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Abstract

We consider the joint pricing and inventory control problem for a single product with a

finite horizon and periodic review. The demand distribution in each period is determined

by an exogenous Markov chain. Pricing and ordering decisions are made at the beginning

of each period and all shortages are backlogged. The surplus costs as well as fixed and

variable costs are state dependent. We show the existence of an optimal (s, S, p)-type

feedback policy for the additive demand model. We extend the model to the case of

emergency orders and also incorporate capacity and service level constraints. We compute

the optimal policy for a class of Markovian demand and illustrate the benefits of dynamic

pricing over fixed pricing strategies through numerical examples. The results indicate that

it is more beneficial to implement the dynamic pricing strategy in a Markovian demand

environment with a high fixed ordering cost or with high demand uncertainty.

Keywords: joint pricing and inventory control, Markovian demand, optimal feedback policy
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1 Introduction

The joint pricing and inventory control problem has been studied by many researchers in the

operations management literature, starting with the work of Whitin (1955). The basic idea is to

integrate the pricing decision with the replenishment policy when managing product inventory.

In this problem, retailers act as price setters and can adjust prices dynamically to influence

demand and potentially gain higher profits. Other well-known examples in the service industry

are found in revenue management, which has been adopted by all major airlines, many hotel

chains and car rental companies. (Kimes 1989).

Most of the recent papers that address the pricing and inventory control coordination prob-

lem with periodic review assume that demand in different periods are independent random

variables. In practice, demand usually fluctuates and depends on many exogenous factors

such as economic conditions, natural disasters, strikes, etc. In addition, when a competitor

introduces a new product to the market, some customers may switch to the new product and

consequently, the retailer’s average demand may drop dramatically during some periods. In

these cases, a “state-dependent” demand model seems to be more appropriate to capture such

randomly changing environmental factors. Furthermore, if demand is highly price-sensitive,

retailers could combine pricing decisions with replenishment planning and use price as an effec-

tive tool to hedge against demand uncertainty. Therefore there is a need to consider the joint

pricing and inventory control problem in a fluctuating demand environment, and a Markovian

demand modeling approach provides an effective mechanism to address this problem.

The purpose of this paper is to characterize the structure of the optimal replenishment and

pricing decisions with a Markovian demand model, and to illustrate the benefits of dynamic

pricing strategies through numerical examples. Specifically, we consider a single product, peri-

odic review system with a finite horizon, where demand is price-dependent and its distribution
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at each time period is determined by an exogenous Markov chain. The ordering cost consists

of a fixed cost and a variable cost, and all the cost parameters are state and time dependent.

Under the assumptions of an additive demand function and full backlogging, we establish the

structure of an optimal Markov (feedback) policy. We also present an algorithm to compute

and analyze this policy.

There are two streams of literature that are related to our paper. The first stream is

the coordination of pricing and inventory control with independent demand, as mentioned

above. In this stream of research, demand is a random variable that depends on price. Under

the assumption that unsatisfied demand in each period is fully backlogged, Federgruen and

Heching (1999) and Chen and Simchi-Levi (2004a, 2004b) have considered periodic review

models with both finite and infinite horizons. In Federgruen and Heching (1999), the ordering

cost is proportional to the order quantity, and there is no setup cost. They prove a base-stock

list price policy is optimal. In this policy, the optimal replenishment policy in each period is

characterized by an order-up-to level, and the optimal price depends on the initial inventory

level at the beginning of the period. Furthermore, the optimal price is a nondecreasing function

of the initial inventory level. Chen and Simchi-Levi (2004a, 2004b) include a fixed ordering cost

in their models. They prove an (s, S, p)-type policy is optimal for the finite horizon model with

additive demand, and a stationary (s, S, p) policy is optimal for the discounted and average

profit models with general demand functions in the infinite horizon problem. In such a policy,

the period inventory is managed using the classical (s, S) policy, and the optimal price depends

on the inventory position at the beginning of the period. Feng and Chen (2004) consider a

long-run average profit model with periodic review and an infinite horizon. The optimality of

an (s, S, p)-type policy is also established.

When unsatisfied demands are assumed to be lost, Polatoglu and Sahin (2000) characterize

the form of the optimal replenishment policy under a general price-demand relationship and
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provide a sufficient condition for it to be of the (s, S)-type. For a finite horizon system, Chen,

Ray and Song (2003) and Huh and Janakiraman (2005) have proved the optimality of an

(s, S, p) policy under assumptions of stationary parameters and a salvage value that is equal

to the unit purchasing cost. In the area of continuous review models, Feng and Chen (2003)

assume demand follows a Poisson process with price-sensitive intensities, while Chen, Wu and

Yao (2004) model the demand process as a Brownian motion with a drift rate that is a function

of price. Furthermore, in terms of techniques to prove the optimality of an (s, S, p)-type policy,

Chen and Simchi-Levi (2004a), and Chen, Ray and Song (2003) use induction and the dynamic

programming formulations, which are similar to that in Scarf (1960) in the classic stochastic

inventory control problem. Huh and Janakiraman (2005) propose an alternative approach for

the optimality proof, which is based on the method used in Veinott (1966). For a review of

other work in the pricing and inventory literature, the reader is referred to Petruzzi and Dada

(1999), Elmaghraby and Keskinocak (2003) and Chan et al. (2004).

The second stream of related literature is the inventory control problem with a Markovian

demand model. Song and Zipkin (1993) present a Markovian-modulated model to capture the

fluctuating demand environment. Specifically, they assume that demand in each period follows

a Poisson process whose rate depends on the demand state. Sethi and Cheng (1997) analyze

a general finite horizon inventory model with a Markovian demand process. They show that

under certain technical assumptions, the optimal policy for the finite horizon problem is still of

(s, S) type, with s and S dependent on the demand state and the time remaining. Cheng and

Sethi (1999) extend their previous work to the lost sales case and establish the optimality of

(s, S)-type policies based on certain weak conditions on the holding, shortage and unit ordering

costs. Another paper that is related to ours is Beyer, Sethi and Taksar (1998), which establishes

the existence and verification theorems of an optimal feedback policy.

Recently, Gayon et al. (2004) consider a Markov Modulated Poisson Process that is similar
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to Song and Zipkin (1993), except that the fluctuating intensities are functions of price. The

unit ordering cost is given and there is no fixed ordering cost. All the shortages are lost. They

generalize some structural results in Li (1998) and prove an optimal base-stock policy exists

for the discounted infinite horizon Markov decision process. The base-stock policy is similar to

that in Federgruen and Heching (1999).

