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Abstract

We deal with n-player AT stochastic games, where AT stands for additive transitions. These are stochastic games in
which the transition probability vector ps(as), for action combination as ¼ ða1

s ; . . . ; an
s Þ in state s, can be decomposed into

player-dependent components as:
0377-2

doi:10.

* Co
E-m
psðasÞ ¼
Xn

i¼1

ki
s � pi

sðai
sÞ;
where ki
s 2 ½0; 1� for all players i, and

Pn
i¼1k

i
s ¼ 1, and where pi

sðai
sÞ is a probability distribution on the finite set of states S.

Here, ki
s reflects the influence of player i on the transitions in state s. As such the class of AT stochastic games covers several

other well-known classes such as perfect information stochastic games, stochastic games with switching control, and so-
called ARAT stochastic games.

With respect to the average reward it is not clear whether e-equilibria always exist in general n-player stochastic games.
For the class of n-player AT games we establish the existence of 0-equilibria, although the strategies involved may be
history dependent. In addition we have the following results for the two-player case: (1) for zero-sum AT games, stationary
0-optimal strategies always exist; (2) for two-player general-sum AT absorbing games, there always exist stationary e-equi-
libria, for all e > 0.

Several examples are provided to clarify the issues and to demonstrate the sharpness of the results.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Non-cooperative games; Multi-stage; Nash-equilibrium
1. Introduction

An n-player stochastic game C can be described by (1) a set of players N = {1, . . . ,n}, (2) a nonempty and
finite set of states S, (3) for each state s, a nonempty and finite set of actions Ai

s for each player i, (4) for each
state s and each joint action as 2 �i2N Ai

s, a payoff ri
sðasÞ 2 R to each player i, (5) for each state s and each joint

action as 2 �i2N Ai
s, a transition probability vector ps(as) = (ps(tjas))t2S.
217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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The game is to be played at stages in N in the following way. The play starts at stage 1 in an initial state, say
in state s1 2 S, where, simultaneously and independently, each player i is to choose an action ai

s1 2 Ai
s1 . These

choices induce an immediate payoff ri
s1ððaj

s1Þj2N Þ to each player i. Next, the play moves to a new state according
to the probability vector ps1ððaj

s1Þj2NÞ, say to state s2. At stage 2 a new action ai
s2 2 Ai

s2 is to be chosen by each
player i in state s2. Then player i receives payoff ri

s2ððaj
s2Þj2NÞ and the play moves to some state s3 according to

the probability vector ps2ððaj
s2Þj2N Þ, and so on.

A mixed action xi
s for player i in state s is a probability distribution on Ai

s. The set of mixed actions for
player i in state s is denoted by X i

s. A strategy pi for player i is a decision rule that prescribes a mixed action
pi

sðhÞ 2 X i
s in the present state s depending on the past history h of the play. We use the notation Pi for the set

of history dependent strategies for player i. A strategy pi for player i is called pure if pi prescribes, for each
state and any past history, one specific action to be played with probability 1.

If the mixed actions prescribed by a strategy only depend on the present stage and state then the strategy is
called Markov, while if they only depend on the present state then the strategy is called stationary. Thus, for
player i, the Markov strategy space is F i :¼ �k2N;s2SX i

s, while the stationary strategy space is X i :¼ �s2SX i
s. We

will use the notations fi for Markov strategies and xi for stationary strategies for player i, while f i
s ðkÞ and xi

s

refer to the corresponding mixed actions for player i in state s at stage k. Note that the set of pure stationary
strategies for player i is Ai ¼ �s2SAi

s.
We will often deal with quantities which depend on the player and the state. If zi

s 2 R for all i 2 N, s 2 S,
then zi denotes the column-vector ðzi

sÞs2S, zs denotes the row-vector ðzi
sÞi2N , while z denotes the matrix

ðzi
sÞs2S;i2N . Similarly, if Zi

s are sets for all i 2 N, s 2 S, then let Zi :¼ �s2SZi
s, Zs :¼ �i2N Zi

s, Z :¼ �s2S;i2N Zi
s.

A joint strategy p = (pi)i2N with an initial state s 2 S determines a stochastic process on the payoffs. The
sequences of payoffs are evaluated by the average reward and by the b-discounted reward, b 2 (0,1), which
are given for player i by
ci
sðpÞ :¼ lim inf

K!1
Esp

1

K

XK

k¼1

Ri
k

 !
¼ lim inf

K!1

1

K

XK

k¼1

EspðRi
kÞ;

ci
bsðpÞ :¼ Esp ð1� bÞ

X1
k¼1

bk�1Ri
k

 !
;

where Ri
k is the random variable for the payoff for player i at stage k, and where Esp stands for expectation with

respect to the initial state s and the joint strategy p.
A joint stationary strategy x 2 X determines a Markov-chain with transition matrix P(x) on S, where entry

(s, t) of P(x) gives the transition probability ps(tjxs) for moving from state s to state t when xs is played in state
s.

With respect to this Markov-chain, we can speak of transient and recurrent states. A state is called recur-
rent if, when starting there, it will be visited infinitely often with probability 1; otherwise the state is called
transient. We can group the recurrent states into minimal closed sets, into so-called ergodic sets. An ergodic
set is a collection E of recurrent states with the property that, when starting in one of the states in E, all states
in E will be visited and the play will remain in E forever with probability 1. Let
QðxÞ :¼ lim
K!1

1

K

XK

k¼1

P kðxÞ; ð1Þ
the limit is known to exist (cf. Doob (1953, Theorem 2.1, p. 175)). Entry (s, t) of the stochastic matrix Q(x),
denoted by qs(tjx), is the expected frequency of stages for which the process is in state t when starting in s.
The matrix Q(x) has the well known properties (cf. Doob, 1953) that
QðxÞ ¼ QðxÞP ðxÞ ¼ PðxÞQðxÞ ¼ Q2ðxÞ: ð2Þ
For xs 2 Xs let ri
sðxsÞ denote the expected immediate payoff for player i in state s if the joint mixed action xs is

played. By definition, for the average reward we have
cðxÞ ¼ QðxÞrðxÞ; ð3Þ
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hence by (2) we also obtain
cðxÞ ¼ P ðxÞcðxÞ; ð4Þ
cðxÞ ¼ QðxÞrðxÞ ¼ Q2ðxÞrðxÞ ¼ QðxÞcðxÞ: ð5Þ
For i 2 N, let N�i = N � {i} denote the set of opponents of player i, and let
X�i :¼ �j2N�i X j; F �i :¼ �j2N�i F j; P�i :¼ �j2N�iPj
denote the sets of (different types of) joint strategies of the opponents of player i.
It is well known (cf. Hordijk et al. (1983)) that, against a fixed joint stationary strategy x�i 2 X�i, there

always exists a pure stationary best reply ai 2 Ai of player i, i.e.
ciðai; x�iÞP ciðpi; x�iÞ 8pi 2 Pi: ð6Þ

