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Abstract

In this paper various ensemble learning methods from machine learning and statistics
are considered and applied to the customer choice modeling problem. The application of
ensemble learning usually improves the prediction quality of flexible models like decision
trees and thus leads to improved predictions. We give experimental results for two real-life
marketing datasets using decision trees, ensemble versions of decision trees and the logistic
regression model, which is a standard approach for this problem. The ensemble models are
found to improve upon individual decision trees and outperform logistic regression.

Next, an additive decomposition of the prediction error of a model, the bias/variance
decomposition, is considered. A model with a high bias lacks the flexibility to fit the data
well. A high variance indicates that a model is instable with respect to different datasets.
Decision trees have a high variance component and a low bias component in the prediction
error, whereas logistic regression has a high bias component and a low variance component. It
is shown that ensemble methods aim at minimizing the variance component in the prediction
error while leaving the bias component unaltered. Bias/variance decompositions for all models
for both customer choice datasets are given to illustrate these concepts.

Keywords: Bagging, Bias/Variance Decomposition, Boosting, Brand Choice, CART,
Choice Models, Data Mining, Ensembles.

1 Introduction

Understanding, modeling and predicting customer choices has always been an important branch
of marketing research. The 2004 Marketing Science conference in Rotterdam featured 23 pre-
sentations where choice models where an important or the main topic, indicating that customer
choice modeling is still an active research field. Many textbooks on marketing models devote one
or more chapters on modeling individual’s choice probability (see, e.g., [12, 28]). Customer choice
models are valuable assets for marketing managers, who can use them to assess how manipulations
of marketing variables as price and amount of advertising will influence market shares and thus
perform ‘what-if’ simulations. The widespread academic interest and practical applicability of
these models justifies the search for ever more accurate and better performing models.

In recent years there has been a growing interest in the machine learning and statistics commu-
nities in methods for combining multiple predictions. The most widely used and studied methods
are bagging [4] and boosting [13, 7, 25]. These so-called ensemble learning methods, also known
as committee methods, enable the user to get more accurate predictions than the predictions
generated by individual models or experts on average.
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Figure 1: Schematic representation of an ensemble.

When multiple models make a prediction for the same phenomenon, there is often some amount
of ambiguity in these predictions: They differ over the models. This is the case for human experts,
e.g., the members of the jury in a figure skating contest that ‘predict’ the final score of a participant,
as well as for statistical models, e.g., multiple models for credit scoring fitted on different data. In
ensemble learning, the individual predictions are combined to arrive at a combined prediction. A
schematic representation of an ensemble is shown in Figure 1.

Empirical results show that these combined predictions are often more accurate than their
‘individual’ counterparts. This is illustrated in Figure 2. This graph shows the percentage of
correctly classified samples for a credit-scoring dataset taken from the Internet [22], where the
problem was to predict at the time of application for a loan, whether the applicant would repay
the loan or not. Just by combining multiple models for this case, the error rate drops from 32%
to 25%. It will be explained below how the ensemble used in this example was generated.

To our knowledge there have been very few applications of ensemble learning within marketing.
In a paper by Hu [24] ensemble learning was applied to the modeling of customer responses. In this
article, customer choice data are analyzed by an ensemble of neural networks: a set of individual
neural networks are ‘trained’ to model what type of long distance communication – postcard or
telephone call – is chosen by a household on the basis of situational and demographic variables.
Subsequently, the predictions of these individual models, called the level 0 models, are combined
using a second model – the level 1 model. This method is referred to as ‘stacking’ [37].

Stacking, the method applied in [24], is just one of a number of possible ensemble methods. In
this paper we extend the work in [24] in two ways. First, we apply a number of other ensemble
schemes to the customer choice problem, i.e., boosting and bagging. These ensemble methods
are combined with various choices for the base classifier: We use the logistic regression model
and CART trees as the base classifiers. Second, these methods are described in detail and it is
explained why they work from a statistical point of view. This way, we hope to give the reader
understanding of these methods and the necessary confidence for their use.

The organization of this paper is as follows. The next section (Section 2) is devoted to customer
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Figure 2: Error improvement when applying ensemble learning for creditscoring. The horizontal
axis shows the number of models combined, the vertical axis shows the percentage of correct
predictions.

choice modeling, classification and classifiers. It deals with the statistical models we use throughout
the paper: the logistic regression model and CART. Section 3 then deals with the ensemble
methods we use in our analyses: bagging and boosting. Both the individual classifiers and the
ensemble methods are described in a level of detail that hopefully provides enough ‘how-to’ material
to enable the reader to apply them in his own context. Next, Section 4 describes the experiments
that were performed and the results that were obtained. Some theory supporting the experimental
results in Section 4 is given in Section 5, where the so called ‘bias-variance decomposition’ of the
prediction error is introduced. This decomposition is additive and it is illustrated that ensemble
methods can be expected to lower the ‘variance’ term in the decomposition. A decomposition of
the prediction error obtained in the earlier experiments is given. Finally, a summary, a discussion
and some conclusions are given in Section 6.

2 Customer choice modeling, classification and classifiers

In customer choice modeling one attempts to create a model that predicts which product (or brand
or service) a customer will buy on the basis of a number of features of this customer, the product
and the situation in which the purchase occurs. Stated in a machine learning jargon, one classifies
a feature vector x into one of a number of disjoint classes. The customer choice model can thus be
seen as a classifier, where the feature vector describes the customer, the product and the situation,
and the classes are the possible brands, products or services, e.g., ‘buys Coca-Cola’, ‘buys Pepsi’,
‘buys dr. Pepper’, etc.. In this section and Section 3, we will use the terms ‘classifiers’ and ‘classes’
instead of ‘choice models’ and ‘brands’. For a general text on classification we refer to [11].

Given a dataset with N pairwise observations of feature vectors and corresponding classes, the
quality of a classification model can be measured using the zero-one loss function:

N
∑

n=1

I(predicted class, actual class), (1)
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with I(a, b) = 1 if a 6= b, 0 otherwise. This error function is particularly useful if the classifier
generates ‘crisp’ classifications.

Instead of giving crisp classification, some types of classifiers give class membership proba-
bilities. Suppose that we have K classes in total, denoted C1, . . . CK . Then we can express the
unconditional occurrence of a class Ci by a K-dimensional vector z = (z1, . . . , zK)T in which only
one element (zi) is 1, the rest is 0. Regarding z as a random variable, the appropriate distribution
is the multinomial distribution with parameters (n = 1,p) 1

P (z) =

K
∏

k=1

pzk

k , (2)

where the vector p = (p1, . . . , pK)T contains the class probabilities, so pk = P (zk = 1). Obviously,
∑

pk = 1. As an example, suppose that K = 3, p = (0.1, 0.5, 0.4)T , then the probability of
z = (1, 0, 0)T is 0.1.

Given this probability model we can easily compute the likelihood L(D) for a set of observations
D = {z1, z2, . . . , zN}:

L(D) =

N
∏

n=1

K
∏

k=1

pznk

k , (3)

and its logarithm

LL(D) =

N
∑

n=1

K
∑

k=1

znk log pk. (4)

In the example, the likelihood of D = {(0, 1, 0)T , (1, 0, 0)T , (1, 0, 0)T , (0, 1, 0)T } is 0.0025.
Now, suppose that we are given a data set T = {(x1, z1), . . . , (xN , zN )} consisting of feature

vectors x paired with class indicator vectors z. Suppose that want to model the probability that
feature vector x belongs to class Ck. (In choice model terms this is the probability that Ck is the
chosen brand for feature vector x describing customer, brand and situation.) This can be done
using a function f(x|θ) = (f1(x|θ), . . . fK(x|θ))T . The k-th component of f models the probability
pk(x) that x belongs to class Ck, or, equivalent, the conditional probability of Ck given x:

fk(x|θ) = pk(x) = P (Ck|x) = P (zk = 1|x).

f is parameterized by vector θ. Substituting f in (4) and negating gives a cost function

E(T |θ) = −
N

∑

n=1

K
∑

k=1

znk log fk(xn|θ), (5)

known as the cross-entropy, multinomial deviance or negative multinomial log-likelihood, that can
be minimized as a function of θ. The maximum likelihood estimate for θ is thus

θ̂ = arg min
θ

E(T |θ). (6)

For classifiers that (may) give crisp classifications cost function (5) easily leads to numerical
problems: If the model incorrectly assigns probability 0 (or something close to 0) to the target
class in one of the test patterns, the term corresponding to this test pattern in the cross-entropy
function will be either undefined or cause an overflow. For these classifiers, cost function (1)
is more appropriate. Nevertheless we use cost function (5) alongside cost function (1) in our
model evaluations throughout this paper whenever possible due to the fact that it is the most
predominant cost function in the brand choice literature.

