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Abstract

A key feature to ensure desirable convergence properties in an interior point method is the appropriate choice of an
updating rule for the barrier parameter. In this work we analyze and describe updating rules based on the use of a vector
of barrier parameters. We show that these updating rules are well defined and satisfy sufficient conditions to ensure con
vergence to the correct limit points. We also present some numerical results that illustrate the improved performance of
these strategies compared to the use of a scalar barrier parameter.
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1. Introduction

Interior-point methods can be used to compute local solutions for nonlinear, and possibly non-convex,
problems of the form
* Co
E m

(F.J. P
min
x

f ðxÞ

s:t: cðxÞ ¼ 0;

x P 0;

ð1Þ
where f : Rn 7! R and c: Rn 7! Rm. These methods have proved to be very successful for the solution of linear
and general convex problems. Recently, a significant amount of effort has been devoted to extending these
procedures to non-convex problems, see for example El-Bakry et al. [2], Gajulapalli [4], Gay et al. [5],
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Vanderbei and Shanno [15], Yamashita [17], Tits et al. [14], Moguerza and Prieto [10], among others. These
methods proceed by (approximately) solving a sequence of equality-constrained problems of the form

f

m
m
s
f

i
v
v
N
f
a
m
u

d
l
t

I
t

i
i
a

U
c
f

d
f
t
d

2

min
x

f ðxÞ � l
X

i

log xi

ð2Þ

s

or a s
An

s

n the
o indi

nder
ompo
:t: cðxÞ ¼ 0;

equence flðkÞg of values of the scalar barrier parameter l such that lðkÞ ! 0.
appropriate choice of values for the parameter l may have a significant impact on the practical perfor-
ance of the algorithm, both on its convergence (a sequence that converges to zero at an excessively fast rate
ay imply numerical difficulties and lack of convergence), and its rate of convergence (a slowly convergent

equence will imply a slow algorithm). Several updating rules have been proposed in the literature, such as
or example the widely used rule described in El-Bakry et al. [2].

In this paper we are interested in exploring the possibility of using a vector barrier parameter, l 2 Rn, to
mprove the practical convergence properties of the algorithm, and particularly its speed of convergence. A
ector parameter should be better adapted to the possibly heterogeneous convergence behavior of the different
ariables in the problem. The use of vector parameters has been analyzed in the solution of linear problems by
esterov and Nemirovskii [13] and Jansen et al. [8], among others. These approaches, although interesting

rom a theoretical point of view, did not result in major practical breakthroughs. A reason why these
pproaches have not been very successful in practice is that they increase the algorithmic complexity of the
ethods. Our goal is to design a robust and efficient updating strategy for a vector barrier parameter to be

sed within an interior-point method for the general nonlinear case.
As our interest focuses on this parameter, we will carry out the studies in this paper considering different

efinitions within the framework of the algorithm proposed by Moguerza and Prieto [10], an interior-point
inesearch method using directions of negative curvature. The search directions are computed to approximate
he solutions of the barrier problems, similar to (2),

min
x

f ðxÞ �
X

i

li log xi

ð3Þ

:t: cðxÞ ¼ 0:

remainder of the paper we will use the bracketed superindex (k) to denote iterations and the subscript i

cate each one of the components of the vector l in (3).

The procedure to combine the directions is related to that in Moré and Sorensen [12]. A linesearch has been

ntroduced in our algorithm as a mechanism to enforce good global convergence properties. We compute the
terates in such a manner that the value of an augmented Lagrangian merit function is decreased in each iter-
tion. For problem (3) this merit function takes the form

LAðx; k; q; lÞ ¼ f ðxÞ �
X

li log xi � kT cðxÞ þ 1

2

X
qjcjðxÞ2: ð4Þ
i j
suitable assumptions the local minimizers for problem (3) are minimizers for this merit function, if all
nents of q are large enough and the vector k corresponds to the optimal multipliers, see Bertsekas [1],
or example.
The paper is organized as follows: In Section 2, we introduce the notation used in this work. Section 3

escribes the general results that motivate our proposals. In Section 4, we present several updating strategies
or the vector of barrier parameters l and comment on some of their theoretical properties. Section 5 includes
he results of a numerical comparison among the proposed strategies on a problem test set. Section 6 intro-
uces some conclusions.

. Notation and background
The first-order Karush Kuhn Tucker (KKT) conditions for problem (1) are:
2



rf ðxÞ � rcT ðxÞk� z ¼ 0;

cðxÞ ¼ 0;
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Zx ¼ 0;

x; z P 0;

ð5Þ

e k and z are the multipliers for the equality and bound constraints respectively, and Z denotes a diagonal
ix having as entries the elements of z, Z diag(z).
In the algorithm proposed in Moguerza and Prieto [10], instead of considering directly the preceding con-
ditions, a sequence of problems (3) such that li! 0 for all i is solved. The first-order KKT conditions for (3)
are:

rf ðxÞ � rcT ðxÞk� X�1l ¼ 0;

cðxÞ ¼ 0;
ð6Þ
e X diag(x). Replacing

�1
z ¼ X l ð7Þ
e first equation of (6), the first-order KKT conditions for the barrier problem can be rewritten as
T
rf ðxÞ � rc ðxÞk� z ¼ 0;
cðxÞ ¼ 0; ð8Þ

Zx ¼ l:

set of equations (8) is known as the primal-dual equations for problem (3), see Mehrotra [9] for example.
algorithm will compute search directions based on these primal-dual KKT equations. In addition to try-
ing to satisfy these conditions, to ensure that the logarithmic terms in the objective function of (3) are well
defined, the algorithm should force the variables xi to remain strictly positive. From the comparison of these
conditions and (5), it is also of interest to satisfy z P 0 in all iterations of the algorithm. A brief summary of
the algorithm is given in the following Box.

