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1. Introduction

The increasing interconnection between computers has created a vision for Grids. Within these Grids, com-
puting resources such as processing power, storage space or applications are accessible to any participant. This
accessibility has major ramifications for organizations since they can reduce costs by outsourcing nonessential
elements of their IT infrastructure to various forms of service providers. Such emerging e-Utilities – providers
offering on-demand access to computing resources – enable organizations to perform computational jobs
spontaneously through other resources in the Grid that are not under the control of the (temporary) user (Fos-
ter et al., 2002).

Most Grid research has been devoted to the development of hard and software infrastructures so that
access to resources is dependable, consistent, pervasive and inexpensive (Foster and Kesselman, 2004). The
specification of open standards that defines the interactions between different computing resources across
organizational entities hallmarks a significant milestone in this development. With the Open Grid Service
Architecture (OGSA), which specifies fundamental middleware components for the Grid, the Grid Community
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has laid the foundation for future developments. OGSA defines computer and storage resources as well as net-
works, programs, databases and the like as services, i.e. network-enabled entities that provide some capability.
Using resources as service paves the road for interoperability among heterogeneous computing and application
environments (Foster et al., 2002). OGSA and one of its reference implementations, Globus Toolkit1, provide
the technical infrastructure for accessing computational services over the Grid. Computers equipped with a
Globus installation can easily access computational resources over the Grid, where access for the user is
transparent. Resource owners can become providers by offering their services using standardized interfaces
in a global directory. The global directory allocates the services to appropriate service consumers.

With the implementation of Grid middleware, institutional arrangements are becoming increasingly impor-
tant. In essence, current Grid middleware provides insufficient incentive to participate in the Grid. This lack of
incentive stems from the fact that most Grid middleware service directories employ batch algorithms which
determine the allocation based on either naive heuristics such as first-come first-serve or on idiosyncratic cost
functions (Buyya et al., 2002). From an economic point of view, however, these algorithms are harmful, as
they strive to maximize a system-wide performance objective such as throughput or mean response time rather
than maximize aggregate value. These batch algorithms can not guarantee that the buyers who value some
services will really receive them.

Market-based approaches are considered to work well in Grid settings. By assigning a value (also called
utility) to their service requests, users can reveal their relative urgency or costs to the service, which is subject
to service usage constraints. If the market mechanism is properly defined, users may be provided incentives to
express their true values for service requests and offers. This in turn marks the prerequisite for attaining an
efficient allocation of services, which maximizes the sum of aggregate valuations (Schnizler et al., 2005).

In recent times, the idea of incorporating market mechanisms into Grid technology has increasingly gained
attention. Among others, the proposals include the establishment of Open Grid Markets, where either idle or
all available resources can be traded (Shneidman et al., 2005; Lai, 2005). Despite this recent interest in market-
based approaches, research regarding market mechanisms for Grid resources remains in its infancy. The canon
of available market mechanisms only insufficiently copes with the requirements imposed by the Grid. This
paper seeks to supply the need for a market mechanism that is Grid-compatible and can thus be used for
resource management in federated environments such as an Open Grid Market.

The remainder of this paper is structured as follows: the economic properties which the proposed market
mechanism should satisfy are presented in Section 2. In Section 3, comparable efforts in designing mechanisms
for Grids and related domains are discussed. Since none of these mechanisms is directly applicable, Section 4
tailors a mechanism for the Grid. In Section 5, the proposed mechanism is evaluated according to the prop-
erties laid out in Section 2. Section 6 concludes with a brief summary and an outlook for future research.

2. Desirable properties and requirements

The objective of an adequate market mechanism for the Grid is the efficient and reliable provision of
resources to satisfy demand. Economic approaches explicitly assume that users act strategically in a way that
does not reveal their true valuations for resources aggregated in services. Incentive compatible mechanisms are
accordingly advantageous, as they encourage users to report their true valuations. This allows the mechanism
to maximize allocative efficiency (i.e. the sum of the individuals’ utilities).

A critical step in designing markets is to understand the nature of the trading object. This paper considers
services which respect resource functionalities (e.g. storage) and quality characteristics (e.g. size), dependencies
and time attributes. Relying on services instead of computational resources removes many technical problems.
For instance, the resource CPU may technically not be offered without an appropriate amount of hard disk
space on the same computer, while a computation service offering CPU cycles already includes the comple-
mentary resources. In the remainder of the paper, it is abstracted from those technical details by treating
resources and services as synonyms.

The following presents the design objectives and the Grid specific requirements for the market mechanism.
1 See http://www.globus.org/ for details.

http://www.globus.org/


                                                                     945
2.1. Design objectives

The theoretical basis for designing mechanisms has emerged from a branch of game theory called mecha-
nism design (Milgrom, 2004). Within the scope of practical mechanism design, the primary design objective is
to investigate a mechanism that has desirable properties. The following comprises common economic proper-
ties of a mechanism’s outcome:

• Allocative efficiency

An allocation is efficient if the sum of individual utilities is maximized. It is assumed that utility is trans-
ferable among all participants. A mechanism can only attain allocative efficiency if the market participants
report their valuation truthfully. This requires incentive compatibility in equilibrium.

• Incentive compatibility
A mechanism is incentive compatible, if every participant’s expected utility maximizing strategy in equilib-
rium with every other participant is to report its true preferences (Parkes et al., 2001).

• Individual rationality

The constraint of individual rationality requires that the utility following participation in the mechanism
must be greater or equal to the previous utility.

• Budget balance

A mechanism is said to be budget balanced if the prices add up to zero for all participants (Jackson, 2002).
In case the mechanism runs a deficit, it must be subsidized by an outside source and is therefore not feasible
per-se.

• Computational tractability

Computational tractability considers the complexity of computing a mechanism’s outcome. With an
increasing number of participants, the allocation problem can become very demanding and may delimit
the design of choice and transfer rules.

It is clear that the objective allocative efficiency meets the general design goal that the mechanism designer
wants to achieve, whereas the remaining categories are constraints upon the objective (Neumann, 2004).

2.2. Domain-specific requirements

In addition to those mechanism properties pertaining to the outcome, the mechanism must also account for
the underlying environment. The constraints of the market participants impose very rigid requirements upon
the design:

• Double-sided mechanism
A Grid middleware usually provides a global directory enabling multiple service owners to publish their
services and multiple service requesters to discover them. Since a market mechanism replaces these direc-
tories, it has to allow many resource owners (henceforth sellers) and resource consumers (buyers) to trade
simultaneously.

• Language includes bids on attributes

Participants in the Grid usually have different requirements for the quality characteristics of Grid services
and require these in different time spans. For example, a rendering job could require a storage service with
at least 250 GB of free space for 4 hours in any slot between 9 a.m. and 4 p.m. The Grid community takes
these requirements into account by defining service level agreement protocols, e.g. WS-Agreement (Ludwig
et al., 2004). To facilitate the adherence of these agreement protocols, a market mechanism fitting the Grid
is required to support bids on multiple quality attributes of services as well as their time objectives.