For i 2 N, s 2 S, b 2 (0,1), let
vi
s :¼ inf

p�i2P�i
sup
pi2Pi

ci
sðpi; p�iÞ

vi
bs :¼ inf

p�i2P�i
sup
pi2Pi

ci
bsðpi; p�iÞ:
Here vi
s and vi

bs are called the average and the b-discounted minmax values for player i in state s, respectively.
Intuitively, these are the highest average and b-discounted rewards that player i can defend against any strat-
egies of the other players if the initial state is s. Neyman (1986) showed that, for any i 2 N and b 2 (0,1), there
exists an x�i 2 X�i satisfying
ci
bðpi; x�iÞ 6 vi

b 8pi 2 Pi ð7Þ
and
vi ¼ lim
b"1

vi
b: ð8Þ
It is clear from the definition of vi
s and (4) that
vi
s ¼ min

x�i
s 2X�i

s

max
xi

s2X i
s

X
t2S

psðtjxi
s; x
�i
s Þvi

t: ð9Þ
A joint strategy p = (pi)i2N is called an e-equilibrium, e P 0, with respect to the average reward, if
ci
sðri; p�iÞ 6 ci

sðpÞ þ e 8ri 2 Pi; 8i 2 N ; 8s 2 S;
which means that for every initial state s 2 S, no player can gain more than e by a unilateral deviation. Equiv-
alently, strategy pi is an e-best reply for each player i against p�i. The definition of b-discounted equilibria is
similar. For simplicity, 0-equilibria are also called equilibria.

It is clear from the definitions of the minmax values v and vb that if p is an e-equilibrium then ci(p) P vi � e
for each player i; while if p is a b-discounted e-equilibrium then ci

bðpÞP vi
b � e for each player i.

Fink (1964) and Takahashi (1964) showed that b-discounted equilibria always exist in terms of stationary
strategies. The structure of average equilibria is however substantially more complex and the question of exis-
tence of average e-equilibria, for all e > 0, has not yet been answered. The famous game introduced by Gillette
(1957), the Big Match, which was solved by Blackwell and Ferguson (1968), and the game in Sorin (1986) dem-
onstrate that, in general, average 0-equilibria do not exist and history dependent strategies are indispensable
for establishing average e-equilibria. The general existence of average e-equilibria for two-player stochastic
games was finally shown by Vieille (2000a,b).

In the development of stochastic games, a special role has been played by the class of zero-sum stochastic
games, which are two-player stochastic games for which r2

s ðasÞ ¼ �r1
s ðasÞ, for each state s and for each joint

action as. In these games the two players have completely opposite interests. Mertens and Neyman (1981)
showed that for such games v2 = �v1. Here v :¼ v1 is called the value of the game. They also showed that,
if instead of using liminf one uses limsup in the definition of the average reward, one would find precisely
the same value v. Thus, in a zero-sum game, player 1 wants to maximize his own reward, while at the same
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time player 2 tries to minimize player 1’s reward. For simplicity, let c = c1. A strategy p1 for player 1 is called e-
optimal if c(p1,p2) P v � e for any strategy p2 of player 2; while a strategy p2 for player 2 is called e-optimal if
c(p1,p2) 6 v + e for any strategy p1 of player 1. Mertens and Neyman (1981) proved that both players have e-
optimal strategies for any e > 0; even though history dependent strategies are necessary for e-optimality.

From now on when we speak of rewards, minmax values, or equilibria, we will always have the average
reward in mind, unless mentioned otherwise.

A stochastic game is said to have an additive transition structure if, for any state s 2 S and any joint action
as 2 As, the transition probabilities can be additively decomposed as
psðasÞ ¼
X
i2N

ki
sp

i
sðai

sÞ;
where ki
s 2 ½0; 1� for all i 2 N,

P
i2Nki

s ¼ 1, and pi
sðai

sÞ is a probability distribution on S. Here, the component
pi

sðai
sÞ only depends on the action ai

s of player i in state s, so ki
s reflects the influence of player i on the tran-

sitions in state s.
Stochastic games with an additive transition structure shall be called AT stochastic games for short.
The class of AT stochastic games includes several important classes, such as stochastic games with switch-

ing control (namely when in each state s, one player controls the transitions: ki
s ¼ 1 for some i 2 N), or sto-

chastic games with ARAT structure (namely when besides having additive transitions, the payoffs are also
additively decomposable). Note that the class of switching control games further contains the well-known clas-
ses of single controller stochastic games (when there is a player i for whom ki

s ¼ 1 for all s 2 S) and perfect
information stochastic games (when in any state s 2 S, there is at most one player who has more than one
action).

In this paper we generalize the results achieved for these subclasses by Liggett and Lippmann (1969),
Filar (1981), Raghavan et al. (1985), Thuijsman and Raghavan (1997), and Evangelista et al. (1996), by show-
ing, using a different approach, for AT stochastic games: (i) the existence of 0-equilibria in terms of history
dependent strategies; (ii) in zero-sum AT games, the existence of stationary 0-optimal strategies; (iii) in
two-player absorbing AT games, the existence of stationary e-equilibria for all e > 0. An absorbing game is
a stochastic game with the property that all states but one are absorbing, i.e. once play gets there, it will stay
there forever.

We remark that the results (ii) and (iii) are based exclusively on stationary strategies. Therefore, these solu-
tions are subgame perfect. We can not strengthen result (i) to the existence of subgame perfect e-equilibria. At
this moment hardly anything is known about existence of subgame perfect equilibria for stochastic games. We
emphasize, once again, that the general existence of e-equilibria has only been shown for two-player stochastic
games using the idea of threats, which are not necessarily subgame perfect. Our main result (i) solves the
fundamental existence problem for the particular class of n-player AT stochastic games.

The outline of the paper is as follows: In Section 2 we provide some preliminary results; in Section 3 we
exhibit result (ii) on zero-sum AT stochastic games; Section 4 is devoted to result (iii) on two-player AT
absorbing games; and in Section 5 we prove our main result (i) on is on general n-player AT stochastic games.
We provide several examples to illustrate the issues and to demonstrate the sharpness of the results.

