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We consider a retailer selling a fixed inventory of two perishable products over a finite horizon. The products
are sold individually or as part of a bundle. The customers arrive following a Poisson Process and each customer
makes a purchasing decision based on her reservation prices of individual products: she either buys one of the
individual products, buys the bundle or leaves without a purchase. Assuming that the customer reservation
prices follow a bivariate distribution, we determine the optimal product and the bundle prices that maximize
the expected revenue. The performances of three bundling strategies (mixed bundling, pure bundling and
unbundling) under different reservation price distributions, demand arrival rates and starting inventory levels
are compared. The impact of the shape of the reservation prices is also investigated by considering both the
bivariate normal and bivariate gamma densities, the latter of which has not been considered before in the
literature. Our numerical results based on the bivariate normal reservation prices indicate that the performances
of the policies heavily depend on the parameters of the demand process and the initial inventory levels. Bundling
is observed to be most effective with negatively correlated reservation prices and when the starting inventory
levels are high. When the starting inventory levels of two products are equal, most of the benefits of bundling
can be achieved through pure bundling in case of excess supply. However, the mixed bundling strategy clearly
dominates the other two when the starting inventory levels are not equal. Our numerical results show that
bundling becomes more effective and the expected revenues increase as the products become less substitutable
and more complementary. We also observe that the correct modeling of the reservation price distribution is
important, and the use of sub-optimal prices resulting from assuming bivariate normal density when in fact the
appropriate distribution is bivariate gamma may result in significant losses in the expected revenue especially
if the reservation prices are negatively correlated. Finally, the model is extended to allow for price changes
during the selling horizon using a dynamic programming formulation. It is shown that offering price bundles
mid–season may be a more effective mechanism than changing individual product prices.

1. Introduction
Bundling is the practice of selling two or more products together. Companies engage in
bundling in a wide range of industries including information goods (e.g., software such as
Microsoft’s Office Suite), travel services (e.g., vacation packages from travel agencies), restau-
rants (e.g., McDonald’s Happy Meal), durable consumer goods (e.g., personal computer
options) and non durable consumer goods (e.g., dishwasher detergent and rinse aid packages).
Bundles are offered due to a variety of reasons. Strategically, a company may use bundling to
preserve (or increase) market power, or to extend its market power in one product to another.
Efficiency reasons include achieving cost savings and quality improvements and reducing pric-
ing inefficiencies. See Nalebuff (2003) for a detailed discussion of the motivations to engage
in bundling.

The advancement of the Internet and other information technologies brought the practice
of bundling to a new frontier. Enormous amount of detailed consumer buying behavior data

1
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is now available and the e-tailers are able to make bundling and pricing decisions in a costless
and timeless manner. According to a survey by E-tailing Group Inc., 88 % of top 100 online
retailers suggest additional products on their websites (E-tailing Group (2004)). For example,
a customer who intends to buy the latest R.E.M. album “Around the Sun” for $13.49 or
“At the Organ” album from The Minus 5 for $10.99 from Amazon.com will be offered to
buy them together at a discounted price of $22.48. Note that the online retailer does not
always need to offer a discount on the bundle, as the shipping costs are almost never linear
(Amazon.com charges $2.98 for a single CD, $3.97 for two CDs for standard shipping to U.S.
customers). Bundling or cross-selling is also very popular for books, music, electronics and
apparel & accessories, and online travel service providers.

While there is a significant adaptation of bundling practices in the industry, there are also
serious challenges for companies that consider to implement bundling. First, the benefits of
bundling needs to be quantified in order to see whether the benefits justify the potential
costs and additional complexity in operations. Also, if the company is offering more than two
products, it needs to specify the number of different bundle types to offer and what products
to include in each specific bundle. For products that are sold as part of a bundle, the company
also needs to decide whether it will continue to sell these products individually (i.e., mixed
bundling) or not (i.e., pure bundling). Finally, the company needs to determine the bundle
prices and individual product prices that will maximize its profits.

Previous research on bundling in marketing and economics literature focus on the identi-
fication of demand settings for which bundling is profitable. The purchase behavior of the
customers is usually characterized by the reservation price (maximum price a customer is
willing to pay for a product) distributions of the products. Correlation between the reservation
prices, complementarity, substitutability and heterogeneity of valuations among customers
are major factors in the discussion of the profitability of bundling strategies. The earliest
study to address such issues is by Stigler (1963) who assumes additive reservation prices for
the bundle and concludes that the profitability of bundling is due to the negative correlation
in reservation prices. Adams and Yellen (1976) use the same settings as Stigler (1963) and
argue that the profitability of bundling can stem from its ability to sort customers into groups
with different reservation price characteristics, and hence extract consumer surplus. Consid-
ering the three bundling strategies, pure components (unbundling), pure bundling and mixed
bundling, they conclude that relative profitability of these three strategies depend on the
distribution of the reservation prices and the structure of the costs (see also Jeuland (1984)).
In numerous experiments they have provided, it is found that some form of bundling is more
profitable than simple monopoly pricing and bundling seems to be a more efficient method
than price discrimination. Schmalensee (1984) modifies the framework of Stigler (1963) by
assuming bivariate normal reservation price distribution and allowing for positive correlation.
He shows that pure bundling operates by reducing the effective dispersion in buyers’ tastes,
since the standard deviation of reservation prices for the bundle is less than the sum of the
standard deviations for the two components as long as reservation prices are not perfectly
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correlated. Schmalensee (1984) also shows that mixed bundling combines the advantages of
pure bundling and unbundling strategies. This policy enables the seller to reduce effective
heterogeneity among those buyers with high reservation prices for both goods, while still
selling at a high markup to those buyers willing to pay a high price for only one of the goods.
In a comment to Schmalensee (1984), Long (1984) relaxes the normality assumption on reser-
vation price distributions and also concludes that the most favorable case for bundling as a
price discrimination device is when the bundle components have negatively correlated reser-
vation prices. Focusing on graphical analysis of bundling, Salinger (1995) indicates that if
bundling does not lower costs, it tends to be profitable with negatively correlated reservation
prices that are high relative to costs. If bundling lowers costs and costs are high relative to
reservation values, positively correlated reservation values increase the incentive to bundle.