• Language includes combinatorial bids

Buyers usually demand a combination of different Grid services as a bundle in order to perform a task
(Subramoniam et al., 2002). As such, Grid services are complementarities, meaning that participants have
super-additive valuations for the services, since the sum of valuations for single services is less than the
valuation for the whole bundle (v(A) + v(B) 6 v(AB)). Suppose a buyer requires services for storage,
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computation and rendering. If any service, e.g. the storage service, is not allocated to him, the remaining
bundle has no value for him. In order to avoid this exposure risk (i.e. receiving only a subset of the bundle),
the mechanism must allow for bids on bundles.
The buyer may want to submit more than one bid on a bundle as well as many that exclude each other. In
this case, the resources for the bundles are substitutes, i.e. participants have sub-additive valuations for the
services (v(A) + v(B) P v(AB)). For instance, a buyer is willing to pay a high price for a service during the
day and a low price if the service is executed at night. However, this service may only be computed once. To
express this, the mechanism must support XOR2 bids to express substitutes. For the sake of simplicity, a
seller’s bid is restricted to a set of OR3 bids. This simplification can be justified by the fact that Grid services
are non-storable commodities, e.g. a computation service currently available cannot be stored for a later
time.

• Language includes co-allocation constraints
Capacity-demanding Grid applications usually require the simultaneous allocation of several homogenous
service instances from different providers. For example, a large-scale simulation may require several compu-
tation services to be completed at one time. Research literature often refers to the simultaneous allocation of
multiple homogenous services as co-allocation. A mechanism for the Grid has to enable co-allocations and
provide functionality to control it. In this context, two cases must be considered: Firstly, it is desirable to
limit the maximum number of service co-allocations, i.e. the maximum number of service divisions. Sec-
ondly, it may be logical to couple multiple services of a bundle in order to guarantee that these resources
are allocated from the same seller and – more importantly – will be executed on the same machine.

An adequate market mechanism for the Grid must satisfy these requirements stemming from the economic
environment and ideally meet the design objectives.
3. Related work

For instance, Waldspurger et al. (1992) and Regev and Nisan (2000) propose the application of Vickrey
auctions for allocating homogenous computational resources in distributed systems. Vickrey auctions achieve
truthful bidding as a dominant strategy and hence result in efficient allocations.

Buyya et al. (2002) were among the first researchers to motivate the transfer of market-based systems from
distributed systems to Grids. Nonetheless, they propose classical one-sided auction types which cannot
account for combinatorial bids. Wolski et al. (2001) compare classical auctions with a bargaining market,
coming to the conclusion that the bargaining market is superior to an auction-based market. This result is less
surprising since the authors only consider classical auction formats where buyers cannot express bids on bun-
dles. Eymann et al. (2003) introduce a decentralized bargaining system for resource allocation in Grids. In
their simulation the bargaining systems work fairly well; however, bids on bundles are largely ignored.

Subramoniam et al. (2002) account for combinatorial bids by providing a tâtonnement process for allocat-
ing and pricing Grid resources. Furthermore, Ng et al. (2005) propose repeated combinatorial auctions as a
microeconomic resource allocator in distributed systems. Nonetheless, the resources are still considered to be
standardized commodities. Standardization of the resources would either imply that the number of resources
are limited compared to the number of all possible resources or that there are many mechanisms which are
likely to suffer due to meager participation. Both implications result in rather inefficient allocations.

Additionally, state-of-the-art mechanisms widely neglect time attributes for bundles and quality constraints
for single resources. Hence, the use of these mechanisms in the Grid environment is considerably diminished.
The introduction of time attributes redefines the Grid allocation problem as a scheduling problem. To account
for time attributes, Wellman et al. (2001) model single-sided auction protocols for allocating and scheduling
resources under different time constraint considerations. However, the proposed approach is single-sided and
favors monopolistic sellers or monopsonistic buyers in a way that allocates greater portions of the surplus.
2 A XOR B (A � B) means either ;, A, or B, but not AB.
3 A OR B (A _ B) means ;, A, B, or AB.
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Installing competition on both sides is deemed superior, since no particular market side is systematically given
an advantage.

Demanding competition on both sides suggests the development of a combinatorial exchange. In research
literature, Parkes et al. (2001) introduce the first combinatorial exchange as a single-shot sealed bid auction.
As payment scheme, Vickrey discounts are approximated. The approach results in approximately efficient out-
comes; however, it neither accounts for time nor for quality constraints and is thus not directly applicable to
the Grid allocation problem.

Counteractively, Bapna et al. (2005) propose a family of combinatorial auctions for allocating Grid ser-
vices. Although the mechanism accounts for quality and time attributes and enables the simultaneous trading
of multiple buyers and sellers, there is no competition on the sellers’ side as all orders are aggregated to one
virtual order. Moreover, the mechanism does not take co-allocation constraints into account.

In reviewing the related mechanisms according to the requirements presented in Section 2, it is revealed that
no market mechanism installs competition on both sides, includes combinatorial bids, allows for time con-
straints, manages quality constraints, or considers co-allocation restrictions. This paper intends to address
these deficiencies by outlining the design of a multi-attribute combinatorial exchange for allocating and sched-
uling Grid services.
4. MACE: A multi-attribute combinatorial exchange

The design of a market mechanism mainly affects two components: (i) the communication language which
defines how bids can be formalized and (ii) the outcome determination by means of winner determination and
pricing rules.

The following auction format follows common assumptions of mechanism design: participants are assumed
to be risk neutral, have linear utility functions, as well as independent private valuations and reservation
prices. Hence, the sellers’ reservation prices can be linearly transformed to any partial execution of any bundle.

Firstly, a bidding language will be introduced which fits the requirements specified in Section 2. Further-
more, a winner determination model (allocation rule) and a family of pricing schemes will be proposed.
4.1. Bidding language

Meeting the requirements specified in Section 2 requires a formal bidding language that enables buyers and
sellers to submit combinatorial bids, including multiple attributes and co-allocation constraints:

Let N be a set of N buyers and M be a set of M sellers, where n 2N defines an arbitrary buyer and m 2M an
arbitrary seller. There are G discrete resources G ¼ fg1; . . . ; gGg with gk 2 G and a set of S bundles
S ¼ fS1; . . . ; SSg with Si 2S and Si � G as a subset of resources. For instance, Si = {gk,gj} denotes that the
bundle Si consists of two resources gk and gj, where gk could be a computation service and gj a storage service.

A resource gk has a set of Ak cardinal quality attributes Agk
¼ fagk ;1; . . . ; agk ;Akg where agk ;j 2Agk

represents
the jth attribute of the resource gk. For instance, in the context of a Grid service, a quality attribute can be the
size of a storage service.

A buyer n can specify the minimal required quality characteristics for a bundle Si 2S with
qnðSi; gk; agk ;jÞP 0, where gk 2 Si is a resource of the bundle Si and agk ;j 2Agk

is a corresponding attribute
of the resource gk. As such, the minimal required size of a storage service can be denoted by qnðSi; gk; agk ;jÞ,
e.g. 200 GB. Accordingly, a seller m can specify the maximum offered quality characteristics with
qmðSi; gk; agk ;jÞP 0.

For each resource gk 2 Si, a buyer n can specify the maximum number of co-allocations in each time slot
with cn(Si,gk) P 0. This means that a buyer n can limit the number of partial executions for each resource gk.
Let cn(Si,gk) = D, if the resource gk has no divisibility restrictions, where D is a large enough constant.4 The
coupling of two resources in a bundle is represented by the binary variable un(Si,gk,gj) where un(Si,gk,gj) = 1
4 The constant D has to be greater than the total number of seller bids.
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if resources gk and gj have to be allocated from the same bundle bid of a seller and un(Si,gk,gj) = 0 otherwise.
It is assumed that all services offered in a bundle are located on the same machine.