2. Preliminaries

The following lemma exhibits an important relationship between the average and discounted rewards for
stationary strategies.

Lemma 1. Let x 2 X. Suppose that E � S is an ergodic set with respect to x. Let s 2 E and b 2 (0,1). Then
min
t2E

cbtðxÞ 6 csðxÞ 6 max
t2E

cbtðxÞ:
Proof. By the definition of the b-discounted reward cb, we have
cbðxÞ ¼ ð1� bÞrðxÞ þ bP ðxÞcbðxÞ:
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In view of (2), multiplying this equality by Q(x) yields
QðxÞcbðxÞ ¼ QðxÞrðxÞ;
hence by (3)
cðxÞ ¼ QðxÞcbðxÞ:
Since s 2 E, the closedness of E for x implies that if qs(tjx) > 0 then t 2 E. Therefore,
csðxÞ ¼
X
t2E

qsðtjxÞcbtðxÞ:
Now from
qsðtjxÞP 0 8t 2 E; and
X
t2E

qsðtjxÞ ¼ 1;
the result immediately follows. h

Lemma 2. Let /s 2 R for all s 2 S, and / :¼ (/s)s2S. Let x 2 X be such that
P ðxÞ/ P /:
Suppose E is an ergodic set with respect to x. Then we necessarily have /s = /t for all s, t 2 E. Moreover, if it also
holds that cs(x) P /s for all recurrent states s then c(x) P /.

Proof. Let E :¼ fs 2 Ej/s ¼ maxt2E/tg and s 2 E. By the closedness of E for x we obtain
/s 6

X
t2S

psðtjxsÞ/t ¼
X
t2E

psðtjxsÞ/t 6 /s:
The above inequalities imply that from state s, transition can only occur to states in E with respect to x. So, the
set E is a closed set of states for x. Since E is an ergodic set for x, we must have E ¼ E. Therefore /s = /t for all
s, t 2 E.

Assume further that cs(x) P /s for all recurrent states s. Then
/ 6 QðxÞ/ 6 QðxÞcðxÞ ¼ cðxÞ;

where the first inequality follows from / 6 P(x)/, the second inequality from the fact that entry (t, s) of Q(x) is
only non-zero for recurrent states s, and the final equality from (5). h

The next technical lemma on the transition structure of AT games shall be used in the proofs.

Lemma 3. Let G be an arbitrary two-player AT game. Let s 2 S and S* � S. Suppose that, in state s, for every
action a1

s 2 A1
s there exists an action a2

s 2 A2
s such that moving to S* has probability 1: psðS�ja1

s ; a
2
s Þ ¼ 1. Then for

any a2
s we have either psðS�ja1

s ; a
2
s Þ ¼ 1 for all a1

s or psðS�ja1
s ; a

2
s Þ < 1 for all a1

s .

Proof. Suppose by way of contradiction that psðS�ja1
s ; a

2
s Þ ¼ 1 and psðS�jb1

s ; a
2
s Þ < 1. Clearly, we must have

k1
s > 0 (or equivalently k2

s < 1Þ, which implies p1
s ðS�ja1

s Þ ¼ 1. If k1
s < 1 (equivalently k2

s > 0Þ then
p2

s ðS�ja2
s Þ ¼ 1 and therefore p1

s ðS�jb1
s Þ < 1; while k1

s ¼ 1 also yields p1
s ðS�jb1

s Þ < 1. Hence p1
s ðS�jb1

s Þ < 1, which
in combination with k1

s > 0 yields psðS�jb1
s ; b

2
s Þ < 1 for all b2

s , contradicting the assumption of the lemma. h

Lemma 4. Let ai 2 R for each player i and let e1, e2, e3, . . . be a monotone decreasing sequence of reals converging

to 0. For each m let xm be a joint stationary strategy. Assume that for all strategies xm the carrier is the same, i.e.

the set of actions which have positive weight for x. Suppose that E is an ergodic set with respect to xm and

ci
sðxmÞP ai � em for all s 2 E and for each player i. Then there exists a pure joint strategy p such that p only

uses actions within the carrier of xm and such that ci
sðpÞP ai for all s 2 E and for each player i. Moreover, at

any point of time, after any history h, the continuation strategy pjh also yields at least ai for any present state

s 2 E and for each player i.
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Proof. We only show the statement for player i. For each m 2 N, by Lemma 6 in Dutta (1995), there exists a
joint pure strategy pm which only uses actions in the carrier of xm and for which jci

sðpmÞ � ci
sðxmÞj 6 1

2
em for all

s 2 E and for each player i. Let Km 2 N be such that
1

K

XK

k¼1

EspmðRi
kÞP ci

sðpmÞ �
1

2
em 8K P Km; 8s 2 E; 8i; ð10Þ
where Ri
k denotes the random variable for the payoff to player i at stage k. Then
1

K

XK

k¼1

EspmðRi
kÞP ci

sðxmÞ � em P ai � 2em 8K P Km; 8s 2 E; 8i: ð11Þ
Define
ri :¼ min ai � 2e1; min
as2As;s2S

ri
sðasÞ

� �
:

Given Km, m 2 N, choose an arbitrary K1 P K1 and choose Km P Km, m P 2, inductively so that
Pm
k¼1Kk � ðai � 2ekÞ þ Kmþ1 � riPm

k¼1Kk þ Kmþ1

P ai � 2em�1 8m P 2; 8i: ð12Þ
By the definition of ri, inequality (12) implies
Pm
k¼1Kk � ðai � 2ekÞPm

k¼1Kk
P ai � 2em�1 8m P 2; 8i: ð13Þ
Now we define a pure joint strategy p as playing p1 for the first block of K1 stages, p2 for the next block of K2

stages, etcetera. We only need to show that ci
sðpÞP ai for all s 2 E and for any player i. Since, at each point in

time, the strategy only uses the history of the current block, all continuation strategies pjh will also yield at
least ai. Suppose we are at the Tth stage of block m + 1. Then, in any block k, where k 6 m, player i has
received a total expected payoff of at least Kk Æ (ai � 2ek). In block m + 1, if T < Kmþ1, then player i received
at least T Æ ri. If, on the other hand, T P Kmþ1, then player i received at least T Æ (ai � 2em+1). So player i’s
expected average payoff up to the Tth stage of block m + 1 is in the former case at least
Pm

k¼1Kk � ðai � 2ekÞ þ T � riPm
k¼1Kk þ T

P
Pm

k¼1Kk � ðai � 2ekÞ þ Kmþ1 � riPm
k¼1Kk þ Kmþ1

P ai � 2em�1;
while in the latter case it is at least
Pm
k¼1Kk � ðai � 2ekÞ þ T � ðai � 2emþ1ÞPm