Although not directly related to our study, see also Ansari et al. (1996) for the determi-
nation of the optimal number of items to be included in a service bundle, Ben-Akiva and
Gershenfeld (1998) for customer choice behavior for bundles with correlated demand, Carbajo
et al. (1990) for incentives for bundling under imperfect competition, Hanson and Martin
(1990) for the calculation of optimal bundle prices in a deterministic setting, using mixed
integer linear programming, Ernst and Kouvelis (1999) for the effect of selling product bun-
dles (as opposed to price bundles in our case) on inventory decisions, and Stremersch and
Tellis (2002) for a clear discussion of bundling terms which are used in marketing, economics
and law literature in a somewhat unclear way. Finally, we note the growing literature on
bundling of information goods (see, for example, Bakos and Brynjolfsson (1999)). However,
the setting for the information goods is distinctly different from physical goods and most
services, since the marginal costs are close to zero and inventory is almost never a constraint.

The basic assumption in the studies in marketing and economics literature is that there
is an abundant supply of the products, perhaps at a certain cost. Different from them, we
assume that there is an initial inventory of items which needs to be sold over a finite horizon.
As such, we follow the approach taken in the revenue management literature. See Talluri
and van Ryzin (2004) and McGill and van Ryzin (1999) for reviews of revenue management
research and Elmaghraby and Keskinocak (2003) for a review of dynamic pricing research
and practice in this context. Inventory considerations in bundling decisions are critical in
many product categories including travel services (airplane seats, hotel rooms and rental
cars), event tickets, fashionable products such as apparel and accessories and high technology
products. Different from the previous research on bundling, we also explicitly model the
customer arrival process and the behavior of the customers when the inventory of one of the
products that the bundle is composed of runs out before the end of the horizon.

The papers that could be considered most directly related to our work in the revenue
management literature are those studying multiple product revenue management problems
as introduced in Gallego and van Ryzin (1997). Netessine et al. (2004) study a problem where
they consider an e-commerce seller that dynamically forms and prices product or service
packages. The problem is modeled as a dynamic program based on two possibilities in case
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of stock-out: an emergency replenishment of the customer’s initial request or lost sales. Our
model differs from Netessine et al. (2004) as we assume posted prices and we explicitly model
the consumer choice given that she is given three alternatives upfront: either one of the
products or the bundle or none.

The specific model that is used in this study involves two products that are sold over a
finite horizon, either individually or as part of the bundle. It is assumed that the replenish-
ment decisions for these two products are already made and no additional replenishments
are possible during the horizon. The customers arrive following a Poisson Process and each
customer makes a purchasing decision based on her reservation prices of individual products:
she either buys one of the individual products, buys the bundle or leaves without a purchase.
It is assumed that the bundle does not require any physical integration of the products (i.e.,
price bundling as opposed to product bundling), thus a bundle purchase is possible as long as
both products have positive inventory (no separate inventory is kept for the bundle). No cost
is incurred for the formation of the bundle. If the inventory of one of the products is depleted,
the customer has only two options: she either buys the remaining product or leaves without
a purchase. The objective is to determine the individual product prices and the bundle price
so as to maximize the expected revenue over the entire horizon. Although the main focus
of the present study is the analysis of bundling strategies and the impact of bundling with
constant prices through the selling horizon, the analysis of this single period model allows
us to extend our model to incorporate price changes during the selling horizon. We therefore
briefly discuss such an extension and provide the dynamic programming formulation of the
problem together with a numerical example.

In an extensive study we investigate the impact of several factors on the optimal expected
revenues, prices and the amount of sales. These factors include the correlation between the
reservation prices of the two products, the degree of contingency (complementarity or substi-
tutability), the heterogeneity of the customer valuations (represented as the standard devia-
tions of the reservation prices), the level of the initial stocks and the shape of the reservation
price distributions. We also compare the performance of the mixed bundling strategy against
that of the pure bundling and unbundling strategies. Our results show that bundling is most
effective when the starting inventory levels are high and the reservation prices are negatively
correlated. When the starting inventory levels for the two products are equal, most of the ben-
efits of bundling can be obtained through pure bundling. When the starting inventory levels
are not equal, the mixed bundling strategy clearly outperforms the other two. Our numerical
study also show that bundling is more effective when the products are more complementary
and less substitutable. To the best of our knowledge, in the bundling literature only the
symmetric and particularly the normal reservation prices are used. However, in practice we
may expect that high reservation prices would have less probability, indicating a right skewed
distribution. To conform with this intuition, we investigated the bivariate gamma density for
the reservation prices. It is observed that if the sub optimal prices resulting from normality
assumption are used when in fact the reservation prices are gamma distributed, there may
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be a significant loss in the revenues. We believe this finding is important from a managerial
point of view. Finally, we extended our model to allow for price changes and an illustrative
example with a mid–season price change showed that the optimal initial prices higher than
the expected mid–season price. It is also shown that offering price bundles mid–season may
be a more effective mechanism than changing individual product prices.

The rest of the paper is organized as follows. Section 2 formulates the problem and intro-
duces the model. Section 3 contains the numerical results. Section 4 extends the model to
multiple periods. Section 5 concludes with a discussion of our major findings and avenues for
future research.

2. Model and Analysis
Given an initial inventory of two products and a finite selling season, we are concerned with
the problem of determining prices of the bundle and the individual products so that the
expected revenue over the selling season is maximized. To form a basis of comparison, we
also study pure bundling and unbundling strategies.

Before discussing the details of our problem, we elaborate on some of the fundamental
assumptions used in the model. We assume that the customer preferences are governed by
their reservation prices. Most commonly, the reservation price is defined as the maximum
amount that a customer is willing to pay to purchase a product. We also adopt this definition,
but also see Jedidi and Zhang (2002) for a utility based definition. We refer the reader to
Jedidi and Zhang (2002) for estimating individual consumer reservation prices and to Jedidi
et al. (2003) for capturing consumer heterogeneity in the joint distribution of reservation
prices in the case of bundling. Other ways to model consumer behavior for differentiated
products include multinomial logit (MNL) random utility model; see van Ryzin and Mahajan
(1999) and Mahajan and van Ryzin (2001).

We first consider the case where the reservation price for the bundle is equal to the sum of
the individual reservation prices. This reflects the assumption that the products are individ-
ually valued and is adopted by many authors (e.g., Adams and Yellen (1976), Schmalensee
(1984), McAfee et al. (1989)). Guiltinan (1987) refers to this assumption as the assumption
of strict additivity. Venkatesh and Kamakura (2003) relax the strict additivity assumption
and allow for substitutability and complementarity. In this study we analyze these cases as
well. If the products are substitutable, customers want to buy only one of them at a time.
Then, a customer’s reservation price for the bundle would be subadditive (less than the sum
of the reservation prices). Alternatively, customers may tend to consume the two products
together. These kind of products are called complementary. When products are complements,
a customer’s reservation price for the bundle is superadditive (more than the sum of the
reservation prices).