Resources in the form of bundles Si can be assigned to a set of maximal T discrete time slots
T ¼ f0; . . . ; T � 1g, where t 2T specifies one single time slot. A buyer n can specify the minimum required
number of time slots sn(Si) P 0 for a bundle Si. The earliest time slot for any allocatable bundle Si can be spec-
ified by en(Si) P 0 for a buyer n and em(Si) P 0 for a seller m; the latest possible allocatable time slot by
ln(Si) P 0 for a buyer n and by lm(Si) P 0 for a seller m.

A buyer n can express the valuation for a single slot for a bundle Si by vn(Si) P 0, i.e. the maximum price
for which the buyer n is willing to trade. The reservation price for allocating a single slot of a bundle Si is
denoted by rm(Si) P 0, which represents the minimum price for which the seller m is willing to trade.

Subsequently, a buyer n can submit a set of XOR bundle bids as an order
5 Mi
Bn ¼ fBn;1ðS1Þ � � � � � Bn;uðSjÞg;
where u is the number of bundle bids in the order and Bn,f(Si) is defined as the tuple
Bn;f ðSiÞ ¼ ðvnðSiÞ; snðSiÞ; enðSiÞ; lnðSiÞ;
qnðSi; g1; ag1;1Þ; . . . ; qnðSi; gG; agG;AjÞ; cnðSi; g1Þ; . . . ; cnðSi; gGÞ;
unðSi; g1; g2Þ;unðSi; g1; g3Þ; . . . ;unðSi; g1; gGÞ; . . . ;unðSi; gG; gG�1ÞÞ:
For example, the bid Bn,1(S1) = {1,4,2,10, (3000, 30), (2, 4), 0} with S1 = {g1,g2}, g1 = {Computation} with
one attribute Ag1

¼ fSpeedg, and g2 = {Storage} with one attribute Ag2
¼ fSpaceg expresses that a buyer

n wants to buy the bundle S1 and has a valuation of vn(S1) = 1 per slot for it. The requested computation ser-
vice g1 should at least be capable of providing 3000 MIPS5, and the storage service g2 should have at least 30
GB of available space. The computation service g1 can split in two parts at the most, while storage service g2

can run on four different machines simultaneously. Furthermore, the two services have no coupling require-
ments. The buyer requires four slots of this bundle which must be fulfilled within a time range of slots two and
ten.

The sellers’ orders are formalized in a way similar to the buyers’ orders. However, they do not include max-
imum divisibility and coupling properties and assume that the number of time slots is equal to the given time
range. An order Bm is defined as a concatenated set of OR bundle bids
Bm ¼ fBm;1ðS1Þ _ . . . _ Bm;uðSjÞg;
where u is the number of bundle bids. A single bid Bm,f(Si) for a bundle Si is defined as the tuple
Bm;f ðSiÞ ¼ ðrmðSiÞ; emðSiÞ; lmðSiÞ; qmðSi; g1; ag1;1Þ; . . . ; qmðSi; gj; agj;AjÞÞ:
In the following it is assumed that the bid elicitation has already taken place.
4.2. Winner determination

Based upon this notation, the multi-attribute combinatorial winner determination problem with the objec-
tive of achieving allocative efficiency can be represented as a linear mixed integer program.

For formalizing the model, the decision variables xn(Si), zn,t(Si), ym,n,t(Si), and dm,n,t(Si) have to be intro-
duced. The binary variable xn (Si) denotes whether bundle Si is allocated to buyer n (xn (Si) = 1) or not
(xn(Si) = 0). Furthermore, the binary variable zn,t(Si) is assigned to a buyer n and is associated in the same
way as xn(Si) with the allocation of Si in time slot t. For a seller m, the real-valued variable ym,n,t(Si) with
0 6 ym,n,t(Si) 6 1 indicates the percentage contingent of bundle Si allocated to the buyer n in time slot t.
For example, ym,n,t(Si) = 0.5 denotes that 50 percent of the quality characteristics of bundle Si are allocated
from seller m to buyer n in time slot t. In the previous example including the storage service with 30 GB of
free space, a partial allocation of 15 GB from seller m to buyer n in time slot t would lead to ym,n,t(Storage) =
llion instructions per second (MIPS) is a measure for a computer’s processor speed.
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0.5. The binary variable dm,n,t(Si) is linked with ym,n,t(Si) and denotes whether the seller m allocates bundle Si

to buyer n in time slot t (dm,n,t(Si) = 1) or not (dm,n,t(Si) = 0).
By means of these variables, the multi-attribute winner determination model can be formulated as follows:
max
X
n2N

X
Si2S

X
t2T

vnðSiÞzn;tðSiÞ �
X
m2M

X
n2N

X
Si2S

X
t2T

rmðSiÞym;n;tðSiÞ ð1Þ

s:t:
X
Si2S

xnðSiÞ 6 1; 8n 2N ð2Þ
X
t2T

zn;tðSiÞ � xnðSiÞsnðSiÞ ¼ 0; 8n 2N; 8Si 2S ð3Þ
X
n2N

ym;n;tðSiÞ 6 1; 8m 2M; 8Si 2S; 8t 2T ð4Þ
The objective function (1) maximizes the surplus V* which is defined as the difference between the sum of the
buyer’s valuations vn(Si) and the sum of the sellers’ reservation prices rm(Si). Assuming bidders are truthful,
the objective function reflects the goal of maximizing economic social welfare. The first constraint (2) guaran-
tees that each buyer n can be allocated only to one bundle Si. This constraint is necessary to fulfill the XOR
constraint of a buyer order. Constraint (3) ensures that for any allocated bundle Si, a buyer n receives exactly
the required slots within the time set T. The constraint has thus to be formulated as an equality in to order to
be binding.

For each time slot t, constraint (4) ensures that each seller cannot allocate more than the seller possesses.
The constraints (2)–(4) consider the basic allocation functionality of the exchange. In designing an adequate
mechanism for the Grid, quality characteristics and dependencies between resources must also to be
addressed:
X

Si3gk

zn;tðSiÞqnðSi; gk; agk ;jÞ �
X
Si3gk

X
m2M

ym;n;tðSiÞqmðSi; gk; agk ;jÞ 6 0;

8n 2N; 8gk 2 G; 8agk ;j 2Agk
; 8t 2T ð5ÞX

Si3gk

X
m2M

dm;n;tðSiÞ �
X
Si3gk

cnðSi; gkÞzn;tðSiÞ 6 0;

8n 2N; 8gk 2 G; 8t 2T ð6Þ
X

Sj3gk ;gl

unðSj; gk; glÞ
X
Si3gk

dm;n;tðSiÞ �
X
Si3gl

dm;n;tðSiÞ
!
¼ 0;

8n 2N; 8m 2M; 8gk; gl 2 G; 8t 2T ð7Þ
X

Sj3gk ;gl

unðSj; gk; glÞ
X
Si3gk

X
m2M

dm;n;tðSiÞ þ
X
Si3gl

X
m2M

dm;n;tðSiÞ � 2zn;tðSjÞ
!
6 0;

8n 2N; 8gk; gl 2 G; 8t 2T ð8Þ
Constraint (5) guarantees that for any allocated bundle in an arbitrary time slot t, all required resources have
to be fulfilled in the same slot in at least the demanded qualities. Constraint (6) ensures that a resource will be
provided by at most cn(Si, gk) different suppliers. For simplicity, it is assumed that a good gk with restricted co-
allocations is not part of further XOR concatenated bids of the buyer n.