k¼1Kk þ T
P
Pm

k¼1Kk � ðai � 2ekÞPm
k¼1Kk

P ai � 2em�1:
So player i’s expected average payoff up to any stage of block m + 1 is at least ai � 2em�1, which implies
ci

sðpÞP ai for all s 2 E and for any player i. h
3. Zero-sum AT games

Take an arbitrary zero-sum AT game and let v = v1 = �v2 denote the value. It follows from Eq. (9) and
from the additive transition structure of the game that
vs ¼ min
x2

s2X 2
s

max
x1

s2X 1
s

X
t2S

psðtjx1
s ; x

2
s Þvt ¼ k1

s �max
a1

s2A1
s

X
t2S

p1
s ðtja1

s Þvt þ k2
s � min

a2
s2A2

s

X
t2S

p2
s ðtja2

s Þvt:
If k1
s > 0, then let A1

s be the set of actions of player 1 in state s that maximize the expression
P

t2Sp1
s ðtj�Þvt, while

if k1
s ¼ 0 (meaning that in state s player 1 has no influence on the transitions), then we define A1

s ¼ A1
s .

Consequently, A1
s is the set of those actions a1

s for which
vs 6

X
t2S

psðtja1
s ; x

2
s Þvt 8x2

s 2 X 2
s :
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Let A2
s be defined similarly, where in state s player 2 is minimizing the expression

P
t2Sp2

s ðtj�Þvt. Therefore, A2
s is

the set of those actions a2
s for which
vs P
X
t2S

psðtjx1
s ; a

2
s Þvt 8x1

s 2 X 1
s :
The main idea we shall use in the analysis is that of the restricted game �G derived from G by restricting the
players to actions in A1

s and A2
s in all states s. Then G is an AT stochastic game as well. Obviously, in G mixed

actions only use actions that are still available. Thus we define X 1
s and X 2

s as the sets of mixed actions on A1
s

and A2
s respectively. We shall denote the value of G by �v. In a natural way, X 1

s and X 2
s can be seen as subsets of

X 1
s and X 2

s respectively. Observe now that if x1
s 2 X 1

s then
x1
s 2 X 1

s () vs 6

X
t2S

psðtjx1
s ; x

2
s Þvt 8x2

s 2 X 2
s

and if x1
s 2 X 1

s and x2
s 2 X 2

s then
x2
s 2 X 2

s () vs ¼
X
t2S

psðtjx1
s ; x

2
s Þvt: ð14Þ
Lemma 5. Let G be an arbitrary zero-sum AT game and let G be the corresponding restricted game. Then v ¼ �v.
Proof. Suppose by way of contradiction that �vs < vs for some state s (the arguments are similar for the case
when �vs > vs). Let d1 ¼ vs � �vs, and let
d2 ¼ min
a1

t 2A1
t �A1

t ;a
2
t 2A2

t ;t2S
vt �

X
w2S

ptðwja1
t ; a

2
t Þvw

" #
;

the minimized expression is in fact independent of the choice of a2
t 2 A2

t . Here d2 is the minimal decrease in the
expectation of the value after transition if player 1 chooses an action outside A1

t in some state t, given player 2
plays an action in A2

t . Notice that by the assumption �vs < vs, there must be a state t such that A1
t � A1

t 6¼ ;.
So, we minimize sover a non-empty set. Because of the definition of the sets A1

t , we have d2 > 0.
Now let �p2 denote a d1

2 -optimal strategy for player 2 in G and r2 a d2

2 -optimal strategy for player 2 in G.
Consider the strategy p2 for player 2 in G which prescribes to play as follows: play �p2 as long as player 1
chooses actions in the sets A1

t , t 2 S, and as soon as player 1 takes an action outside, start playing r2.
Take an arbitrary e-best reply p1 to p2 for player 1 in G for initial state s. Note with respect to (p1,p2) and

initial state s that as long as player 1 chooses actions in the sets A1
t , player 2 is also using only actions in the sets

�A2
t , so the value v does not change in expectation. Notice also that if player 1 ever chooses an action outside A1

t
in some state t, then the value v drops at least by d2 in expectation and afterwards player 2 plays a d2

2 -optimal
strategy, so player 1’s reward cannot be more than vt � d2

2 . This means that the probability of ever choosing an
action outside the sets A1

t is close to zero (if e is small). But then player 1 is facing strategy p2 in the game G for
the whole play with probability almost 1, and in that case his reward is at most �vs þ d1

2 ¼ vs � d1

2 ; which
contradicts the definition of the value vs. h

The following lemma exhibits the advantage of G.

Lemma 6. If a stationary strategy �x1 is optimal in G, then �x1 is optimal in G as well.

Proof. Let x2 be a stationary best reply to �x1 in G. Then we have to show that cð�x1; x2ÞP v.
For this purpose consider an arbitrary ergodic set E for ð�x1; x2Þ. Since �x1 2 X 1; we have v 6 P ð�x1; x2Þv.

Hence, by Lemma 2 (with / = v) we have that the value v must be constant on E. This also means by (14) that
x2

s 2 X 2
s for all s 2 E. Because �x1 is optimal in G, Lemma 5 yields csð�x1; x2ÞP �vs ¼ vs for all s 2 E. By using

Lemma 2 again, we obtain cð�x1; x2ÞP v: Thus, �x1 is optimal in G. h



Theorem 7. In every zero-sum AT game, both players have a stationary optimal strategy.
Proof. We will only prove it for player 1; for player 2 the proof is similar. In view of the previous lemma it is
sufficient to show the existence of a stationary optimal strategy in G. So we may forget about the original game
G and only consider G from now on.

It is well-known that in any zero-sum stochastic game there is a stationary strategy �x1 2 X 1 such that �x1 is
optimal for at least one initial state with maximal value (cf. Tijs and Vrieze, 1986 or Thuijsman and Vrieze
1991). Take such a strategy �x1 and let E be the set of all states with maximal value for which this particular
strategy �x1 is optimal. Clearly, if play starts in E and player 1 plays �x1, then play will remain in E, irrespective
of player 2’s strategy.