2.1. Problem Definition

We consider a retailer that sells two perishable products, Product 1 and Product 2. There are
Q1 units of Product 1 and Q2 units of Product 2 and a fixed planning horizon of length T .
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At the beginning of the planning horizon, the retailer sets the price pi for product i, i = 1,2.
He also provides a bundle option which implies charging the customers less than the sum of
the individual product prices if they buy both. That is, the individual product prices and
the bundle price, pb are determined so that pb ≤ p1 + p2. In this section, we assume that the
initial prices remain unchanged until the end of the season which is relaxed in Section 4. It is
assumed that, the retailer incurs fixed costs before the selling season. We therefore consider
maximizing the revenue.

Customers arrive at the store according to a Poisson Process with a fixed arrival rate of
λ customers/season. A customer is allowed to purchase a single product or a bundle, not
both. She may also choose to leave without any purchase. We assume that the purchasing
behavior of a customer is as follows: if the prices are lower than the reservation prices for
both products, then she prefers the one which brings her the maximum surplus- the difference
between the reservation price and the price of the product. Reservation prices R1 and R2

are considered as random variables with a bivariate distribution with means µ1, µ2, standard
deviations σ1, σ2 and correlation coefficient ρ. Let fR1,R2(r1, r2) denote the joint probability
density function of the reservation prices R1 and R2 with corresponding marginals fR1(x)
and fR2(x). For now, we assume that the reservation price, Rb, for the bundle is equal to the
sum of the individual reservation prices, i.e., Rb = R1 +R2. Later in Section 2.5, we relax this
assumption. All the distributions are assumed to be known to the retailer.

When both products are available, an arriving customer compares her reservation prices
for the individual products and the bundle with their respective prices and may take four
possible actions: decides to leave without any purchase, buys Product 1, buys Product 2 or
buys a bundle, with respective probabilities, α0, α1, α2 and αb. If at any point during the
planning horizon, one of the products is depleted, these probabilities change. We denote by
α
′
1 the probability of buying Product 1, after depletion of Product 2 and by α

′
2 the probability

that a customer buys Product 2 after depletion of Product 1. In both cases the customer
may leave without any purchase with complementary probabilities α′01=1-α′

1 and α′02=1-α′
2.

Clearly, no bundle can be purchased if one of the products is not available. We first consider
below the case when the retailer follows a mixed bundling strategy.

2.2. Purchasing Probabilities

When both products are available, a customer will purchase nothing if her reservation prices
for the two products and the bundle are lower then their corresponding sales prices. Hence,

α0 = P (R1 < p1,R2 < p2,Rb < pb)

=
∫ p1

−∞

∫ a1

−∞
fR1,R2(r1, r2)dr2dr1

where a1=min{p2, pb− r1}.
For i=1, 2 the customer will purchase Product i if her surplus (the difference between

the reservation price and sales price) is positive and larger than her surplus from the other
product and the bundle. Then the probability of purchasing Product 1 is given by,

α1 = P (R1 > p1,R1− p1 > R2− p2,R1− p1 > Rb− pb)
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=
∫ ∞

p1

∫ a2

−∞
fR1,R2(r1, r2)dr2dr1

where a2=min{r1− p1 + p2, pb− p1} . Probability of purchasing Product 2 is similarly obtained
as

α2 =
∫ ∞

p2

∫ a3

−∞
fR1,R2(r1, r2)dr1dr2

where a3=min{r2− p2 + p1, pb− p2} .

Observing that a customer will purchase the bundle if her surplus is positive and larger
than the surplus from both products, we have

αb = P (Rb > pb,Rb− pb > R1− p1,Rb− pb > R2− p2)

=
∫ ∞

pb−p2

∫ ∞

a4

fR1,R2(r1, r2)dr2dr1

where a4=max{pb− r1, pb− p1}
When one of the products is depleted, an arriving customer can no longer purchase the bun-

dle. She can either buy one unit from the remaining product or buy nothing. The probability
of no purchase α

′
02 in the absence of the first product is given by

α
′
02 = P (R2 < p2) =

∫ p2

−∞
fR2(r2)dr2.

Then the probability that she buys Product 2 is simply by 1− α
′
02. Similarly we have the

following no purchase probability in the absence of Product 2,

α
′
01 = P (R1 < p1) =

∫ p1

−∞
fR1(r1)dr1.

Since the arrival process is Poisson, the demand for the two products and the bundle while
both products are available will follow independent Poisson processes with rates λα1, λα2

and λαb, respectively. When a product is depleted, the sales of the remaining product will
also be a Poisson process, however with modified rates λα

′
2 or λα

′
1.

2.3. Sales Probabilities

Let N1,N2, Nb denote the numbers of Product 1, Product 2 and the bundle that are sold
during the selling horizon which starts with Q1 units of Product 1 and Q2 units of Product
2. Also let

P (n1, n2, nb) = P (N1 = n1,N2 = n2,Nb = nb)

be the joint probability function for such sales 1. The derivation of P (n1, n2, nb) needs some
careful consideration. There are four possible realizations for any selling horizon: i) No stock-
out in any products, ii) Stockout only in Product 2, iii) Stockout only in Product 1, and iv)

1 Clearly, α0(p), α1(p), α2(p), α′01(p), α′02(p) and P (n1, n2, nb;p) is a more proper notation for representing purchasing
probabilities and the sales probability since all are functions of p = (p1, p2, pb). However, for brevity, we drop the vector
p from the notation except in Section 2.3.1 and Section 4.
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Stockout in both products. When there is stockout in both products, one should also keep
track of the order of the stockout times since this changes the dynamics of the purchasing
behavior of the customers. Next, the calculation of P (n1, n2, nb) is illustrated.

Case 1: No stockout in any products: In this case we have n1 + nb < Q1 and n2 + nb < Q2.
Since both products are available until the end of the season, N1,N2 and Nb behave as
independent Poisson random variables through the selling season and we have

P (n1, n2, nb) =
e−λα1T (λα1T )n1

n1!
e−λα2T (λα2T )n2

n2!
e−λαbT (λαbT )nb

nb!