(0) (0) (0) (0) (0)
efer the reader to Moguerza and Prieto [10] for a detailed description of the method.

Initialize variables (x ,k ,z ), barrier (l ) and penalty (q ) parameters
repeat

From the Newton primal-dual equations:
Compute a descent direction, dðkÞx , for the primal variables x

Compute search directions, dðkÞk and dðkÞz , for the multipliers k and z

Compute, if it exists, dðkÞn , a direction of negative curvature
Adjust the penalty parameter q(k)

Compute ap using a curvilinear search procedure
Update the primal variables using xðkþ1Þ ¼ xðkÞ þ a2

pdðkÞx þ apdðkÞn

Update the multipliers k(k), z(k)

Decrease the barrier parameter vector l(k)

until convergence
3. The vector of barrier parameters

The vector of barrier parameters in (3) is updated to ensure convergence to the desired limit points. A first
global convergence result is a direct adaptation of the basic results of Fiacco and McCormick [3]. We will
assume in what follows that problem (1) satisfies the following assumptions:

3



• Functions f and c have continuous second derivatives.
• The linear independence constraint qualification holds at all second-order KKT points.

• Strict complementarity is satisfied at all second-order KKT points.
• The second-order sufficient conditions also hold at all second-order KKT points.

We will also use the notation x*(l) to denote a KKT point for problem (3), for a given value of the vector
barrier parameter l. From the preceding conditions it should follow that, sufficiently close to a second-order
KKT point of (1), x*(l) will be unique when it exists.

In Moguerza and Prieto [10] it is shown that the algorithm is globally convergent under the preceding con-
ditions. Therefore, this convergence is assumed throughout the rest of the paper. The updating rules consid-
ered below will also satisfy the conditions in Moguerza and Prieto [10].

Theorem 1. Under the preceding assumptions, if the sequence {l(k)} converges to zero, all limit points of the

sequence of values {x*(l(k))} are KKT points of problem (1).

Proof. It follows from a direct adaptation of the arguments in Fiacco and McCormick [3, Theorems 8 and

10]. h
To ensure convergence, it is enough to compute the values {x*(l(k))} for any sequence {l(k)} converging to
zero. In practice, obtaining values for x*(l(k)) with high precision is not computationally efficient. The most
common alternative is to approximate these values with limited precision and then update the values of l(k)

along an appropriate sequence. Let x(k) denote the current primal iterate at iteration k and x* denote the sec-
ond-order KKT point for (1) closest to x*(l(k 1)). As

kxðkÞ � x�k 6 kxðkÞ � x�ðlðk�1ÞÞk þ kx�ðlðk�1ÞÞ � x�k; ð9Þ
inequality (9) and Theorem 1 imply that, for a sequence {l(k)} such that l(k)! 0, if kx(k) � x*(l(k 1))k ! 0

then k

where

Far fr
h. Un
x(k) � x*k ! 0. Thus, it is enough to solve each subproblem with increasing accuracy.

To define efficient ways to implement criteria that yield the desired accuracy, we observe that Theorem 1

implies kx*(l(k 1)) � x*k ! 0. Based on (9), the values of l(k) are updated along a sequence that converges
to zero, only when the values of x(k) � x*(l(k 1)) are small enough.

We need to decide when x(k) � x*(l(k 1)) is considered to be small enough. We will make this decision tak-
ing into account our concerns about both the convergence of the procedure and its rate of convergence. In this
sense, it is reasonable to require that the sizes of x(k) � x*(l(k 1)) and x*(l(k 1)) � x* are not too different
whenever we update l(k), as from (9) the rate of convergence of the algorithm would be dominated by the
slowest of both sequences. Thus, we will modify the value of l(k) whenever the value of kx(k) � x*(l(k 1))k
is comparable to that of kx*(l(k 1)) � x*k.

Unfortunately, these values are not directly available in the algorithm, but the following result provides
alternative reference values. Let F(x,k,z) be a measure of the satisfaction of the first-order KKT conditions
for problem (1) at the current iterate, that is

F ðx; k; zÞ ¼
rf ðxÞ � rcðxÞT k� z

cðxÞ

0
B@

1
CA ¼ rf ðxÞ � rcðxÞT k� z

cðxÞ

0
B@

1
CAþ

0

0

0
B@

1
CA ¼ F ðx; k; z; lÞ þ

0

0

0
B@

1
CA;
Zx Zx� l l l

ð10Þ
F denotes the corresponding satisfaction measure for problem (3). Also let

kF ðx; k; zÞk2 if kF ðx; k; zÞk < 1;
(

kF ðx; k; z; lÞk2 if kF ðx; k; z; lÞk < 1;
(

h ¼
kF ðx; k; zÞk otherwise;

h ¼
kF ðx; k; z; lÞk otherwise:

ð11Þ
om a solution the norm is not squared in the preceding definitions to avoid unnecessarily large values for
der our assumptions, these quantities are related to the distances to the respective solutions, as we show
in the following lemma.
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Lemma 1. Let w ¼ xT kT zT
� �T

. Under the preceding assumptions, asymptotically it holds that
kwðkÞ � w�k2 ¼ OðhðkÞÞ; kwðkÞ � w�ðlðkÞÞk2 ¼ OðhðkÞÞ and kw�ðlðkÞÞ � w�k ¼ OðklðkÞkÞ;

whe

(k

the

O
w(k)

for
w(x
re w* is the vector having components corresponding to a second-order KKT point of problem (1) closest to w*

)
(l ).