Constraints (7) and (8) account for the coupling of two resources. Constraint (7) ensures that two resources
must be provided by the same seller, in case they should be coupled. This constraint alone does not suffice for
coupling resources requirements, since it would be possible for two sellers to co-allocate a coupled computa-
tion service with 3000 MIPS and a storage service with 30 GB in different quality characteristics, e.g. to allo-
cate a computation service with 2998 MIPS and a storage service with 1 GB from one seller, and a
computation service with 2 MIPS and a storage service with 29 GB from another. To exclude these undesir-
able allocations, constraint (8) imposes the restriction that coupled resources cannot be co-allocated. Simpli-
fying the model, this also includes free-disposal resources. For instance, if the computation service with 3000
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MIPS and the storage service with 30 GB are allocated from one particular seller as a bundle, another seller
cannot allocate a bundle containing a rendering service and another storage service to the same buyer. How-
ever, the seller may allocate any bundle without a storage and computation service to the buyer, e.g. the ren-
dering service alone. Furthermore, it is assumed that coupled resources are only part of one particular bundle
bid Bn,f(Si) in case a buyer submits two XOR concatenated bids containing coupled resources.

The time restrictions of the bids are given by:
Table
XOR

N

n1

n2
ðenðSiÞ � tÞzn;tðSiÞ 6 0; 8n 2N; 8Si 2S; 8t 2T ð9Þ
ðt � lnðSiÞÞzn;tðSiÞ 6 0; 8n 2N; 8Si 2S; 8t 2T ð10Þ
ðemðSiÞ � tÞ

X
n2N

ym;n;tðSiÞ 6 0; 8m 2M; 8Si 2S; 8t 2T ð11Þ

ðt � lmðSiÞÞ
X
n2N

ym;n;tðSiÞ 6 0; 8m 2M; 8Si 2S; 8t 2T ð12Þ
Essentially, constraints (9)–(12) indicate that slots cannot be allocated before the earliest and after the latest
time slot of either buyer (constraint (9) and (10)) or seller (constraint (11) and (12)).

Finally, the establishment of the relationship between the real valued decision variable ym,n,t(Si) and the
binary variable dm,n,t(Si) needs to be addressed and the decision variables of the optimization problem have
to be defined:
ym;n;tðSiÞ � dm;n;tðSiÞ 6 0; 8n 2N; 8m 2M; 8Si 2 S; 8t 2T ð13Þ
dm;n;tðSiÞ � ym;n;tðSiÞ < 1; 8n 2N; 8m 2M; 8Si 2 S; 8t 2T ð14Þ
xnðSiÞ 2 f0; 1g; 8n 2N; 8Si 2S ð15Þ
zn;tðSiÞ 2 f0; 1g; 8n 2N; 8Si 2S; 8t 2T ð16Þ
ym;n;tðSiÞP 0; 8n 2N; 8m 2M; 8Si 2S; 8t 2T ð17Þ
dm;n;tðSiÞ 2 f0; 1g; 8n 2N; 8m 2M; 8Si 2S; 8t 2T ð18Þ
Constraints (13) and (14) incorporate an if-then-else constraint, i.e. if a seller m partially allocates a bun-
dle Si to a single buyer n (ym,n,t(Si) > 0), the binary variable dm,n,t(Si) has to be dm,n,t(Si) = 1 (constraint (13));
otherwise, it has to be dm,n,t(Si) = 0 (constraint (14)). Finally, the constraints (15)–(18) specify the decision
variables of the optimization problem.

As multiple optimal solutions may exist, ties are broken in favour of maximizing the number of traded bun-
dles and then at random.

Example (Winner determination). Suppose there are two buyers n1,n2, two sellers m1,m2 and two services
g1 = {Computation} and g2 = {Storage} with G ¼ fg1; g2g each with single attributes, namely ag1;1 ¼ fSpeedg
and ag2;1 ¼ fSizeg. The buyers and sellers can submit bids on the bundles S1 = {g1}, S2 = {g2}, and
S3 = {g1,g2}. The bundles can be allocated within a time range T ¼ ft0; . . . ; t4g of T = 5 slots. Each buyer
submits a set of XOR bids (shown in Table 1) and each seller a set of OR bids (see Table 2).

For instance, buyer n2 submits two XOR concatenated bids to bundles S1 and S2. The buyer has a
valuation of vn2

ðS1Þ ¼ 3 for the bundle S1 which consists of the computation service g1. The service must have
at least 400 GB of free space and can be allocated between the slots en2

ðS1Þ ¼ 1 and ln2
ðS1Þ ¼ 4. The buyer

requires sn2
ðS1Þ ¼ 3 slots of the service and has no co-allocation restrictions.

An optimal solution for the winner determination problem is an allocation of the bundles S3 and S1 to the
buyers n1 and n2 with xn1

ðS3Þ ¼ 1 and xn2
ðS1Þ ¼ 1. Seller m1 is part of the allocation with bundle S3 and seller
1
orders of the buyers

Si vn(Si) qnðSi; gk ; agk ;jÞ en(Si) ln(Si) sn(Si) cn(Si, gk) un(Si, gi, gj)

S3 2 g1! 500, g2! 15 0 4 2 g1, g2! 1
S1 3 g1! 400 1 4 3
S2 2 g2! 25 0 4 2 g2! 1



Table 2
OR orders of the sellers

M Si rm(Si) qmðSi; gk ; agk ;jÞ em(Si) lm(Si)

m1 S3 1 g1! 500; g2! 40 0 4
m2 S1 2 g1! 1000 0 3

S3 2 g1! 700; g2! 20 1 4

Table 3
Allocation schema

M S t0 t1 t2 t3

m1 S3 n1: g1! 500, g2! 40 n1: g1! 500, g2! 40
m2 S1 n2: g1! 400 n2: g1! 400 n2: g1! 400
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m2 with bundle S1. The maximized value V* of the winner determination problem is V* = 8.6. The
corresponding schedule for this allocation is given in Table 3. Buyer n1 receives bundle S3 = {g1,g2} from seller
m1 in time slots 0 and 1. The bundle is allocated from one seller and as such the buyer’s requested coupling
property is satisfied. Buyer n2 receives requested computation service S1 = {g1} in time slots 1, 2, and 3.
Although n1 does not require the entire allocated space of the storage service g2, a partial execution of the
bundle is not possible due to the computation service g1 requirements. Bundles can only partially executed as a
whole. If an isolated partial execution of single resources in a bundle would be possible, these single resources
would also have to be valued. However, as resources may be complementarities or substitutes, valuation and
reservation prices for a single resource of a bundle do not exist (Milgrom, 2004). As such, resources of a
bundle cannot be partially executed. The outcome of the winner determination problem is allocative efficient
as long as buyers and sellers reveal their valuations truthfully. The incentive to set bids according to the
valuation is induced by an adequate pricing mechanism introduced in the following subsection.
4.3. Pricing

The question how to determine payments made by participants to the exchange and vice versa after the
mechanism has determined the winners is referred to as pricing problem. With respect to the objective of
achieving an efficient allocation, a pricing scheme based on the well-known Vickrey–Clarke–Groves (VCG)
mechanism would attain this objective (Vickrey, 1961; Clarke, 1971; Groves, 1973). Moreover, VCG mecha-
nisms are the only allocative-efficient and incentive compatible mechanisms (Green and Laffont, 1977). Hence,
it is logical to turn to the VCG mechanism.