Case 2: No Stockout in Product 1 and Stockout in Product 2: Suppose now, Product 2
stocks out during the planning horizon but there is at least one unit of Product 1 on hand
at the end. This corresponds to having n1 +nb < Q1 and n2 + nb = Q2.

We first condition on the time X, at which Product 2 is depleted. Due to Poisson arrivals,
X will have an Erlang distribution, the parameters of which will depend on how the depletion
of Product 2 is realized. In particular, the stockout can be experienced either by an individual
purchase of Product 2, or by a bundle purchase. Each of these realizations induce different
dynamics to the system. Suppose a stockout occurs in Product 2 at the time instance x and
let let N11(x) be the number of Product 1 that is sold in the interval (0, x]. If the last purchase
that depletes the inventory of Product 2 is a single purchase, then X will have an Erlang
distribution with shape and scale parameters n2 and α2λ, respectively. This implies that nb

bundle purchases have occurred in (0, x]. If the last purchase however, is a bundle, then X will
have an Erlang distribution with shape and scale parameters nb and αbλ respectively. This
will then imply that n2 individual Product 2 purchases have occurred in (0, x]. In either case,
if N11(x) = n11, this corresponds to n11 Product 1 purchases in (0, x] and n1−n11 Product 1
purchases in (x,T ]. Let gβ,θ(.) denote the probability density function of an Erlang variable
with shape and scale parameters β and θ. Also let I(a≥ b) be an indicator function which
equals 1 if a is larger than or equal to b, 0 otherwise. Then, conditioning on X and how the
stockout of Product 2 is realized, we have

P (n1, n2, nb) = I(n2 ≥ 1)
∫ T

0

A(x)gn2,α2λ(x)dx + I(nb ≥ 1)
∫ T

0

B(x)gnb,αbλ(x)dx

where

A(x) ≡
n1∑

n11=0

e−λα1x(λα1x)n11

n11!
e−λα′1(T−x)(λα′1(T −x))n1−n11

(n1−n11)!
e−λαbx(λαbx)nb

nb!

and

B(x) ≡
n1∑

n11=0

e−λα1x(λα1x)n11

n11!
e−λα′1(T−x)(λα′1(T −x))n1−n11

(n1−n11)!
e−λα2x(λα2x)n2

n2!
.
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Case 3: No Stockout in Product 2 and Stockout in Product 1 The purchase probabilities
for this case are obtained similar to the previous case. For n1 +nb = Q1 and n2 +nb < Q2, we
have

P (n1, n2, nb) = I(n1 ≥ 1)
∫ T

0

A(x)gn1,α1λ(x)dx + I(nb ≥ 1)
∫ T

0

B(x)gnb,αbλ(x)dx

where

A(x) ≡
n2∑

n21=0

e−λα2x(λα2x)n21

n21!
e−λα′2(T−x)(λα′2(T −x))n2−n21

(n2−n21)!
e−λαbx(λαbx)nb

nb!
,

B(x) ≡
n2∑

n21=0

e−λα2x(λα2x)n21

n21!
e−λα′2(T−x)(λα′2(T −x))n2−n21

(n2−n21)!
e−λα1x(λα1x)n1

n1!
.

Case 4: Stockout in both products: Suppose now that both products are depleted during
the planning horizon which corresponds to the case n1 + nb = Q1 and n2 + nb = Q2. We first
observe that stockout in both products can occur by three different realizations: Product
1 or Product 2 depletes first, or both can deplete simultaneously by a bundle purchase.
Corresponding to each of these realizations we define separate sales probabilities PA(n1, n2, nb)
(Product 1 depletes first), PB(n1, n2, nb) (Product 2 depletes first) and PC(n1, n2, nb) (both
products deplete simultaneously) such that

P (n1, n2, nb) = PA(n1, n2, nb)+ PB(n1, n2, nb) + PC(n1, n2, nb)

We now derive these sales probabilities.
First we derive PA(n1, n2, nb). Suppose Product 1 depletes first at time Z1 = z1 and let

N
′
21(z1) be the number of Product 2 that is sold in (0,z1]. Similar to the previous case, the last

purchase that causes the stockout of Product 1 can be either a single or a bundle purchase. If
it is a single purchase, Z1 has an Erlang distribution with parameter n1 and α1λ and there are
nb bundle purchases in (0,z1]. If it is a bundle, Z1 has an Erlang distribution with parameter
nb and αbλ and there are n1 Product 1 purchases in (0,z1]. In either case, N

′
21(z1) = n

′
21

implies that there are n
′
21 Product 2 purchases in (0,z1]. The maximum value that n

′
21 can

take is n2 − 1, since we have to ensure that Product 2 has not depleted before Product 1.
Also, in order that Product 2 is depleted by the end of the selling season, we must have at
least n2−n21 Product 2 purchases in (z1, T ]. Letting as before

A(z1) ≡
max(n2−1,0)∑

n
′
21=0

∞∑

k=n2−n
′
21

e−λα2z1(λα2z1)n
′
21

n
′
21!

e−λα′2(T−z1)(λα′2(T − z1))k

k!
e−λαbz1(λαbz1)nb

nb!

and

B(z1) ≡
max(n2−1,0)∑

n
′
21=0

∞∑

k=n2−n
′
21

e−λα2z1(λα2z1)n
′
21

n
′
21!

e−λα′2(T−z1)(λα′2(T − z1))k

k!
e−λα1z1(λα1z1)n1

n1!
,
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we have

PA(n1, n2, nb) = I(n1 ≥ 1)
∫ T

0

A(z1)gn1,α1λ(z1)dz1 + I(nb ≥ 1)
∫ T

0

B(z1)gnb,αbλ(z1)dz1.

The derivation of PB(n1, n2, nb) is same as the derivation of PA(n1, n2, nb), except that we
now assume Product 2 depletes first.

In order to derive PC(n1, n2, nb), let Z3 = z3 be the time that both products deplete simul-
taneously by a bundle purchase. Then Z3 has an Erlang distribution with parameters nb,
αbλ, and n1 units of Product 1 and n2 units of Product 2 are sold in (0,z3]. Thus, we have

PC(n1, n2, nb) =
∫ T

0

e−λα1z3(λα1z3)n1

n1!
e−λα2z3(λα2z3)n2

n2!
gnb,αbλ(z3)dz3.