Proof. From the necessary conditions at w* and the Taylor series expansions for F(w) around w* we have

rf ðxðkÞÞ � rcðxðkÞÞTkðkÞ � zðkÞ
0 1

rxxLðx�; k�Þ �rcðx�ÞT �I
0 1
B C B C
F ðwðkÞÞ ¼ cðxðkÞÞ
ZðkÞxðkÞ

@ A ¼ F ðw�Þ þ rcðx�Þ 0 0

Z� 0 X �
@ AðwðkÞ � w�Þ

þ oðkwðkÞ � w�kÞ ¼ F ðw�Þ þ Jðw�ÞðwðkÞ � w�Þ þ oðkwðkÞ � w�kÞ:

desired result for w(k) � w* follows from the fact that F(w*) 0 and, under the assumptions, the matrix of

coefficients for the linear term in the preceding expansion, J(w*), is invertible.

(k) * (k)
The
The equivalent result for w � w (l ) is obtained by applying the same argument to F ðw; lÞ, as
F ðw�ðlðkÞÞ; lðkÞÞ ¼ 0 and the same invertible matrix J(w*) appears in the corresponding Taylor series
expansion.

The third result follows from:

F ðkÞðw�ðlðkÞÞ; lðkÞÞ ¼ 0 ¼ F ðw�; lðkÞÞ þ Jðw�Þðw�ðlðkÞÞ � w�Þ þ oðkw�ðlðkÞÞ � w�kÞ;
invertibility of J(w*) and also from (10), implying0 1 0 1

F ðw�; lðkÞÞ ¼ F ðw�Þ þ

0

0
B@ CA ¼

0

0
B@ CA: �
lðkÞ lðkÞ

ur general strategy will use a modified Newton’s method to solve problem (3) for fixed l and to ensure
� w* (l(k))! 0. Assuming global convergence for this method, see Moguerza and Prieto [10], we can
use the result in Lemma 1 jointly with (9) to define an update rule that will ensure global convergence for prob-
lem (1).

Let x(k) � (x(k))Tz(k)/n. A reasonable update rule for l(k) has the following form:

lðkÞi ¼
lðk�1Þ

i if lðk�1Þ
i < maxð/ðxðkÞÞ; fðhðkÞÞmðkÞi Þ;

ðk�1Þ ðkÞ

(
ð12Þ
wðl ; h Þ otherwise;
i

continuous functions /, f and w such that / and f are monotonically non-decreasing functions and
,y) 6 dx, for some d < 1. The vector m must be chosen to satisfy the bound maxim

ðkÞ
i 6 maxð1; 1=kyðkÞkÞ,
ðkÞ ðkÞ
where y(k) � X(k)z(k). Also, we impose the conditions that mi P bnmaxjmj for all iterations k, all components
i and some positive constant bn, and f (x) 6 bex for all positive x and some positive constant be < 1/n.

We must decide how rapidly should we decrease l(k), once the condition to modify l is satisfied, that is, how
to define the function w in (12). This modification rule has an impact on the convergence rate for the algo-
rithm. Again from (9) the rate of convergence of the algorithm will be defined as the slowest rate of conver-
gence of the sequences {w(k) � w*(l(k 1))} and {w*(l(k)) � w*}. Assuming that Newton’s method is used to
generate values of w(k) for fixed values of l, the sequence {w(k) � w*(l(k 1))} will have quadratic convergence.
Thus, it would seem of interest to define w so that both {l(k)} and, as a consequence of Lemma 1, also
{w*(l(k)) � w*}, converge quadratically.

Unfortunately, the quadratic convergence of this sequence may not ensure the quadratic convergence of the
algorithm, as the barrier parameter is not updated in all iterations. In particular, the number of iterations
where the barrier parameter is updated may be very small if the reduction in its value after each update is
large. A detailed theoretical study of this issue depends on specific details of the implementation of the
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algorithm and lies beyond the scope of this work, see Gould et al. [6], Moguerza and Prieto [11] and Yamash-
ita and Yabe [18] for example.
In practice, the usual approach is to reduce the value of l(k) to ensure superlinear convergence of the
parameter, and thus of the sequence {w*(l(k)) � w*}, at all iterates where the parameter is modified. If this
decrease is slower than that of kw(k) � w*(l(k 1))k, that is, slower than quadratic, it should be possible to prove
that the update will eventually take place in all iterations, and the whole sequence will converge superlinearly.

We will impose a superlinear reduction in the norm of the barrier parameter, that is, the function w in (12)
should be such that w(l(k 1),h(k)) o(kl(k 1)k).

The preceding comment only provides information on the change in the norm of l(k). As we are interested
in using a vector barrier parameter, the update rule needs to be completed with a specification of the modi-
fication in each component of l(k). This situation implies a major difference between our proposal and previ-
ous ones.

The basic motivation for the updating rules of scalar barrier parameters is based in the decomposition pre-
sented in (9).

Definition 1. For problem (2), the central path is defined as the set

Cl � fðx; k; zÞj9l > 0; F ðx; k; z; leÞ ¼ 0g;
where e ¼ 1 . . . 1ð ÞT 2 Rn.
In

(3).
(9) the progress to the solution is decomposed into the approximation of the iterates to a point in the

central path, and the movement of the reference point along the central path closer to the solution x*.

