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Abstract: 
We apply the level-3 Reformulation Linearization Technique (RLT3) to the Quadratic 
Assignment Problem (QAP).  We then present our experience in calculating lower bounds using 
an essentially new algorithm, based on this RLT3 formulation.  This algorithm is not guaranteed 
to calculate the RLT3 lower bound exactly, but approximates it very closely and reaches it in 
some instances.  For Nugent problem instances up to size 24, our RLT3-based lower bound 
calculation solves these problem instances exactly or serves to verify the optimal value.  
Calculating lower bounds for problems sizes larger than size 25 still presents a challenge due to 
the large memory needed to implement the RLT3 formulation.  Our presentation emphasizes the 
steps taken to significantly conserve memory by using the numerous problem symmetries in the 
RLT3 formulation of the QAP. 
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Notation 

Entries of a matrix E of size mxnx…xp,  indexed by i,j,…,k, are denoted eij…k.  Conversely, given 
numbers , one can form a corresponding matrix  of appropriate size. Z(P) will denote 
the optimal value of optimization problem (P). 

1. Introduction 
 The quadratic assignment problem (QAP) is known as one of the most interesting and 
challenging problems in combinatorial optimization.  It finds applications in facility location, 
computer manufacturing, scheduling, building layout design, and process communications.   The 
standard mathematical formulation of the QAP is  

 

  (1-a) 

where . (1-b) 

The QAP optimizes a quadratic function over the set of permutation matrices .  Notice there is 
no quadratic term  in the objective function when  or  since the constraints force 

 if  and , and  otherwise.  

 The QAP is one of the most difficult NP-hard combinatorial optimization problems, and 
instances of size  can usually not be solved in reasonable CPU time.  In addition the 
majority of QAP test problems have a homogeneous objective function, and this contributes to 
their difficulty, as this tends to produce weak lower bounds.  Recent developments have 
produced improved, that is, tighter, bounds. The new methodologies include the interior point 
bound by Resende et al. (1995), the level-1 RLT-based dual-ascent bound by Hahn and Grant 
(1998), the dual-based bound by Karisch et al. (1999), the convex quadratic programming bound 
by Anstreicher and Brixius (2001), the level-2 RLT interior point bound by Ramakrishnan et al. 
(2002), the SDP bound by Roupin (2004), the lift-and-project SDP bound by Burer and 
Vandenbussche (2006), the bundle method bound by Rendl and Sotirov (2007), and the Hahn-
Hightower level-2 RLT-based dual-ascent bound by Adams et al. (2007).  The tightest bounds 
are the lift-and-project SDP bound and the two level-2 RLT-based bounds.  However, when 
taking speed and efficiency into consideration, the most competitive bounds are the level-1 RLT-
based dual-ascent bound by Hahn and Grant (1998), the convex quadratic programming bound 
by Anstreicher and Brixius (2001), and the Hahn-Hightower level-2 RLT-based dual-ascent 
bound by Adams et al. (2007).   