2.3.1. Optimization Problem Having provided the sales probabilities for different real-
izations, we can now state the optimization problem. For a given initial stock levels Q1 and Q2,
the problem is to find the individual product prices and the bundle price, i.e., p = (p1, p2, pb),
so that the expected revenue is maximized. Thus, the problem for the mixed bundling case
can be expressed as

max
p

∑
n1,n2,nb

(p1n1 + p2n2 + pbnb)P (n1, n2, nb;p)

s.t. p1 + p2 ≥ pb

The problem is a non–linear program with a single constraint on prices.

2.4. Unbundling and Pure Bundling Strategies

The analysis for the unbundling and pure bundling strategies are carried similarly, except
with modified purchasing probabilities. In the unbundling case an arriving customer can buy
nothing, buy Product 1 or Product 2 or both at a price p1+p2 with the following purchasing
probabilities:

α0 = P (R1 ≤ p1,R2 ≤ p2),
α1 = P (R1 ≥ p1,R2 ≤ p2),
α2 = P (R1 ≤ p1,R2 ≥ p2),
αb = P (R1 ≥ p1,R2 ≥ p2).

Pure bundling simply refers to the case with a single product, the bundle. The customer
either buys the product with a probability αb = P (R1 +R2 ≥ pb), or leaves without a purchase
with probability α0 = 1 − αb. For comparison purposes, we have included this case in our
numerical study, however such a comparison is somewhat restricted since it is reasonable to
make comparisons only when Q1=Q2.
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2.5. Superadditivity and Subadditivity of Reservation Prices

The analysis so far assumes that the consumer’s reservation price for the bundle is equal to
the sum of her reservation prices for the individual products, i.e., Rb = R1 + R2. When the
two products are complements or substitutes, the assumption of strict additivity does not
hold. Following the approach in Venkatesh and Kamakura (2003), we define θ to measure
the degree of contingency (the degree of complementarity or substitutability). The degree of
contingency θ is given by

θ =
Rb− (R1 +R2)

R1 + R2

.

As noted in Venkatesh and Kamakura (2003), “correlation in reservation prices and the
degree of contingency are two distinct notions. While the degree of contingency parameter θ

captures perceived value enhancement or reduction within each consumer, the correlation in
reservation prices for two products shows how stand-alone reservation prices relate to each
other across consumers.”

In this setting, the purchase probabilities can be calculated in a way similar to the one
in Section 2.2. The purchase probabilities when there is no stock-out can be calculated by
observing Rb = (1 + θ)(R1 + R2). The no purchase probability is given by

α0 = P (R1 < p1,R2 < p2,Rb < pb)
= P (R1 < p1,R2 < p2, (1+ θ)(R1 + R2) < pb)
= P (R1 < p1,R2 < min{p2, (pb− (1+ θ)R1)/(1+ θ)})
=

∫ p1

−∞

∫ a1

−∞
fR1,R2(r1, r2)dr2dr1

where a1=min{p2, (pb− (1+ θ)r1)/(1+ θ)}.
The purchase probability of the first product is given by

α1 = P (R1 > p1,R1− p1 > R2− p2,R1− p1 > Rb− pb)
= P (R1 > p1,R1− p1 > R2− p2,R1− p1 > (1+ θ)(R1 + R2)− pb)
= P (R1 > p1,R2 < min{R1− p1 + p2, (pb− p1− θR1)/(1+ θ)})
=

∫ ∞

p1

∫ a2

−∞
fR1,R2(r1, r2)dr2dr1

where a2=min{r1− p1 + p2, (pb− p1− θr1)/(1+ θ)} . The purchase probability of the second
product is obtained similarly as

α2 =
∫ ∞

p2

∫ a3

−∞
fR1,R2(r1, r2)dr1dr2

where a3=min{r2− p2 + p1, (pb− p2− θr2)/(1+ θ)} . Finally, the purchase probability of the
bundle can be derived as

αb = 1−α0−α1−α2

The purchase probabilities when there is a stock-out are same as those given in Section 2.2.
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2.6. An Example

In a recent study, Jedidi et al. (2003) develop a model for capturing the heterogeneity in the
joint distribution of the reservation prices of products. They conduct experiments to mea-
sure reservation prices for three product groups containing both durable and non-durables.
The durable group includes a combination of a video camera (VC) and a video cassette
player/recorder (VP) and a combination of a microwave oven (MO) and television (TV). We
present below an application of our methodology for this group, using the estimates of Jedidi
et al. for the reservation prices. From their experimental study, they provide the estimates
given in Table 1 for the parameters of the reservation price distributions, assuming bivariate
normality. Jedidi et al. use a profit maximization approach to determine the optimal product

Product Group VC VP MO TV

Average reservation price (µi) 561.81 231.21 157.69 264.40
Standard deviation (σi) 89.00 62.89 67.34 74.73
Correlation coefficient (ρ) 0.89 0.51
Degree of contingency (θ) -0.13 0

Table 1 The data for the case

and bundle prices. Given the marginal costs of the products and the bundle (c1, c2, cb) their
objective function is

π(p1, p2, pb) = (p1− c1)α1 +(p2− c2)α2 +(pb− cb)αb (1)

where α1,α2 and αb are the purchase probabilities obtained as described in Section 3, which
are also functions of p1, p2 and pb.

The above objective function does not take into account the availability of the products
and implicitly assumes that the products can be acquired upon the request of the customer
(or unsold inventory can be returned at the marginal cost). Using numerical methods, the
optimal prices are obtained as given in Table 2.

Product Group VC VP Bundle MO TV Bundle

Optimal individual prices (pi) 520 256 670 235 314 510
Purchase probabilities (αi) 0.3734 0.0019 0.0471 0.0271 0.1187 0.1780

Table 2 Optimal prices for the model of Jedidi et al.

In contrast to the work of Jedidi et al., we assume that the purchasing decisions are already
made by the retailer (which is valid for significantly many industries) and the retailer maxi-
mizes its revenues over a finite selling season without any further replenishment opportunities.
Using our model, which also allows for substitution in stock out times, with λ = 20 and T = 1,
the optimal product prices and bundle prices are computed for a variety of starting inven-
tory levels for the reservation price distribution parameters given in Table 1. The results are
reported in Table 3 for the VC-VP pair and in Table 4 for the MO-TV pair.