The adjustment in the value of l controls this last movement along the central path. The introduction of a
vector barrier parameter modifies this strategy as there is no longer any reference central path, but rather a
central surface.

Definition 2. For problem (3), the central surface is defined as the set

Cl � fðx; k; zÞj9l > 0; F ðx; k; z; lÞ ¼ 0g:
The following lemma and theorem show that this central surface exists under the assumptions on problem
Lemma 2. For any small enough l it holds that problem (3) has a solution and the system of equations

F ðx; k; z; lÞ ¼ 0 also has a solution, that is, the central surface is not empty.

Proof. The result follows from our assumptions and an adaptation of the arguments for the linear case given
in Theorem 2.8 of Wright [16]. h

Theorem 2. Let x�ðlÞ denote a solution of problem (2) for a small enough value of l 2 R. There exists a positive

constant �ðlÞ and positive vectors l 2 Rn such that all values x satisfying c(x) = 0 and kx� x�ðlÞk < �ðlÞ are

solutions of problem (3) for some appropriate vector l.

Proof. From the optimality conditions (5) for problems (2) and (3), we have that x�i ðlÞz�i ðlÞ ¼ l > 0, implying
both x�i ðlÞ > 0 and z�i ðlÞ > 0. Also, rf ðx�ðlÞÞ � rcðx�ðlÞÞTk�ðlÞ ¼ zðlÞ > 0.

Consider a value x such that c(x) 0 and kx� x�ðlÞk is small enough that both xi > 0 and
ðrf ðxÞ � rcðxÞTk�ðlÞÞi � zi > 0 for all i. Then, this value x is a KKT point for problem (3) for a value of
the barrier parameter l Xz. h

4. Updating rules
As a consequence of the results in the preceding section, there is no simple reference to follow on the way to
the solution, and a reasonable question is how to select such a reference among all the alternatives, for a given
value of l(k).

6



Practical efficiency considerations imply that one of the main goals in the process of generating iterates on
the way to the solution is to avoid getting too close to any of the non-negativity constraints. This closeness

may lead to numerical instabilities and an increase in the iteration count for the algorithm. Thus, it would
seem reasonable to look for updates that keep the iterates sufficiently separated from these constraints.

The equation in (8) that links the values of x and l is the complementarity condition Xz l. Our proposals
will make use of this condition, since this is the usual approach in the literature, see El-Bakry et al. [2] or
Yamashita and Yabe [18].

Going back to the definition of w, we introduce first the rule for the norm of the update. As we mentioned
above, we wish to impose a condition that ensures a superlinear reduction on the size of l. On the other hand,
by Lemma 1 relating the size of h to the distance to the solution, it would be reasonable to make use of h in the
update rule. The following lemma relates h(k) to kl(k)k.

Lemma 3. For fixed l with klk 6 1, h(k)! klk2.

Proof. From (10) and (11),

hðkÞ ¼ kF ðwðkÞÞk2 ¼ kF ðwðkÞ; lÞk2 þ klk2 þ 2ðZðkÞxðkÞ � lÞTl:
The (k) * ðkÞ

Z(k)x

h(k)!
global convergence of the algorithm implies kw � w (l)k ! 0; thus, it holds that kF ðw ; lÞk ! 0 and
(k)! l, implying the desired result. h
Due to these considerations, we have chosen to implement condition (12) and the definition of w in terms of
h instead of using l. In our studies, we implement the conditions by ensuring that

kwðl; hÞk ¼ OðdðhÞhÞ; ð13Þ
where d is a continuous increasing function such that 0 < d(h(k)) < 1 for all h(k) > 0 and d (h(k)) o(1) for
0. We also assume that the condition to modify l is satisfied at the current iteration.

The following four steps summarize the general strategy we have considered to define the update of the bar-

rier vector l, that is, the form of the function w in (12):

1. let lðkÞl ¼ dðhðkÞÞððxðkÞÞTzðkÞÞ=n,
2. let lðkÞu ¼ lðk�1Þ,
3. let lðkÞn ¼ dðhðkÞÞhðkÞmðkÞ for some vector m(k),
4. define lðkÞi ¼ minððlðkÞu Þi;maxðlðkÞl ; ðlðkÞn ÞiÞÞ.

In our implementations we have always carried out steps (1) (4), although some of them may be omitted for
alternative implementations of the algorithm.

Step (1) defines a lower bound for each one of the components in l(k). It has been introduced as a conse-
quence of the observation that, if this step is omitted, some of the components of l may become very small
with respect to others along the algorithm, causing numerical problems. To avoid this situation, we introduce
a lower bound on the values of the components. This lower bound could be defined in terms of the value of
h(k), but we have chosen to define it only in terms of the complementarity gap (x(k))Tz(k).

The definition in step (2), together with step (4), enforces the condition that all components of l must
decrease monotonically in each iteration. We have found that this monotonic decrease is helpful both from
a theoretical point of view (see [10]), and also with regard to the practical behavior of the algorithm.

The most relevant step in the update of the barrier parameter is the choice of the vector m(k) in step (3) of the
procedure. To satisfy the bound conditions in (12) we define m(k) from another vector mðkÞ as
mðkÞi ¼ maxðmðkÞi ; bnkmðkÞk1Þ. To define m we have tried different approaches, that we describe in the following
proposals.