1The multinomial distribution with parameters (n,p) is given by

P (z) = C(n; z)
K

Y

k=1

p
zk

k
,

where C(n; z) = n!/
Q

K

k=1
zk! is the multinomial coefficient, which reduces to 1 for n = 1.
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Figure 3: Classification of a CART model and a logistic regression model. Total dataset (l)
and decision boundaries implemented by logistic regression (c) and CART (r). The implemented
decision boundaries are shown as thin lines, the true boundaries as solid lines.

2.1 Logistic regression

It would be nice if f had some properties that make it possible to interpret the components as
probabilities: The components should always sum to 1 and they should always be in the interval
[0; 1]. These properties are satisfied when

fk(x|θ) =
exp(wT

k x)
∑

k′ exp(wT
k′x)

. (7)

Here, θ is partitioned into K parameter vectors θ = (w1,w2, . . . ,wK), one for each class, or brand.
(It is assumed here that x0 takes a constant value so there is no need for explicit intercepts.) Each
parameter vector is used to form a linear combination of the input features. This model is known
as logistic regression. The decision boundaries between any two classes a and b in the feature
space are linear, because they are separated by the hyper-plane (wa −wb)

T x = 0, as can be seen
as follows:

fa(x|θ)
fb(x|θ)

= 1 ⇐⇒ log
fa(x|θ)
fb(x|θ)

= log 1 ⇐⇒ (wa −wb)
T x = 0. (8)

In customer choice modeling, related models called the multinomial logit model and the conditional
logit model are often used but these models make the often unrealistic ‘independence of irrelevant
alternatives’ assumption [29, 12].

2.2 CART

Instead of using a linear combination of features such as in (7) we could also use a function defined
on a rectangular partition of the feature space, induced by a so-called decision tree. For instance,
if we have two features x1 and x2, the classification tree of Figure 4 splits the feature space into
five non-overlapping rectangular regions R1, . . . , R5. Here, a binary split of the form xi ≤ c splits
a region into two subregions, one with xi ≤ c (go left in the tree) and one with xi > c ( go right
in the tree). Thus, a classification tree θ splits the feature space recursively by binary splits into a
number of rectangular regions R1, . . . , Rm. If pik is some estimate of the probability that a data
point in region Ri will have class label Ck, then the tree model can be written as

fk(x|θ) =
m

∑

i=1

pikχRi
(x), (9)

where χA(x) is the set-indicator function defined by χA(x) = 1 if x ∈ A and 0 if not. A well-
known algorithm for generating a classification tree on the basis of a data set is CART [8]. A
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Figure 4: A classification tree (l), and a partitioning of the feature space.

variant of this algorithm produces so-called regression trees, which will be used in this paper in
the logitboost algorithm.

An example of a classification problem modeled with logistic regression and a CART decision
tree is shown in Figure 3. Here, we see uniformly distributed data in the (x, y) plane belonging to
class red, green or blue. It is clear that the logistic regression model is unable to cope with the
nonlinear decision boundaries while the CART model approximates these boundaries reasonably
well.

3 Ensemble methods for classification

Although decision trees are good at approximating nonlinear decision boundaries, they are also
instable: the implemented decision boundaries depend heavily on the composition of the training
set. A small difference in the composition of two training sets may lead to a large difference
in implemented functions for these training sets. Instability adds to the error of a model when
making predictions on new data: when two models disagree on a prediction, at least one of them
must be wrong.

As will become clear in Section 5, it is reasonable to expect that ‘averaging’ predictions over
models fitted on different datasets lowers the prediction error. But how to aggregate over different
datasets if the joint distribution Px,z of x and z is known only to mother nature but not to us?
In practice, all we have is a single dataset that was sampled from this distribution.

Below we describe two frequently used ensemble methods, bagging and boosting, that generate
an approximate aggregated model. We subsequently apply these methods to consumer choice
modeling in Section 4.

3.1 Bagging

Bagging, due to Breiman [4], is an acronym for bootstrap aggregating. It uses bootstrapping to
create an aggregated model: given a dataset T , a number of so-called bootstrap datasets T1, T2, . . .
are created by sampling from T with replacement. The Tt all have the same size as T . T1, T2, . . . are
called bootstrap samples from T . A bootstrap sample Tt may contain some patterns (observations,
instances, cases) in T multiple times, whereas others are not included. The idea of the bootstrap is
that sampling from the actual dataset T is the best possible approximation for sampling from the
unknown distribution Px,z. For each bootstrap sample Tt a model fTt

is trained and these models
are ‘averaged’ to form the aggregated model, also called ‘bagged model’. The way in which this
averaging is done depends on the loss function that is used. For classification under 0− 1 loss it is
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done by ‘voting’ — finding the most frequently predicted class among the individual models. For
classification under cross-entropy loss or for regression it is just plain averaging. Section 5 pays
more attention to this.

Breiman [4] reports that the classification error is reduced by 20% to 46% for a collection of
test problems by using the bagged model instead of the original model.

Wagging [2] is an interesting variant of bagging where, instead of sampling the original training
set by means of the bootstrap, new random weights are assigned to the patterns in the original
training set in each iteration. For each weighted version of the dataset a separate model is built
where the influence of each pattern on the error function is determined by its relative weight: The
larger the weight, the larger the influence. This requires that the individual models are able to
cope with pattern weights, but for most model types this is not a problem. Based on a statistical
argument, Webb [34] suggests to generate these weights using the formula w = − log r/1000 where
r is a random integer in the range 1, . . . , 999. We use wagging below together with a second
ensemble technique, boosting, in the ‘MultiBoost’ method.

3.2 Boosting

The second ensemble method we consider is called boosting, due to Freund and Schapire [14, 13,
30]. Boosting has received great praise in the machine learning, computer science and statistics
communities. The inventors have received the prestigious ACM Gödel prize for it in 2003, and
the method was referred to as ‘one of the most powerful learning methods introduced in the last
ten years’ by Hastie, Tibshirani and Friedman in [20]. Boosting is sometimes called arcing in the
literature [5, 6].

The general idea of boosting is to create a sequence of models, where each model is trained on
a re-weighted version of the original dataset. Each training example in the dataset is assigned a
weight and these weights are dynamically adjusted: when the model in a certain iteration makes
an error in the classification of the n-th training pattern, the weight associated with this pattern
is increased. This causes the model in the next iteration to focus on the patterns that were
misclassified earlier. Continuing this way, an ensemble of models is created. The classifications
of this ensemble are subsequently combined to form the final classifier. In the original boosting
algorithm, AdaBoost, this is done using a weighted majority vote. However Breiman [5] showed
experimental results suggesting that the weighted vote at the end of the boosting algorithm is not
essential for the success of the boosting algorithm.

The original boosting algorithm, AdaBoost [14, 13], is intended for classifiers with zero-one
error loss. In this section, we first describe AdaBoost, and then describe a similar algorithm,
LogitBoost, which yields a classifier that gives class probability estimates. LogitBoost is due to
Friedman, Hastie and Tibshirani [25]. Finally we consider an algorithm called ‘MultiBoost’ which
combines boosting with bagging. This algorithm is due to Webb [34].

3.2.1 AdaBoost

As stated, AdaBoost [14, 13] is the original boosting algorithm. It is intended for ‘crisp’ classifiers
delivering merely a class prediction rather than class probability estimates, i.e. assigning all the
probability to one class. The description below is due to Breiman [6, 7]. The algorithm uses case
weights wi, i = 1, . . . , N .

7



AdaBoost [14, 13], ARC-FS [6, 7]

1. At the m-th step, using the current weights wi,m, sample with replacement from T
to get the training set Tm and construct classifier fm using Tm.

2. Run T down the classifier fm and let d(i) = 1 if the i-th case xi is classified incorrectly,
0 otherwise.

3. Define
εm =

∑

i

wi,md(n), βm = (1− εm)/εm,

and update the weights

wi,m+1 = wi,mβd(i)
m /

∑

i

wi,mβd(i)
m .