For the VC-VP pair, the products are partial substitutes (θ =−0.13), and the reservation
prices are strongly positively correlated (ρ = 0.89). As seen from Table 3, when the starting
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Q1 Q2 p∗1 p∗2 p∗b α∗1 α∗2 α∗b Exp Rev Exp Rev (U) Gap (%)

3 3 591 255 816 0.2850 0.1360 0.0122 2,436 2,172 10.84
5 5 562 236 748 0.3350 0.1440 0.0813 3,754 3,544 5.59
10 10 522 217 658 0.2520 0.0660 0.3914 6,399 6,201 3.09
20 20 468 209 566 0.1290 0.0001 0.7341 9,231 7,982 13.53
10 20 533 188 621 0.0169 0.1410 0.6178 6,982 6,235 10.70
20 10 466 235 591 0.3348 0.0001 0.5255 8,839 7,964 9.90

Table 3 Optimal prices for the proposed model - VC-VP

inventory levels are low, the retailer does not utilize bundling since bundling is rather ineffec-
tive due to the high correlation (this will be further discussed in our numerical study in the
next section). When the starting inventories are equal, the retailer prices the products and
the bundle so that more demand is shifted to the more expensive VC. Finally observe that
as the starting inventories are increased, the retailer uses more bundling and the expected
revenue increases.

Q1 Q2 p∗1 p∗2 p∗b α∗1 α∗2 α∗b Exp Rev Exp Rev (U) Gap (%)

3 3 211 317 511 0.0868 0.1079 0.1584 1,469 1,440 1.97
5 5 199 302 474 0.0799 0.1050 0.2550 2,260 2,114 6.46
10 10 181 275 409 0.0477 0.0833 0.4738 3,769 2,663 29.34
20 20 179 242 339 0.0062 0.0574 0.7107 5,044 2,689 46.69
10 20 225 221 369 0.0005 0.2470 0.5171 4,621 2,688 41.83
20 10 142 300 382 0.1405 0.0092 0.5488 4,119 2,663 35.35

Table 4 Optimal prices with inventory considerations - MO-TV

For the MO-TV pair, the products are neither substitutes nor complements (θ = 0), and
the reservation prices are moderately positively correlated (ρ = 0.51). We note from Table 4
that as the starting inventory levels increase, the prices decrease and the revenue increases.
If there is an asymmetry in the inventory levels of the products, the prices change inversely
with the number of available products. For this case, bundling is an effective option and we
note a sharper decrease in bundle prices as inventory levels increase.

Although the optimization model (1) of Jedidi et al. and the one proposed in this study are
not directly comparable, we report in Columns 10 (Exp Rev (U)) of Tables 3-4 the expected
revenues if the retailer charges the prices given in Table 2 even though the starting inventory
levels are fixed as given in the first two columns and no further replenishments are possible.
Columns 11 report the percentage revenue gap (100× (column 9− column 10)/column 9).
This comparison emphasizes the sub-optimality that would result from using the optimal
prices from a model that does not take the inventory availability explicitly into account. Note
that the percentage revenue gap does not depend on the starting inventory levels in any
particular way. In other words, there is no general condition under which maximizing the
objective function in (1) is guaranteed to give a good solution for the problem we consider.
The solution to maximization of (1) depends on the marginal costs (c1, c2, cb), while the
solution to the problem we consider depends on the starting inventory levels, the arrival rate
and the length of the horizon. Therefore, if the purchasing decisions are made a priori and
the retailer needs to sell a fixed amount of stock over a selling season, she needs to consider
the starting inventory levels and the intensity of the store arrivals to decide whether she
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should apply a bundling strategy and if so, what prices. We should note that there are some
industries (e.g., high technology) where a profit maximization approach (as simplified in (1))
can be used to optimize prices when the company is still using replenishments to meet future
demand. But once the company starts to operate in a liquidation mode (e.g., as in the sales
of soon-to-be-obsolete inventories), the company should adopt distinctly different bundling
and pricing strategies.

3. Numerical Results
We now present the results of our numerical study to illustrate the impact of various factors
on pricing decisions in the presence of bundling. Our primary focus is the mixed bundling
strategy and the factors that we consider are the correlation between the reservation prices,
the mean and the variance of the reservation price distributions, the degree of contingency and
the starting inventory levels. We also investigate the conditions under which mixed bundling
strategy provides the largest profit gains against pure bundling and unbundling strategies.

In our numerical study, we first assume that customer reservation price pairs follow a
bivariate normal distribution and investigate the impact of several factors on the revenue
with this assumption. Normal distribution is by far the most extensively used one in bundling
studies. According to Schmalensee (1984), the Gaussian family is a plausible choice to describe
the distribution of customer preferences in a population of buyers. The bivariate normal
has a small number of easily interpreted parameters and due to the additive property the
distribution of the bundle is also normal. One difficulty working with normal is that it allows
for negative valuations. As Salinger (1995) also argues, as long as an undesirable product of
a bundle can be disposed of freely, the assumption of negative valuations is not warranted.
Therefore, we select appropriate parameters for the normal distributions in our numerical
study to ensure non-negative valuations.

Despite the advantages of normal distributions mentioned above, the symmetry property
may not always be realistic in practice for reservation prices, since we would expect less
probability for higher prices. To investigate the impact of skewness, in the last part of our
numerical section we considered a bivariate gamma density for reservation prices over a
small experimental set. Our results indicate that if the actual reservation price distribution
is skewed and negatively correlated, but a bivariate normal distribution is used instead, this
may result in a significant loss in the expected revenues.

In Section 3.1, we present our findings regarding the performance of mixed bundling strat-
egy when the bundle price and the individual product prices are jointly optimized. We
consider the case where the individual product prices are exogenously set in Section 3.2.
In Section 3.3, we provide a comparison of mixed bundling, pure bundling and unbundling
strategies. In Section 3.4, we study the case where the products can be substitutable or com-
plementary. Finally in Section 3.5 we consider the bivariate gamma density for the reservation
prices and compare the results with the normal case.
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3.1. Joint Optimization of p1, p2 and pb

We first consider the case where the retailer jointly optimizes the prices of the individual
products and the bundle. Throughout the numerical study, we consider a base case to bench-
mark against different cases. In this base case, the reservation prices for both products are
identically distributed with µ1 = µ2 = 15 and σ1 = σ2 = 2. The degree of contingency θ is set
to 0. Initial inventories are also identical at Q1 = Q2 = 10. We assume T = 1 and the customer
arrival rate to be equal to the total number of individual products available, i.e., λ = 20. The
optimal value of the bundle price and product prices are searched over a fixed set in which
prices are taken with 0.25 increments. The results for the base case are presented in Table 5.
The first column stands for the correlation coefficient, the second column shows the optimal
prices and the third column, stands for the difference (p∗1+p∗2)-p

∗
b . The fourth column repre-

sents the optimal expected revenue; the fifth and the sixth columns represent the expected
sales of the individual products and the bundle; the seventh and the eighth columns represent
the purchase probabilities (when both products are available).