If E ¼ S, then we are done. Otherwise, let E1 be the set of states s in S � E for which player 1 has an action
�a1

s 2 A1
s such that transistion occurs to E with positive probability, irrespective of the action of player 2:
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psðEj�a1
s ; �a

2
s Þ > 0 for all �a2

s 2 A2
s :
Further, let E2 be the set of states s in S � ðE [ E1Þ for which player 1 has an action �a1
s 2 A1

s such that
psðE [ E1j�a1

s ; �a
2
s Þ > 0 for all �a2

s 2 A2
s . This way we proceed by considering sets En, defined as the set of states

s in S � ðE [ E1 [ . . . [ En�1Þ for which player 1 has an action �a1
s 2 A1

s such that psðE [ E1 [ . . .
[En�1j�a1

s ; �a
2
s Þ > 0 for all �a2

s 2 A2
s , until either E [ E1 [ . . . [ En ¼ S or En = ;.

Case 1: E [ E1 [ . . . [ En ¼ S. Consider the strategy ~x1 2 X 1 for player 1 which prescribes to play �x1 in E and
�a1

s in each s 2 E1 [ . . . [ En. Then, notice that from any initial state, irrespective of the strategy of
player 2, play eventually moves to set E and from that stage on, play remains in E forever. As the
value �v is maximal in E, it easily follows that �v is a constant over the whole state space S. Since �x1

is optimal for initial states in E in G; we deduce that ~x1 must be optimal in G for all initial states.
Case 2: E [ E1 [ . . . [ En 6¼ S and En = ;. Then S� :¼ S � ðE [ E1 [ . . . [ En�1Þ is a non-empty set of states.

By Lemma 3 for any s 2 S*, player 2 has a set A2
�s � A2

s of actions �a2
s such that psðS�ja1

s ; �a
2
s Þ ¼ 1

for all a1
s 2 A1

s . However, because of this property, if player 2 only uses actions in A2
�s then play will

always remain in S* and therefore we might as well consider the restricted stochastic game G* with
state space S*, where player 1 chooses actions from A1

s and player 2 is restricted to A2
�s. Again, G*

is an AT game. Moreover, since only player 2’s action sets have been restricted, we have v�s P �vs

for all s 2 S*. Also jS*j < jSj and therefore, by an induction argument on the number of states, we
can assume player 1 to have a stationary optimal strategy x1

� for the game G*.

Now, consider the strategy ~x1 2 X 1 for player 1 which prescribes to play �x1 in E and �a1
s in each

s 2 E1 [ . . . [ En�1 and x1
� in S*. We will now show that ~x1 is optimal for player 1 (in G). Take a stationary best

reply �x2 2 X 2 for player 2 against ~x1. Suppose W is an arbitrary ergodic set for ð~x1;�x2Þ. Then, by the definition
of ~x1, either W � E or W � S*. Notice that, by the definition of ~x1, if W � E then csð~x1;�x2Þ ¼ csð�x1;�x2ÞP �vs for
all s 2W; while if W � S* then by Lemma 3, the strategy �x2

s can only use actions in A2
�s for all s 2W, hence

csð~x1;�x2ÞP v�s P �vs. So in both cases, csð~x1;�x2ÞP �vs for all s 2W. Thus, csð~x1;�x2ÞP �vs for all recurrent states
s. As ~x1 2 X 1 we have by Lemma 5 that �v 6 P ð~x1;�x2Þ�v. Hence, Lemma 2 (with / ¼ �v) yields cð~x1;�x2ÞP �v. As �x2

was a best reply to ~x1; the strategy ~x1 is optimal (in G) indeed. h

Example

In this game representation the entries in the upper-left corners are the payoffs to player 1 who chooses
rows, while the entries in the lower right corners are the transition probability vectors. This game is a zero-sum
AT game where the transition probabilities for the respective states can be decomposed as:
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p1
1ð1Þ ¼ p2

1ð1Þ ¼ ð1; 0; 0Þ; k1
1 ¼ k2

1 ¼
1

2
;

p1
2ð1Þ ¼

1

2
; 0;

1

2

� �
; p1

2ð2Þ ¼
1

3
; 0;

2

3

� �
; p2

2ð1Þ ¼ ð0; 1; 0Þ; p2
2ð2Þ ¼ ð1; 0; 0Þ; k1

2 ¼ k2
2 ¼

1

2
;

p1
3ð1Þ ¼ ð0; 0; 1Þ; p1

3ð2Þ ¼ ð0; 0; 1Þ; p2
3ð1Þ ¼ ð0; 0; 1Þ; p2

3ð2Þ ¼ ð0; 1; 0Þ; k1
3 ¼ k2

3 ¼
1

2
:

For this game we find that v ¼ �v ¼ ð3; 1;�1Þ, where the game G is the game derived by restricting player 1 to
use only action 1 in state 2, while player 2 should only use action 1 in any state. The set E consists of state 1,
the set E1 consists of state 2, and the set S* is the singleton state 3. The stationary optimal strategy for player 1
is given by ((1), (1, 0), (1, 0)).

Remark 8. We wish to remark that the existence of stationary e-optimal strategies and Markov 0-optimal
strategies for zero-sum AT games follows from Flesch et al. (1998) (see theorem 1 and the first concluding
remark there), but Theorem 7 is stronger, as it concerns stationary 0-optimality.

The AT structure of the transitions implies that, for each state s and actions a1
s ; b

1
s 2 A1

s the following holds:
if
 X

t2S

psðtja1
s ; a

2
s Þvt >

X
t2S

psðtjb1
s ; a

2
s Þvt
for some action a2
s 2 A2

s , then
X
t2S

psðtja1
s ; b

2
s Þvt >

X
t2S

psðtjb1
s ; b

2
s Þvt
for all b2
s 2 A2

s ; and similarly for player 2. In other words, the AT transition structure induces a complete
ordering on A1

s and A2
s , with A1

s and A2
s as the sets of ‘‘best’’ actions. In fact the assumption of having such

a complete ordering would already be sufficient for the previously mentioned alternative proof based on
Flesch et al. (1998).

For the zero-sum case we have seen that player 1 has a strategy which guarantees that he receives at least
the value. In other words, he has a strategy which guarantees that player 2 cannot get any reward better than
the value. For the n-player case we obtain the following result along similar lines.

Lemma 9. For each player i there exists a joint strategy r�i such that ci
sðpi;r�iÞ 6 vi

s for each initial state s.
4. Two-player absorbing AT games

An absorbing game is a stochastic game in which all states but one are absorbing, i.e. once play reaches an
absorbing state, it will stay there forever. Therefore, an absorbing state corresponds to a repeated game.
Clearly there are equilibria for each absorbing state and, by taking one for each of them, we can assume, with-
out loss of generality, that the players have only one action in each absorbing state.

Suppose that the initial state is state 1 and it is the non-absorbing one. By the structure of the game, strat-
egies are completely determined by giving the choices for state 1.