4. After M steps, the f1, . . . , fM are combined using weighted voting with fm having
weight log(βm).

This algorithm has shown to work well on a plethora of problem domains [31, 13, 2, 9].

3.2.2 LogitBoost

Despite the empirical success of AdaBoost, it was poorly understood in terms of traditional statis-
tical models until Friedman, Hastie and Tibshirani showed there is a clear connection to additive
logistic regression. In their paper ‘Additive Logistic Regression: a Statistical View of Boosting’
[25] they showed that AdaBoost is essentially a Newton-like minimization procedure for a cost
function that is similar (but not identical) to the cross-entropy error function, thus maximizing
the log-likelihood. This fact prompted them to derive an algorithm for direct (quasi) Newton-
minimization of the cross-entropy. The resulting algorithm was called ‘LogitBoost’ and is given
below.

LogitBoost creates the ensemble on the level of the logit transform of the class probabilities,
and thus it uses a regression model as the base model. More precisely, the logistic transform is
given by

pk(x) =
eGk(x)

∑K
k=1 eGk(x)

, (10)

and its inverse, the logit transform, is given by

Gk(x) = log pk(x)− 1

K

K
∑

j=1

log . (11)

The combined model Gk(x) is formed by combining a number of base models on the level of the
logit transform

Gk(x) =
∑

m

gmk(x), (12)

hence the name LogitBoost.

8



LogitBoost (K-classes) [25]

1. Start with weights wik = 1/N, i = 1, . . . , N, k = 1, . . . ,K,Gk(x) = 0 and pk(x) =
1/K ∀k.

2. Repeat for m = 1, 2, . . . ,M :

(a) Repeat for k = 1, . . . ,K:

• Compute working responses and weights in the k-th class, for 1 ≤ i ≤ N

wik = pk(xi)(1− pk(xi))

rik = (zik − pk(xi))/wik

• Fit the function gmk(x) by a weighted least squares regression of rik to xi

with weights wik, 1 ≤ i ≤ N .

(b) Set gmk(x)← K−1
K

(gmk(x)− 1
K

∑K
k=1 gmk(x)), and Gk(x)← Gk(x) + gmk(x)).

(c) Update pk(x) via (10).

3. Output the classifier arg maxk Gk(x).

To prevent confusion with earlier classifiers f that estimated class probabilities, we have des-
ignated the combined regression model G and the individual models g.

3.2.3 MultiBoost

The MultiBoost method (due to Webb [34]) combines bagging with boosting: boosting is applied
to a number of bootstrapped versions of the original dataset. Webb uses wagging instead of
ordinary bagging together with the AdaBoost algorithm. In our experimental results below, we
combine wagging with the LogitBoost algorithm. The total number M of models in the ensemble
(i.e. the sum of all models in the separate ‘boosted’ committees) is taken as an input parameter
to the MultiBoost algorithm. Webb suggests to set the number of boosted committees and the
number of models in each committee to d

√
Me and we follow this approach. We thus use the

following procedure:

MultiBoost [34]

1. For m = 1, . . . , d
√

Me

• Create a ‘wagged’ dataset Tm from the training set T ,

• Apply the LogitBoost algorithm to Tm for d
√

Me iterations. This gives classifier
f b

m,

2. Combine the classifiers f b
1 , . . . , f b

d
√

Me using unweighted voting.

It is important to distinguish between the weights used in the wagged dataset and the weights
used internally in the LogitBoost algorithm. These weights are be multiplied in the LogitBoost
algorithm.

The rationale behind the combination of bagging and boosting is that there is reason to believe
that both methods work by a different mechanism: Bagging reduces variance while Boosting
reduces bias and variance. (Section 5 will discuss bias and variance in more detail.) Because of
the complementary nature of these methods it makes sense to use them combined.
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4 Experiments and results

In this section we report on the experiments we performed and the results we obtained.

4.1 Data

We analyzed sales data for two product categories in the well-known ERIM database [18]: ketchup
and peanut butter. We used both situational and demographic variables as input (independent)
variables, brand name as the target (dependent) variable. Thus, we included the following variables
in our datasets:

1. Day of the week,

2. loyalty for all brands,

3. reference price for all brands,

4. prices of all brands,

5. display for all brands,

6. ad for all brands,

7. household income,

8. household size,

9. brand chosen (target or dependent variable).

In total, we use 3 + 5K input features (independent variables), where K is the number of
brands/products.

Loyalty lhk
t measures the loyalty of a specific household h towards a specific brand k at time

t, and thus captures historical purchase behavior. It is computed by exponentially smoothing
past purchases yhk

t (1 if brand k is bought, 0 else) for each household h and brand k at purchase
occasion t (as proposed in [19]):

lhk
t = αlhk

t−1 + (1− α)yhk
t−1,

where α is a smoothing parameter for which we used the value 0.15.
The reference price [36, 27] represents the expectation household h has of the price of brand k

at shopping occasion t. We compute this by exponentially smoothing prices for all brands during
previous shopping occasions of household h with smoothing parameter α = 0.15.

Following [23], we only incorporated households making at least 10 purchases of the selected
brands. The first 4 purchases of each household were used to initialize the reference price- and
loyalty variables.

In the case of the ketchup database, we included the three most frequently sold brands of
the most frequently bought package size (32000 grams) in our analyses: Heinz ketchup, Hunt’s
ketchup pls&gls, Del Monte catsup. These three brands have a 55% market share including all
other package sizes and a 83% market share within the 32000 grams segment. In the case of
the peanut butter data, we used the 6 most frequently sold brands for the most frequently sold
package size (18000 grams): Peter Pan crm h, Skippy crm h, Jif crm h, Peter Pan chk h, Skippy
chk super h, Jif chk h. These six brands have a 41% market share including all other package
sizes and a 67% market share within the 18000 grams segment. Statistics on both datasets are
given in Table 1. We have the impression that the resulting data are rather noisy, but we did
not attempt to improve data quality. The resulting datasets can be downloaded from http:

//www.few.eur.nl/few/people/mvanwezel/ecc.html.
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Peanut Butter (6841 purchases)
Categorical

dayofweek 1:761 2:875 3:755 4:745 5:935 6:1200 7:1570
choice.of.brand (target) B1:2177 B2:1042 B3:1203 B4:1087 B5:742 B6:590

Numerical
loyaltybrand1 0 0 0.0190 0.3177 0.8530 1

reference.price.brand1 100.4 155.3 167 167.3 175.9 278.2
pricebrand1 95.92 159 169.98 171.17 181 290.00

displaybrand1 0 0 0 0.06841 0 1
adbrand1 0 0 0 0.1156 0 1

loyaltybrand2 0 0 0 0.1518 0.0220 1
reference.price.brand2 109.1 163.1 169.1 172.7 176.7 287.6

pricebrand2 106.3 163.6 171.6 175.6 180.4 296.0
displaybrand2 0 0 0 0.03552 0 1

adbrand2 0 0 0 0.08434 0 1
loyaltybrand3 0 0 0 0.1783 0.1280 1

reference.price.brand3 108.8 167.6 173.5 177 178.8 230.4
pricebrand3 106.3 169 175 180.2 189 266.6

displaybrand3 0 0 0 0.01038 0 1
adbrand3 0 0 0 0.03040 0 1

loyaltybrand4 0 0 0 0.1594 0.1280 1
reference.price.brand4 101.7 158.3 168.7 170.1 177.7 512.7

pricebrand4 98.61 159 173.43 173.42 185 521.00
displaybrand4 0 0 0 0.0671 0 1

adbrand4 0 0 0 0.1126 0 1
loyaltybrand5 0 0 0 0.1066 0 1

reference.price.brand5 108.5 162 169.2 173.2 177.3 580.5
pricebrand5 106.3 163 172 175.9 180.5 590

displaybrand5 0 0 0 0.03567 0 1
adbrand5 0 0 0 0.08376 0 1

loyaltybrand6 0 0 0 0.08627 0 1
reference.price.brand6 108.7 167.7 173.7 178.5 180.4 1008.1

pricebrand6 106.3 169 175 181.7 189 1109.0
displaybrand6 0 0 0 0.01359 0 1

adbrand6 0 0 0 0.03040 0 1
householdincome 1 5 6 6.373 8 14

numberofmembersinhousehold 1 2 4 3.517 4 8
Ketchup (7714 purchases)