ρ (p∗1 = p∗2 , p∗b ) d E(R) E(n1) = E(n2) E(nb) α1 = α2 αb

-0.9 (25.75, 29.25) 22.25 290.10 0.00 9.92 0.00 0.80
-0.5 (16.00, 28.75) 3.25 283.57 1.48 8.21 0.08 0.63

0 (15.50, 28.50) 2.50 279.64 1.23 8.47 0.06 0.63
0.5 (15.25, 28.50) 2.00 276.84 0.72 8.94 0.03 0.63
0.9 (14.75, 28.50) 1.00 274.83 0.27 9.36 0.01 0.64

Table 5 Joint Optimization – Base case

Table 5 shows the significant impact of the correlation coefficient on the optimal prices
and expected revenues. We first observe that the optimal prices for the individual products
and the bundle, and the optimal revenues decrease as the correlation coefficient increases.
Bundling is most effective when the reservation prices are negatively correlated as the reser-
vation price distribution of the bundle has the smallest variance in this case. An extreme
case is ρ =−0.9, when the bundle reservation price’s variability is very small and the retailer
choose to sell only bundles. When ρ =−0.5, the retailer is able to attract a significant num-
ber of bundle customers without having to offer a deep discount on the bundle price. High
bundle prices also allow the retailer to keep the prices and the demand high for the individ-
ual products. When the reservation prices are positively correlated, the retailer has to offer
sharper discounts for the bundle. This reduces the revenue (per unit sold) for the bundle and
also reduces the demand for the individual products despite low prices. The observation that
bundling is particularly beneficial with negatively correlated reservation prices is also made in
earlier research in marketing and economics literature; namely in Adams and Yellen (1976),
Schmalensee (1984), Long (1984) and Salinger (1995) (However, as mentioned in Section 1,
these papers do not consider inventory availability and explicitly model the customer arrival
process over a selling horizon).

The Impact of Mean Reservation Prices
In Table 6, we present our results for unequal µ1 and µ2 values. In order to have a fair
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(µ1,µ2) ρ (p∗1 , p∗2 , p∗b ) d E(R) E(n1) E(n2) E(nb) α1 α2 αb

(5,25) -0.9 (6.75, 26.00, 29.25) 3.50 292.14 1.84 2.42 7.41 0.09 0.17 0.59
(5,25) -0.5 (6.50, 25.50, 29.00) 3.00 285.78 1.52 2.22 7.56 0.06 0.15 0.56
(5,25) 0 (6.00, 25.00, 28.75) 2.25 282.02 1.39 1.94 7.83 0.04 0.13 0.57
(5,25) 0.5 (5.75, 24.50, 28.75) 1.50 279.48 1.25 1.93 7.82 0.02 0.14 0.56
(5,25) 0.9 (5.25, 24.00, 28.75) 0.50 277.98 1.45 2.25 7.53 0.00 0.16 0.54
(10,20) -0.9 (11.25, 21.00, 29.00) 3.25 290.06 2.05 2.20 7.61 0.12 0.15 0.64
(10,20) -0.5 (11.25, 20.75, 28.75) 3.25 283.98 1.39 1.64 8.15 0.06 0.11 0.62
(10,20) 0 (10.75, 20.25, 28.75) 2.25 280.10 1.40 1.65 8.06 0.06 0.10 0.58
(10,20) 0.5 (10.25, 19.75, 28.50) 1.50 277.29 1.07 1.25 8.48 0.03 0.08 0.61
(10,20) 0.9 (10.00, 19.25, 28.50) 0.75 275.41 0.72 0.97 8.76 0.00 0.07 0.61
(15,15) -0.9 (25.75, 25.75, 29.25) 22.25 290.10 0.00 0.00 9.92 0.00 0.00 0.80
(15,15) -0.5 (16.00, 16.00, 28.75) 3.25 283.57 1.48 1.48 8.21 0.08 0.08 0.63
(15,15) 0 (15.50, 15.50, 28.50) 2.50 279.64 1.23 1.23 8.47 0.06 0.06 0.63
(15,15) 0.5 (15.25, 15.25, 28.50) 2.00 276.84 0.72 0.72 8.94 0.03 0.03 0.63
(15,15) 0.9 (14.75, 14.75, 28.50) 1.00 274.83 0.27 0.27 9.36 0.01 0.01 0.64

Table 6 Joint Optimization – Impact of means (σ1 = σ2 = 2, Q1 = Q2 = 10)

σ1 = σ2 ρ (p∗1 = p∗2 , p∗b ) d E(R) E(n1) = E(n2) E(nb) α1 = α2 αb

1 -0.9 (20.25, 29.50) 11.00 293.86 0.00 9.96 0.00 0.87
1 -0.5 (20.25, 29.25) 11.25 289.35 0.00 9.89 0.00 0.77
1 0 (20.25, 29.00) 11.50 286.43 0.00 9.88 0.00 0.76
1 0.5 (15.00, 29.00) 1.00 284.58 0.67 9.12 0.03 0.68
1 0.9 (14.75, 29.00) 0.50 283.24 0.25 9.51 0.01 0.68
2 -0.9 (25.75, 29.25) 22.25 290.10 0.00 9.92 0.00 0.80
2 -0.5 (16.00, 28.75) 3.25 283.57 1.48 8.21 0.08 0.63
2 0 (15.50, 28.50) 2.50 279.64 1.23 8.47 0.06 0.63
2 0.5 (15.25, 28.50) 2.00 276.84 0.72 8.94 0.03 0.63
2 0.9 (14.75, 28.50) 1.00 274.83 0.27 9.36 0.01 0.64
3 -0.9 (17.00, 29.00) 5.00 289.47 2.30 7.29 0.14 0.56
3 -0.5 (16.50, 28.50) 4.50 280.85 1.75 7.83 0.09 0.61
3 0 (16.00, 28.50) 3.50 275.73 1.45 8.05 0.07 0.55
3 0.5 (15.50, 28.50) 2.50 272.02 1.00 8.46 0.05 0.56
3 0.9 (14.75, 28.50) 1.00 269.42 0.54 8.90 0.02 0.58

Table 7 Joint Optimization – Impact of standard deviations (µ1 = µ2 = 15, Q1 = Q2 = 10)

comparison, we fixed the sum of the means of the reservation prices at 30, i.e., µ1+µ2=30.
We consider three values for (µ1, µ2): (5, 25), (10, 20) and (15, 15).