To the best of our knowledge, this is the first paper in the literature to address the joint

pricing and inventory control problem with a Markovian demand in a periodic-review system

and a fixed ordering cost. This paper makes the following contributions. First, under the

assumptions of an additive demand function and full backlogging, we establish the optimality

of a feedback policy of (s, S, p)-type. Second, we extend the basic model to the case when

the unsatisfied demand at the end of a period is filled by an emergency order. Under certain

practical assumptions on the holding cost, the regular and emergency ordering cost functions,

we prove the state-dependent (s, S, p) policy is still optimal for the case with additive demand.

Third, we provide another extension by incorporating the storage and service level constraints

to the basic model. Fourth, we develop an algorithm to compute the optimal policy for a class

of Markovian demand with an arbitrary probability transition matrix and discrete, uniformly

distributed random noise. Finally, we use this algorithm to illustrate the benefits of dynamic

pricing over the fixed pricing strategies through extensive numerical examples. The results

indicate that it is more beneficial to implement the dynamic pricing strategy in a Markovian

demand environment with a high fixed ordering cost or with high demand uncertainty.

This paper is organized as follows. In Section 2, we introduce the notations and assumptions

used in this paper and develop a general finite horizon inventory model with a Markovian

demand process. In Section 3, we state the dynamic programming equations for the problem and

establish the existence of an optimal feedback policy. In Section 4, the additive demand function

is analyzed and the optimality of an state-dependent (s, S, p) policy is proved. Two extensions
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of the basic model are presented in Section 5. In Section 6, we discuss the computation of the

optimal policy for a class of Markovian demand and present numerical examples to illustrate

the benefits of dynamic pricing over fixed pricing. Section 7 concludes the paper and presents

future research directions.

2 Model Formulation

Consider a firm that has to make production and pricing decisions simultaneously at the be-

ginning of every period over a finite time horizon with N periods. The demand distribution at

each period is determined by an exogenous Markov chain. In order to specify the pricing and

inventory control problem, we introduce the following notations:

< 0, N > = < 0, 1, 2, · · · , N >, the horizon of the problem;

I = {1, 2, · · · , L}, a finite collection of possible demand states;

ik = the demand state in period k;

{ik} = a Markov chain with the (L× L)-transition matrix P = (pij);

ξk = demand at the end of period k, k = 0, 1, · · · , N − 1;

pk = selling price in period k;

p
k

= the lower bound on pk;

p̄k = the upper bound on pk;

uk = the non-negative order quantity in period k;

xk = the surplus (inventory/backlog) level at the beginning of period k before the ordering;

yk = the inventory position at the beginning of period k after the ordering;

δ(z) =





0, if z ≤ 0,

1, otherwise.
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Throughout this paper, we assume that demand ξk ≥ 0 and ξk depends on the demand state

ik. Specifically, when demand is in state i ∈ I, and the selling price is p, the demand functions

have the following additive forms:

ξi
k = Dk(i, p) + βi

k, (1)

where Dk(i, p) is the non-negative, strictly decreasing deterministic or riskless demand function.

We assume that this is a continuous function of p. βi
k is the only random component and we

assume it is independent of the price p. Note (1) is a direct translation of the demand function

in Chen and Simchi-Levi (2004a). For example, when demand is in state i, one commonly uses

the riskless linear demand function Dk(i, p) = ai
k − bi

kp for p ≤ ai
k/b

i
k, (a

i
k, b

i
k > 0). We also

assume that when ik = i, βi
k is distributed over the interval of [t1, t2] with the density function

φi,k(·). Without loss of generality, we assume that E(βi
k) = 0 and the probability of negative

demand is zero.

Notice that when the price is p, the expected demand in period k given ik = i is:

E(Dk(i, p) + βi
k) = Dk(i, p) + E(βi

k) = Dk(i, p).

We assume that the expected demand is finite for every p ∈ [p
k
, p̄k]. Since Dk(i, p) is a strictly

decreasing function of p, there is a one-to-one correspondence between the price and the ex-

pected demand. Also, when the firm charges price p in period k, the expected revenue given

ik = i is:

Rk(i, p) = E((Dk(i, p) + βi
k)p) = Dk(i, p)p.

We make the following assumption on the expected revenue functions, which is similar to Chen

and Simchi-Levi (2004a). This assumption is used in the discussion of preliminary results in

Section 3 and in the proof of Theorem 3.
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Assumption 1. For all k, k = 0, 1, · · · , N − 1, the expected revenue in period k given demand

state ik = i, i ∈ I, Rk(i, p), is a concave function of the price p.

At the beginning of period k, an order uk ≥ 0 is placed with the knowledge that the demand

state is ik and it will be delivered at the end of period k, but before the demand is realized. We

assume that unsatisfied demand is fully backlogged. Thus the model dynamics can be expressed

as: 



xk+1 = xk + uk − ξik
k , k = n, · · · , N − 1,

xn = x,

ik, k = n, · · · , N − 1, follows a Markov chain with transition matrix P,

in = i.

(2)

Equation (2) describes the dynamics from period n onward, given the initial inventory level x

and the demand state i.

For each period k = 0, 1, · · · , N − 1, and demand state i ∈ I, we define the following costs:

(a) ck(i, u) = Ki
kδ(u)+ ci

ku, the cost of ordering u ≥ 0 units in period k when ik = i, where

the fixed ordering cost Ki
k ≥ 0 and the variable cost ci

k are also state dependent.

(b) fk(i, x), the surplus cost when ik = i and xk = x. We assume fk is convex in x and

there exists f̄ > 0, such that fk(i, x) ≤ f̄(1 + |x|).

(c) fN(i, x), the penalty or disposal cost for the terminal surplus. We assume fN is convex

in x with fN(i, x) ≤ f̄(1 + |x|).

The objective of our model is to decide on ordering and pricing policies in order to maximize

total expected profit over the entire planning horizon. Thus, given in = i and xn = x, the

objective function to be maximized during the interval < n, N > is:

Jn(i, x; U) = E{
N−1∑

k=n

[pkξ
ik
k − ck(ik, uk)− fk(ik, xk)]− fN(iN , xN)}, (3)
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where U = (un, pn, · · · , uN−1, pN−1) is a history-dependent admissible decision for the problem.

Define the value function for the problem over the interval < n,N > with xn = x and in = i

to be:

vn(i, x) = sup
U∈U

Jn(i, x; U), (4)

where U denotes the class of all admissible decisions.

The objective function (3) is slightly different from the one used in Chen and Simchi-Levi

(2004a). We assume the surplus costs fk(ik, xk) are charged at the beginning of the periods as

in Sethi and Cheng (1997), while Chen and Simchi-Levi (2004a) and most other literature use

fk(ik, xk+1). Note these two formulations are essentially similar, since xk+1 is also the ending

inventory of period k. Furthermore, when we start with zero initial inventory at the beginning

of the entire horizon, the difference between these two formulations is even smaller. It also turns

out that in the emergency order case that we will discuss in Section 5, our formulation would

be more convenient for the analysis. Thus to keep consistent notations with the emergency

order case, we will charge the surplus cost at the beginning of every period.

