting equation (13) are presented in Wall [21]. The results shown in table 1 for 

the two example test service time distributions shown in table 2 are typical. For each distribution the estimated 

mean using equation (13) is compared with the exact value obtained using the methods described in section 4 

for various n with a sample state subscript (j=1). Clearly as n increases the quality of the estimate increases with 

errors becoming very small quite quickly. The pattern of results was found to be similar for other sub-states j 

and for other service time distributions, including ones with SCV greater than 1. 
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Table 1: Comparison Of Exact And Approximate Means Of Conditional Waiting Time Distributions 
for a 3 server system, sub-state (j=1) for two example service time distributions tabulated in Table 2 
 
 Example 1 

 m = 4, SCV = 0.333
Example 2 

m = 7, SCV = 1.000 
n.j Exact Mean Approx 

Mean 
(13) 

Error 
(Exact-
Approx) 

Exact mean Approx 
Mean 
(13) 

Error 
(Exact-
Approx) 

3.1 1.00000 -0.11110 1.11110 1.00000 -0.33334 1.33334 
4.1 1.00000 0.72223 0.27778 1.00000 0.33334 0.66666 
5.1 1.00000 1.55555 -0.55555 1.00000 1.00000 0.00000 
6.1 2.38182 2.38890 -0.00709 2.04888 1.66666 0.38222 
7.1 3.18177 3.22223 -0.04046 2.32042 2.33334 -0.01292 
8.1 4.03674 4.05555 -0.01881 2.92884 3.00000 -0.07116 
9.1 4.92694 4.88890 0.03804 3.61526 3.66666 -0.05140 

10.1 5.71476 5.72223 -0.00747 4.23080 4.33334 -0.10254 
11.1 6.51544 6.55555 -0.04011 4.93976 5.00000 -0.06024 
12.1 7.40363 7.38890 0.01473 5.62400 5.66666 -0.04266 
13.1 8.23397 8.22223 0.01174 6.30522 6.33334 -0.02812 
14.1 9.03712 9.05555 -0.01843 7.00034 7.00000 0.00034 
15.1 9.89237 9.88890 0.00347 7.67230 7.66666 0.00564 
16.1 10.73186 10.72223 0.00963 8.34134 8.33334 0.00800 
17.1 11.54489 11.55555 -0.01066 9.00756 9.00000 0.00756 
18.1 12.38911 12.38890 0.00021 9.67064 9.66666 0.00398 
19.1 13.23010 13.22223 0.00787 10.33696 10.33334 0.00362 
20.1 14.04940 14.05555 -0.00615 11.00130 11.00000 0.00130 
21.1 14.88733 14.88890 -0.00157 11.66648 11.66666 -0.00018 
22.1 15.72807 15.72223 0.00584 12.33338 12.33334 0.00004 
23.1 16.55236 16.55555 -0.00319 12.99940 13.00000 -0.00060 
24.1 17.38677 17.38890 -0.00213 13.66606 13.66666 -0.00060 
25.1 18.22627 18.22223 0.00404 14.33298 14.33334 -0.00036 
26.1 19.05416 19.05555 -0.00140 14.99966 15.00000 -0.00034 
27.1 19.88682 19.88890 -0.00208 15.66658 15.66666 -0.00008 
28.1 20.72485 20.72223 0.00263 16.33334 16.33334 0.00000 
29.1 21.55518 21.55555 -0.00037 17.00000 17.00000 0.00000 
30.1 22.38715 22.38890 -0.00175 17.66674 17.66666 0.00008 
 
Table 2: Discrete Service Distributions Used In Tables 1 & 3  
 

Service Time 
(slot time units) 

Example 1 
Probability 

Example 2 
Probability 

1 0.47222 0.66667 
2 0.00000 0.20000 
3 0.08333 0.00000 
4 0.44444 0.00000 
5 
6 
7 