The basic idea behind a VCG mechanism is to grant any participant a discount (called Vickrey discount) on
that bid. The discount reflects the impact of that bid on the social welfare. A VCG mechanism is efficient,
incentive-compatible, and individually rational for participants with quasi linear utility functions. However,
Myerson and Satterthwaite (1983) proved that it is impossible to design an exchange which is incentive com-
patible, (interim) individually rational, and budget balanced that achieves efficiency in equilibrium. The the-
orem is comprehensive and also applies to the presented mechanism.

Obviously, the VCG pricing schema cannot be applied since it runs a permanent deficit requiring outside
subsidization. The VCG mechanism can, however, serve as a benchmark.

4.3.1. VCG Pricing

Let N be the set of buyers and M be the set of sellers who are part of the allocation (hence, xn(Si) = 1 with
n 2N and ym,n,t(Si) > 0 with m 2M). The union of both sets is defined as W ¼N [M, where w 2W is a
participant that is part of the allocation. Let V* be the maximized value of the winner determination problem
and (V�w)* be the maximized value without the participant w. Thus, the Vickrey discount for a participant w
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can be calculated by DVICK,w = V* � (V�w)*. With regards to the Vickrey discount DVICK,w, the price
pVICK,n(Si) for a bundle Si and a buyer n can be calculated by
Table
Vickre

N

n1

n2
pVICK;nðSiÞ ¼ vnðSiÞsnðSiÞ � DVICK;n; ð19Þ
and the price pVICK,m(Si) for a bundle Si and a seller m by
pVICK;mðSiÞ ¼ rmðSiÞ
X
n2N

X
t2T

ym;n;tðSiÞ þ
DVICK;m

a
: ð20Þ
As sellers submit OR concatenated bids, they can participate in the allocation with multiple bundles.
Because the Vickrey discount refers to the seller’s overall impact, the discount has to be portioned among
all of the seller’s successful bids. Thus the discount is divided by a, where a is the number of bundles with
which a seller m is participating in the allocation.

Applying the VCG pricing scheme to the example presented above (V* = 8.6) results in the prices
pVICK,w(Si) and the discounts DVICK,w shown in Table 4 with �vnðSiÞ ¼ vnðSiÞsnðSiÞ and �rmðSiÞ ¼P

t2T;n2Nym;n;tðSiÞrmðSiÞ.
As stated by the Myerson-Satterthwaite impossibility theorem, a VCG mechanism is efficient and individ-

ually rational but non budget balanced in an exchange. Aggregating the net payments of the example leads to
a negative value with 2 + 2.4 � (3 + 6.25) = �4.85. In this case, the auctioneer has to subsidize the exchange.
Naturally, such a situation cannot be sustained for a long period of time, making the VCG mechanism
unfeasible.

Relaxing the requirement of having an efficient allocation opens up the possibility for a second-best mech-
anism that is budget balanced. These ideas gave rise to the development of a k-pricing scheme which is pre-
sented in the next section.

4.3.2. K-Pricing

The underlying idea of the k-pricing scheme is to determine prices for a buyer and a seller on the basis of the
difference between their bids (Sattherthwaite and Williams, 1993). For instance, suppose that a buyer wants to
purchase a computation service for $5 and a seller wants to sell a computation service for at least $4. The dif-
ference between these bids is p = $1, where p is the surplus of this transaction that can be distributed among
the participants.

For a single commodity exchange, the k-pricing scheme can be formalized as follows: let vn(Si) = a be the
valuation of a buyer n and rm(Si) = b be the reservation price of the buyer’s counterpart m. It is assumed that
a P b, i.e. the buyer has a valuation for the commodity which is at least as high as the seller’s reservation price.
Otherwise no trade would occur. The price for a buyer n and a seller m can be calculated by
p(Si) = ka + (1 � k)b with 0 6 k 6 1. In regard to the above-mentioned bids for the computation service g1,
the resulting price for both participants is p(g1) = 0.5 * 9 + (1 � 0.5) * 2.4 = 5.7 for k = 0.5.

In the following, it is assumed that the number of buyers equals the number of sellers. Therefore, k is set to
k = 0.5 since it favors neither the buyers’ side nor the sellers’ side.

The k-pricing schema can also be applied to a multi-attribute combinatorial exchange: in each time slot t in
which a bundle Si is allocated from one or more sellers, the surplus generated by this allocation is distributed
among a buyer and the sellers. Suppose a buyer n receives a computation service S1 = {g1} with 1000 MIPS in
time slot 4 and values this slot with vn(S1) = 5. The buyer obtains the computation service S1 = {g1} by a co-
allocation from seller m1 (400 MIPS) with a reservation price of rm1

ðS1Þ ¼ 1 and from seller m2 (600 MIPS)
with rm2

ðS1Þ ¼ 2. The distributable surplus of this allocation is pn,4(S1) = 5 � (1 + 2) = 2. Buyer n gets
k * pn,4(S1) of this surplus, i.e. the price buyer n has to pay for this slot is pk,n,4(Si) = v(S1) � kpn,4(S1).
4
y discounts and prices

(V�n)* �vnðSiÞ DVICK,n pVICK,n(Si) M (V�m)* �rmðSiÞ DVICK,m pVICK,m(Si)

6.6 4 2 2 m1 7.6 2 1 3
2 9 6.6 2.4 m2 4.75 2.4 3.85 6.25



Table 5
Prices using k-Pricing with k = 0.5

N �vnðSiÞ pk,n(Si) M �rmðSiÞ pk,n(Si)

n1 4 3 m1 2 3
n2 9 5.7 m2 2.4 5.7
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Furthermore, the sellers have to divide the other part of this surplus, i.e. (1 � k)pn,4(S1). This will be done by
considering each proportion a seller’s bid has on the surplus. In the example, this proportion om,n,t(Si) for
seller m1 is om1;n;4ðS1Þ ¼ 1

3
and for seller m2 is om2;n;4ðS1Þ ¼ 2

3
. The price a seller m receives for a single slot 4

is consequently calculated as
6 CP
pk;n;4ðSiÞ ¼ rmðS1Þ þ ð1� kÞpn;4ðS1Þom;n;4ðS1Þ:
Expanding this scheme to a set of time slots results in the following formalization: let pn,t(Si) be the surplus for
a bundle Si of a buyer n with all corresponding sellers for a time slot t:
pn;tðSiÞ ¼ zn;tðSiÞvnðSiÞ �
X

m2M;Sl2S

ym;n;tðSlÞrmðSlÞ ð21Þ
For the entire job (i.e. all time slots), the price for a buyer n is calculated as
pk;nðSiÞ ¼ xnðSiÞvnðSiÞsnðSiÞ � k
X
t2T

pn;tðSiÞ: ð22Þ
This means that the difference between the valuation for all slots (vn(Si)sn(Si)) of the bundle Si and the k-th
proportion of the sum over all time slots of the corresponding surpluses is determined.