3 Preliminary Results

Using the principle of optimality, we can write the following dynamic programming equations

for the value function. For n = 0, 1, · · · , N − 1 and i ∈ I,

vn(i, x) = −fn(i, x) + sup
u≥0,p̄n≥p≥p

n

{Rn(i, p)− cn(i, u) + E[vn+1(in+1, x + u− ξin
n )|in = i]}

= −fn(i, x) + ci
nx + Gn(i, x), (5)
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where

Gn(i, x) = sup
y≥x,p̄n≥p≥p

n

[−K i
nδ(y − x) + gn(i, y, p)], and (6)

gn(i, y, p) = Rn(i, p)− ci
ny + E[vn+1(in+1, y −Dn(in, p)− βin

n )|in = i]. (7)

Clearly, vN(i, x) = −fN(i, x).

Let B0 denote the class of all continuous functions from I × R into R+ and the pointwise

limits of sequences of these functions (Feller 1971), where R = (−∞,∞) and R+ = [0,∞).

Note that this includes upper semicontinuous functions. Let B1 be the subspace of functions

in B0 that are of linear growth, i.e., for any b ∈ B1, 0 ≤ b(i, x) ≤ Cb(1 + |x|) for some Cb > 0.

Let B2 be the subspace of functions in B1 that are upper semicontinuous. Then for any b ∈ B1,

define:

Fn+1(b)(i, z) = E[b(in+1, z − βin
n )|in = i]

=
L∑

j=1

pij

∫ t2

t1

b(j, z − t)φi,n(t) dt. (8)

By Lemma 2.1 in Beyer, Sethi and Taksar (1998), Fn+1 is a continuous linear operator from

B1 into B1. Thus if vn+1(i, x) is continuous in x, then E[vn+1(in+1, y − Dn(in, p) − βin
n )|in =

i] = Fn+1(vn+1)(i, y −Dn(in, p)) is jointly continuous in (y, p) since y −Dn(i, p) is continuous

in (y, p). From (7), we know that gn(i, y, p) is jointly continuous in (y, p). Therefore −K i
nδ(y−

x)+gn(i, y, p) is upper semicontinuous in (y, p) and its maximum over a compact set is attained.

Specifically, for any y ≥ x, there exists pn(i, y) ∈ [p
n
, p̄n], such that

Gn(i, x) = sup
y≥x

sup
p̄n≥p≥p

n

[−K i
nδ(y − x) + gn(i, y, p)],

= sup
y≥x

[−K i
nδ(y − x) + gn(i, y, pn(i, y))],
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where

gn(i, y, pn(i, y)) = max
p̄n≥p≥p

n

gn(i, y, p) = Rn(i, pn(i, y))− ci
ny + Fn+1(vn+1)(i, y −Dn(i, pn(i, y))),

(9)

and gn(i, y, pn(i, y)) is continuous in y. In view of Proposition 4.2 in Sethi and Cheng (1997)

with A = −∞ and B = ∞, we know that Gn(i, x) is continuous in x. Therefore vn(i, x) is

continuous in x and the original dynamic programming equation (5) can be rewritten as

vn(i, x) = −fn(i, x) + ci
nx + sup

y≥x
[−Ki

nδ(y − x) + gn(i, y, pn(i, y))], and (10)

vN(i, x) = −fN(i, x). (11)

From (10) and (11), the original two-variable, joint optimization problem is transformed

to the traditional periodic review inventory problem with price given. Therefore we are only

left to determine the replenishment policy. Next, we present two verification theorems similar

to Theorems 2.1 and 2.2 in Beyer, Sethi and Taksar (1998), which establish the existence of

an optimal feedback policy. We need the following assumption on the cost functions, which is

similar to that in Beyer, Sethi and Taksar (1998).

Assumption 2. For each n = 0, 1, · · · , N − 1 and i ∈ I, we have

ci
nx + Fn+1(fn+1)(i, x) → +∞, as x →∞. (12)

Assumption 2 is not very restrictive in practice. It rules out unrealistic trivial cases of

ordering an infinite amount, if ci
n = 0 and fn(i, x) = 0 for each i and n. It is useful in proving

the first part of Theorem 1 that follows. Moreover, in the proof of the (s, S, p) policy in Theorem

3 of Section 4, we do not need to impose a condition like (12) for x → −∞, as Assumption 3

in Chen and Simchi-Levi (2004). See Remark 4.4 in Sethi and Cheng (1997).
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From an analytical perspective, adding the price decision significantly complicates the tradi-

tional inventory control model. For ease of analysis, like most of the joint pricing and inventory

control literature, we will assume that prices are continuous and restricted in a closed interval

on the real line. As in the previous discussion of this section, the compact set of the feasible

prices plays a critical role to generalize the existence and verification theorems in Beyer, Sethi

and Taksar (1998) to our price-inventory Markovian demand model.

Now we are ready to state the two verification theorems as below. The proofs are similar

to those in Beyer, Sethi and Taksar (1998). We omit the details here.

Theorem 1. The dynamic programming equations (10) and (11) define a sequence of functions

in B1. Moreover, for each n = 0, 1, · · · , N − 1 and i ∈ I, there exists a function ŷn(i, x) ∈ B0,

such that the supremum in (10) is attained at y = ŷn(i, x) for any x ∈ R.

To solve the problem of maximizing J0(i, x; U), we use ŷn(i, x) of Theorem 1 to define

ŷk = ŷk(ik, x̂k), k = 0, 1, · · · , N − 1 with i0 = i,

x̂k+1 = ŷk − ξik
k , k = 0, 1, · · · , N − 1 with x̂0 = x,

ûk = ŷk − x̂k, k = 0, 1, · · · , N − 1, and

p̂k = pk(ik, ŷk), k = 0, 1, · · · , N − 1.

We have the following verification theorem.

Theorem 2. The policy Û = (û0, p̂0, û1, p̂1, · · · , ûN−1, p̂N−1) maximizes J0(i, x; U) over the

class U of all admissible decisions. Moreover,

v0(i, x) = max
U∈U

J0(i, x; U).
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4 Optimality of (s, S, p) Policies

To prove the optimality of an (s, S, p) policy, we will use a similar approach as Chen and Simchi-

Levi (2004a) based on the concept of K-convexity introduced by Scarf (1960). See Propositions

4.1 and 4.2 in Sethi and Cheng (1997) for a summary of the properties of K-convex functions.

We make the following assumption, which is required in the proof of Theorem 3 that follows.