 0.00000 
0.00000 
0.13333 

5.2 Estimating the Variance of the Conditional Waiting Time Distribution 

Similar arguments and empirical results are used below to derive and demonstrate a good quality approximation 

for the variance of conditional waiting time distribution . Taking the variance of the terms in (9).  
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and rearranging for var(Tq) gives: 
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c
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Substitution of (12) into (14) then gives our first estimate of var(Tq). Empirical results showed that this equation 

produces reasonably good estimates of the variance for multi-server systems. Table 3 presents results for the 

same two example test distributions (see table 2) used for demonstration in table 1. The third column in each 

case shows the error of the approximation formula, which shows that our variance model is not as accurate as 

the mean model given in section 5.1.  It can be seen that while the error initially reduces as n increases, it then 

tends to become fairly constant as n increases further. The fourth column in each case shows a c-point moving 
average of the errors which we call VCj. This shows a more consistent error value as n increases. 

Table 3: Comparison Of Exact And Approximate Variance Of Conditional Waiting Time Distributions 
for 3 server system, j=1 for two example service time distributions tabulated in Table 2 

 Example 1 - m =4, SCV = 0.333 Example 2 - m=7, SCV = 1.000 
n.j Exact 

Variance 
at n 

Approx 
Variance  

(14) 

Difference
. (Exact-
Approx) 

c moving 
average

VC1 

Exact 
Variance 

at n 

Approx 
Variance 

(14) 

Differenc
e (Exact-
Approx) 

c moving 
average 

VC1 
3.1 0.00000 -1.00063 1.00063 0.00000 -0.88888 0.88888 
4.1 0.00000 -0.07469 0.07469 0.00000 -0.44444 0.44444 
5.1 0.00000 0.15681 -0.15681 0.30617 0.00000 0.00000 0.00000 0.44444
6.1 0.88123 0.38831 0.49291 0.13693 0.11760 0.44444 -0.32684 0.03920
7.1 1.63521 0.61975 1.01546 0.45052 0.51500 0.88888 -0.37388 -0.23357
8.1 1.17666 0.85125 0.32541 0.61126 0.96852 1.33332 -0.36480 -0.35517
9.1 1.35418 1.08275 0.27143 0.53743 1.41312 1.77776 -0.36464 -0.36777
10.1 1.58818 1.31419 0.27399 0.29028 2.17160 2.22224 -0.05064 -0.26003
11.1 1.97089 1.54569 0.42520 0.32354 2.70464 2.66668 0.03796 -0.12577
12.1 2.15925 1.77719 0.38206 0.36042 3.23560 3.11112 0.12448 0.03727
131. 2.37296 2.00863 0.36434 0.39053 3.74688 3.55556 0.19132 0.11792
14.1 2.60579 2.24013 0.36566 0.37069 4.15600 4.00000 0.15600 0.15727
15.1 2.82197 2.47163 0.35034 0.36011 4.57056 4.44444 0.12612 0.15781
16.1 3.06594 2.70313 0.36282 0.35961 4.97256 4.88888 0.08368 0.12193
17.1 3.32103 2.93456 0.38647 0.36654 5.39168 5.33332 0.05836 0.08939
18.1 3.52189 3.16606 0.35583 0.36837 5.82668 5.77776 0.04892 0.06365
19.1 3.75499 3.39756 0.35743 0.36657 6.25760 6.22224 0.03536 0.04755
20.1 4.00991 3.62900 0.38091 0.36472 6.70204 6.66668 0.03536 0.03988
21.1 4.22283 3.86050 0.36233 0.36689 7.15388 7.11112 0.04276 0.03783
22.1 4.45009 4.09200 0.35809 0.36711 7.60228 7.55556 0.04672 0.04161
23.1 4.70028 4.32344 0.37684 0.36575 8.05212 8.00000 0.05212 0.04720
24.1 4.92051 4.55494 0.36558 0.36684 8.50016 8.44444 0.05572 0.05152
25.1 5.14549 4.78644 0.35905 0.36716 8.94620 8.88888 0.05732 0.05505
26.1 5.39123 5.01794 0.37329 0.36597 9.39168 9.33332 0.05836 0.05713
27.1 5.61704 5.24938 0.36766 0.36667 9.83548 9.77776 0.05772 0.05780
28.1 5.84134 5.48088 0.36047 0.36714 10.27916 10.22224 0.05692 0.05767
29.1 6.08294 5.71238 0.37056 0.36623 10.72316 10.66668 0.05648 0.05704
30.1 6.31245 5.94381 0.36864 0.36656 11.16696 11.11112 0.05584 0.05641
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Because equation (14) tends to provide a biased estimate of the required variance, as indicated by the moving 