Categorical
dayofweek 1:891 2:776 3:755 4:906 5:1178 6:1417 7:1791

choice.of.brand (target) brand1:4765 brand2:1751 brand3:1198
Numerical

loyaltybrand1 0 0.0220 0.8700 0.6062 1 1
reference.price.brand1 64.84 106.35 115.98 116.24 125.51 186.54

pricebrand1 55.53 101.70 115.56 114.81 119.63 193.80
displaybrand1 0 0 0 0.0757 0 1

adbrand1 0 0 0 0.2633 1 1
loyaltybrand2 0 0 0.0030 0.2367 0.1500 1

reference.price.brand2 66.20 98.88 109.73 114.17 123.77 313.24
pricebrand2 61.33 99 109 114.14 124.18 349.16

displaybrand2 0 0 0 0.0805 0 1
adbrand2 0 0 0 0.09891 0 1

loyaltybrand3 0 0 0 0.1572 0.1280 1
reference.price.brand3 67.99 97.03 109 115.05 133.09 528.53

pricebrand3 50 93.48 109 114.22 130.50 597
displaybrand3 0 0 0 0.04926 0 1

adbrand3 0 0 0 0.0914 0 1
householdincome 0 5 6 6.153 8 14

numberofmembersinhousehold 1 3 4 4.004 5 8

Table 1: Statistics on both datasets. For categorical variables the number of purchases per level
is given, for numerical variables, the minimum, 1st quantile, median, mean, 3rd quantile and
maximum, in that order.
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4.2 Experimental setup

In our experiments we compare the performance on the above datasets for the following classifiers:
a logistic regression model (lrg), CART, bagged versions of lrg and CART, boosted CART using
LogitBoost, and finally multiboosted CART using wagging and LogitBoost. We used the public
domain statistics software package R [33] for our experiments. R includes a package for CART
trees, rpart – the ensemble methods were programmed by ourselves.

In our experiments we used 2-fold cross validation to obtain an estimate of the prediction error
of the models. For each of the 2 folds we performed 25 runs. In each run, one classifier of each type
was fitted using a bootstrapped version of the training data (1/2 of the total dataset). However,
the first of these 25 datasets was taken to be the full (non-resampled) version of the training data,
i.e., the full dataset excluding one fold.

The model-specific parameter values we used were as follows:

• In the CART-model we used complexity parameter cp = 0. This means that no regularization
was used in building the CART tree. The maxdepth parameter, controlling the maximum
tree depth, was set to 6. The xval parameter, controlling the number of cross-validation
folds within the training set used in the pruning phase of the CART algorithm, was set
to 10. These parameters were found to produce relatively good trees in a series of earlier
experiments.

• In the bagged models, we used 49 bootstrapped replicates of the training part of the original
dataset. We also included the full training part of the original dataset, making a total of
50 datasets. The base model parameters were identical to the case in which were they were
separately applied.

• In the boosted models we used 50 iterations of the LogitBoost algorithm. The base model
parameters were identical to the case were they were separately applied.

• In the experiments with the MultiBoost algorithm, we used 8 wagged datasets to each of
which we applied 8 iterations of the LogitBoost algorithm.

4.3 Results

In this section we present the results of our analyses. We primarily look at the prediction errors
we obtained. We purposely do not give the training errors for all methods, since a data analyst is
primarily interested in out-of-sample performance of the models and a low training error gives no
guarantee for a low test error.

Table 2 gives statistics on the cross-entropy and zero-one prediction errors for the ketchup and
peanut butter datasets based on 25 runs. In each run, a bootstrap replicate of the dataset was
created to build to model, as described in Section 4.2.

We first consider the results for the ketchup data. The best performing model here is the
multiboosted CART model, with a an error rate of 21.60%, closely followed by the boosted CART
model 21.77%. The bagged CART model also performs well (23.79%). The ‘standard model’, the
logistic regression model, achieves a prediction error of 25.02% and thus the relative performance
loss with respect to the multiboosted CART model is approximately 16%.

For the peanut butter data the bagged CART model performs best (43.88%). The multiboosted
CART model (44.23%) performs slightly worse. The logistic regression model (45.85%) performs
worse, but only by a 4.5% margin for this dataset. It is interesting to note that the application
of ensemble learning has brought a substantial improvement for CART: individual CART models
have an average prediction error of 53.34%, which is reduced down to 43.88% by bagging – A
reduction of approximately 18%.

Note that many of the cross-entropy errors are unspecified (-). This is due to the problem with
the cross-entropy error function we mentioned before: If the model incorrectly assigns probability
0 (or something close to 0) to the target class in one of the test patterns, the term corresponding
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lrg bag lgr CART bag CART boost CART MultiBoost CART

Cross entropy prediction errors

Ketchup
mean 4827.94 4818.66 - 4775.07 25399.37 5530.97

sd 23.90 18.54 - 64.09 468.66 123.15
min 4773.73 4771.04 - 4674.08 24587.33 5008.88
max 4893.55 4851.43 - 4923.89 26383.30 5659.41

Peanut butter
mean - 8770.89 - - 45196.12 10982.26

sd - 89.46 - - 595.65 178.91
min 8870.26 8512.31 - 7876.27 43996.25 10382.69
max - 8909.75 - - 46174.20 11323.71

Zero-one loss prediction errors

Ketchup
mean 25.02 25.06 24.57 23.79 21.77 21.60

sd 0.19 0.19 0.58 0.56 0.28 0.28
min 24.63 24.67 23.79 23.14 21.09 20.87
max 25.33 25.49 25.95 25.10 22.21 22.21

Peanut butter
mean 45.85 45.82 51.86 43.88 44.92 44.23

sd 0.27 0.26 0.94 0.49 0.38 0.43
min 45.26 45.26 48.79 42.60 44.16 43.34
max 46.35 46.40 53.34 44.76 45.74 44.98

Table 2: Cross-entropy and zero-one error statistics on test data based on 25 runs. The test errors
were obtained by 2-fold cross-validation.

to this test pattern in the cross-entropy function will be either undefined or cause an overflow. In
these cases, we placed a - symbol in the corresponding table entry.

We tested the statistical significance of these results by means of the non-parametric Wilcoxon
signed rank test. The results are shown in Table 3. Note from this table that ensemble learning
always yields a significant improvement, except when applied to the logistic regression model.
This is not surprising when we realize that ensemble learning creates a linear combination of ‘base
models’. Since a linear combination of linear models is still linear, ensemble learning is useless for
linear base models. This issue will be discussed further in Section 5 below, when we discuss bias
and variance.

Besides predictive performance, interpretability of a model is an important feature for the
marketeer. The logistic regression model is interpreted in the usual way by studying its param-
eters. CART yields highly interpretable decision trees. Moreover, several useful tools exist for
interpreting a fitted CART model [8]:

Relative importance plots, that visualize how important the various independent variables are
relative to one another in predicting the dependent variable and,

partial dependence plots, that visualize the partial dependence of the implemented function
on a subset of the independent variables.

Both the logistic regression parameters and two typical CART trees are shown in Appendix B.
Unfortunately, our software did not facilitate the creation of relative importance plots and partial
dependence plots, so we did not include them in this paper. (The emphasis in this paper is on
performance, not interpretability.)

Interpretation of combined CART trees is not as straightforward as for a single CART tree.
Luckily, relative importance plots and partial dependence plots are easily obtained for ensembles
of CART trees as well by averaging over the individual models. See [16, 20]. Again, the software
we used did not support making these graphs, so they are not included in this paper.
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Model A Model B p begin 95% ci sign. at p=0.05?

Ketchup
lrg baglrg 0.7232 -0.1425320 NO
lrg CART 5.193e-05 0.3888138 YES
lrg bagCART 1.276e-08 1.179635 YES
lrg boostCART 7.034e-10 3.111195 YES
lrg multiboostCART 6.996e-10 3.292745 YES
CART bagCART 2.604e-05 0.557346 YES
CART boostCART 7.053e-10 2.501971 YES
CART multiboostCART 7.015e-10 2.683422 YES

Peanut Butter
lrg baglrg 0.2898 -0.0877093 NO
lrg CART 1 -6.417144 NO
lrg bagCART 6.983e-10 1.754168 YES
lrg boostCART 2.718e-09 0.7601356 YES
lrg multiboostCART 6.99e-10 1.417870 YES
CART bagCART 7.053e-10 7.674369 YES
CART boostCART 7.053e-10 6.63648 YES
CART multiboostCART 7.059e-10 7.338164 YES

Table 3: Outcomes of Wilcoxon signed rank test for the null hypothesis ‘mean error Model A =
mean error Model B’ versus the alternative hypothesis ‘mean error Model A > mean error Model
B’. The column ‘begin 95% ci’ gives the improvement that Model B gives over Model A at the 5%
confidence level.