Proposal 1. A first alternative is to select the values of the components in m(k) and l(k) assuming that the new
values of x and z will be such that the condition Xz l is approximately satisfied. Our goal is to obtain values
in the next iteration that are similar for all components of x that are converging to zero; this property would
guarantee that we do not get too close to the bounds for these variables, avoiding numerical difficulties.

7



Consider those components of x converging to zero and define the corresponding components of l as
lðkÞi ¼ czðkÞi for some constant c; under strict complementarity the corresponding components of z will be

converging to strictly positive values, and their relative changes will be small; under these assumptions, the
components of x in the next iteration should be close to lðkÞi =zðkÞi ¼ c, that is, these components would all be
similar in value, as desired. For the other components we could apply the analogous approach to z. In general,
we could define the vector lðkÞn in (3) to be proportional to the vector y ¼ maxðx; zÞ, by selecting

uðkÞ ¼ yðkÞ

kyðkÞk :
Propo

impo

Th
initio

As a
uct w
ment

This

Propo

upda
corre
sal 2. If some components of x in the current iteration have become small (but not unreasonably so),
sing the preceding rule may force these components to increase (although in later iterations these com-
ponents will have to decrease again). A better measure of scale would be needed in this case to avoid this
behavior. This measure can be defined in terms of the current value of X(k)z(k), that is, the value that should
be close to l(k 1), appropriately scaled. In this way, we would have a value of l that is better adapted to those
components of x that are small. Also, a less demanding adjustment is introduced for those components for
which it is more difficult to satisfy the complementarity condition.

Let y(k) X(k)z(k); we define the vector lðkÞn in this case from

uðkÞ ¼ yðkÞ

kyðkÞk :
ere exists an interesting alternative interpretation for this update. The value of ln associated to this def-
n is the solution of the quadratic problem
min lTl

s:t: lTyðkÞ=kyðkÞk ¼ dðhðkÞÞhðkÞ; ð14Þ

l P 0:

consequence, the preceding definition for ln provides the smallest possible vector such that its inner prod-
ith the vector X(k)z(k) has the desired value for the norm of the new parameter, except when an adjust-
to its smallest components is needed in (12). We allocate the value d(h(k)) h(k) (the norm of the update) to
the different components of l in a manner related to the relative size of the components of X(k)z(k).

Proposal 3. A slight modification of the preceding rule is to assign the values of lðkÞn in a manner that is pro-
portional to the absolute size of the components of y(k), instead of their relative size. We could define ln in
terms of the modified problem

min lTl

s:t: lTyðkÞ ¼ dðhðkÞÞhðkÞ; ð15Þ

l P 0:

is equivalent to defining m(k) in step 3 as

uðkÞ ¼ yðkÞ
2
:

kyðkÞk
sal 4. For comparison purposes, we have also considered a more ‘‘classical’’ definition, based on a scalar
te. Using the update proposed in El-Bakry et al. [2], for example, we have also implemented the method
sponding to
uðkÞ ¼ cðkÞððxðkÞÞTzðkÞ=nÞe; ð16Þ

where cðkÞ ¼ minðc; n=ððxðkÞÞTzðkÞÞÞ.
8



Note that all the preceding definitions satisfy the bound mðkÞi 6 maxð1; 1=kyðkÞkÞ.
We define the function / in (12) as
/ðhÞ ¼ dðhÞh: ð17Þ

F

show

But
(x(k

As a

for
com
for
inally, we show that these updating rules imply l! 0, assuming that problem (3) has a solution. First we
that, under the hypothesis that for a fixed value of l the algorithm converges to a KKT point of problem
(3), the updating strategy for vector l guarantees that at least one of its components will decrease. Then, based
on this result, we show that l! 0.

Lemma 4. If the algorithm converges to a KKT point of problem (3) for fixed l, then any of the preceding

updating strategies for vector l guarantees that its norm will be decreased after a finite number of iterations.

Proof. Assume that there exists an iteration k such that l is not modified in any iteration beyond k, that is,
l(k) l for all k P k. From our assumption that the algorithm converges to a KKT point of (3) and (10), then
X(k)z(k)! l and x(k) � (x(k))T z(k)/n! lTe/n. In this case, from the continuity of /, /(x(k))! /(lTe/n), sat-
isfying from (17)

/ðlTe=nÞ ¼ dðlTe=nÞlTe=n < lTe=n 6 max
i

li:

(k) T ~ ~
x ! l e/n implies the existence of an iteration k P k such that for all k P k it holds /
)) 6 (1 + d(lTe/n))/2lT e/n < maxlll.
Consider now the behavior of f(h(k))m(k). From the convergence assumptions and Lemma 3 it holds that y(k)

! l and

hðkÞ ! klk2 if klk 6 1;

klk otherwise:

(

consequence,

ðkÞ ðkÞ
h maxð1; 1=ky kÞ ! klk;
and as b < 1/n, using the properties of f in both cases there exists an iteration k̂ P k such that
e
fðhðkÞÞmðkÞ 6 b hðkÞmaxð1; 1=kyðkÞkÞ < klk=n 6 max l ;
i e l

l

^ ~ ^ ðkÞ ðkÞ ðkÞ
all i and k P k. Therefore, for all k P maxðk; kÞ it holds that maxð/ðx Þ; fðh Þm Þ < maxll and this
i l

ponent of l must be updated in the algorithm, contradicting our assumption that l remains constant
all large enough iterations. h
Theorem 3. If the algorithm converges to a KKT point of problem (3) for fixed values of l, then the updating
strategy for vector l guarantees that l(k)! 0.