 The reformulation-linearization technique (RLT) is a strategy developed by (Adams and 
Sherali 1986, 1990; Sherali and Adams 1990, 1994, Sherali and Adams 1998, 1999) for 
generating tight linear programming relaxations for discrete and continuous nonconvex 
problems.  For mixed zero-one programs involving  binary variables, RLT establishes an -
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level hierarchy of relaxations spanning from the ordinary linear programming relaxation to the 
convex hull of feasible integer solutions.  For a given , the level-d RLT, or simply, 
RLTd, constructs various polynomial factors of degree  consisting of the product of some  
binary variables  or their complements .  The procedure essentially works via two 
steps.  First it reformulates the problem by adding to the level-(d-1) RLT formulation at least 
some of the redundant nonlinear restrictions obtained by multiplying each of the defining 
constraints with the product factors.  Then it linearizes each distinct nonlinear term by replacing 
it with a new continuous variable in both objective function and constraints, yielding a mixed 
zero-one linear representation in a higher dimensional space.  The set of redundant constraints 
should be chosen to guarantee that the mixed-zero-one model is equivalent to the original model, 
i.e., that every new variable, given all added constraints, is in fact equal to the product it 
replaces.  At each level d of the RLT hierarchy, i.e., RLTd, the resulting continuous relaxation is 
at least as tight as its previous level, with the highest -th level representing the convex hull of 
the feasible region.   
 Our prior computational experience using first RLT1 and then RLT2 formulations for the 
QAP has indicated promising research directions.  The corresponding continuous linear 
relaxations, problems 2 and , are increasingly large in size and highly degenerate.  In 
order to solve these problems, Hahn and Grant (1998) and Adams et al. (2007) have presented a 
dual-ascent strategy that exploits the block-diagonal structure of constraints in the RLT1 and 
RLT2 forms, respectively.  This strategy is a powerful extension of that found in Adams and 
Johnson (1994); it does not actually calculate either the RLT1 or RLT2 bounds, but it 
approximates them very closely and occasionally does reach those bounds exactly.  The 
accomplishment here is the speed and efficiency of the computations. 
 Problem , in particular, provides sharp lower bounds, as shown in Table 1 of 
Loiola et al. (2007), and consequently leads to very competitive exact solution approaches.  A 
striking outcome, documented in Table 2 of Loiola et al. (2007), is the relatively few nodes 
considered in the binary search tree to verify optimality.  This leads to marked success in solving 
difficult QAP instances of size  in record computational time.  Based on this success, we 
turn attention in this paper to the level-3 form in order to get even tighter bounds, knowing that 
we will have to pay a price for the increased model size.  The challenge is to take advantage of 
the additional strength without being hurt by the substantial increment in problem dimensions. 
This will require novel computational steps, better adapted to the much larger formulation size.  
We will first show that, as for level 2, the level-3 form can be handled via a Lagrangean 
approach to obtain a subproblem with block-diagonal structure. This time, however, we have 
many more dualized constraints and decomposable subproblem blocks.  We will also need a 
more sophisticated approach for handling the nested structure, as well as the complicating 
constraints.   

 In the next section, we derive the level-3 formulation, focusing attention in Section 3 on 
deriving level-3 bounds from a  Lagrangean dual approach.  Section 4 explains the issues 
involved in programming the algorithm and describes the various approaches adopted to face 
them.  In Section 5, we compare the strength and calculation speed of the new RLT3-based 

                                                
2 We use the notation  to denote the continuous relaxation of the mixed-integer programming problem (P). 
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bounds with those available from RLT2. Section 6 gives a brief summary of our conclusions and 
discusses ongoing research. 

2. The RLT3 formulation of the QAP 
  

 
The proposed RLT3 reformulation consists of the following steps. First multiply each of 

the  assignment constraints by each of the  binary variables (this is an RLT1 step). 3    

Multiply each of  the  assignment constraints by each of  the  products 
 and  (this is an RLT2 step).  Then, multiply each of the  assignment 

constraints by each of the  products  and  (this 
is an RLT3 step).  Append all these restrictions.  Express the various resulting products in the 
order ,  and .  Substitute  wherever such or similar products 

appear.  Remove all products  if  and  or  and  in  quadratic 

expressions, all products  if  and ,  and ,  and  or 

 and  in cubic expressions, and all products  if  and , 

 and ,  and ,  and ,  and  or  and 

 in biquadratic expressions, as they must be zero given the model constraints.   In the end, 
we obtain a nonlinear model in the original binary variables . 

 The second step linearizes the model by introducing new continuous variables and 
imposes additional restrictions on these variables.  Replace each occurrence of the product of 
two x variables by a single nonnegative continuous variable y (like in RLT1), whose quadruple 
index will consist of the two indices of the first x variable followed by those of the second x 
variable. For instance,   is replaced by .  Similarly, like in RLT-2, 
every product of three x variables is replaced by a new, six-index, z variable. Finally every 
product of four variables x is replaced by a  new eight-index v variable.  Commutativity within 
the x products implies symmetry between the new variables, for instance for the y variables, 

,  (see 2l below), and similarly for  variables z and v 
(see 2h and 2d below).  

The resulting RLT3 formulation of QAP is given below. Notice that the coefficients  and 
 found in the objective function are in general zero, however we keep them in the model 

as our RLT3-based lower bound code is also capable of calculating tight lower bounds for 
genuine cubic and biquadratic assignment problems. 
 

                                                
3 Notice that given that all constraints, original or generated, are equality constraints, one does not need to multiply 
also by terms containing (1- ). 
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  (2a) 

s.t.  ,      (2b) 

     

     , (2c) 

     

       

  , (2d) 

                 , (2e) 

     , (2f) 

     , (2g) 

         , (2h) 

                                          , (2i) 

                                           , (2j) 

   

                                            , (2k) 

     , (2l) 

      , (2m) 
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     .  (2n) 

The resulting model embeds the nested, progressively larger, models QAP, RLT1, RLT2, RLT3. 
 