Assumption 3. For n = 0, 1, · · · , N − 1 and i ∈ I, we have

Ki
n ≥ K̄i

n+1 =
L∑

j=1

pijK
j
n+1 ≥ 0. (13)

Condition (13) is a generalization of the similar conditions used in the standard models. It

includes the cases of the constant ordering costs (Ki
n = K, ∀i, t) and the non-increasing ordering

costs (Ki
n ≥ Kj

n+1, ∀i, j, n). See Remark 4.1 in Sethi and Cheng (1997) for a discussion.

Theorem 3. (a) For i ∈ I, 0 ≤ n ≤ N − 1, gn(i, y, pn(i, y)) is continuous in y, and

lim
y→∞

gn(i, y, pn(i, y)) = −∞.

(b) For i ∈ I, 0 ≤ n ≤ N − 1, gn(i, y, pn(i, y)) and vn(i, x) are K i
n-concave.

(c) For i ∈ I, there exists a sequence of numbers si
n, S

i
n, n ∈ 0, 1, · · · , N − 1, with si

n ≤ Si
n,

such that the optimal replenishment policy is:

ûn(i, x) = (Si
n − x)δ(si

n − x), (14)

and the optimal selling price is:

p̂i
n =





pn(i, Si
n), if xn < si

n,

pn(i, xn), if xn ≥ si
n.

(15)

Proof. For part (a), the upper semicontinuity of gn(i, y, pn(i, y)) was proven in Section 3 and
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the latter part follows from Assumption 2.

Next, we prove part (b) by induction. Notice that vN(i, x) is K-concave for any K ≥ 0

since vN(i, x) = −fN(i, x) and fN(i, x) is assumed to be convex in x, for i ∈ I. Now we assume

that vk+1(i, x) is K i
k+1-concave in x. By the definition of Fk+1 in (8) and Proposition 4.1 in

Sethi and Cheng (1997), it is easy to see that Fk+1(vk+1)(i, z) is K̄ i
k+1 =

∑L
j=1 pijK

j
k+1-concave

in z. By Assumption 3, we know that Fk+1(vk+1)(i, z) is K i
k-concave in z. For any y < y′, let

z = y − Dk(i, pk(i, y)) and z′ = y′ − Dk(i, pk(i, y
′)). Thus by Lemma 2 and Definition 2.2 in

Chen and Simchi-Levi (2004), we have z < z′, and for λ ∈ [0, 1],

Fk+1(vk+1)(i, (1− λ)z + λz′)) ≥ (1− λ)Fk+1(vk+1)(i, z) + λFk+1(vk+1)(i, z
′)− λKi

k.

This is equivalent to

E[vk+1(ik+1, (1− λ)(y −Dk(ik, pk(ik, y))) + λ(y′ −Dk(ik, pk(ik, y
′)))− βik

k )|ik = i]

≥ (1− λ)E[vk+1(ik+1, y −Dk(ik, pk(ik, y))− βik
k )|ik = i]

+ λE[vk+1(ik+1, y
′ −Dk(ik, pk(ik, y

′))− βik
k )|ik = i]− λKi

k. (16)

In addition, the concavity of Rk(i, p) and −ci
ky implies that

Rk(i, (1− λ)pk(i, y) + λpk(i, y
′)) ≥ (1− λ)Rk(i, pk(i, y)) + λRk(i, pk(i, y

′)) and (17)

−ci
k((1− λ)y + λy′) = (1− λ)(−ci

ky) + λ(−ci
ky
′) (18)

Adding (16), (17) and (18), and by (9), we get

gk(i, (1−λ)y+λy′, (1−λ)pk(i, y)+λpk(i, y
′)) ≥ (1−λ)gk(i, y, pk(i, y))+λgk(i, y

′, pk(i, y
′))−λK i

k.
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Since pk(i, (1 − λ)y + λy′) is the optimal price corresponding to (1 − λ)y + λy′ in (9), we

have

gk(i, (1− λ)y + λy′, pk(i, (1− λ)y + λy′)) ≥ gk(i, (1− λ)y + λy′, (1− λ)pk(i, y) + λpk(i, y
′)).

Therefore,

gk(i, (1− λ)y + λy′, pk(i, (1− λ)y + λy′)) ≥ (1− λ)gk(i, y, pk(i, y)) + λgk(i, y
′, pk(i, y

′))− λKi
k,

by which we have proven that gk(i, y, pk(i, y)) is a Ki
k-concave function of y.

Finally, we consider part (c). By Proposition 4.2 in Sethi and Cheng (1997) and equation

(10), we can conclude that there exist si
k < Si

k, such that Si
k maximizes gk(i, y, pk(i, y)) and si

k

is the smallest value of y for which gk(i, y, pk(i, y)) = gk(i, S
i
k, pk(i, S

i
k))−K i

k, and

vk(i, x) = −fk(i, x) + ci
kx +




−Ki

k + gk(i, S
i
k, pk(i, S

i
k)), if x < si

k,

gk(i, x, pk(i, x)), if x ≥ si
k.

(19)

According to Theorem 2, the (s, S, p)-type policy defined in (14) and (15) is optimal. ¥

Theorem 3 extends Theorem 3.1 in Chen and Simchi-Levi (2004a) to a Markov modulated

demand model. While Theorem 3 is similar to Theorem 4.1 in Sethi and Cheng (1997) in terms

of optimal ordering policies, adding the price decision complicates the induction proof. This

now requires a similar result as Lemma 2 in Chen and Simchi-Levi (2004a), which is stated in

the above proof.
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5 Extensions

5.1 Optimality of (s, S, p) Policy for the Emergency Order Case

In Section 4, we assumed that unsatisfied demand in each period is fully backlogged. In practice,

sometimes an emergency order could be placed and delivered at the end of the period when

a stockout occurs. This ensures that a 100% service level is achieved in each period. In this

section, we will prove the optimality of the (s, S, p) policies when the retailer is allowed to use

emergency orders.

The difference between the model with emergency orders and the one with full backlogging

is that when the on hand inventory xk at the beginning of period k and the amount uk delivered

in period k is less than the demand ξk, the portion ξk − xk − uk could be satisfied immediately

by an emergency order. In this case, the next period starts with zero on-hand inventory. Thus,

the model dynamics over the interval < n, N > can be expressed as:





xk+1 = (xk + uk − ξik
k )

+
, k = n, · · · , N − 1,

xn = x,

ik, k = n, · · · , N − 1, follows a Markov chain with transition matrix P,

in = i.