average terms, the full method proposed for estimating the variance for largish n is: 

 

 jq VC
c

RcScnT +
−+−

= 2

^ )var()1()var()()(var  (15) 

where var(R) is estimated using (12) and the correction term VCj is obtained by running the full waiting time 

algorithm for n up to some limit, say n ≤ Q. We then calculate an estimate of the error term VCj , as in table 3, 

which is then used in equation (15) for n>Q.  

As equation (15) incorporates this empirically derived constant VCj which depends on the value of Q chosen, 

the fourth column for each example in table 3 can be interpreted as showing the values of the variance 
corrections VCj that would result from setting Q at different n. Clearly these stabilise fairly quickly and are 

typical of other results obtained for other conditional waiting times for a variety of systems, see Wall [21]. 

 

6. Evaluation of the Approximation Techniques 

6.1 Accuracy 

Evidence has been presented in the previous sections to provide some justification for equations (13) and (15) 

as methods for estimating the mean and variance of conditional waiting times for largish values of n. In this 

section these formulae are incorporated into the overall approach to approximate the distribution of virtual 

waiting time. 

The results reported here are a summary of more extensive results reported in Wall [21]. In total four different 

methods of approximation were considered. They were numbered as follows: 

 Method 1 Trapezium Discretization : Uncorrected Variance 

 Method 2 Trapezium Discretization : Corrected Variance 

 Method 3 Parabolic Discretization   : Uncorrected Variance 

 Method 4 Parabolic Discretization   : Corrected Variance 

For each of these, 18 different test cases were investigated using four different service time distributions, c=2, 3 

and 4, ρ ranging from 0.3 to 0.9 and a variety of times (t) at which the virtual waiting time distribution was 

calculated. The test cases were chosen to produce waiting time distributions that would challenge the waiting 

time approximation. For example the test cases generally have high congestion levels, which ensures that 

behaviour for n>Q is important. 

For each of the 18 test cases the four different approximation methods were assessed at 6 different levels of Q 

stepping up from 2c + 5 to 2c+ 30. This resulted in a total of 432 distribution approximations to be compared 

for accuracy with exact waiting time distributions, see Wall [21] for detailed numerical results. 
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Graphical comparisons showed the results were all to a high standard, such that differences between 

approximate and exact distributions could not be discerned visually. A more rigorous assessment of the 

numerical accuracy was also performed by comparing both the first four moments of the virtual waiting time 

distributions and also various percentiles of the distributions (10%, 50%, 70%, 80%, 90%, 95%, 99% and 

99.9%). A summary of the results is as follows: 

1. For the large majority of the comparisons the accuracy of the approximation techniques was good to 6 or 

more significant figures. 

2. As would be expected the accuracy of all four methods (Methods 1, 2, 3, 4 as above) increases as Q 

increases. 

3. In virtually all cases the approximation is accurate to at least 3 significant figures for all the moments and 

percentiles for even the lowest level of Q. The only minor exceptions to this were for one test case in its 

highest moments and highest percentiles, which were only accurate to 2 significant figures at the two 

lowest levels of Q investigated. 

4. The parabolic discretization (methods 3 & 4) was generally superior to trapezium discretization (methods 1 

& 2), although not much. 

5. In general there was little to choose between the Corrected Variance methods (methods 2 & 4) and the 

Uncorrected Variance methods (methods 1 & 3). 