Theorem 10. In any two-player absorbing AT stochastic game stationary e-equilibria exist for all e > 0.

Proof. Let G be a two-player absorbing AT stochastic game.
Suppose first that k1

1; k
2
1 2 ð0; 1Þ. We partition the action sets of the players into an absorbing and a non-

absorbing part by defining
A1�
1 ¼ fa1

1 2 A1
1jp1

1ð1ja1
1Þ < 1g

A1}
1 ¼ fa1

1 2 A1
1jp1

1ð1ja1
1Þ ¼ 1g:
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Let A2�
1 and A2}

1 be defined analogously for the action set A2
s of player 2. We distinguish two cases.

Case 1: ½A1}
1 ¼ / or A2}

1 ¼ /�. In this case all action combinations are absorbing. Therefore, if b1,b2, . . . is a
sequence of discount factors converging to 1, and if ðx1

b1
; x2

b1
Þ; ðx1

b2
; x2

b2
Þ; . . . is a sequence of stationary

bm-discounted equilibria converging to (x1,x2), then the latter pair is an average equilibrium since for
any arbitrary stationary strategy y1 for player 1 we would have:
c1ðy1; x2Þ ¼ lim
m!1

c1
bm
ðy1; x2

bm
Þ 6 lim

m!1
c1

bm
ðx1

bm
; x2

bm
Þ ¼ c1ðx1; x2Þ

while a similar statement applies for strategies of player 2. For the equality signs we refer to Lemma
4(a) in Vrieze and Thuijsman (1989). (By taking subsequences a limit point (x1,x2) of a converging
sequence of stationary bn-discounted equilibria can always be assumed to exist.)
Case 2: ½A1}
1 6¼ / and A2}

1 6¼ /�. Observe that game entries in A1}
1 � A2}

1 are non-absorbing, while all other
game entries are absorbing by the action of at least one player. Let ðx1}

1 ; x2}
1 Þ be an equilibrium in

the one-shot game on A1}
1 � A2}

1 . Note that for all actions a1
1; b1

1 2 A1}
1 and any action a2

1 2 A2�
1 we have
p1ða1
1; a

2
1Þ ¼ p1ðb1

1; a
2
1Þ:
Hence, if x2
1 only uses actions from A2�

1 then for any g 2 [0, 1]
c1ðx1}
1 ; gx2}

1 þ ð1� gÞx2
1ÞP c1ðx1

1; gx2}
1 þ ð1� gÞx2

1Þ

for all x1

1 which only uses actions from A1}
1 . So, against any stationary strategy of player 2 which only uses x2}

1

and actions from A2�
1 , player 1 cannot do any better in A1}

1 than to use x1}
1 . Obviously, a similar property holds

with exchanged roles of the players. Therefore, we may restrict the action spaces of the players and define a
related absorbing AT game G} in which the action set for player 1 is fx1}

1 g [ A1�
1 and that for player 2 is

fx2}
1 g [ A2�

1 , and where the payoffs and transitions are corresponding straightforwardly to the structure in
the original game G. Notice that G} has only one non-absorbing entry. Suppose that the payoffs of this entry
are (a1,a2). Then by subtracting a1 from all payoffs for player 1, and a2 from all payoffs for player 2, we obtain
an absorbing game where the payoffs in the only non-absorbing entry are 0, while strategically nothing
changes. For all joint stationary strategies the average rewards in this game are the same as those in the related
game with all state 1 payoffs equal to 0. Then the game is a recursive repeated game with absorbing states, for
which it is shown in Flesch et al. (1996) that stationary e-equilibria exist. In a natural way, this e-equilibrium in
G} induces a stationary e-equilibrium in the original game G.

Suppose now that k1
1 ¼ 1 and k2

1 ¼ 0 (if k1
1 ¼ 0 and k2

1 ¼ 1 then the proof is similar). Since player 1 fully
controls the transitions, we may redefine p2

1 by p2
1ð1ja2

1Þ ¼ 1 for all actions a2
1 2 A2

1. Then A2}
1 ¼ A2

1, and the
same line of proof as above remains applicable. h
Example

We show that there are no stationary 0-equilibria for initial state 1 in this game, which illustrates that the
above theorem is sharp. First notice that this is a stochastic game with AT structure, in which for state 1:
p1
1ð1Þ ¼ p2

1ð1Þ ¼ ð1; 0; 0Þ; p1
1ð2Þ ¼ ð0; 0; 1Þ; p2

1ð2Þ ¼ ð0; 1; 0Þ; k1
1 ¼ k2

1 ¼
1

2
:

Suppose by way of contradiction that (x1,x2) is a stationary 0-equilibrium. If x2
1 ¼ ð1; 0Þ, then x1

1 ¼ ð1; 0Þ is
player 1’s unique best reply; but then x2 is no best reply to x1 since by playing Right player 2 could get 1 in-
stead of 0. On the other hand, if x2

1 6¼ ð1; 0Þ then x1
1 ¼ ð0; 1Þ is player 1’s unique best reply; but then x2 is no

best reply to x1 since by playing Left exclusively player 2 could get 3.
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Note however, that ((0,1), (1 � e, e)) represents a stationary e-equilibrium for small e > 0.
This game can also be represented as

Now we use a slightly different notation for the transitions. By choosing entry Top-Left we remain with
probability 1 in the non-absorbing initial state 1 with direct payoff 0; by choosing entry Top-Right play moves
with probability 1

2 to a 1 · 1 absorbing state in which the payoffs are �3 and 1 for players 1 and 2 respectively
and with probability 1

2 play remains in the initial state with direct payoff 0; by choosing entry Bottom-Left play
moves with probability 1

2 to a 1 · 1 absorbing state in which the payoffs are �1 and 3 for players 1 and 2
respectively and with probability 1

2 play remains in the initial state with direct payoff 0; by choosing entry
Bottom-Right play moves with probability 1 to a 1 · 1 absorbing state in which the payoffs are � 2 and 2 for
players 1 and 2 respectively, which is equivalent to moving to either state 2 or state 3 with probability 1

2 in the
original game. So the asterisks correspond to the absorbing entries.

Example. We now consider the following AT-game:

Note that this game is similar to the game in Flesch et al. (1997). This is a three-player absorbing AT game,
where an asterisk in any particular entry denotes a transition to an absorbing state with the same payoff as in
this particular entry. There is only one entry for which play will remain in the non-trivial initial state. One
should picture the game as a 2 · 2 · 2 cube, where the layers belonging to the actions of player 3 (Near and
Far) are represented separately. As before, player 1 chooses Top or Bottom and player 2 chooses Left or
Right.