(20)

For k = 0, 1, · · · , N − 1 and i ∈ I, we use the same function ck(i, u) = Ki
kδ(u) + ci

ku as

the regular ordering cost. Let hk(i, x) be the surplus (holding) cost in period k if xk = x and

ik = i. This is defined from I × R into R+. We assume −hk(i, x) ∈ B2, hk(i, x) is convex and

nondecreasing in x, and hk(i, x) = 0, ∀x ≤ 0. Let qk(i, x) be the emergency ordering cost in

period k if ik = i. This is also defined from I ×R into R+. We assume −qk(i, x) ∈ B2, qk(i, x)

is convex and nonincreasing in x, and qk(i, x) = 0, ∀x ≥ 0. Furthermore, we assume qk(i, x) is

state-independent, i.e., qk(i, x) = qk(j, x), ∀i, j ∈ I. A commonly used emergency ordering cost
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function is the linear function qk(i, x) = ĉi
kx
−, where ĉi

k is the unit emergency ordering cost in

period k when ik = i.

With cost functions defined, we can write the objective function over the interval < n,N >

as:

Je
n(i, x; U) = E{

N−1∑

k=n

[pkξ
ik
k − ck(ik, uk)− hk(ik, xk)− qk(ik, xk + uk − ξik

k )]− hN(iN , xN)}.

where U = (un, pn, · · · , uN−1, pN−1) is a history-dependent admissible decision for the problem.

Define the value function over < n, N > with xn = x and in = i to be:

ve
n(i, x) = sup

U∈U
Je

n(i, x; U). (21)

Then the dynamic equations for the value functions are:

ve
n(i, x) = −hn(i, x) + ci

nx + sup
y≥x,p̄k≥p≥p

k

[−K i
nδ(y − x) + ge

n(i, y, p)], and (22)

ve
N(i, x) = −hN(i, x), (23)

where

ge
n(i, y, p) = Rn(i, p)−ci

ny+E[−qn(i, y−Dn(i, p)−βi
n)+ve

n+1(in+1, (y −Dn(in, p)− βin
n )

+
)|in = i].

(24)

If ve
n+1(i, x) is upper semicontinuous in x, E[ve

n+1(in+1, (y −Dn(in, p)− βin
n )

+
)|in = i] and

ge
n(i, y, p) are upper semicontinuous in (y, p). Thus for any y ≥ x, there exists pn(i, y) ∈ [p

n
, p̄n],
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such that

ve
n(i, x) = −hn(i, x) + ci

nx + sup
y≥x

[−K i
nδ(y − x) + ge

n(i, y, p(i, y))], (25)

ge
n(i, y, p(i, y)) = sup

p̄n≥p≥p
n

ge
n(i, y, p)

= Rn(i, p(i, y))− ci
ny + E[−qn(i, y −Dn(i, p(i, y))− βi

n)

+ ve
n+1(in+1, (y −Dn(in, p(in, y))− βin

n )
+
)|in = i]. (26)

It is easy to check that ge
n(i, y, pn(i, y)) and ve

n(i, x) are upper semicontinuous. Thus we will

have a similar existence theorem as Theorem 1 in the full backlog case.

Theorem 4. The dynamic programming equations (25) and (26) define a sequence of functions

in B2 in the emergency order case. Moreover, for each n = 0, 1, · · · , N − 1 and i ∈ I, there

exists a function ŷn(i, x) ∈ B0, such that the supremum in (25) is attained at y = ŷn(i, x) for

any x ∈ R+.

Furthermore, we can prove that the Verification Theorem 2 still holds in the emergency

order case and the optimality of the (s, S, p) policy is established in the following theorem.

Theorem 5. Assume for each n = 0, 1, · · · , N − 1 and i ∈ I,

q
′−

n (i, 0) ≤ h
′+
n+1(i, 0)− ci

n+1, and (27)

ci
nx + Fn+1(hn+1)(i, x) → +∞, as x →∞, (28)

where q
′−

n (i, 0) = lim
x↑0

∂
∂x

qn(i, x), and h
′+
n+1(i, 0) = lim

x↓0
∂
∂x

hn+1(i, x). Then an (s, S, p) policy is

optimal for the emergency order case.

Proof. To prove the optimality of an (s, S, p) policy, since ge
n(i, y, pn(i, y)) is upper semicon-

tinuous in y and ge
n(i, y, pn(i, y)) → −∞, as y → ∞ (by Assumption (28)), we only need to
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show that ge
n(i, y, pn(i, y)) is K i

n-concave in y, by Proposition 4.2 in Sethi and Cheng (1997).

This is done by induction. We assume that ve
n+1(i, x) is K i

n+1-concave in x and define:

Qn(i, z) = qn(i, z)− ve
n+1(i, z

+), (29)

Thus,

E[−qn(i, y −Dn(i, p(i, y))− βi
n) + ve

n+1(in+1, (y −Dn(in, p(in, y))− βin
n )

+
)|in = i]

= E[−qn(in+1, y −Dn(in, p(in, y))− βin
n ) + ve

n+1(in+1, (y −Dn(in, p(in, y))− βin
n )

+
)|in = i]

= Fn+1(−Qn)(i, y −Dn(i, p(i, y))), and

ge
n(i, y, p(i, y)) = Rn(i, pn(i, y))− ci

ny + Fn+1(−Qn)(i, y −Dn(i, p(i, y))), (30)

where Fn+1 is defined as (8). Notice (30) is of the exact same form as (9) except with vn+1

replaced by −Qn. It is easy to check that y −Dn(i, pn(i, y)) is also nondecreasing in y in the

emergency order case. Thus if we could prove −Qn(i, z) is K i
n+1-concave in z, then following

the same argument as in the proof of Theorem 3, we could conclude that ge
n(i, y, pn(i, y)) is

Ki
n-concave in y.

To prove Qn(i, z) is K i
n+1-convex in z, since qn(i, z) is convex and nonincreasing with

qn(i, x) = 0, ∀x ≥ 0, and −ve
n+1(i, z) is K i

n+1-convex in z, by Proposition 3.1 in Cheng and

Sethi (1999), it is sufficient to verify that q
′−

n (i, 0) ≤ −ve ′+
n+1(i, 0). From the Ki

n+1-concavity of

ve
n+1(i, z) and (25), we know there exist si

n+1 and Si
n+1, with 0 ≤ si

n+1 ≤ Si
n+1, such that

ve
n+1(i, x) = −hn+1(i, x)+ci

n+1x+




−Ki

n+1δ(y − x) + ge
n+1(i, S

i
n+1, pn+1(i, S

i
n+1)), if x < si

n+1,

ge
n+1(i, x, pn+1(i, x)), if x ≥ si

n+1.