3. Lagrangean relaxation of the RLT3 model 

One can show that model RLT3 is equivalent to the QAP when the binary constraints on  are 
enforced, just as with RLT1 and RLT2.  RLT1 implied , RLT2 additionally implied 

, finally RLT3 additionally implies .  With the binary 

constraints on relaxed, given that  imbeds both  and , the tightest lower 
bound of all three RLT models comes from .  The  model, however, is considerably 
larger than ,  and .  It is also highly degenerate, because from all equality 
constraints of RLT3, only  constraints in x have a nonzero right-hand-side.  The challenge is 
to extract tight bounds from this formulation without paying a heavy computational price.  
Fortunately,  every dual feasible solution of  provides a lower bound for QAP, thus our 
strategy is to quickly compute near-optimal dual solutions. 

 We could obtain a smaller formulation of  via the substitution suggested by 
constraints (2d), (2h) and (2l) without affecting the bound.  The remaining variables v, z and y 
would be ,  and ,  
making constraints (2d), (2h) and (2l) unnecessary.  Here instead we will exploit a block-
diagonal structure present within the Lagrangean relaxation subproblems that result from 
dualizing these constraints.  Let , ,  and  denote the objective coefficients 
associated with , ,  and  respectively. The resulting Lagrangean relaxation 

model  is 

 

  (3) 

 It is this formulation that underlies the algorithm discussed in this paper.  The proof that 
the Lagrangean relaxation of (3)  produces a valid lower bound is similar to that found in Adams 
et al. (2007) for the RLT2 formulation, and is available in Section 6 of Zhu (2007) and in an 
online version of this paper, Hahn et al. (2008).  An important result in Section 6.5 of Zhu (2007) 
is Theorem 6-2, which shows how to decompose  into one assignment problem of size 
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,  assignment problems of size  of optimal values  and optimal solutions   , 

 assignment problems of size  of optimal values  and optimal solutions  , 

and  assignment problems of size  of optimal values  and 
optimal solutions .  We present next a dual-ascent procedure, similar to that employed in 
Adams et al. (2007) for Problem , but much more difficult to implement efficiently 
because of the increased model size, which provides a monotone non-decreasing sequence of 
lower bounds for the QAP via Lagrangean multiplier adjustments for .   

Dual Ascent Procedure 
   
By adding or subtracting multiples of equality constraints to the expression of the objective 
function, one does not modify its value, but one can modify its coefficients with the ultimate goal 
of introducing a, hopefully large, constant term that will act as a lower bound as long as all other 
modified objective function coefficients are kept nonnegative. First constraints like (2b), (2f), 
(2j), the original assignments constraints in X, and so on, can be used to move parts of 
coeeficients "down" the line from v to z, then to y, then to x, then to the constant.   Furthermore, 
symmetry constraints can help modify coefficients within the pool of variables they connect 
together.  As a group, (2b), (2c) and (2d) are especially potent for extracting large amounts from 
the associated cost matrix  and transferring them to cost matrix .  This observation also 
applies to constraints (2f), (2g) and (2h), which enhance the movement of costs from matrix  
to cost matrix  and to constraints (2j), (2k) and (2l), which enhance the movement of costs 
from matrix  to cost matrix , and ultimately the original assignment constraints are moving 
costs from cost matrix  to the constant that is the lower bound on Z(GAP). 

 Notice first that in the dual ascent procedure, in order to save space, we do not need to 
store the actual multiplier values, but only the adjusted coefficients of matrices , ,  and . 

 Constraints (2d), (2h) and (2l) have an additional benefit, in that they are instrumental in 
reducing the memory requirement of the lower bounding algorithm.  It is not necessary to 
provide separate memory locations for the twenty-four elements of  that correspond to the 
equated  elements in (2d).  One memory location for the sum of these cost elements is 
sufficient.  The same holds true for the six elements of  that correspond to the equated  
elements in (2h).  The same also holds true for the two elements of  that correspond to the 
equated  elements in (2l).  In order to use this memory saving construct, it is necessary to 
provide maps so that the algorithm, when dealing with a specific element in one of the three cost 
matrices ,  or  can point to the summed costs, in order that the sum can be updated when 
any changes are made to individual cost element values. 