The price of a seller m is calculated in a similar way: First of all, the proportion om,n,t(Si) of a seller m allo-
cating a bundle Si to the buyer n in time slot t is given by
om;n;tðSiÞ ¼
ym;n;tðSiÞrmðSiÞP

m2M;Sl2Sym;n;tðSlÞrmðSlÞ
: ð23Þ
Having computed pn,t(Si) and om,n,t(Si), the price a seller receives for a bundle Si is calculated as:
pk;mðSiÞ ¼
X
n2N

X
t2T

ym;n;tðSiÞrmðSiÞ þ ð1� kÞ
X

n2N;Sl2S

X
t2T

om;n;tðSiÞpn;tðSiÞ: ð24Þ
Applying this pricing scheme to the example presented above results in the prices given Table 5 with
�vnðSiÞ ¼ vnðSiÞsnðSiÞ and �rmðSiÞ ¼
X

t2T;n2N
ym;n;tðSiÞrmðSiÞ:
In this case, the exchange does not have to subsidize the participants since it fulfills the budget balance prop-
erty in a way that no payments towards the mechanism are necessary. Hence, the k-pricing schema qualifies as
a candidate pricing schema for the Grid. Since the Myerson-Satterthwaite impossibility theorem is strict, the
implications of the pricing schema on the allocation need to be investigated.

5. Evaluation

The presented auction formats are evaluated by means of a stochastic simulation. The winner determina-
tion problem is solved using the optimization engine CPLEX 9.1.6 The evaluation assesses the impact of the
auction schemas on the outcome requirements defined in Section 2.
LEX is commercial product and is currently the state of the art optimization engine.
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5.1. Data basis

As a data basis, a random bid stream including Decay distributed bundles is generated. The decay function
has been recommended by Sandholm (2002) because it creates hard instances of the allocation problem. At the
beginning, a bundle consists of one random resource. Afterwards, new resources are added randomly with a
probability of a = 0.75. This procedure is iterated until resources are no longer added or the bundle already
includes the same resource. The effects that can be obtained by the Decay distribution will be amplified. Hence,
the Decay function is used to create a benchmark for upper bounds of the effects.

As an order, buyers and sellers submit a set of bids on 10 different bundles, where a bundle is Decay-dis-
tributed from 5 possible resources. Each resource has two different attributes drawn from a uniform distribu-
tion in line with most of the quality characteristics of computer resources described by Kee et al. (2004). The
time attributes are each uniformly distributed where the earliest time slot has a range of [1–3], the latest time
slot is in [4–6], and the number of slots lies in [1–3]. Forty percent of the buyers’ bids have co-allocation restric-
tions. Sixty percent of the resources contained in these bundles have uniform distributed restrictions on the
maximum number of co-allocations. The number of resources which have to be allocated from the same
machine (coupling) is also drawn from an uniform distribution.

The corresponding valuations and reservation prices for a bundle are drawn from the same normal distri-
bution, whereas the number of resources in a bundle and the quality characteristics affect the mean and var-
iance of the distribution. This means the probability is greater that a buyer has a higher valuation for a storage
service with 200 GB than for a storage service with 10 GB of space. In any problem instance, new orders for
buyers and sellers are randomly generated. Subsequently, demand and supply are matched against each other,
determining the winning allocation and corresponding prices.

In total, 120 different problem instances are generated, where a problem consists of 10 or 20 participants.
The proportion of buyers and sellers is equally selected out of {10/10,8/12,12/8,5/5,1/4,4/1}. In each
instance, the buyers and sellers each submit one single bid.
5.2. Truthful bidders

In the first treatment, it is assumed that bidders are truthful. The average results of the treatment regarding
the budget balance and participant utilities are shown in Table 6.

As the Myerson-Satterthwaite theorem suggests, the budget using a VCG auction is always negative. The
mechanism requires subsidization from outside the system. Note that these subsidies amount to half the total
utility. Obviously, incentive compatibility is extremely expensive, as these subsidizations are required to moti-
vate the buyers and sellers to truthfully report their valuations and reservation prices.

By applying a k-price auction, the budget deficit can be converted into a mechanism, which is independent
from outside subsidies. Regarding its formal construction, the k-price auction is budget balanced; however,
the average total utility shrinks by the amount of the budget deficit (including a small approximation incre-
ment). The share between buyers’ and sellers’ surplus remains unchanged. In the k-pricing schema, however,
the utilities of the buyers and sellers are significantly smaller than in the VCG auction and denote a measure
for the incentive compatibility loss.

As Table 6 shows, the sellers’ utilities in a VCG auction are higher than those of the buyers. Regarding the
data basis, sellers expect to offer more available time slots than buyers request. Buyers submit bids on a
number of time slots sn(Si) between a time range en(Si) and ln(Si). The number of requested slots is less than
the number of allocatable slots, i.e. sn(Si) 6 ln(Si) � en(Si). A seller, however, offers a service for the entire
time range. As the time ranges of the buyers and sellers are drawn from the same distribution, the number
Table 6
Average Utility and Budget using Decay distributed bids

Price mechanism Budget Utility buyers Utility sellers Utility

VCG �3.9425 2.6484 4.0928 6.7412
k-price 0 1.3994 1.3994 2.7988
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of tradeable slots a seller offers is greater than the buyer’s requested slots. The greater the number of tradeable
slots, the higher the impact of the bid in the VCG mechanism. As such, the sellers’ average discounts are
higher than those of the buyers; therefore the sellers have a higher average utility than the buyers.

Because the simulation assumes truthful bidding, this rather naive analysis is only accurate for the VCG
mechanism. If the pricing rule is changed – for example from the VCG mechanism to the k-price auctions
– strategic bidding behavior may change since the k-price auction is not incentive compatible.
5.3. Manipulating bidders

In a second treatment, it is assumed that buyers and sellers using the k-pricing schema misrepresent their
true valuation or reservation price respectively. Only simple misrepresentations by b% are considered, where
k% of the buyers and sellers reduce or increase their reported values by b%. Instead of observing only sym-
metric Nash-equilibria as in the analysis by Parkes et al. (2001), where buyers and sellers either misrepresent
their valuation or reservation price by 0 or by b%, the ratio of misrepresenting buyers and sellers to the total
number of participants is also varied. A ratio of b = 50%, for instance, denotes that 50% of the buyers and
sellers misrepresent their valuations and reservation prices by k%, while the other 50% report truthfully.

By exploring the joint strategy space (i.e. varying the share of misrepresentative and truthful participants as
well as the percentage of misrepresentation) the average efficiency loss for the k-pricing schema can be ana-
lyzed: Let �n 2N be the buyers and �m 2M be the sellers who are part of the allocation in a truthful bidding
scenario, i.e. k = b = 0. Furthermore, let n̂ 2 N̂ be the buyers and m̂ 2 M̂ be the sellers of the allocation having
manipulating bidders (k P 0, b P 0). Subsequently, the efficiency loss EL can be calculated as the difference
between the true preferences of the participants who are part of the allocation in both the truthful and manip-
ulating scenarios:
EL ¼
X
�n2N

X
Si2S

s�nðSiÞv�nðSiÞ þ
X
�m2M

X
�n2N

X
Si2S

X
t2T

y �m;�n;tðSiÞr�mðSiÞ

�
X
n̂2N̂

X
Si2S

sn̂ðSiÞvn̂ðSiÞ þ
X
m̂2M̂

X
n̂2N̂

X
Si2S

X
t2T

ym̂;n̂;tðSiÞrm̂ðSiÞ
!
:

Fig. 1 shows the percentage efficiency loss and the percentage decrease of the number of successful bidders
with a varying number of manipulating participants as a function of the manipulation factor. For instance,
if b = 40% of the participants manipulate their valuations and reservation prices by k = 6%, the resulting effi-
ciency loss is 15%. It is apparent that the efficiency loss is higher when more participants use manipulation and
thereby increase the manipulation factor. With a manipulation factor greater than k = 25%, the efficiency
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Fig. 1. Efficiency loss (left) and decrease of the number of successful bidders (right) by manipulating participants.