(31)

Thus we have −ve ′+
n+1(i, 0) = h

′+
n+1(i, 0)− ci

n+1. By Assumption (27), we have proven q
′−

n (i, 0) ≤
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−ve ′+
n+1(i, 0). This completes the proof. ¥

Assumption (27) means that the marginal emergency ordering cost in one period is larger

than or equal to the regular unit ordering cost less the marginal inventory holding cost in any

state of the next period. See Remark 3.2 in Cheng and Sethi (1999) for a discussion. To better

understand this assumption, we consider a special case when all cost functions are state and

time independent, qn(i, x) ≡ c̄x−, hn(i, x) ≡ hx+ and ci
n ≡ c, where c̄, h, c > 0 are the unit

emergency ordering, holding and regular ordering costs. Therefore Assumption (27) implies

that c̄ ≥ c− h, which is always true in practice since c̄ ≥ c.

In the emergency order case, the demand in each period is satisfied immediately either

by the current inventory on hand, or by regular or emergency orders. Therefore, the total

expected revenue is the same as that in the full backlog case. It will be different if we assume

that unsatisfied demand is totally lost, since the revenue in each period is equal to the price

multiplied by the minimum of the demand and the inventory position. This would complicate

the analysis as the expected revenue will no longer be concave. Therefore, it is possible that an

(s, S, p) policy is not optimal in the lost sales case. In the joint pricing and inventory control

literature, several researchers have considered the independent additive demand model with lost

sales in a finite horizon system, such as Chen, Ray and Song (2003) and Huh and Janakiraman

(2005). They prove the optimality of an (s, S, p) policy under the assumptions of stationary

parameters and a salvage value that is equal to the unit ordering cost. We tried to relax their

stationary parameters assumption and generalize their results to the Markovian demand model

with pricing and inventory decisions; however, the resulting analysis was intractable.

5.2 An (s, S, p) Model with Capacity and Service Constraints

In Sethi and Cheng (1997), the authors consider the Markovian demand model with capacity

and service level constraints. We generalize their analysis to our model with pricing decisions.
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Suppose the retailer has a capacity limit D, which is an upper bound for the inventory level in

each period. Moreover, to guarantee a certain service level, we require that Prob(xk+1 ≤ C) ≤

α, for k = 0, 1, · · · , N −1, where C is some pre-determined threshold and 0 < α < 1. Therefore

when demand is in state i at period k, for any price p ∈ [p
k
, p̄k], the above condition means that

Prob(xk +uk−Dk(i, p)−βi
k ≤ C) ≤ α and we have xk +uk ≥ Dk(i, p)+C +Φ−1

i,k (1−α), where

Φi,k(·) is the cumulative probability function of βik
k given ik = i, and Φ−1

i,k (z) = inf(x|Φi,k(x) ≥

z). Let Ai
k = Dk(i, pk

) + C + Φ−1
i,k (1− α). Assuming any unsatisfied demand is backlogged, the

dynamic programming equations are defined as (5), where:

Gn(i, x) = sup
y≥x,Ai

n≤y≤D,p̄n≥p≥p
n

[−Ki
nδ(y − x) + gn(i, y, p)], (32)

and gn(i, y, p) is defined as in (7).

Notice that both y and p are now defined in compact sets; therefore, we could implement

the same sequential optimization procedure as in Section 3 and conclude that the dynamic

programming equations (5) with (32) define a sequence of upper semicontinuous functions on

(−∞, D]. For any x ∈ (−∞, D], there exists a function ŷn(i, x) ∈ B0 that attains the supremum

in (5). Furthermore, we can check that Theorem 2 still holds and the optimality policy is of

the (s, S, p)-type.

Theorem 6. There exist a sequence of numbers si
n, S

i
n for n = 0, 1, · · · , N − 1 and i ∈ I, with

Ai
n ≤ si

n ≤ Si
n ≤ D, such that the optimal feedback policy (ûn, p̂n) are of the same forms as

defined in equations (14) and (15) in Theorem 3.

Proof. This follows by the similar induction as in the proof of Theorem 3 and properties of

K-convex functions in Propositions 4.1 and 4.2 in Sethi and Cheng (1997). We omit the details.

¥
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6 Computation of Optimal (s, S, p) Policies

In this section, we discuss the computation of the state-dependent optimal (s, S, p) policy for

our basic model and present illustrative numerical examples.

Suppose for each n, 0 ≤ n ≤ N − 1, and any state i ∈ I, (si
n, Si

n, p
i
n) are the parameters for

the optimal policy. To guarantee global convergence of a computational algorithm, we need to

find bounds for these parameters of the optimal policy. Following the similar method of Chen

and Simchi-Levi (2004b), we can develop state-dependent bounds for the reorder point s and

order-up-to level S as follows.

We assume that all the input parameters (demand processes, costs and revenue functions)

are state dependent, but time independent. Thus we can omit the subindex of period n from

these parameters. Furthermore, we assume that the unit ordering cost is also state independent,

which implies that ci
n ≡ c, for all n, 0 ≤ n ≤ N − 1, and i ∈ I. Also, time independence of Ki

n

and Assumption 3 imply that K i ≥ ∑L
j=1 pijK

j, ∀i ∈ I.

For each i, i ∈ I, and p ≤ p ≤ p̄, define:

H(i, y, p) = −Ef(i, y −D(i, p)− βi) + R(i, p)− cD(i, p), and (33)

H0(i, y, p) = H(i, y, p) + cD(i, p)− cy, (34)

where functions f(i, y) and R(i, p) are the time-independent surplus cost and expected revenue

defined in Section 2.
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Also, define:

Si = min
p≤p≤p̄

{arg max
y

H(i, y, p), arg max
y

H0(i, y, p)}, (35)

s̄i = max
p≤p≤p̄

{arg max
y

H(i, y, p)}, (36)

si = max{y|y ≤ Si, H(i, Si, p) ≥ H(i, y, p) + K i, and

H0(i, Si, y) ≥ H0(i, y, p) + Ki, for all p, p ≤ p ≤ p̄}, and (37)

S̄i = min{y|y ≥ s̄i, H(i, s̄i, p) ≥ H(i, y, p) + Ki, for all p, p ≤ p ≤ p̄}. (38)

We are now ready to state our bounds on si
n and Si

n.

Lemma 1. For every n, 0 ≤ n ≤ N − 1 and every i, 1 ≤ i ≤ L, si
n ∈ [si, s̄i] and Si

n ∈ [Si, S̄i].

The proof of Lemma 1 is similar to those in Chen and Simchi-Levi (2004b); we omit its

proof here.

We next use these bounds to construct numerical examples to better illustrate the ideas in

this paper. We assume the riskless demand in state i is a linear function of price p : D(i, p) =

ai− bip, where ai represents the market size and bi represents customer price sensitivity. When

demand is in state i, we assume the error term βi follows a discrete uniform distribution on

interval [−λi, λi], where λi is a non-negative integer. Specifically, when demand is in state i, βi

has the following probability mass function:

P (βi = k) =





1
2λi+1

, for k integer, −λi ≤ k ≤ λi,

0, otherwise.