It is interesting to investigate the so-called ‘confusion matrices’ yielded by the various classifiers
in typical runs. These matrices depict the number of instances for each predicted brand / chosen
brand combination, see Figure 5.

When we consider the confusion matrices for the peanut butter data we note that in general
the within-category confusion among the creamy peanut butters (brands 1, 2 and 3, Peter Pan
crm h, Skippy crm h, Jif crm h) and the chucked peanut butters (brands 4, 5, and 6, Peter Pan
chk h, Skippy chk super h, Jif chk h) is smaller than the confusion between peanut butters of the
two categories. However, the models are also likely to confuse two types of peanut butter from the
same manufacturer, e.g., brands 2 (Skippy crm h) and 5 (Skippy chk super h) are more likely to be
confused than e.g. brands 2 and 6 (Jif chk h). (We consider each product to be a separate brand
here. Alternatively we might call two brands from one manufacturer two variants of a brand.)

Applying ensemble learning almost always improves the prediction error of the base learner,
thus raising the elements the diagonal of the confusion matrix. If a diagonal element has increased,
the sum of the other elements in a column must be lower since the total sum always equals the
number of purchases of the brand represented by the column. One would expect all off diagonal
elements to contribute to this reduction, but this not true in the case of the peanut butter data.

For example, when we consider the confusion matrices for CART and the multiboosted version
of CART (which reduced the prediction error from 51.9% down to 44.2%) we see that the confusion
between two brands from the same manufacturer has almost always increased. More precisely, the
probability that the model correctly predicts the brand bought increases, but the probability that
the model falsely predicts the other brand from the same manufacturer also increases! This is
true for all but one pairs of related brands – Skippy crm h and Skippy chk super h, Jif crm h and
Jif chk h, etcetera, except for one pair: Peter Pan crm h and Peter Pan chk h. Figure 6 shows
the difference between the confusions of multiboosted CART and CART and thus indicates where
the improved predictions (positive values on the diagonal) originate. Admittedly, this effect is less
pronounced for the other ensemble methods, but is is still present.

Now, the question comes up for what type of individual purchases ensemble learning offers
improvement. It turns out that these are to a large extent the purchases on which the individual
CART models disagree. The theory behind this will be given in the next section, but it is instruc-
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"Logistic regression"
[B1] [B2] [B3] [B1] [B2] [B3] [B4] [B5] [B6]

[B1] 4219 618 380 [B1] 1447 260 238 322 60 47
[B2] 334 944 171 [B2] 191 476 111 50 127 23
[B3] 212 189 647 [B3] 207 105 707 29 21 93

[B4] 261 46 39 490 135 103
[B5] 40 136 21 122 351 50
[B6] 31 19 87 74 48 274

"Bagged logistic regression"
[B1] [B2] [B3] [B1] [B2] [B3] [B4] [B5] [B6]

[B1] 4218 617 378 [B1] 1448 264 234 324 61 46
[B2] 336 947 174 [B2] 191 472 110 50 127 25
[B3] 211 187 646 [B3] 208 107 714 30 20 91

[B4] 261 44 35 483 134 99
[B5] 40 137 23 125 351 52
[B6] 29 18 87 75 49 277

"CART"
[B1] [B2] [B3] [B1] [B2] [B3] [B4] [B5] [B6]

[B1] 4257 614 326 [B1] 1395 266 275 318 88 71
[B2] 383 999 298 [B2] 216 443 117 57 101 28
[B3] 125 138 574 [B3] 218 119 668 56 25 88

[B4] 270 76 60 427 151 107
[B5] 49 115 28 152 330 64
[B6] 29 23 55 77 47 232

"Bagged CART"
[B1] [B2] [B3] [B1] [B2] [B3] [B4] [B5] [B6]

[B1] 4345 659 320 [B1] 1662 301 328 374 92 80
[B2] 291 974 272 [B2] 140 469 74 42 80 14
[B3] 129 118 606 [B3] 143 109 722 35 23 105

[B4] 184 32 23 448 128 97
[B5] 32 120 21 141 386 54
[B6] 16 11 35 47 33 240

"Boosted CART"
[B1] [B2] [B3] [B1] [B2] [B3] [B4] [B5] [B6]

[B1] 4353 588 299 [B1] 1567 258 283 363 81 64
[B2] 262 1004 169 [B2] 144 485 102 51 115 18
[B3] 150 159 730 [B3] 183 116 708 38 23 102

[B4] 216 58 25 464 132 101
[B5] 40 108 28 118 349 58
[B6] 27 17 57 53 42 247

"Multiboosted CART"
[B1] [B2] [B3] [B1] [B2] [B3] [B4] [B5] [B6]

[B1] 4336 558 281 [B1] 1585 258 276 356 79 65
[B2] 275 1029 178 [B2] 149 485 94 42 108 20
[B3] 154 164 739 [B3] 183 109 724 36 22 101

[B4] 206 49 21 458 133 96
[B5] 33 124 29 136 362 65
[B6] 21 17 59 59 38 243

Figure 5: Confusion matrices for ketchup data (l) and peanut butter data (r) for single runs of
all model types. These matrices show the number of instances for each ‘predicted brand’ versus
‘true brand’ combination. The row indices represent the predicted brand, the column indices the
true (‘target’) brand. The entries in the matrices always add up to the number of instances in the
dataset. Each instance is present exactly once – it is added when part of the test fold.

[B1] [B2] [B3] [B4] [B5] [B6]
[B1] 190 -8 1 38 -9 -6
[B2] -67 42 -23 -15 7 -8
[B3] -35 -10 56 -20 -3 13
[B4] -64 -27 -39 31 -18 -11
[B5] -16 9 1 -16 32 1
[B6] -8 -6 4 -18 -9 11

Figure 6: Difference in confusions between CART and multiboosted CART.
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Proportion of CART predictions
purchase B1 B2 B3 B4 B5 B6 CART Bagged CART True

318 0 0 0.04 0.08 0.88 0 B5 B5 B1
319 0.2 0.24 0 0.28 0.28 0 B4 B1 B1
320 0.6 0.16 0.04 0.16 0.04 0 B1 B1 B4
321 0.68 0 0.08 0.2 0.04 0 B4 B1 B1
322 0.56 0.12 0 0.24 0.08 0 B2 B1 B1
323 0.56 0.16 0.08 0.16 0.04 0 B2 B1 B5
324 0 0 1 0 0 0 B3 B3 B3
325 0 0 1 0 0 0 B3 B3 B3
326 0.16 0 0.84 0 0 0 B3 B3 B3
327 0 0 1 0 0 0 B3 B3 B3
328 0 0 1 0 0 0 B3 B3 B3
329 0 0 1 0 0 0 B3 B3 B3
330 0 0 1 0 0 0 B3 B3 B1
331 0.2 0.08 0.64 0.08 0 0 B2 B3 B3
332 0.52 0.04 0.4 0 0 0.04 B6 B3 B3
333 0.08 0.04 0.84 0 0 0.04 B1 B3 B3
334 0.2 0 0.76 0 0 0.04 B3 B3 B3
335 0 0 1 0 0 0 B3 B3 B3
336 0 0 1 0 0 0 B3 B3 B3
337 0 0 1 0 0 0 B3 B3 B3
338 0 0 0.88 0 0 0.12 B6 B3 B3

Table 4: For what kind of purchases does bagged CART improve CART? In the left part of this
table we see proportions of predicted brands over 25 individual CART models for a number of
instances from the peanut butter dataset. In the first column of the right part of the table we
see predictions generated by a single CART model, fitted on a bootstrapped version of the total
dataset. In the middle column of the right hand part, we see the predicted brands according to a
bagged CART model, and in the final column we see the brand that was purchased in reality (the
target brand). For a number of instances, the bagged CART model corrects the error made by
the individual CART model. (These predictions are typeset in bold.) These improvements tend
to concern instances where there is a fair amount of disagreement among the 25 original CART
models, as can be seen from the left hand part of the table. The quintessence here is that the
application of ensemble learning reduces the error that results from the between-model ambiguity.
We will consider this in more detail in Section 5. Ensemble learning improves CART specifically
for purchases the individual CART models disagree on.

tive to consider a number of these purchases as an example. Table 4 shows a part of the peanut
butter dataset and the improvements yielded by bagging a CART model. See the caption for an
explanation.