956                                                                      
curves stagnate. This stagnation results from the fact that either non-manipulating bidders are the only par-
ticipants of the allocation (in case of b < 100%) or no one is allocated further (in case of b = 100%). The val-
uation and reservation prices with a manipulation factor k > 25% are so low – respectively so high – that no
bid from the manipulating participants is allocated. This means that no manipulated offer for a bundle can be
matched with any manipulated request. This effect is supported by the percentage decrease of the number of
successful bidders by manipulating participants. For instance, if b = 20% of the participants manipulate their
bids by k = 21%, the number of allocated bids is 17% smaller than in the non-manipulating scenario. Further-
more, if all participants are manipulating by k = 30%, the size decreases by 100%, i.e. the set of allocated par-
ticipants is empty. The curves recurrently stagnate with a manipulation factor greater than k = 25%.

In another analysis, the aggregated average utility gain of manipulating participants is measured. This gives
information on whether or not the total utility of participants can be improved through manipulation. The
utility which participants can gain by manipulation only depends on the prices they have to pay and is thus
calculated as
UG ¼
X
n̂2N̂

X
Si2S

p̂n̂ðSiÞ þ
X
m̂2M̂

X
Si2S

p̂m̂ðSiÞ �
X
�n2N

X
Si2S

p�nðSiÞ þ
X
�m2M

X
Si2S

p�mðSiÞ
!
;

where N̂ and M̂ are the sets of buyers and sellers who are part of the allocation with manipulating participants
and p̂n̂ðSiÞ and p̂m̂ðSiÞ are the corresponding prices. Sets N and M denote the participants of the allocation in
the non-manipulated scenario with p�nðSiÞ and p�mðSiÞ as their prices.

The percentage utility gain of manipulating participants in the k-price auction is shown in Fig. 2. The total
utility of the participants can be increased by manipulation; at the highest point where all participants manip-
ulate by k = 6%, the utility gain is more than 26% compared to the non-manipulating scenario. Moreover,
small manipulation factors between k = 1% and k = 9% always result in a positive utility gain. However, par-
ticipants have a negative utility gain when the manipulation factor is greater than k = 13%. In the worst sce-
nario, the utility loss is 100% if all participants manipulate by k = 30%.

In summary, the simulation has shown it reasonable to believe that participants will not strongly deviate
from their truth valuations and reservation prices. Although participants’ average utility gain can be improved
through manipulation, the participants increasingly risk not being executed in the auction (cf. Fig. 1). This risk
actually increases the more participants use manipulation. The simulation result suggests that the k-pricing
schema has accurate incentive properties resulting in fairly mild allocative efficiency losses. As such, the pric-
ing schema is a practical alternative to the VCG mechanism and is highly relevant for an application in the
Grid.
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5.4. Computational tractability

As denoted in Section 2, a computational tractable outcome determination is required. However, the multi-
attribute combinatorial winner determination problem (MWDP) is NP-complete: consider the special case of
the MWDP with multiple buyers, one seller, no quality attributes, one time slot, and no coupling and maximal
divisibility restrictions. In this case, the problem is equivalent to the combinatorial allocation problem (CAP)
formulated by Rothkopf et al. (1998). CAP is equivalent to the set-packing problem (SPP) on hypergraphs
(Rothkopf et al., 1998) which is known to be NP-complete (Karp, 1972). Since CAP can be reduced to
the MWDP, the MWDP is also NP-complete.

Due to the NP-completeness of the winner determination problem, the auction schema is computationally
intractable in large-scaled scenarios. For settings with a limited number of participants, however, the auction
schema seems practicable. Ideally, an upper boundary of participants can be defined for which the problem is
still computationally tractable within a meaningful timeframe. In the context of trading services, a meaningful
timeframe is consistent with the maximum time limit that an allocation process may last. Experiences suggest
that an allocation process that is shorter than 4 minutes is adequate.

Preliminary studies with the auction schema confirmed that solving the winner determination problem can
become computationally intractable, even in settings with less than 100 participants. This implies that exact
solutions of the winner determination problem may require too much computation time and cannot be
directly applied for the Grid market. To remedy this obstacle, we have to rely on approximations. A common
way is to employ algorithms that compute solutions of the winner determination problem within a threshold r
away from optimality, say 2%. Such deviations from optimal solutions are often conceived to be tolerable.
However, in some cases even finding solutions within the specified threshold of 2% becomes impossible within
a meaningful timeframe. In those cases the approximations need to have a termination condition that forces
the algorithm to return the best solution found within a predefined time range. Combinatorial auction exper-
iments have shown that these so-called anytime algorithms perform fairly well. For instance, Andersson et al.
(2000) and Sandholm et al. (2005) report that feasible and approximate solutions can be determined in a frac-
tion of time that would be required to find and prove an optimal solution.

The applied standard solver CPLEX provides these functionalities. For our computational tractability
analysis, we perform a series of simulations with anytime approximations for computing the solutions. The
4 minutes introduced above will serve as maximum timeframe. To compare the results, we also employ a sim-
ulation setting with a more optimistic limit of 2 minutes. As the anytime algorithms diverges from the theo-
retical optimum, we need a measure that captures the welfare loss imputed to the approximation.
Nevertheless, computing the theoretical optimum may take very long, so that we use benchmark solution that
lies within a 2% gap from the optimum. If CPLEX cannot find any feasible solution within the specified time-
frame, the problem instance is rated as intractable. For instance, if no feasible solution is found within 2 min-
utes, the problem is measured as an empty allocation with welfare of 0 and runtime of 2 minutes. This way, we
include those hard instances in our analysis.

In order to perform the simulation, nearly the same random order flow is used as described above. How-
ever, the time attributes are widened in order to generate harder and more realistic settings. The earliest time
slots are within a range of [1–5], the latest time slots within [6–10], and the number of slots within a range of
[1–5]. In the simulation, the proportions of buyers and sellers are equal and the number of participants is var-
ied. In total, 20 treatments are computed and the results are averaged.

Table 7 summarizes the runtime results of the simulations with 2 minutes time limit, 4 minutes time limit,
and benchmark solution with no time limit.7 The table shows the mean l, the standard deviation r, and the
coefficient of variation CV = r/l of the CPU times required to solve the winner determination problems. For
example, with 200 participants the average runtime with 2 minutes time limit is l2 = 67.6 seconds, with 4 min-
utes limit l4 = 194.9 seconds, and without a time limit l = 407.8 seconds. Note that the differences in the run-
time of settings with equal number of participants are caused by the underlying time limits. For 200
participants, several instances require more than 2 minutes, some even more than 4 minutes to find a solution
7 The analysis was performed on a Pentium XEON with 3.2 GHz and 2GB ram using CPLEX 9.1 with a MIP gap of 0.02.