We conclude that for practical purposes, the trapezium discretization with uncorrected variance is likely to be 

more than adequate if Q = 2c+10 is used. At this level of accuracy, the higher (third and fourth) moments and 

higher (99% and 99.9%) percentiles are all within 0.1% of the exact discrete distribution values. The lower 

moments and percentiles are considerably more accurate than this. 

We also observe that there is no evidence that the technique deteriorated as the number of servers increased, and 

therefore postulate that the technique will continue to achieve high accuracy levels for more than 4 servers. 

Obviously, increases in approximation accuracy can be achieved by replacing the trapezium method by the 

parabolic method and by increasing Q. However, this will be at the expense of runtimes as discussed in the next 

section. 

6.2 Runtime Experience 

The total runtime associated with the waiting time model first requires the queue length behaviour to be 

obtained which is then converted into virtual waiting time behaviour by the methods described in this paper. We 

quote here for one typical example from the set of accuracy comparisons discussed in the previous section. It 

had 3 servers and the test consisted of 200 discrete time iterations. That is, the number in the system distribution 

and the waiting time distribution was calculated at each of the 200 discrete points in time. The time to calculate 

the distribution of number of customers in the system alone was 25 seconds. The additional time to provide the 

exact waiting time distribution to the same accuracy was 76.8 minutes. 
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The benefit in runtime of using the approximate method was considerable. The savings are most dependent on 

the value of Q, which is the level of n above which the approximation technique is applied. It is clearly 

beneficial for runtime purposes to keep Q as low as possible, but there is a trade off in decreasing accuracy. In 

this example, setting Q at 16 reduced the 76.8 minutes to about 6 seconds whilst very good accuracy was 

maintained, setting Q at 11 took under two seconds and still provided results that would be acceptable for many 

practical purposes. 

The difference in runtimes between the different Corrected and Uncorrected Variance approximation methods 

was not detectable in this example. The parabolic methods (3 & 4) were slightly slower than the trapezoidal 

methods (1 & 2) by 0.4 seconds. 

These results were obtained on an elderly Pentium 75MHz PC, run as a single task. A modern entry-level 

machine would be at least 50 times faster than the timings indicated here, but the relative values would persist. 

However, the runtimes indicated here would be typical on a modern PC if the queueing system contained a 

higher number of servers and/or higher arrival intensity of the queue 

Clearly the time taken to run the exact waiting time model massively inflates the time required to run the 

original discrete time model for queue length behaviour alone by a factor of about 185. However the methods 

devised to approximate the waiting time distribution lead to enormous savings. In this example the 

approximation methods reduce the inflation factor of providing waiting time results to 1.2 when Q=16 whilst 

maintaining a very high degree of accuracy. 

7. Some Example Results 

In this section we demonstrate some of the capabilities of the discrete time modelling (DTM) approach by 

applying the waiting time model derived in this paper to investigate the extent to which the Simple Stationary 

Approximation (SSA), the Pointwise Stationary Approximation (PSA) and modified offered load (MOL) based 

methods can be used to provide useful bounds or approximations on performance measures for queues with 

nonstationary arrivals. As noted in the introduction, SSA uses steady-state results to approximate time-

dependent behaviour, based on an overall average arrival rate. PSA uses steady-state values based on the 

instantaneous arrival rate. MOL based methods incorporate a time lag by estimating an effective arrival rate at 

each time point, which is then used in the PSA model. 

The examples presented here reinforce the investigations of Green et al. [11] and Green and Kolesar [9] who 

used mainly empirical results for Markovian queueing systems with sinusoidal arrival rates to indicate 

conditions under which the SSA and PSA could be used to provide reasonably accurate bounds on behaviour. 

Our examples also demonstrate the types of situations in which the time-dependent approach presented in this 

paper would be much better.  