(39)

We also assume the inventory holding/penalty cost function takes the following linear form

in state i:

f(i, x) = hi max(0, x) + qi max(0,−x),
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where hi, qi > 0 are the state-dependent unit inventory holding and penalty costs, respectively.

In the following examples, the entire horizon length is N = 24 months and there are 3

demand states, i.e., L = 3. We assume that all parameters take integer values and are time

independent. The parameter specifications are:

(a1, a2, a3) = (60, 75, 30), (b1, b2, b3) = (2, 3, 1), c = 4, K i ≡ K = 100;

(h1, h2, h3) = (2, 1, 3), (q1, q2, q3) = (10, 8, 6), (λ1, λ2, λ3) = (20, 15, 5). (40)

The demand state transition matrix can take the following forms:

P1 =




0 1 0

0 0 1

1 0 0




, P2 =




0 0.5 0.5

0.5 0 0.5

0.5 0.5 0




and P3 =




0.1 0.1 0.8

0.6 0.2 0.2

0.1 0.5 0.4




. (41)

Notice P1 represents a special case of the Markovian demand, which is called cyclic or seasonal

demand.

The basic idea of our computation algorithm stems from the dynamic programming for-

mulation (5) and equation (7). Suppose we start with zero inventory at the beginning of the

horizon and i0 = 1. Furthermore, we assume fN(i, x) ≡ 0. Since our model has a finite horizon

and vN ≡ 0, one might consider using recursive method from period N . However, due to the

complicated direct and indirect recursion among different functions, a recursive method suffers

from poor efficiency because of a large number of function invocations. For example, for small

size problems with N = 6 and L = 3, a recursive method cannot get results within three

hours. To tackle this problem and make good use of the bounds developed at the beginning

of this section, we use an iterative method. First, we figure out the biggest range of y needed

to compute functions gn(i, y, p) over the entire time horizon. Then we make sure that all the
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necessary gn+1 function values are precomputed before each iteration step n. In this way, the

algorithm has high efficiency and is able to solve problems with size N,L ≤ 100 in seconds. See

the Appendix for the detailed algorithm, which works for the Markovian demand model with

any transition matrix and discretely and uniformly distributed random noise term.

We then use this algorithm to calculate the optimal (si
n, S

i
n, p

i
n) policy for the above ex-

ample using data in (40) with the cyclic demand corresponding to transition matrix P1. As

an approximation for the continuous range of the prices, we assume that price can only take

discrete integer values with lower bound p = 4 and upper bound p̄ = 20.

We report the optimal (si
n, Si

n) values in Table 1 for each pair of (n, i), 0 ≤ n ≤ 23, 1 ≤ i ≤

3. An interesting observation is that under the assumption of time independent parameters, as

time horizon N becomes larger, the model tends to have stationary (si, Si) policy for each state

i and the optimal replenishment policy is cyclic. This is a similar result with Corollary 7.1 in

Sethi and Cheng (1999), which states that a cyclic optimal policy exists for a cyclic demand

model with an infinite horizon, when there are no pricing decisions.

INSERT TABLE 1 ABOUT HERE.

Next, using these numerical examples, we assess the benefits of dynamic pricing over fixed

pricing across two different environments: Markovian demand and independent demands. The

fixed price is chosen as the best price in [p, p̄], at which the retailers optimal expected profit in

the entire horizon is maximized. Table 2 summarizes the relative profit gains of dynamic pricing

over fixed pricing in a Markovian demand case and three cases of independent demand. These

results are to be expected when there are no fixed costs of price changes, since the dynamic

pricing strategy provides the retailer more flexibility to deal with demand changes. Note that

the “Independent Demand i” in Table 2 corresponds to the case when demand always stays in

state i, for i = 1, 2 and 3. Therefore, all parameters are time and state independent. Table
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2 also shows that it is always more beneficial to implement dynamic pricing in a Markovian

demand setting than in the independent demand case. This confirms the intuition that it is

always more effective to use price to hedge against demand uncertainty in a fluctuating demand

environment.

INSERT TABLE 2 ABOUT HERE.

As another illustration, we conduct the sensitivity analysis on the fixed ordering cost (K) by

employing the same group of numerical examples. The result indicates that K has a significant

effect on the optimal replenishment policies and the benefit of dynamic pricing. In particular,

as K becomes larger, the optimal reorder point becomes lower and the optimal order-up-to

level becomes higher. See Figure 1. This finding is intuitive and is similar to that found in

Chen, Ray and Song (2003) for independent demand case. This means that when the retailers

are charged a high fixed ordering cost every time an order is placed, they would rather wait

until the inventory level drops low to reorder a large amount.

INSERT FIGURE 1 ABOUT HERE.

In Figure 2, we plot the relative profit gains of dynamic pricing over fixed pricing when K

changes from 0 to 200. It shows that when K is increasing, the benefit of dynamic pricing over

fixed pricing is increasing. This is true for both the Markovian demand and the independent

demand cases. Furthermore, Figure 2 shows that when K is high, the benefit of dynamic

pricing in a Markovian demand setting is even more significant than the cases of independent

demand. This result is interesting. While a higher fixed ordering cost turns to have negative

effects on the retailer’s expected profit, dynamically adjusting the prices provides the retailer

more benefit to manipulate the demand in a fluctuating demand environment.

INSERT FIGURE 2 ABOUT HERE.
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Lastly, we consider the impact of demand uncertainty on the benefit of dynamic pricing over

fixed pricing. Notice that in the above examples, we assume that the demand distribution is

determined by a cyclic transition matrix P1 defined in (41), which is a special class of Markovian

demand. As long as the starting state is known, we immediately know the demand states in

all periods over the entire time horizon. Since we allow for any arbitrary transition matrix in

our model, we calculate the relative profit gains of dynamic pricing over fixed pricing when the

transition matrix takes the forms of P2 and P3 defined in (41). Here, P2 denotes the class of

Markovian demand where demand will move to the other two states in the next period with

equal probabilities and P3 is an arbitrary transition matrix, since demand can take any state in

the next period. Notice these classes of demand have more fluctuations than the cyclic demand

represented by P1 and the demand fluctuations of P3 are greater than those of P2. Table 3

shows that when the demand uncertainty increases (in terms of transition matrix), the expected

profits will decrease (for both dynamic pricing and fixed pricing strategies), while the benefit

of dynamic pricing over fixed pricing will increase.

INSERT TABLE 3 ABOUT HERE.