5 Why ensemble learning works – Bias and variance

In this section we will attempt to explain why ensemble learning works, using bias/variance de-
compositions of the prediction error. We will illustrate these concepts using the same sales data
we used in the preceding part of this paper. The theory that we summarize here is no new – was
developed mainly by Breiman [5] and James [26]. It is the first time though, that this theory is
applied to a brand choice problem.

As mentioned in Section 3, decision trees are examples of instable classifiers, where the imple-
mented decision boundaries are highly dependent on the composition of the training set. (Another
well-known example of an instable model is a neural network.) This instability contributes to the
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prediction error of the model. Now consider a linear model like logistic regression. This model
is much less flexible than, e.g. a neural network, and consequently its variance is much lower.
However, it may lack the flexibility to model the target function correctly. This ‘stiffness’, also
called bias, may also contribute to the prediction error of the model.

The total error may thus be decomposed as follows:

total error = irreducible error + bias + variance. (13)

The first term on the right hand side, the irreducible error, is due to the noise in the target
variable. In classification, this is the Bayes error, in regression it is the intrinsic noise on the
target. One can never improve a model by lowering this, but one can attempt to lower bias and
variance. However, reducing the bias of a model by adding a degree of freedom usually increases
the variance of the model. In minimizing the total error, a tradeoff has to be made between bias
and variance.

Bias and variance are well known concepts for squared error loss (see, e.g., [1]), and were
first applied to neural networks by Geman et. al. [17]. For other loss functions they have only
recently been defined [5, 26, 21], and there still exists some controversy about the most appropriate
definition. It is illustrative to consider the bias/variance decomposition for a squared error function
before turning to general loss functions.

5.1 Bias and variance for squared error loss

We explain the bias/variance dilemma along the lines of and using the notation of [5]. Suppose a
training set T = {(xn, yn)|n = 1, . . . , N} is given where the xn are multidimensional input vectors
and yn is the corresponding real valued target. y replaces the indicator vector z used earlier
since squared error loss is usually used with regression. y and f(x) are scalar, but generalization
to multiple targets is straightforward. Let f ∗(x) denote E[y|x]. The target variable y can be
decomposed as

y = f∗(x) + ε,

where ε is a zero mean noise term. Suppose we want to fit a model f (e.g., a neural net with
3 hidden neurons, regression tree) on T in an attempt to find a relation fT (x) between target
and input. The notation fT stresses the dependence on the specific dataset T . It is important to
distinguish between f , a general model class (e.g., a neural network with 3 hidden neurons), and
fT , a member of this model class fitted on T .

The prediction error of fT is

PE(fT ) = Ex,y[(y − fT (x))2].

Averaged over all possible training sets of size N , the prediction error of f(x) is

PE(f) = ET [PE(fT )].

Denote fA(x) = ET [fT (x)] – this is the predictor obtained by averaging predictors over all possible
training sets. We can then decompose the prediction error PE(f) as follows

PE(f) = ET [Ex,y[y − fT (x)]2] (14)

= ET [Ex,y[y − fA(x) + fA(x)− fT (x)]2] (15)

= ET [Ex,y[{y − fA(x)}2 + {fA(x)− fT (x)}2 + 2{y − fA(x)}{fA(x)− fT (x)}]]. (16)

The last term in the square brackets vanishes because ET [fT (x)] = fA(x). The remaining expres-
sion is thus

PE(f) = ET [Ex,y[{y − fA(x)}2 + {fA(x)− fT (x)}2]] (17)

= Ex,y[{y − fA(x)}2] + ET,x[{fA(x)− fT (x)}2] (18)
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the first term of which can be further decomposed in

Ex,y[{y − fA(x)}2] = Ex[{f∗(x)− fA(x) + ε}2] (19)

= Ex[{f∗(x)− fA(x)}2 + ε2 + 2ε(f∗(x)− fA(x))] (20)

= Ex[{f∗(x)− fA(x)}2] + E[ε2]. (21)

If we define the following quantities:

Bias(f) = Ex[{f∗(x)− fA(x)}2], (22)

Variance(f) = ET,x[{fT (x)− fA(x)}2], (23)

the prediction error PE(f) can be decomposed as in (13)

PE(f) = E[ε2] + Ex[{f∗(x)− fA(x)}2] + ET,x[{fT (x)− fA(x)}2] (24)

= irreducible error + Bias(f ) + Variance(f ). (25)

As an illustration of bias and variance, consider Figure 7. Here, we see an ensemble of five neural
networks2 and five linear models trained on 100 random samples from the function sin(x)/(1 +
x2) + ε, where ε is a noise term. The regression function sin(x)/(1 + x2) is shown as the bold
red line. The functions implemented by the five neural networks and linear models are shown as
the thin green and blue lines. The average models are shown as dotted blue and green lines. It
is clear that the linear model exhibits a high bias – the dashed blue line is very distant from the
regression – whereas the neural network has a low bias – the dashed green line is almost on top of
the target function. On the other hand, the average distance of an individual neural network – a
thin green line – to the regression is fairly large due to the variance of the model.

5.2 The bias/variance decomposition for general loss functions

Although the bias/variance decomposition for squared error loss is well known and easily obtained,
the approach cannot be directly applied to other loss functions, such as polynomial loss, zero-one
loss or cross entropy (5). The latter two are used in customer choice modeling. So, in order
to study the bias and variance of customer choice models we need a more general definition of
the bias/variance decomposition. Various authors have proposed bias/variance decompositions
for other loss functions than squared loss (see e.g., [5, 15, 32, 38, 21, 10, 26]), usually with an
emphasis on zero-one error loss.

Recently, James [26] published a review of earlier definitions and proposed a generalization of
the bias/variance decomposition for general symmetric loss functions (i.e., where L(a, b) = L(b, a)).
His generalized definitions satisfy the following desiderata (also given in [38, 21, 26]):

1. For squared error loss the generalized definitions should reduce to the original definitions,

2. The ‘variance’ must measure the variability of the estimator. Hence it must not depend on
the distribution of the target variable but only on the distribution of the estimator itself.
Furthermore it must be nonnegative and it must be zero if all estimators are equal.

3. The ‘bias’ must measure the difference between the ‘average model’ (fA above) and the
conditional expectation of the target.

James makes a distinction between the bias and variance of a model and their effects on the
prediction error, the systematic effect and the variance effect. He proposes an additive decompo-
sition of the prediction error into intrinsic noise, a systematic effect caused by the model’s bias,
and a variance effect caused by the model’s variance.

2We use neural networks instead of decision trees here because this example was readily available to us and
serves the purpose well.
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Figure 7: Illustration of bias and variance for in regression problem. See text for more explanation.
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Tibshirani [32] earlier proposed an additive decomposition of the prediction error for various
loss functions used in classification (i.e., zero-one loss, squared error and cross-entropy) that is
identical to the decomposition proposed in [26]. Although James restricts the applicability of his
decomposition to symmetric loss functions, Tibshirani shows that the decomposition can also be
applied to cross-entropy.