Green et al. [11] showed that the SSA provided a lower bound for the usual measures of performance - 

expected delay, expected number in the system, probability of delay, etc. However they also showed that for 

systems with relatively small variations in arrival rate, e.g. a 10% relative amplitude, the SSA could lead to 

quite serious inaccuracies. They also showed that a PSA, when it existed, would provide an upper bound for the 
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same performance measures. Green and Kolesar [9] and Green et al. [10] demonstrated a broad range of 

systems for which the PSA produces reasonably accurate estimates of performance measures as well as 

identifying circumstances in which the PSA is not a good approximation. 

The example we use here is a queueing system which operates over a cycle that consists of 4 quarters, each of 

duration of 60 units of time. So for example if 1 unit = 1 minute (case 1), the duration of the cycle is 4 hours 

which might represent a morning's activity for an office. Alternatively if 1 unit = 6 minutes (case 2), the cycle 

would be 24 hours long and the activity might be a 24 hour per day service. The arrival rates during each 

quarter are 0.5, 0.8 , 0.95 and 0.8 per unit time respectively, corresponding to hourly arrival rates of 30, 48, 57 

and 48 in case 1 and hourly arrival rates of 5, 8, 9.5 and 8 in case 2. The discrete service time distribution is 

given in table 4, giving rise to a mean service time of 3 units, i.e. 3 minutes in case 1 and 18 minutes in case 2. 

There are 3 servers, so the service capacity is 60 per hour in case 1 and 10 per hour in case 2. 

Table 4: Discrete Service Time Distribution Used In Cases 1 & 2 
 
Service Time 
(units) 

Probability 

1.0 0.05 
2.0 0.3 
3.0 0.35 
4.0 0.2 
5.0 0.1 

 

Figure 4 shows the time-dependent behaviour of virtual waiting time for this system over four cycles (starting 

empty), obtained using the DTM approach. The mean and 50% and 90% percentiles of virtual waiting time are 

plotted and show the expected cyclic behaviour. In particular the first cycle shows the effects of the starting 

conditions whereas later cycles are more or less at cyclic steady-state; the peaks and troughs within each cycle 

coincide with the ends of the four quarters and the mean exceeds the 50% percentile indicating the typical 

skewed shape of the waiting time distribution. 
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Figure 4: Waiting Time Statistics Derived From Waiting Time Distribution Over 4 Cycles 
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The SSA, PSA and MOL approaches are designed primarily to model systems at cyclic steady-state and so we 

consider the results for the fourth of the cycles. In figures 5 and 6 predictions of mean virtual waiting time and 

the 90% percentile of virtual waiting time using the DTM, SSA, PSA and MOL approaches are compared. Note 

that in this example, whichever MOL based method is used, the effect is only to cause a slight ramping instead 

of the step changes in congestion levels implied by the PSA model. However the ramps are very steep, are 

barely discernable from the PSA lines in figures 5 and 6, and are therefore not overlaid on figures 5 and 6. 

 

Figure 5: Comparison Of Mean Waiting Time Derived By The Different Models For 4th Cycle 
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Figure 6: Comparison Of 90% Percentile of Waiting Time Distribution Derived By The Different Models For 
4th Cycle 
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In both figures the SSA just predicts one fixed level throughout the cycle. For that section of the cycle for which 

the average arrival rate exceeds the actual arrival rate (i.e. the first quarter only) the SSA exceeds the PSA (& 

MOL), for the other three quarters the PSA exceeds the SSA. Furthermore the non-linear relationship of 

measures of congestion to traffic intensity means that the overall mean delay according to the PSA, see table 5, 

will be greater, in this case considerably greater, than that according to the SSA. Table 5 shows this relationship 

clearly for overall mean queue length and also in terms of the overall 90% percentiles of virtual waiting time 

(obtained by weighting the waiting times by the four different arrival rates). 