Proof. By Lemma 4, kl(k)k will decrease after a finite number of iterations. Let K denote the (infinite)
sequence of iterations where l(k) is modified, and let J(k) denote the set of components that decrease at iter-
ation k 2K.

Define I as the set of components of l such that i 2 I if there exists an iteration index k satisfying i 62 J(k) for
all k P k. Let I ¼ f1; . . . ; ng n I , that is, the set of components in l that change an infinite number of times in
the algorithm; Lemma 4 implies that I is non-empty. Finally, define l � maxfk 2KjI \ J ðkÞ 6¼ ;g,
k � minfk 2Kjk > lg and l � maxj2Il

ðkÞ
j .

For all j 2 I , the update formula (12) and d < 1 imply lðkÞj ! 0. As a consequence, there exists an iteration
~k > k such that l P brmaxj2Il

ðkÞ
j for all k P ~k, where br max(1,1/bn) and bn has been defined in (12). Thus,

for any k 2K with k P ~k it holds that lðkÞi P brl
ðkÞ
j for any i 2 I and j 2 I , and from (12)

lðkÞj P maxð/ðhðkÞÞ; fðhðkÞÞmðkÞj Þ for j 2 J ðkÞ � I .
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Using br P 1 and mðkÞj P bnm
ðkÞ
i we then have

ðkÞ ðkÞ ðkÞ ðkÞ ðkÞ ðkÞ ðkÞ ðkÞ ðkÞ ðkÞ ðkÞ
li P brlj P br maxð/ðh Þ; fðh Þmj ÞP maxð/ðh Þ; fðh Þbrmj ÞP maxð/ðh Þ; fðh Þbrbnmi Þ
ðkÞ ðkÞ ðkÞ
and fr
l(k)!

4. Th

Th
P maxð/ðh Þ; fðh Þmi Þ;
om (12) lðkÞi must be modified, contradicting our assumption that i 62 J(k). It must follow that I ; and
0. h
5. Numerical results
In this section we compare numerically the strategies described above. We have conducted a set of numer-
ical experiments on a collection of test problems. The algorithm in Moguerza and Prieto [10] has been imple-
mented using MATLAB 6.5 and the four alternative strategies. The test set we have considered is composed of
145 small problems included in the CUTEr collection [7], selected from those nonlinearly constrained prob-
lems having less than one hundred variables and continuous derivatives (note that exact first and second deriv-
atives have been used). The initial points specified in CUTEr were used within the algorithm. The parameter
values used in the implementation have been selected as follows:

1. The function d(h) in Step (3) is defined as

dðhÞ ¼ minð0:15; expð�1=hÞÞ:
2. The scalar c in (16) has been defined as
ðkÞ ðkÞ
c ¼ dðh Þ:
3. The scalars b and b , both implicit in (12), have been set equal to 10 8.
n e

e termination criterion has been defined as
kF ðx; k; zÞk
1þ jf ðxÞj < 10�8:
e same parameter values were used for all problems.
Table 1 shows the results obtained using the four strategies described in the preceding section, respectively.
The notation used in the Table is:

• Prob.: problem name.
• Iter.: iteration count (number of factorizations of the primal-dual system).
• Eval.: number of evaluations of the objective function and the constraints.

The percentage of successfully solved problems is significantly higher for all the vectorial strategies (Propos-
als 1 3) compared to the extensively used scalar strategy (Proposal 4). In particular, Proposal 3 solves all prob-
lems but two. On the other hand, the scalar updating rule (Proposal 4) fails to solve nine problems. In
summary, all proposals based on a vector barrier parameter solve over 95% of the problems (Proposal 3 solves
98.6%), while the scalar proposal solves 93.7% of the problems (see the first row in Table 4).

Tables 2 and 3 show a comparison of iteration and function evaluation counts among the four strategies for
the whole set. The average numbers of iterations and function evaluations are shown at the bottom of the
tables. Proposal 3 seems to be the most efficient one, while Proposal 4 is again the least efficient one, with
an average increase of 12.01 iterations and 16.94 function evaluations, an improvement of 39% and 40%
respectively. These tables also show the total numbers of iterations and function evaluations.

Table 4 contains a summary of the success rates for all strategies. The rows in the table present the percent-
age of problems in which each proposal requires the smallest/largest number of iterations and function eval-
uations respectively (excluding ties). Proposal 1 is the best one regarding the number of function evaluations.
Proposal 2 is the most efficient according to the smallest number of iterations. Proposal 3 is the best when
considering both the largest number of iterations and function evaluations required.
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Table 1
Results

Prob. Proposal 1 Proposal 2 Proposal 3 Proposal 4

Iter. Eval. Iter. Eval. Iter. Eval. Iter. Eval.