In general terms the definitions of bias and variance and their effects proposed by Tibshirani
and James are as follows. Let

fA(x) = arg min
µ

ET [L(fT (x), µ)], (26)

denote the average model, and

f∗(x) = arg min
µ

Ey[L(y, µ)|x], (27)

denote the optimal model.
The bias and variance of a model are defined as

Bias(f) = Ex[L(f∗(x), fA(x)], (28)

Variance(f) = Ex,T [L(fT (x), fA(x))]. (29)

These definitions provide an additive decomposition for squared error loss, but not for general loss
functions. James defines the systematic effect SE and the variance effect VE of a model f as

SE(f) = Ey,x

[

L(y, fA(x))− L(y, f∗(x))
]

, (30)

VE(f) = Ey,x,T

[

L(y, fT (x))− L(y, fA(x))
]

. (31)

Now, the total prediction error PE(f) of model f can be written

PE(f) = ET [PE(fT )] (32)

= ET,x,y[L(fT (x), y)] (33)

= Ex,y[L(y, f∗(x))] + SE(f) + VE(f) (34)

= irreducible error + Systematic effect(f ) + Variance effect(f ). (35)

Some remarks about the systematic and variance effects are useful. For squared error loss the
variance and systematic effects are equivalent to the standard definitions of bias and variance
given above; The variance effect is 0 for the average model fA; The bias effect is 0 for the optimal
model f∗; For convex loss functions

Ex,y[L(y, fA(x))] ≤ ET,x,y[L(y, fT (x))] (36)

by Jensen’s inequality, so the variance effect is always positive. This means that the average model
fA has prediction error lower or equal3 to the original model f ; For non-convex loss functions
(such as zero-one loss) the variance effect may be negative and the average model may have higher
prediction error than the original model. For more details see [32].

There are a few problems in obtaining the above decomposition in practice. The first problem is
that the average model fA(x) is unknown and has to be estimated somehow. Above, we explained
how we estimate the average model by bagging and boosting in order to improve the prediction
error.

The second problem is that, for real datasets, the intrinsic noise Ex,y[L(y, f∗(x))] is also
unknown,4 whereas it is required for the decomposition and the calculation of the systematic
effect. This inherent noise can be estimated by examining the variability for neighboring input

3This does not mean that there is no dataset T ′ such that fT ′ has a lower prediction error than fA.
4James [26] shows bias/variance decompositions for a number of synthetic classification datasets where the

amount of intrinsic noise is known in order to illustrate his decomposition approach.
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vectors, as in [26]. Alternatively, the intrinsic noise can be assumed to be zero, as in [10]. However,
this leads to an overestimation of the systematic effect because any variability in the target variable
is added to it. In the decompositions described below, we are mainly interested in the variance
effect and do not care about overestimating the systematic effect, so we follow the latter approach.
Note that when this approach is used and a large systematic effect is found when using a very
flexible model, this is an indication that the data are very noisy.

Appendix A gives the bias/variance decompositions for the two classification loss functions
that we use in this paper: the cross entropy loss function and the zero-one loss function.

5.3 Bias variance decompositions for customer choice models

We decomposed the prediction errors for the various models that were used in Section 4. In these
decompositions, we made the unrealistic assumption that there is no intrinsic noise in the data,
i.e. that Ex,y[L(y, f∗(x))] = 0. This is no problem, however, since we are primarily interested in
the reduction of the variance effect and the systematic effect as a result of using ensemble methods.
The resulting decompositions are shown in Table 5.

Note that for the zero-one loss function there is no reduction in variance effect by using a
bagged logistic regression model instead of a single logistic regression model. As was explained
earlier, ensemble learning does not pay off for linear base models because a linear combination of
linear models is still linear. Logistic regression thus suffers from a high systematic effect (bias)
and a low variance.

For the ensemble versions of the CART model, on the other hand, we clearly see a reduction
of the variance effect: it is reduced from 8.62 to 1.57. Also note that the systematic effect of the
CART and bagged CART models is considerably lower than the systematic effect of the logistic
regression models. Together, logistic regression and CART nicely illustrate the bias/variance
tradeoff and how ensemble learning targets the variance component of the prediction error.

We would like to remark that the systematic effect we find is high for all model types. The
most likely explanation for this is the inclusion of the intrinsic noise term in the systematic effect.
By using better quality data and/or data from other domains, the intrinsic noise component might
be reduced substantially. The absolute improvement yielded by ensemble learning would remain
equal since it mainly reduces the variance effect. Thus, the relative improvement would increase
substantially making ensemble learning look more favorable. Many applications of ensemble learn-
ing have been reported in the literature where the performance gain is in the order of 30% to 50%
(see, e.g., [7]).

For the cross-entropy error function the decompositions are given for most models, but they
cannot be compared with the decomposition for CART because the latter is missing due to numeri-
cal instability. Also, the cross-entropy errors for the ensemble CART models are greater than those
for logistic regression, although the former models outperform the latter one in terms of zero-one
loss. This inconsistency can also be attributed to the numerical instability of the cross-entropy
loss function.

6 Summary, discussion and conclusions

In this paper we describe several ensemble learning methods from statistics and machine learning
and applied them to customer choice modeling. Ensemble methods combine the predictions of
several individual models into one combined prediction. The ensemble techniques we describe are
‘bagging’, ‘boosting’ and ‘multi-boosting’. It is argued that these methods work best when they
are applied to a ‘base model’ that is instable, i.e., for which the predictions depend heavily on the
data it is fitted on or the initial parameter configuration.

Several experiments were carried out using sales data derived from the well known ERIM
database, with logistic regression, CART and ensemble versions of these models. The data we
used concerned two product categories: ketchup, for which purchase data on three brands was
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lrg bag lrg CART bag CART boost CART MultiBoost CART

Cross entropy prediction errors

Ketchup
PE 4827.94 4818.66 - 4775.07 25399.37 5530.97
SE 4773.16 4766.20 - 4673.98 11383.78 4502.64
VE 54.78 52.46 - 101.08 14015.59 1028.33

Peanut butter
PE - 8770.89 - - 45196.12 10982.26
SE - 8443.52 - - 17824.94 8267.72
VE - 327.37 - - 27371.18 2714.53

Zero-one loss prediction errors

Ketchup
PE 25.02 25.06 24.57 23.79 21.77 21.60
SE 24.79 24.64 23.50 23.30 20.79 20.87
VE 0.23 0.42 1.07 0.49 0.98 0.73

Peanut butter
PE 45.85 45.82 51.86 43.88 44.92 44.23
SE 45.43 45.18 43.24 42.30 42.65 42.29
VE 0.41 0.64 8.62 1.57 2.27 1.95

Table 5: Bias-variance decompositions of the zero-one loss prediction errors reported in Table 2.
PE, SE and VE mean prediction error, systematic effect and variance effect respectively.

analyzed, and peanut butter, for which purchase data on six brands was analyzed. CART together
with ensemble learning always outperformed the other models.

As an explanation of the improvements, the bias/variance decomposition of the prediction
error was considered. This decomposition splits the prediction error in three parts: intrinsic noise,
systematic effect and variance effect. The first term is irreducible. The second term represents
the part of the error that is due to the inflexibility of the model, and the last term is due to the
sensitivity for the ‘training data’. Using a more flexible model usually reduces component two,
but increases component three. Ensemble models are believed to reduce component three, the
variance effect, while leaving the other components unaltered. A bias/variance decomposition of
the prediction errors obtained in the experiments was given.

It is useful to remark that the bias/variance decomposition may provide a tool for assessing
the correctness of a parametric model. With a parametric model we mean a model that is derived
from an underlying theory on a phenomenon. (An example of such a model is the multinomial
logit model for customer choice modeling proposed in [29]. This model was designed based on
a hypothesized nature of the decision process.) Such models tend to be more ‘rigid’, with fewer
parameters, than general data-mining models such as CART and neural networks. However, if the
bias/variance decomposition of such a parametric model reveals that it has a high bias (systematic
effect) compared to a more flexible model, this is an indication that the model is not an accurate
reflection of reality.

An interesting topic for further research to gain more insight into the problem domain of
customer choices, is determining what types of purchases (which values for the marketing variables)
lead to high variance among the models. In fact, the definitions of systematic effect and variance
effect are easily narrowed to a specific part of the feature space, so this should be easy to implement.

The improvement in the results we obtained in this paper by the application of the ensemble
methods is clearly noticeable, but not overwhelming. We feel that this may be due to the high
amount of noise in the data we used for our experiments. Many applications of ensemble learning
have been reported in the literature where the performance gain is in the order of 30% to 50%
(see, e.g., [7]). It is possible that a greater effect of ensemble learning will be observed when using
better quality data.

We would like to emphasize that the techniques we outlined in this paper are easy to implement
and that their applicability is very broad, i.e. they can be used in many problem domains with
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many model types. In our opinion the marketing science community could benefit from the
acquaintance with these methods.
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A Bias/variance decompositions for classification

In this appendix we give the bias/variance decompositions for two loss functions that are often
used inclassification problems: the cross entropy loss function and the zero-one loss function.