7 Discussions and Conclusions

In this paper, we extend the results in Chen and Simchi-Levi (2004a) to the Markovian demand

model where the demand distribution at every period is determined by an exogenous Markov

chain. We show that for additive demand functions, under the assumptions of backlogging

and state-dependent cost functions, there exists an optimal Markov policy of the (s, S, p)-type

which is also state dependent. We extend the basic model to the case of emergency orders and

also incorporate capacity and service level constraints. We develop an algorithm to compute

the optimal policy for a class of Markovian demand model with an arbitrary state transition
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matrix and a random noise term that follows a discrete uniform distribution. We consider the

effects of fixed ordering cost and demand uncertainty on the benefits of dynamic pricing over

fixed pricing through extensive numerical examples. The results show that it is more beneficial

to implement the dynamic pricing strategy in a Markovian demand environment with a high

fixed ordering cost or with high demand uncertainty.

Our paper assumes that inventory replenishment and pricing decisions are made simultane-

ously at the beginning of each period, before demand is realized. In practice, firms may adjust

prices after they observe some demand information, which is referred to as the “responsive

pricing” strategy in Chod and Rudi (2005). In their paper, they consider a single-period, two-

product, and two-stage optimization problem, where the demand functions for both products

take linear forms and the intercept terms are the only random variables following a bivariate

normal distribution. Firms make the capacity decision at the first stage and the pricing de-

cision at the second stage after the demand intercept terms materialize for both products. It

might be interesting to extend our multi-period model to allow for responsive pricing. Another

area for future work arises when we relax the assumption of perfect supply. This could occur

when suppliers may not be able to deliver orders in full due to emergency factors, like power

shutdowns and natural disasters. This introduces the concept of “Markovian supply” into our

model. Parlar, Wang and Gerchak (1995) consider a periodic review inventory model with

Markovian supply availability. They show that a state-dependent (s, S) policy is optimal for

an independent demand model under the assumption that the supplier can either deliver the

orders in full amount or nothing. Extending their model to the case of Markovian demand with

pricing decision could be another direction for future research.
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APPENDIX

Algorithm to Compute the Optimal (s, S, p) Policy

Phase 1: Computation of Theoretical Bound

i := 1;

While i ≤ L do

begin

compute Si, s̄i, si, S̄i by equations (35), (36), (37) and (38);

i := i + 1;

end.

Compute y and ȳ by y := min
i∈I

si, ȳ := max
i∈I

S̄i.

Phase 2: Computation of Optimal Policy

Set vN(i, x) ≡ 0, and n := N − 1;

While n ≥ 0 do

begin

y1 := y − n(max
i∈I

ai + max
i∈I

λi), y2 := ȳ + n max
i∈I

λi;

i := 1;

While i ≤ L, do

begin

Step 2.1. Compute gn(i, y, p) for y1 ≤ y ≤ y2, and p ≤ p ≤ p̄ by equation (7) with

given or computed vn+1(i, x);

Step 2.2. For y1 ≤ y ≤ y2, compute pn(i, y) := min{arg max
p≤p≤p̄

gn(i, y, p)};

Step 2.3. Si
n := arg max

Si≤y≤S̄i
gn(i, y, pn(i, y));

si
n := min{y : gn(i, y, pn(i, y)) ≥ gn(i, Si

n, pn(i, Si
n))−K i, si ≤ y ≤ Si

n};

Step 2.4. If x ≥ si
n, then

vn(i, x) := cx− fn(i, x) + gn(i, x, pn(i, x));
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p̂i
n := pn(i, x);

else

vn(i, x) := cx− fn(i, x)−Ki + gn(i, Si
n, pn(i, Si

n));

p̂i
n := pn(i, Si

n);

Step 2.5. i := i + 1;

end;

n := n− 1;

end.
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Table 1: Optimal (si
n, Si

n) values for N = 24, L = 3.

i = 1 i = 2 i = 3
n = 0 (15, 67) (20, 46) (-6, 15)
n = 1 (15, 67) (20, 46) (-6, 15)
n = 2 (15, 67) (20, 46) (-6, 15)
n = 3 (15, 67) (20, 46) (-6, 15)
n = 4 (15, 67) (20, 46) (-6, 15)
n = 5 (15, 67) (20, 46) (-6, 15)
n = 6 (15, 67) (20, 46) (-6, 15)
n = 7 (15, 67) (20, 46) (-6, 15)
n = 8 (15, 67) (20, 46) (-6, 15)
n = 9 (15, 67) (20, 46) (-6, 15)
n = 10 (15, 67) (20, 46) (-6, 15)
n = 11 (15, 67) (20, 46) (-6, 15)
n = 12 (15, 67) (20, 46) (-6, 15)
n = 13 (15, 67) (20, 46) (-6, 15)
n = 14 (15, 67) (20, 46) (-6, 15)
n = 15 (15, 67) (20, 46) (-6, 15)
n = 16 (15, 67) (20, 46) (-6, 15)
n = 17 (15, 68) (20, 46) (-6, 15)
n = 18 (15, 67) (21, 48) (-6, 15)
n = 19 (15, 67) (20, 45) (-6, 15)
n = 20 (14, 71) (20, 45) (-6, 15)
n = 21 (17, 57) (24, 54) (-6, 15)
n = 22 (18, 46) (15, 39) ( 2, 26)
n = 23 (-3, 26) (-5, 28) (-41, 10)

Table 2: Expected profits in a Markovian demand case and three cases of independent demand.

Dynamic Pricing Fixed Pricing Relative Profit Gain
Markovian Demand 4720.66 4588.66 2.88%

Independent Demand 1 5655.43 5607.44 0.856%
Independent Demand 2 6099.14 6069.75 0.484%
Independent Demand 3 2421.83 2386.53 1.48%

Table 3: Demand uncertainty impact on the benefit of dynamic pricing over fixed pricing. Case
i corresponds to demand transition matrix Pi, i = 1, 2 and 3, as defined in (41).

Dynamic Pricing Fixed Pricing Relative Profit Gain
Case 1 4720.66 4588.66 2.88%
Case 2 4680.56 4540.53 3.08%
Case 3 4396.09 4252.47 3.38%
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Figure 1: Effects of fixed ordering cost (K) on the optimal (si, Si) values. “*” stands for the
order-up-to levels, and “o” stands for the re-order points. As K becomes larger, the values of
si are decreasing, and the values of Si are increasing. For i = 1, 2 and 3, we take the stationary
values of (si, Si) indicated by Table 1 as representatives.
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Figure 2: Effects of fixed ordering cost on the benefit (relative profit gain) of dynamic pric-
ing over fixed pricing. “*” stands for the Markovian demand case, and “o” stands for the
independent demand case assuming demand is always in state i.
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