AIRPORT 15 15 14 14 15 15 15 15
ALSOTAME 8 8 8 8 8 8 8 8
BIGGSC4 18 19 20 20 19 19 19 19
BT13 23 23 21 25 21 25 23 23
CANTILVR 27 44 19 26 15 18 35 51
CB2 7 7 12 15 11 12 9 9
CB3 8 8 13 17 10 11 10 12
CHACONN1 8 12 7 7 9 11 9 12
CHACONN2 9 10 12 16 10 12 10 12
CONGIGMZ 23 26 32 34 33 37 28 31
CSFI1 65 97 29 40 33 46 60 98
CSFI2 56 100 >250 >350 58 62 >250 >350
DEMYMALO 33 42 12 15 13 14 26 28
DIPIGRI 8 12 9 13 9 13 9 13
DISC2 93 112 19 21 45 53 42 64
DUAL1 17 17 20 20 18 18 18 18
DUAL2 14 14 16 16 14 14 14 14
DUAL4 14 14 16 16 14 14 14 14
EXPFITA 19 19 22 22 33 33 33 33
FCCU 7 7 7 7 8 8 7 7
GIGOMEZ1 80 103 12 16 17 19 35 43
HATFLDH 12 12 13 13 12 12 12 12
HIMMELBI 27 27 23 23 26 26 26 26
HIMMELBK 56 70 23 26 25 28 25 28
HIMMELP2 16 34 19 69 16 34 16 34
HIMMELP3 15 33 15 33 15 33 15 33
HIMMELP4 22 45 25 52 24 50 24 50
HIMMELP5 61 89 55 78 68 112 39 51
HIMMELP6 30 41 39 52 41 63 19 20
HONG 7 7 8 9 7 7 8 8
HS10 11 14 13 21 15 22 11 14
HS11 7 7 7 8 7 8 7 7
HS12 12 31 10 19 10 19 12 31
HS13 34 37 >250 >350 >250 >350 >250 >350
HS14 7 8 9 15 7 10 7 8
HS15 24 28 23 26 17 17 16 16
HS16 15 16 14 15 15 17 15 17
HS17 17 19 15 15 16 16 19 23
HS18 12 12 13 15 13 15 12 12
HS19 18 18 17 17 17 17 18 18
HS20 7 8 9 11 8 9 8 10
HS21 5 5 6 6 5 5 5 5
HS21MOD 11 11 12 12 12 12 12 12
HS22 6 6 6 6 6 6 6 7
HS23 9 9 10 14 9 10 9 10
HS24 8 11 7 7 8 10 8 12
HS29 8 13 10 17 10 17 8 13
HS30 6 7 6 7 6 7 6 7
HS31 5 5 5 5 5 5 5 5
HS32 16 16 16 16 15 15 15 15
HS33 8 9 8 9 9 10 9 10
HS34 9 11 9 11 9 9 11 13
HS35 7 7 7 7 7 7 7 7
HS36 7 7 9 9 8 8 7 7
HS37 6 6 6 6 7 8 7 7

(continued on next page)
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Table 1 (continued)

Prob. Proposal 1 Proposal 2 Proposal 3 Proposal 4

Iter. Eval. Iter. Eval. Iter. Eval. Iter. Eval.

HS41 7 7 7 7 7 7 7 7
HS43 11 14 13 19 14 23 11 14
HS44 9 9 9 9 9 9 9 9
HS44NEW 9 9 9 9 9 9 9 9
HS53 4 4 4 4 4 4 4 4
HS57 8 8 15 22 22 49 20 25
HS59 47 93 >250 >350 26 31 >250 >350
HS60 7 7 6 7 7 7 7 7
HS63 7 8 6 9 6 9 6 7
HS64 30 34 29 30 25 29 >250 >350
HS65 14 25 16 25 15 26 15 26
HS66 7 7 9 11 8 8 8 8
HS67 11 19 11 19 11 19 11 19
HS68 24 38 24 37 24 35 24 35
HS69 10 10 12 12 9 9 11 11
HS70 21 22 20 26 24 27 25 29
HS71 7 7 8 8 8 8 6 6
HS72 29 29 22 23 23 23 >250 >350
HS73 14 14 14 14 16 16 15 15
HS74 7 7 9 9 8 8 7 7
HS75 7 7 10 11 9 9 8 8
HS76 7 7 7 7 7 7 7 7
HS80 10 10 9 9 9 9 10 10
HS81 9 9 9 9 9 9 9 9
HS83 20 20 16 16 18 18 24 24
HS84 37 44 25 43 36 43 37 44
HS86 11 11 14 14 14 14 11 11
HS88 18 75 19 38 25 33 15 16
HS91 21 25 17 20 14 18 21 36
HS92 25 40 33 67 21 27 36 45
HS93 6 6 10 11 9 9 6 6
HS95 8 8 18 24 11 11 7 7
HS96 7 7 19 24 11 11 7 7
HS97 27 35 20 26 13 13 34 38
HS98 21 23 22 37 16 19 21 29
HS99 4 4 10 41 7 36 4 4
HS100 8 12 9 13 9 13 8 12
HS104 11 11 11 11 12 12 11 11
HS105 11 11 17 21 17 21 19 21
HS106 42 46 17 19 12 13 40 44
HS107 12 15 12 17 9 13 11 14
HS108 18 19 16 17 19 24 31 41
HS109 >250 >350 >250 >350 >250 >350 >250 >350
HS110 4 4 5 5 5 5 4 4
HS111 12 18 11 11 12 18 12 18
112 11 11 11 11 11 11 10 10
HS113 49 57 15 21 18 25 40 47
HS114 16 17 17 19 16 17 16 17
HS116 123 220 >250 >350 32 36 >250 >350
HS117 27 30 25 31 23 27 28 31
HS118 13 13 13 13 14 14 13 13
HS119 16 16 11 11 12 12 16 16
HS268 15 15 21 23 18 19 15 15
HUBFIT 7 7 7 7 7 7 7 7
KIWCRESC 8 10 15 28 10 15 9 11
LAUNCH 32 54 38 75 36 70 36 70
LIN 20 20 8 8 8 9 20 20
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Table 5 compares the results from the four proposed updating strategies to those of other interior-point
codes reported in the literature. In particular, those from Vanderbei and Shanno [15], Gay et al. [5] and

Table 1 (continued)

Prob. Proposal 1 Proposal 2 Proposal 3 Proposal 4

Iter. Eval. Iter. Eval. Iter. Eval. Iter. Eval.