A.1 The bias/variance decomposition for cross entropy

The additive decomposition (35) can be applied to the cross-entropy loss function (among others)
in a straightforward manner. Recall that the loss function used in consumer response modeling is

L(z, f(x)) = −
∑

k

zk log fk(x), (37)

where the binary vector z = (z1, . . . , zK) is the target vector and f(x) = (f1(x), . . . , fK(x)) are
the class probabilities estimated by model f . To stress f ’s dependence on training set T we write
fT (x) = (f1|T (x), . . . , fK|T (x)). Because loss function (37) is convex, Jensen’s inequality holds
and aggregation can be expected to improve the prediction error.

The unknown average model, in this case given by

fA(x) = arg min
µ

ET [
∑

k

−fk|T (x) log(µk)], (38)

where µ = (µ1, . . . , µK) and
∑

µk = 1. The constraint
∑

µk = 1 follows from the fact that the µk

represent probabilities which have to sum to 1. In practice, the average model is estimated by an
average over a number (say M) of different datasets T1, T2, . . . , TM (Bootstrapped or re-weighted
dataset in the case of bagging and boosting respectively.) Then, we have

fA(x) ≈ arg min
µ

M
∑

t=1

K
∑

k=1

−fk|Tt
(x) log(µk). (39)

The Lagrangian for (39) is

L(µ, λ) =
∑

k

log(µk)
∑

t

−fk|Tt
(x) + λ(

∑

k

µk − 1), (40)

so the solution lies at

(

∇µ

∇λ

)

L(µ, λ) =











−∑

t f1|Tt
(x)/µ1 + λ

−
∑

t f2|Tt
(x)/µ2 + λ
...

∑

k µk − 1











= 0, (41)

which corresponds to µk =
∑

t fk|Tt
(x)/λ, where λ = M the number of terms in the summation

∑

t. This can easily be seen by realizing that
M
∑

t=1

K
∑

k=1

fk|Tt
(x) = M , since the probabilities of the

individual models sum to 1. Thus,

λ
∑

k

µk =
∑

t

∑

k

fk|Tt
(x),

which leads to λ = M . Summarizing, the average model fA
k (x) is just the average of the individual

models fk|T1
(x), fk|T2

(x), . . . .
The unknown ‘optimal model’ is defined as

f∗(x) = arg min
µ

Ez[L(µ, z)|x]. (42)

The error Ex,z[L(z, f∗(x))] of this classifier is irreducible and is caused by the ‘noise’ in the data.
Using these definitions it is straightforward to create a bias/variance decomposition using (30),

(31) and (34).
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A.2 The bias/variance decomposition for zero-one loss

For the zero-one loss function

L(z, f(x)) = I(arg max
i

zi, arg max
j

fj(x)) (43)

with I(a, b) = 1 if a 6= b, 0 otherwise,5 the average model is

fA(x) = arg min
µ

ET [L(µ, fT (x))]. (44)

One solution lies at

µk =

{

1 if k = arg mini ET [I(ki, arg maxj fj|T (x))],
0 otherwise.

(45)

This corresponds to ‘voting’ among the base classifiers.
The unknown ‘optimal model’, or Bayes classifier, is defined as

f∗(x) = arg min
µ

Ez[L(µ, z)|x]. (46)

The error Ex,z[L(z, f∗(x))] of this classifier is irreducible and is called the Bayes error rate.
Using these definitions it is straightforward to create a bias/variance decomposition using (30),

(31) and (34).

B Fitted Models

5We slightly redefine the 0 − 1 loss function to work with indicator vectors.
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Figure 8: CART models for ketchup (top) and peanut butter (bottom).
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Heinz Hunts Del Monte

intercept 86.35 -150.33 63.37
dayofweek = 1 12.50 -21.68 8.97
dayofweek = 2 12.40 -21.82 9.02
dayofweek = 3 12.74 -21.43 9.14
dayofweek = 4 12.84 -21.14 9.39
dayofweek = 5 12.40 -21.36 9.06
dayofweek = 6 12.32 -21.57 8.77
dayofweek = 7 12.38 -21.56 9.04
loyalty brand1 -97.46 170.84 -74.02

reference price brand1 -0.27 -0.28 -0.28
price brand1 -0.15 -0.12 -0.11

display brand1 0.39 -0.15 0.01
ad brand1 1.19 -0.65 -0.87

loyalty brand2 -99.03 171.71 -73.95
reference price brand2 0.36 0.37 0.36

price brand2 0.09 0.06 0.09
display brand2 -0.26 0.56 -0.23

ad brand2 -0.69 0.67 -0.64
loyalty brand3 -99.01 171.19 -72.54

reference price brand3 0.13 0.13 0.13
price brand3 -0.23 -0.22 -0.26

display brand3 0.23 -0.36 0.70
ad brand3 -0.63 -0.39 1.30

household income 0.03 -0.02 0.00
number household members -0.27 -0.21 -0.23

Table 6: Parameters for logistic regression model.
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B1 B2 B3 B4 B5 B6

intercept 0.33 0.47 -0.35 0.21 0.27 -0.70
dayofweek = 1 -0.28 0.08 -0.41 -0.04 -0.13 0.23
dayofweek = 2 -0.03 0.41 -0.55 0.09 0.23 -0.10
dayofweek = 3 0.19 0.35 -0.42 0.23 0.15 0.40
dayofweek = 4 0.01 0.33 0.02 0.06 0.43 0.43
dayofweek = 5 -0.01 0.10 -0.03 0.15 0.21 0.01
dayofweek = 6 0.07 0.33 -0.19 0.20 0.25 0.20
dayofweek = 7 0.02 0.20 -0.23 0.09 0.10 0.19
loyalty brand1 1.50 0.41 -0.04 0.10 -1.12 -1.48

reference price brand1 -0.08 -0.09 -0.09 -0.09 -0.09 -0.09
price brand1 -0.21 -0.17 -0.18 -0.18 -0.16 -0.17

display brand1 0.36 0.10 0.62 0.30 -0.41 0.36
ad brand1 0.55 0.20 0.46 0.48 -1.90 -0.06

loyalty brand2 0.42 1.75 0.23 -0.70 0.40 -1.08
reference price brand2 -0.28 -0.28 -0.30 -0.28 -0.27 -0.29

price brand2 0.03 0.00 0.04 0.03 0.00 0.04
display brand2 -0.30 0.89 0.05 0.72 0.01 -0.53

ad brand2 -0.61 -0.30 -1.05 0.03 1.24 -0.31
loyalty brand3 -0.05 0.07 2.14 -1.46 -1.67 0.16

reference price brand3 -0.07 -0.07 -0.05 -0.07 -0.08 -0.05
price brand3 0.05 0.05 0.02 0.06 0.06 0.02

display brand3 -1.98 -0.54 -0.57 4.41 -0.72 -0.53
ad brand3 -0.73 -0.31 0.64 -0.81 -0.12 0.98

loyalty brand4 0.15 -0.78 -1.50 1.25 0.44 0.15
reference price brand4 0.28 0.28 0.28 0.28 0.28 0.28

price brand4 0.01 0.01 0.01 -0.02 0.00 0.00
display brand4 0.47 0.06 -0.25 0.53 -0.21 -0.04

ad brand4 0.22 -0.60 -0.54 0.18 1.18 -0.29
loyalty brand5 -1.10 0.29 -1.60 0.39 1.71 -0.17

reference price brand5 0.05 0.04 0.05 0.04 0.05 0.05
price brand5 0.06 0.06 0.06 0.06 0.06 0.06

display brand5 0.35 -0.27 0.05 -0.73 0.69 -0.14
ad brand5 0.07 1.40 0.56 -0.45 -0.14 -0.88

loyalty brand6 -1.41 -1.23 0.41 0.19 0.09 2.13
reference price brand6 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03

price brand6 -0.09 -0.08 -0.10 -0.09 -0.09 -0.08
display brand6 1.31 0.65 1.22 -4.09 -0.40 1.17

ad brand6 0.03 -0.43 0.14 -0.43 0.22 0.09
household income 0.04 0.04 0.01 0.09 0.11 0.12

number household members -0.27 -0.26 -0.18 -0.30 -0.35 -0.35

Table 7: Parameters for logistic regression model (peanut butter data).
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