Table 5 Overall Performance Measures For Fourth Cycle (Weighted by Arrival Rate) 
 
 SSA DTM PSA 
Mean Waiting Time 1.444103 2.456261 4.176080 
90% Percentile 4.217900 6.460086 10.43957 

 

When the exact overall values are calculated from the DTM model they can be seen in table 5 to be bounded by 

the SSA and PSA results, as suggested by Green and Kolesar [9]. However this is also clearly a case where the 

PSA does not provide a good approximation. The main reasons for this can be inferred from figure 5 by 

comparing the accurate DTM result with the PSA result and can be related to some of the conditions for poor 

accuracy identified by Green and Kolesar.  

In the first two quarters the traffic intensities are 0.5 and 0.8 respectively and by the end of each quarter the 

DTM results indicate that steady-state has almost been achieved. Thus the PSA is quite good at the end of these 

two quarters. Furthermore its underestimation early in the first quarter will tend to cancel out its overestimation 

early in the second quarter.  
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In quarter 3 where the traffic intensity is 0.95 steady-state is nowhere near achieved by the end of the quarter, 

causing the PSA to be a serious overestimate, even at the end of the quarter. In the fourth quarter the traffic 

intensity is again 0.8, and so the system moves more quickly towards its steady-state behaviour. However, 

because of the very high level of congestion at the start of this period the PSA provides an underestimate 

throughout quarter 4, which again tends to cancel out the overestimate in the previous period. However the 

overestimate in quarter 3 is clearly substantially greater than the underestimate in period 4, which is the main 

reason why the overall PSA value in table 5 is so much bigger than the exact DTM value.  

Important factors affecting the accuracy of the PSA are the rates at which systems move towards steady-state in 

comparison with the rate at which the arrival rate changes, and the tendency for overestimates to cancel 

underestimates. As Green and Kolesar [9] conclude, these factors are improved by increased cycle length, 

increased service rate and reduced maximum traffic intensity. However as demonstrated by this example there 

are clearly important realistic examples where the bounding approach using SSA and PSA will lead to very 

crude answers, and where the MOL approach would not provide a significant improvement. 

Moving away from overall measures of congestion, we note in figures 4 to 6 that the DTM approach also shows 

behaviour over time, and hence makes it possible to predict times at which congestion is most likely and hence 

to consider practical measures, such as shift patterns, to deal with it. Clearly the SSA makes no pretence to 

model time-dependent behaviour. However, the graphs associated with the PSA might tempt the analyst to think 

that they do, and to assume that the SSA and PSA might again provide bounds. Green and Kolesar [9] are 

careful to state that the bounds only apply to overall performance measures, and figures 4 and 5 clearly provide 

examples to reinforce the point. 

Two further strengths of the DTM approach are its ability to model the initial transient behaviour of the system, 

for example during the first cycle; and behaviour when traffic intensity is greater than 1. For instance in a real 

problem such as that outlined as case 1 above, only the first cycle would be of interest. If, in addition, the arrival 

rate during the third hour is now 66, i.e. a traffic intensity of 1.1, the DTM approach can still be used to model 

the behaviour, with the results as shown in figure 7. In contrast steady-state based methods such as the SSA, 

PSA and MOL are unable to provide any results. 
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Figure 7: Performance Measures For First Cycle Where Traffic Intensity Exceeds 1 For 3rd Quarter 
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8. Conclusions 

An new exact model has been obtained for the time-dependent behaviour of virtual waiting time in discrete 

queueing systems of the form M(t)/G/c. However, in its full form, this model seriously inflates the computer 

time required to produce waiting time results over the time required to produce queue length results. 

By introducing the Gamma family of distributions to approximate the conditional distribution of waiting time a 

highly accurate approximation has been developed that allows discrete time models for queue length to be 

extended to give virtual waiting time behaviour for very little extra computational effort. 

Results presented demonstrate that the DTM approach has clear advantages compared with the SSA, PSA and 

MOL approaches in respect of time average performance measures. The advantages are even greater where 

time-dependent performance is important and where traffic intensities exceed one. 

The accuracy of discrete time models of waiting time behaviour when applied to continuous time queues is yet 

to be investigated thoroughly, although the high accuracy of the DTM approach in estimating queue length 

behaviour gives reason for optimism. 
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