 It is important to understand the effect that summing cost coefficients in ,  and  
has on constraints (2b), (2c), 2(f), 2(g), (2j) and (2k).  Consider first constraints (2b) and (2c), 
which relate the  cost coefficients to the  cost coefficients.  When one considers only 
summed and stored values of  and , a specific stored sum of  elements communicates with 
just four stored sums of  elements.  Regarding constraints (2f) and (2g), a specific stored sum 
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of  elements communicates with just three stored sums of  elements.  And, for constraints 
(2j) and 2(k), a specific stored sum of  communicates with only two stored sums of .  These 
facts play an important role in the steps of the algorithm.  The 24-fold equalities of (2d) are 
maintained, in that all permutations of the four pairs of subscripts on the  cost coefficients are 
represented. 
 Here are the steps. 

1.  Initialize (3) by assigning  for  with 

 and ,  for  with  

and ,  for  with  and , and  for , 

where , ,  and  are objective coefficients taken from .  Set the 
initial lower bound .  Set the iteration counter to be 0.  Keep in mind that  and 

 are summed and stored in a single memory location. 

2a.  For each , distribute the coefficient  among the  coefficients  for all 

 and  by increasing each such  by  and decreasing  to 0.  This 

is equivalent, for each , to adding  times each of the  equations 

 for all  found in (2k) to the objective of (3).  Keep in mind that  

and  are summed and stored in a single memory location. 

2b. For each  with  and , distribute the updated coefficient  among 

the  coefficients  for all  and  by increasing each such 

 by  and decreasing  to 0.  This is equivalent, for each  

with  and , to adding  times each of the  equations 

 for all  found in (2g) to the objective of (3).  Keep in mind 

that  are summed and stored in a single 
memory location. 

2c. For each  with ,  and , distribute the updated coefficient 

 among the  coefficients  for all  and  by 

increasing each such  by  and decreasing  to 0.  This is 

equivalent, for each  with ,  and , to adding 

 times each of the  equations  for all 

 found in (2c) to the objective of (3).  Keep in mind that the elements of  that 
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correspond to the equated  elements in (2d) are summed and stored together in a single 
memory location 

3. Use  the aforementioned THEOREM 6-2 from Zhu (2007) to sequentially solve (3) as 
 assignment problems. 

3a. Solve  assignment problems of size  to obtain  and the value 

, as follows:  Sequentially consider all  with  and , 

beginning with those  for which  prior to step 2c was 0.  For a 

selected , for each  and , assign to coefficient  a 

percentage of the stored value of  that contains , and subtract that amount from 
the corresponding sum in storage.  (Four experimentally determined percentage values 
are involved, as there are four opportunities in this step to access a given summed  
storage location.)  Upon solving the assignment problem of the resulting size  
matrix, add the now modified  values for  and  to their 

corresponding storage locations and increase  by the solution value .  Proceed 

through all such  indices where  and . 

3b. Solve  assignment problems of size  to obtain  and the value  as 

follows:  Sequentially consider all  with  and , beginning with those 

 for which  prior to step 2b was 0.  For a selected , for each 

 and , assign to coefficient  a percentage of the sum of , , 

, , , and  in storage, and subtract that amount from the stored sum. 
(Three experimentally determined percentage values are involved, as there are three 
opportunities in this step to access a given summed  storage location.) Upon solving 
the resulting size  assignment problem, add the now modified  values for 

 and  to their corresponding storage locations and increase  by the 

solution value .  Proceed through all such  indices where  and . 

3c. Solve  assignment problems of size  to obtain  and the value  as follows:  

Sequentially consider all , beginning with those  for which  prior to step 2a 

was 0.  For a selected , for each  and , assign to the coefficient  a 
percentage of the sum of  and  in storage, and subtract that amount from the 
stored sum. (Two experimentally determined percentage values are involved, as there are 
two opportunities in this step to access a given summed  storage location).  Upon 
solving the resulting size  assignment problem, add the now modified  values 
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for  and  to their corresponding storage locations and increase  by the 

solution value .  Proceed through all such  indices. 

3d. Solve one assignment problem of size  to obtain .  Upon doing so, place the equality 
constraints of  into the objective function with the optimal dual multipliers, adjusting 
the value of  and increase the lower bound  by the solution value of this size N 
assignment problem. Proceed to step 4. 