Note that this is an AT game, in which for state 1 (the non-absorbing state) we have k1
1 ¼ k2

1 ¼ k3
1 ¼ 1

3, and
regarding p1

1, p2
1, p3

1: each of the actions Top, Left, Near leads to state 1, while actions Bottom, Right, Far lead
to absorption with payoffs (1,3,0), (0, 1,3), and (3, 0,1) respectively. Note that all entries but entry
(Top, Left, Near) are absorbing, so the play absorbs as soon as one of the players chooses his second action.
Besides, the payoff and the transition structure is cyclically symmetric, namely it holds for any entry
(i1, i2, i3) 2 {1,2}3 that
r1ði1; i2; i3Þ ¼ r2ði3; i1; i2Þ ¼ r3ði2; i3; i1Þ
pði1; i2; i3Þ ¼ pði3; i1; i2Þ ¼ pði2; i3; i1Þ:
Similarly to the game in Flesch et al. (1997), an example of a Markov equilibrium for this game is (f,g,h),
where f is defined by: at stages 1,7,13,19, . . . play Bottom with probability 1, at stages 2,8,14,20, . . . play Bot-
tom with probability 3

4
, and at all other stages play Top with probability 1. Similarly, g is defined by: at stages

3,9,15,21, . . . play Right with probability 1, at stages 4,10,16,22, . . . play Right with probability 3
4
, and at all

other stages play Left with probability 1. Likewise, h is defined by: at stages 5,11,17,23, . . . play Far with
probability 1, at stages 6,12,18,24, . . . play Right with probability 3

4
, and at all other stages play Near with

probability 1. The average reward corresponding to this equilibrium is (1,2,1).
However, there are no stationary e-equilibria for small e > 0 in this game. First we will argue that there are

no stationary 0-equilibria. Suppose by way of contradiction that (x,y,z) is a stationary equilibrium, where
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x,y,z are the probabilities on actions Bottom, Right and Far respectively. First we prove that 0 < x,y,z < 1. If
x = 0 then, because of a best reply argument, y > 0 (and we would have y = 1 if z > 0). However, if y > 0, then
z = 0, which contradicts x = 0. On the other hand x = 1 would imply y = 0, hence z = 1, which contradicts
x = 1. So 0 < x < 1, and by symmetry we also have 0 < y,z < 1. Then
c1ð0; y; zÞ ¼
3 � 1

3
ð1� yÞzþ 3

2
� 2

3
yz

1
3
yð1� zÞ þ 1

3
ð1� yÞzþ 2

3
yz

and

c1ð1; y; zÞ ¼
1 � 1

3
ð1� yÞð1� zÞ þ 1

2
� 2

3
yð1� zÞ þ 2 � 2

3
ð1� yÞzþ 4

3
� yz

1
3
ð1� yÞð1� zÞ þ 2

3
yð1� zÞ þ 2

3
ð1� yÞzþ yz

:

Since 0 < x < 1 we must have c1(0,y,z) = c1(1, y,z), from which we find
3z
y þ z

¼ 1þ 3z
1þ y þ z

;

which implies that y = 2z > z. By symmetry z > x and x > y. Hence y > z > x > y and therefore there are no
stationary 0-equilibria. The proof that there are no stationary e-equilibria is similar to the Proof of Lemma
3.2 in Flesch et al. (1997) for the related game.
5. n-Player AT games

In this section we shall establish the existence of history-dependent 0-equilibria for all n-player AT games. It
follows from Eq. (9) and from the additive transition structure of the game that
vi
s ¼ min

x�i
s 2X�i

s

max
xi

s2X i
s

X
t2S

psðtjxi
s; x
�i
s Þvi

t ¼ ki
s �max

ai
s2Ai

s

X
t2S

pi
sðtjai

sÞvi
t þ
X
j 6¼i

kj
s �min

aj
s2Aj

s

X
t2S

pj
sðtjaj

sÞvi
t:
We now introduce some notations similar to the 2-player zero-sum case. If ki
s > 0 then let Ai

s be the set of ac-
tions of player i in state s that maximize the expression

P
t2Spi

sðtj�Þvi
t; while if ki

s ¼ 0 (meaning that player i has
no influence on the transitions in state s) then we define Ai

s ¼ Ai
s. Consequently, Ai

s is the set of those actions ai
s

for which
vi
s 6

X
t2S

psðtjai
s; x
�i
s Þvi

t 8x�i
s 2 X�i

s :
The main idea we shall use in the analysis is that of the restricted game G derived from G by restricting each
player i to actions in Ai

s in all states s. Then G is an AT stochastic game as well. Obviously, in G players can
only randomize on the remaining actions. Thus we define X i

s as the set of mixed actions on Ai
s. In a natural way

X i
s can be seen as a subset of X i

s. We shall denote the minmax value of G by �v.

Lemma 11. For each player i and each state s, let zi
s be a completely mixed action for player i on Ai

s, i.e.
zi

sðai
sÞ > 0 for all ai

s 2 Ai
s. Suppose E is an ergodic set with respect to the joint stationary strategy z. Then for any

player i
�vi
s P vi

s

for all s 2 E.

Proof. Take an arbitrary player i. Notice that as vi
6 P(z)vi, Lemma 2 (with / = vi for any player i) yields

vi
s ¼ vi

t for all s, t 2 E. Note that, in any state s 2 E, for any joint action a�i
s 2 A�i

s , if player i chooses any
ai

s 2 Ai
s then play remains in E, so
X
t2S

psðtjai
s; a
�i
s Þvi

t ¼ vi
s:
Hence, by the definition of Ai
s, for any s 2 E, we have
X

t2S

psðtjbi
s; a
�i
s Þvi

t < vi
s
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for all actions bi
s 2 Ai

s � Ai
s; so such actions bi

s outside Ai
s lead to a decrease in the expectation of vi after tran-

sition. Thus
d2 :¼ min
ai

s2Ai
s�Ai

s; a�i
s 2A�i

s ;s2E
vi

s �
X
t2S

psðtjai
s; a
�i
s Þvi

t

" #
> 0:
Suppose, by way of contradiction, that �vi
s < vi

s, for some state s 2 E. Let d1 :¼ vi
s � �vi

s. Now let �p�i be a joint
strategy in G for the opponents of i, against which player i can get at most �vi þ d1

2
in G. Similarly r�i is a joint

strategy in G for the opponents of i, against which player i can get at most vi þ d2

2
in G. Consider the strategy

p�i for the opponents of player i in G which prescribes to play as follows: play �p�i as long as player i chooses
actions in the sets Ai

t; t 2 S, and as soon as player i takes an action outside, start playing r�i.
Take an arbitrary e-best reply pi to p�i for player i in G for initial state s. With respect to p and initial state s

we obtain a contradiction with the definition of vi
s similarly to the last part of the Proof of Lemma 5. h

Theorem 12. There exists a 0-equilibrium in every n-player AT stochastic game.