LOADBAL 13 13 13 13 13 13 13 13
MADSEN 11 14 10 12 11 12 14 24
MAKELA1 15 16 13 13 12 12 12 13
MAKELA2 6 6 8 8 7 7 6 6
MAKELA3 25 30 12 15 16 21 15 23
MATRIX2 33 33 33 33 33 33 33 33
MIFFLIN1 6 6 6 6 6 6 6 6
MIFFLIN2 >250 >350 26 34 23 27 115 174
MINMAXBD 26 49 26 49 27 50 27 50
MINMAXRB 11 15 7 9 8 10 8 11
MISTAKE 9 9 11 11 11 11 11 11
ODFITS 7 7 11 21 7 7 7 7
POLAK1 9 10 8 8 7 7 9 10
POLAK2 >250 >350 >250 >350 14 30 >250 >350
POLAK3 25 28 >250 >350 22 29 43 47
POLAK4 6 6 18 25 66 89 19 31
POLAK6 22 41 22 29 20 34 21 40
PRODPL0 14 14 13 13 13 13 13 13
PRODPL1 15 15 15 16 16 16 16 16
RK23 7 7 7 7 7 7 7 7
ROSENMMX 228 321 97 143 33 53 33 53
S268 15 15 21 23 18 19 15 15
TAME 3 3 3 3 3 3 3 3
TENBARS4 >250 >350 28 39 34 43 >250 >350
TRUSPYR1 8 8 16 19 9 9 10 10
TRUSPYR2 9 9 17 20 10 11 10 10
TRY B 13 13 9 9 10 10 13 15
TWOBARS 6 6 6 6 6 6 6 6
WOMFLET 15 187 17 138 15 159 15 188
ZECEVIC2 8 9 8 8 8 8 8 8
ZECEVIC3 15 16 16 25 9 12 20 24
ZECEVIC4 13 14 9 9 10 11 13 14
ZY2 6 6 6 6 6 6 6 6

Table 2
Comparison of iteration counts on the whole set

Prob. Number of iterations

Proposal 1 Proposal 2 Proposal 3 Proposal 4

Total 3648 3829 2702 4443
Average 25.16 26.41 18.63 30.64

Table 3
Comparison of function evaluations on the whole set

Prob. Number of function evaluations

Proposal 1 Proposal 2 Proposal 3 Proposal 4

Total 5022 5295 3613 6070
Average 34.63 36.52 24.92 41.86
13



Yamashita [17], on a set of 22 HS problems (all the problems that were reported in all of the references). The
columns in the table correspond to the number of iterations (matrix factorizations) required by:

Table 4
Summary statistics

Percentage of successes and best performances

Proposal 1 Proposal 2 Proposal 3 Proposal 4

% Successes 97.24 95.17 98.62 93.79
% Worst Iter. 13.79 29.66 9.66 13.79
% Best Eval. 17.24 15.86 13.79 5.52
% Worst Eval. 13.79 29.66 8.97 14.48

Table 5
Iterations counts for different nonlinear interior point codes

Prob. Number of iterations

P1 P2 P3 P4 VS Y GOW

HS64 30 29 25 28 29
HS65 14 16 15 15 14 15 10
HS71 7 8 8 6 12 8 15
HS72 29 22 23 21 43
HS73 14 14 16 15 20 12 11
HS83 20 16 18 24 15 16 16
HS84 37 25 36 37 18 21 25
HS93 6 10 9 6 10 29 17
HS95 8 18 11 7 18 13 26
HS96 7 19 11 7 22 12 27
HS97 27 20 13 34 18 22 31
HS98 21 22 16 21 19 20 27
HS100 8 9 9 8 11 16 10
HS104 11 11 12 11 14 19 12
HS106 42 17 12 40 33 39 45
HS108 18 16 19 31 23 62 13
HS109 49 21 32
HS113 49 15 18 40 16 25 13
HS114 16 17 16 16 31 47 15
HS116 123 32 33 82
HS117 27 25 23 28 22 36 33
HS118 13 13 14 13 17 34 17

Average 25.10 17.10 16.95 19.94 21.09 28.23 20.79
• Px: the results for proposal x, for x 1,2,3,4.
• VS: iteration counts for LOQO, as reported in Vanderbei and Shanno [15].
• Y: iteration counts reported in Yamashita [17].
• GOW: iteration counts reported in Gay et al. [5].

For these problems Proposals 2 and 3 work better on the average than any of the other codes. All initial points
for the algorithms are those indicated in Gould et al. [7]. For the GOW algorithm, only those results corre-
sponding to these starting points are shown. The termination conditions for our codes are similar to those used
in Gay et al. [5], and comparable or slightly more restrictive than those implemented in the other two codes.

6. Conclusions

In this work we have compared four updating rules for the barrier parameter within an interior-point
method. The first three proposals use a vector of barrier parameters, while the last one is based on a widely
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used scalar updating strategy. We have shown that the new vector strategies are well defined, and all the com-
ponents of the vector converge to zero under reasonable assumptions.

The computational experiments show that, for small problems, the vectorial strategies improve in average
the iteration count and the number of function evaluations, and they are also successful on a larger number of
problems than the scalar approach.
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