Table 7
CPU time required to solve the problem

Participants Time limit 2 minutes Time limit 4 minutes No time limit

l2 r2 CV2 l4 r4 CV4 l r CV

100 11.6s 25.34s 2.18 30.9s 103.28s 3.34 38.25s 143.89s 3.76
200 67.6s 50.09s 0.74 194.9s 178.78s 0.92 407.8s 598.4s 1.47
300 95.4s 42.74s 0.45 307.4s 184.118s 0.6 673.6s 809.74s 1.2
400 110.2s 24.06s 0.22 372.55s 165.07s 0.44 1536.8s 2117.91s 1.38
500 116.58s 13.73s 0.12 374.2s 203.72s 0.54 2146.7s 2593.21s 1.21
600 120s 0s 0 416.06 108.1s 0.26 3786.4s 3046.93s 0.8
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within the specified gap. As CPLEX terminates after the predefined timeframe, the average runtime in the
2 minutes setting is less than the runtime required for finding the benchmark solution.

With an increasing number of participants, CPLEX’s average execution time grows rapidly. This is most
obvious in the benchmark settings with no time limit. For 500 participants, CPLEX requires nearly 2 hours
to find a solution for some instances. In some settings with 600 participants, CPLEX even fails in finding a
benchmark solution within 2 hours. In those cases, the simulation is stopped and the obtained results are
neglected. More precisely, in our analysis this status occurred in 8 out of 20 instances. As these cases do not
produce benchmark solutions, the obtained results with 600 participants may only have marginal significance.

Overall, the runtime analysis shows that the winner determination problem is computationally intractable
without the introduction of time limits. Apparently, delimiting the approximation produces solutions in a
meaningful time, i.e. less than 4 minutes.

In settings with limited time, however, the quality of the (suboptimal) solutions and accordingly its impact
on the welfare changes. In the following the welfare effect due to the approximations is studied in detail. For
this, we define a welfare loss higher than 5% as unacceptable for our settings, as we already have approximate
solutions via the applied 2% gap.

Table 8 summarizes the welfare loss of the time limited scenarios compared to the benchmark solution. For
instance, for 300 participants the average welfare loss in the 2 minutes setting is l2 = 0.86% and in the 4 min-
utes limit l4 = 0.1%. With an increasing number of participants, the welfare loss becomes higher. On the one
hand, this is reasoned by the fact that the problem instances become harder to solve within the given time
frame. On the other hand, feasible solutions cannot always be found in time which results in a welfare loss
for these infeasible instances of 100%. This explains the big increase of the welfare loss from 400 to 500 par-
ticipants in the 2 minutes settings – respectively, from 500 to 600 participants in the 4 minutes settings.
Regarding the simulations with a limit of 2 minutes, the welfare loss exceeds our 5% threshold for more than
400 participants. With a 4 minutes limit, this threshold is exceeded in settings with more than 500 participants.

The analysis of the welfare loss shows, that the anytime algorithm achieves fairly efficient results: With a
2 minutes time limit, the welfare loss is acceptable for scenarios with up to 400 participants. For settings with
up to 500 participants, a time limit of 4 minutes entails reasonable results. However, the applied time limits
become useless for settings with more than 500 participants. For such cases, the use of other approximations
has to be considered.
Table 8
Percentage welfare loss

Participants Time limit 2 minutes Time limit 4 minutes

l2 (%) r2 (%) CV2 l4 (%) r4 (%) CV4

100 0.09 0.33 3.71 0.03 0.24 8.01
200 0.27 0.57 2.11 0.06 0.23 3.67
300 0.86 0.94 1.10 0.1 0.36 3.59
400 1.85 3.71 2 0.31 0.35 1.13
500 11.96 31.14 2.6 0.55 0.74 1.33
600 21.59 39.27 1.82 13.79 33.82 2.45
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To anchor the problem to real Grid applications and to provide insights to practitioners, we studied the
characteristics of PlanetLab8 and compared them to our computational results. Essentially, PlanetLab is a
testbed for networking and distributed computing among several scientific institutes worldwide. The network
is state-of-the-art and currently the largest infrastructure for sharing computational Grid services. The user
information was obtained using the data provided by the All-Pairs-Pings project.9 We collected and analyzed
the available data from November 2005 until March 2006. As a result, PlanetLab has currently l = 170.89
active machines on average which can be used to perform computational jobs (with a standard deviation
of r = 21.33). The coefficient of variation (CV) for the values CV = r/l = 0.12 shows that the variability in
reference to the size of the mean is low. Thus, the determined average constitutes to be a stable value.

Transferring the PlanetLab characteristics to the proposed auction schema implies 170 sellers on average.
Assuming an equal number of buyers and sellers, the average number of participants in the PlanetLab scenario
is 340. With respect to the above presented results, the application of a 2 minutes time limit is sufficient to
fulfill PlanetLab resource bids in a meaningful time. In cases the boundary raises up to 500 participants, a time
limit of 4 minutes is preferable. For larger settings, however, alternative approaches have to be evaluated.
6. Conclusion

The paper at hand proposes the derivation of a multi-attribute combinatorial exchange for allocating and
scheduling services in the Grid. In contrast to other approaches, the proposed mechanism accounts for the
variety of services by incorporating time and quality as well as coupling constraints. The mechanism provides
buyers and sellers with a rich bidding language, allowing for the formulation of bundles expressing either sub-
stitutabilities or complementarities. The winner determination problem maximizes the social welfare of this
combinatorial allocation problem. The winner determination scheme alone, however, is insufficient to guaran-
tee an efficient allocation of the services. The pricing scheme must be constructed in a way that motivates buy-
ers and sellers to reveal their true valuations and reservation prices. This is problematic in the case of
combinatorial exchanges, since the only efficient pricing schedule, the VCG mechanism, is not budget-bal-
anced and must be subsidized from outside the mechanism.

This paper develops a new pricing family for a combinatorial exchange, namely the k-pricing rule. In
essence, the k-pricing rule determines the price such that the resulting surpluses to the buyers and sellers divide
the entire surplus being accrued by the trade according to the ration k. The k-pricing rule is budget-balanced
but cannot retain the efficiency property of the VCG payments.

As the simulation illustrates, the k-pricing rule does not rigorously punish inaccurate valuation and reserve
price reporting. Buyers and sellers sometimes increase their individual utility by cheating. This possibility,
however, is only limited to mild misreporting and a small number of strategic buyers and sellers. If the number
of misreporting participants increases, the risk of not being executed in the auction rises dramatically. As a
result, the k-pricing schema is a practical alternative to the VCG mechanism and highly relevant for an appli-
cation in the Grid. The runtime analysis shows that the auction schema is computationally very demanding.
However, the use of approximated solutions achieves adequate runtime results and fairly mild welfare losses
for up to 500 participants. Comparing these results with an existing Grid testbed evinces the practical appli-
cability of the proposed auction.

This paper is a step towards understanding the effect and strength of different multi-attribute combinatorial
exchange mechanisms on efficiency. Contributions include detailing a realistic market definition for Grid ser-
vices, deriving the domain-specific requirements from the Grid, defining a winner determination scheme that
meets these requirements, exploring adequate pricing schemes that contain the right incentives, and evaluating
the market mechanism by means of a simulation.

Future research needs to consider alternative heuristics that simplify the winner determination problem.
Nature-inspired algorithms such as genetic algorithms may be adequate for an application in the service
8 See http://www.planet-lab.org/ for details.
9 Every 15 minutes, all registered nodes are contacted to check their availability status. See http://ping.ececs.uc.edu/ping/ for details.

http://www.planet-lab.org/
http://ping.ececs.uc.edu/ping/
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market. A further step towards a functioning Open Grid Market would be to confront the mechanism with
real data in a pilot run.
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