Proof. Let zi
s be a completely mixed action for player i on Ai

s and let W1, . . . ,WK be the ergodic sets with
respect to the joint stationary strategy z. Notice that as v 6 P(z)v, Lemma 2 (with / = vi for any player i) yields
vs = vt =: ak for all s, t 2Wk, and for all k.

Let �xb be a stationary b-discounted equilibrium in G, for all b 2 (0, 1). By the finiteness of the state
and action spaces there is a set D � (0, 1) such that 1 is a limit point of D and for all b 2 D the carrier of �xb

is the same. Clearly, for any k, there must be an ergodic set Ek for �xb so that Ek �Wk. Let e > 0. Then for
b 2 D close to 1 it follows from Lemma 1, from the fact that �xb is a b-discounted equilibrium, from equality
(8), from Lemma 11 (as Ek �Wk) and the previous observation that the minmax value is a constant on Ek �
Wk:
ci
sð�xbÞP min

t2Ek

ci
btð�xbÞP min

t2Ek

�vi
bt P min

t2Ek

�vi
t � e P min

t2Ek

vi
t � e ¼ vi

s � e ð15Þ
for any state s 2 Ek and for any player i. This means that, for b 2 D sufficiently close to 1, the joint stationary
strategy �xb is individually rational on Ek (up to e).

Let e1, e2, e3, . . . be a monotone decreasing sequence of reals converging to 0 and let b1,b2,b3, . . .2 D be a
monotone increasing sequence of discount factors converging to 1, which by (15) can be taken such that for
each m we have ci

sð�xbm
ÞP vi

s � em for all s 2 Ek, for each ergodic set Ek and for each player i. Then, by Lemma
4 (as the minmax value is constant on Ek) there exists a pure joint strategy p such that p only uses actions that
have positive weight for �xbm

and such that ci
sðpÞP vi

s, as well as ci
sðpjhÞP vi

s, for all s 2 Ek, for all k, for any
history h, and for each player i.

By the definition of z, one can select a joint pure stationary strategy �a 2 A such that, with respect to �a, play
eventually reaches E1 [ . . . [ EK from any initial state. Since �a 2 A we have that Pð�aÞvi P vi for each player i.
Let p* be the joint pure strategy defined by playing �a in any state outside E1 [ . . . [ EK and by switching to p
as soon as one of the sets E1, . . . ,EK is entered. By construction ci

sðp�ÞP vi
s (and ci

sðp�jhÞP vi
s) for any initial

state s 2 S and for each player i. Now p* is a pure strategy which tells each player exactly which action to play
at any state and stage. Therefore any deviation by a player can be detected immediately. Because of Lemma 9
any deviation by player i can be punished by his opponents jointly playing r�i. Let p*(r) denote the joint
strategy defined by playing p* as long as no one deviates, and by switching to r�i as soon as any player i

deviates. (In case more than one player would deviate at the same time, take the smallest index i. For
verification of the equilibrium property only unilateral deviations need to be considered and simultaneous
deviations play no role at all.)

Notice that ci
sðp�ðrÞÞ ¼ ci

sðp�ÞP vi
s for all i and s (and similarly ci

sðp�ðrÞjhÞ ¼ ci
sðp�jhÞP vi

s for any history
h that may occur under p*). Now p*(r) is a 0-equilibrium because of the following arguments. Suppose that the
first deviation occurs by player i deviating in state s at stage k after history hk by playing action di

s, where all
players were supposed to play as 2 As according to p*. Then, player i’s opponents will start playing their
punishment strategies at stage k + 1. Therefore, from this very stage player i’s reward will be kept down to vi

t,
where t is the state at stage k + 1. Thus, player i will receive at most
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X
t2S

psðtjdi
s; a
�i
s Þvi

t 6

X
t2S

psðtjai
s; a
�i
s Þvi

t 6

X
t2S

psðtjai
s; a
�i
s Þ � ci

tðp�ðrÞjhk � ðs; asÞÞ ¼ ci
sðp�ðrÞjhkÞ:
Here hk � (s,as) denotes the concatenation of the history hk, state s and actions as. The final inequality implies
that the deviation reward is at most the continuation reward for the original strategies. h

Remark 13. Notice that the AT structure of the transitions was only used to achieve that, for each player i,
state s and actions ai

s; b
i
s 2 Ai

s of player i in state s the following holds: if
X
t2S

psðtjai
s; a
�i
s Þvi

t >
X
t2S

psðtjbi
s; a
�i
s Þvi

t

for some joint action a�i
s 2 A�i

s , then
X
t2S

psðtjai
s; b
�i
s Þvi

t >
X
t2S

psðtjbi
s; b
�i
s Þvi

t

for all b�i
s 2 A�i

s . In other words, the AT transition structure induces a complete ordering on Ai
s, with Ai

s as the
set of ‘‘best’’ actions.

We now consider the following two-player AT game taken from Flesch et al. (1996):

This game is a two-player perfect information game, for which there is no stationary e-equilibrium for small
e > 0. One can prove this as follows. Suppose player 2 puts positive weight on Left in state 2, then player 1’s
only stationary e-best replies are those that put weight at most e

2�e on Top in state 1; against any of these
strategies, player 2’s only stationary e-best replies are those that put weight 0 on Left in state 2. So there
is no stationary e-equilibrium where player 2 puts positive weight on Left in state 2. But neither is there a
stationary e-equilibrium where player 2 puts weight 0 on Left in state 2, since then player 1 should put at most
weight 2e on Bottom in state 1, which would in turn contradict player 2’s putting weight 0 on Left.

Notice that we obtain an equilibrium by letting the players play as follows: player 1 plays Top in state 1 as
long as player 2 has never played Left and plays Bottom otherwise; player 2 plays Right in state 2. Another
equilibrium is: player 1 plays Top in state 1; player 2 plays Left in state 2 as long as player 1 has never played
Bottom and plays Right otherwise.

We remark that in Thuijsman and Raghavan (1997) existence of average 0-equilibria is shown for arbitrary
n-player games with perfect information.
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