4. If the binary optimal solution  to (3) is feasible to RLT3, i.e., if it satisfies (2d), 

(2h) and (2l), stop with  optimal to problem QAP.  If it is not feasible to RLT3, 
stop if some predetermined number of iterations has been performed.  Otherwise, 
increase the iteration counter by 1 and return to step 2a. 

The dual-ascent procedure produces a nondecreasing sequence of lower bounds since Step 1 is 
input with all variables having nonnegative reduced costs.  An additional step, simulated 
annealing, which is not discussed above, is one that was important in achieving good 
performance on the earlier RLT1-based (Hahn and Grant, 1998) and also on the RLT2-based 
bound calculations. This simulated annealing step involves returning random percentages of the 
lower bound to the  coefficients on each round prior to Step 2a of the dual ascent procedure by 

dividing the returned amount equally among the rows of the  matrix. The random percentages 
follow an exponentially decreasing annealing schedule.  Experimentation is done to optimize the 
selection of the exponential rate for the annealing schedule, which affects algorithm speed as 
well as the bound achieved.  This simulated annealing step serves to shake the dual ascent bound 
calculation out of local optima and, in previous work, sped the ascent of the bound calculation so 
that tight lower bounds were achieved sooner. 

4. Essential computer programming considerations 
To demonstrate the potential of our approach, we coded in FORTRAN a dual ascent algorithm 
that calculates level-3 bounds for the QAP.   Programming these lower bound calculations 
presented a enormous challenge.  Even though similar programs had been written for the RLT1-
based and RLT2-based lower bound calculations, the size of the program was about to grow 
beyond hope of reasonable implementation on a typical computer available on the campus of 
today’s universities. Thus, additional planning and care was essential to assure its feasibility by 
minimizing RAM requirement and adhering to good programming practice in an attempt to keep 
bound calculations from requiring long runtimes, so that the bound computation algorithm would 
eventually be usable in a branch-and-bound environment. 
 There are two primary considerations in designing our lower bound calculation programs 
for RLT1, RLT2 and RLT3.  The first is the method of storing the cost coefficients that are 
manipulated in the lower bound algorithm.  The second is the method by which those cost 
coefficients are indexed so that they can be accessed rapidly in performing the algorithmic steps 
described at the end of Section 3.  In writing codes for RLT1- and RLT2-based bounds, we have 
implemented two storage and indexing methods.  In Method #1, complementary cost variable 
elements are summed and stored in a single memory location and a map is derived which assigns 
the summed cost element to its locations in the cost matrix.  In Method #2, the individual cost 
matrix elements are stored separately and code is written to move costs freely between 
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complementary elements.  The trade-off between the two methods favors the first method for 
minimizing RAM requirement and the second method for calculation speed.  For RLT1, neither 
method stood out as being preferred.  The maps which were required to implement Method #1 
somewhat detracted from the potential memory savings.  And, the speedups promised by Method 
#2 were not dramatic.  For RLT3 however, the fact that memory savings would be dominated by 
the  matrix, in which each cost element has 23 complementary partners, made it clear that 
Method #1 was the way to go.  This is born out clearly in Table 1, wherein the storage of three 
copies of the  matrix for a size 25 problem with Method #1 requires over 45 GB of RAM.  Had 
Method #2 been implemented, the RAM requirement for just matrix  would have been over 1 
TeraByte.  

 Table 1 lists the major arrays in our FORTRAN implementation of the RLT3-based 
lower bound algorithm.  Only the primary, most important arrays are listed.  Added at the bottom 
of the list is an estimate of the memory required by the remaining working arrays and variables 
plus the amount of memory for the executable code.  The TOTAL in the last line is an estimate 
of the amount of memory required by the algorithm to calculate the lower bound for a size 25 
problem, based on an extrapolation of the memory requirements of the RLT3-based lower bound 
calculations for the six smaller Nugent instances. 

Table 1 – Matrix sizes in Bytes for the problem size 25 RLT3-based lower bound calculation. 

Variable Dimension No. Bytes 

 matrix integer values two 2,116 

 matrix integer values one 722,516 

Real equivalents of  matrix values one 722,516 

 matrix integer values one 126,960,000 

matrix integer values one 15,362,160,000 

Map for locating  matrix values two 4,590,036 

 matrix values reverse map* two 4,335,096 

Map for locating  matrix values two 381,600,000 

Map for locating  matrix values two 61,575,600,000 

Temporary sorting matrix for  values one 722,516 

Temporary sorting matrix for  values one 126,960,000 

Temporary sorting matrix for  values one 15,362,160,000 

Counter for accesses to matrix values one 722,516 

Counter for accesses to  matrix values one 126,960,000 

Counter for accesses to  matrix values one 15,362,160,000 

Y (quadratic) variable decision matrix (=0 or =1) one 722,516 

Program and miscellaneous working arrays  33,767,243,000 

TOTAL  142,204,342,828 

*  reverse map is used to propogate Y (0-1) decisions.   
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 The memory required to deal with , ,  and  are the governing users of RAM 
memory.  Of these, clearly  is dominant.  The temporary arrays for , ,  and  are 
needed in order to back off from variable states that were caused in the simulated annealing step, 
since we do not want to save states that give us a poorer lower bound as a result of trying to 
shake up the coefficients when we try to improve the bound but fail.  The arrays for counting 
access to ,  and  are used continually in the lower bound computation process in order to 
keep track of which individual cost coefficient is being utilized in the algorithm. 

5. Computational experience 
 Table 2 compares the performance of the RLT3-based lower bound with that of the 
RLT2-based lower bound algorithm (denoted RLT2) on several difficult problem instances from 
the QAPLIB web site [9].  The RLT2-based bound values in Table 2 are essentially the best 
lower bound values achieved for these instances by any other method (see column 12 in 
http://www.seas.upenn.edu/qaplib/lowerbound.html).   

Table 2. The QAP RLT3 lower bounds. 

Inst-
ance 

Opt-
imum 

RLT3 LB 
w/SA 

RLT3 sec 
w/SA 

RLT3 LB 
w/o SA 

RLT3 sec 
w/o SA 

RLT2 LB 
w/SA 

RLT2 
secs 

Chr25a 3796 3795.57* 409,398 3758.52 235,058 3796† 1,502 
Had16 3720 3718.11* ~15,000 3719.1* 1,263 3720† 1,438 
Had18 5358 5357.67* 44,680 5357.0* 8,722 5358† 3,137 
Had20 6922 6919.1 48,020 6920.0* 31,955 6922† 8,288 
Nug12 578 577.15* 1,468 577.2* 86 578 266 
Nug15 1150 1149.74* 16,671 1149.1* 829 1150 978 
Nug18 1930 1930** 86,951 1928.8* 10,940 1905 14,180 
Nug20 2570 2569.05* 242,982 2568.1* 77,021 2508† 31,003 
Nug22 3596 3590.44 90,782 3594.04* 100,095 3511 26,643 
Nug24 3488 3486.12* 676,573 Not avail. Not avail. 3369 38,529 
Nug25 3744 Not avail. Not avail. 3723.9 5,647,594 3577† 38,460 
Rou15 354210 354210** 951 354209.2* 895 354210† 232 
Rou20 725520 725314.4 252,282 724792.0 265,535 699390† 39,828 
Tai20a 703482 703482** 254,432 703405.2 329,725 675870† 40,445 
Tai25a 1167256 Not avail. Not avail. 1133716.3 2,480,946 1091165† 27,035 

* Optimum verified by RLT3-based lower bound code 
** Problem solved exactly by RLT3-based lower bound code 
† Recently re-calculated result by RLT2-based lower bound code 
 

Since the RLT2 based bound calculations were made several years ago, we re-calculated the 
RLT2-based lower bounds, using the most up-to-date version of our RLT2 lower bound code.  In 
some cases, the new RLT2 lower bound calculations confirmed earlier experimental results, 
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whereas in other cases, improved RLT2 lower bound values were reached.  For each test in Table 
2 we present the best lower bound achieved and the number of seconds required for the 
calculation on a single 733 MHz cpu of a Dell 7150 server. 
 RLT3-based lower bounds for problem sizes ≤ 20 were calculated on a single cpu of a 
Dell PowerEdge 7150 server with 20 GB of RAM.  Lower bounds for problem sizes 22 and 24 
were calculated on a single cpu of an IBM terascale machine with 128 GB of RAM at the San 
Diego SuperComputing Center.  For problem size 25, lower bounds were calculated on a single 
cpu of a Sun Fire E6900 server with 384 GB shared memory at the Clemson University 
Computational Center for Mobility Systems. 

The RLT3 FORTRAN bound calculations reported in Table 2 were made with and 
without the simulated annealing step that was so important in achieving good performance on the 
earlier RLT1-based bound calculations (Hahn and Grant, 1998). The simulated annealing step 
serves to shake the dual ascent bound calculation out of local optima and, in previous work, sped 
the ascent of the bound calculation so that tight lower bounds were achieved sooner.  However, 
in the case of RLT3, simulated annealing occasionally slows, rather than speeds up the 
achievement of tight bounds. 

The most important point to be made in reading Table 2 is the fact that in all but the 
Nug25, Tai25a and Rou20 test instances, the RLT3-based algorithm found lower bounds that 
reached sufficiently close to the optimal solution that the best known solution was confirmed as 
optimal.  This was true even for the very difficult Nug24 instance. An optimum is verified by the 
RLT3-based lower bound code when the RLT3-based lower bound reaches a value higher than 
any possible feasible solution of value less than the optimum value.  One may wonder why, in 
some cases, it is necessary to reach lower bounds within 2.0 of the best known value to assure 
verification of the optimal solution value.  This is so because in those instances, due to 
symmetries in the flow matrix, the solution set has only even solution values. 

With simulated annealing, the RLT3-based lower bound calculation actually solved three 
of the problem instances exactly.  In those three instances, testing the quadratic and linear costs 
determined that objective function cost reductions resulted in a pattern of zeros that constituted a 
zero cost feasible solution.  For this reason alone, we have decided to continue to use simulated 
annealing in all future tests of the RLT3-based lower bounding method. 

 Just because a lower bound is tight, does not mean that one can count on it to be useful in 
a branch-and-bound algorithm.  The bound has to be calculated quickly.  Fortunately, the dual 
ascent bounds that we have developed (based upon RLT formulations level-1, level-2 and level-
3) are calculated iteratively.  After only a small number of iterations, the bounds grow to a 
significant percentage of its final value.  This is demonstrated in Figure 1, using the experimental 
results for the Nug22 lower bound calculated by our RLT3-based algorithm.  The graph in this 
Figure shows the fraction of the optimum solution value that is reached by the RLT3-based 
lower bound as a function of runtime on the DataStar IBM computer at the San Diego 
Supercomputing Center.  Excellent lower bounds are reached in only a few minutes. 
 This paper does not discuss a branch-and-bound algorithm using the RLT3-based lower 
bound. The code for the branch and bound enumeration exists, but takes so much more memory 
than its lower bound calculation portion that one could solve only problems of size 18 or smaller.  
It would be impossible to glean useful information from solving such small problems.  The 
runtimes would have been exorbitant compared to those for the much simpler RLT1-based 
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branch and bound solver.  Consider the fact that RLT2-based branch-and-bound runs are slower 
than RLT1-based branch-and-bound runs for problem sizes less than or equal to 22.  See Adams, 
et al. (2007). 
 As mentioned before, the number of variables grows dramatically with RLT level.  The 

 branch-and-bound solver code already runs into memory limits of the current generation 
of computers for problem instances larger than .  Memory limits of machines available to 
researchers today make it difficult, if not impossible to calculate RLT3 lower bounds for 
problem instances larger than  using the current Fortran code.  On the positive side, 

 experiments have demonstrated promise for reducing the number of nodes that must be 
considered for proving optimality using branch-and-bound.  Figure 2 below demonstrates the 
growth in random access memory (RAM) with problem instance size, required for RLT-3-based 
lower bound calculations.  The linear extrapolation is based on data from the lower bound 
experiments on six Nugent instances reported in Table 6-1. The largest problem for which we are 
able to calculate the RLT3-based lower bound using the current FORTRAN code is size 25.  
This requires exactly 173 GBytes of RAM. 
 
 

6. Conclusion 
 This paper presents a level-3 reformulation-linearization technique (RLT) formulation of 
the QAP and our RLT3-based dual ascent procedure for lower bound calculations.  RLT 
techniques, while showing great promise, have to date received little investigation in terms of 
practical implementation.  We hope that the insights into the implementation of this new 
algorithm will help other researchers to improve upon our methods.  It is the goal of our future 
efforts to show that practical means can be devised to make these techniques useful, not only for 
solving the QAP, but for solving large classes of similarly difficult combinatorial optimization 
problems. 
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