We observe that when customers perceive Products 2 more valuable, the retailer also sells
more of Product 2 by charging a relatively lower price. Expected individual sales for Product
2 is highest when µ2 = 25, followed by µ2 = 20 and µ2 = 15. The results in Table 6 show that
as the difference between the means of the reservation prices of the two products increases,
the optimal expected revenue also increases. This can be explained as follows. When the
mean reservation price for Product 2 increases, its coefficient of variation decreases (since the
standard deviation is fixed at 2). This leaves the retailer with two products, one of which
generates most of its revenues and also has a smaller variation. The retailer is able to price
this higher valued product more efficiently resulting in higher expected revenues.

The Impact of Standard Deviation
The results in Table 7 are obtained when the standard deviations of the reservation prices

are the same and set to 1, 2 and 3. Clearly, the optimal revenue is a decreasing function of the
standard deviation. As the standard deviations increase, the standard deviation of the bundle
reservation price also increases. Bundling is less efficient when there is more uncertainty and
thus the retailer also sells less bundles.
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Q1 = Q2 ρ (p∗1 = p∗2 , p∗b ) d E(R) E(n1) = E(n2) E(nb) α1 = α2 αb

5 -0.9 (16.00, 30.00) 2.00 152.08 2.78 2.11 0.25 0.25
5 -0.5 (16.00, 30.25) 1.75 151.35 2.29 2.58 0.18 0.28
5 0 (15.75, 30.50) 1.00 150.93 2.16 2.72 0.16 0.28
5 0.5 (15.75, 30.75) 0.75 150.58 1.52 3.33 0.10 0.32
5 0.9 (15.50, 30.75) 0.25 150.31 0.84 4.04 0.02 0.40
10 -0.9 (25.75, 29.25) 22.25 290.10 0.00 9.92 0.00 0.80
10 -0.5 (16.00, 28.75) 3.25 283.57 1.48 8.21 0.08 0.63
10 0 (15.50, 28.50) 2.50 279.64 1.23 8.47 0.06 0.63
10 0.5 (15.25, 28.50) 2.00 276.84 0.72 8.94 0.03 0.63
10 0.9 (14.75, 28.50) 1.00 274.83 0.27 9.36 0.01 0.64
15 -0.9 (25.75, 28.75) 22.75 417.44 0.00 14.52 0.00 0.92
15 -0.5 (25.75, 27.75) 23.75 397.02 0.00 14.31 0.00 0.87
15 0 (25.75, 27.25) 24.25 384.54 0.00 14.11 0.00 0.83
15 0.5 (25.75, 27.00) 24.50 376.06 0.00 13.93 0.00 0.81
15 0.9 (25.75, 26.75) 24.75 370.83 0.00 13.86 0.00 0.80

Table 8 Joint Optimization – Impact of starting inventory (µ1 = µ2 = 15, σ1 = σ2 = 2)

The Impact of Initial Inventory Levels
Next, we consider the impact of initial inventory levels on the expected revenues and

optimal prices. We consider two other quantity combinations. Table 8 has results for the case
of limited inventories, (Q1 = Q2 = 5) and for the case of excess inventories, (Q1 = Q2 = 15).
We first observe that when the initial inventories are higher, the retailer’s revenues are also
higher, which is expected. The optimal bundle price decreases as the starting inventory levels
increase. When the inventories are limited (Q1 = Q2 = 5), the retailer sets all the prices high,
and sells a significant number of products individually (especially when the correlation is
negative). When the retailer has excess inventories (Q1 = Q2 = 15), the retailer sets the prices
high and sells only through bundling.

We also conducted a numerical study to assess the impact of the arrival rate. However, as
expected, the results are similar to those in Table 8. A high arrival rate is analogous to the
case where the initial inventory is low and a low arrival rate is analogous to the case where
the initial inventory is high.

3.2. Fixed p1 and p2

In this section, we study the case where the individual product prices are externally set
and the retailer is optimizing only the bundle price. As in Section 3.1 we use the values
Q1=Q2=10, µ1=µ2=15, σ1=σ2=2, λ=20 and θ = 0. Figure 1 shows how the expected revenue
changes with the bundle price, for three different correlation values (ρ=-0.9, 0.0, 0.9) and
when p1 = p2 = 15. For all three correlation values, expected revenue appears to be concave in
the bundle price. For all bundle prices, highest expected revenue is obtained for the negative
correlation case, followed by the no correlation and positive correlation cases. The differences
are small when the bundle price is very low (i.e., most customers purchase the bundle) and
the differences disappear when the bundle price is very high (i.e., none of the customers
purchase the bundle). The impact of the correlation on expected revenues is highest when
the retailer charges a bundle price around the optimal.

In Table 9, we study the same problem when p1 = p2 is in set {17, 16, 15, 14, 13} and report
the optimal bundle price (in column 3) and the optimal expected revenues (in column 8). In
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Figure 1 Revenue vs. bundle price, p1 = p2 = 15

ρ p1 = p2 p∗b α0 α1 = α2 αb E(n1) = E(n2) E(nb) E(R) α
′
1 = α

′
2

-0.9 17 29.25 0.16 0.07 0.69 1.20 8.48 289.11 0.16
-0.5 17 28.75 0.25 0.03 0.70 0.50 9.24 282.66 0.16

0 17 28.75 0.32 0.01 0.66 0.17 9.49 278.84 0.16
0.5 17 28.50 0.33 0.00 0.67 0.01 9.68 276.25 0.16
0.9 17 28.50 0.35 0.00 0.65 0.00 9.64 274.68 0.16
-0.9 16 29.00 0.08 0.15 0.62 2.34 7.40 289.51 0.31
-0.5 16 28.75 0.21 0.08 0.63 1.48 8.21 283.57 0.31

0 16 28.75 0.30 0.04 0.62 0.82 8.81 279.50 0.31
0.5 16 28.50 0.33 0.01 0.66 0.15 9.53 276.43 0.31
0.9 16 28.50 0.35 0.00 0.65 0.00 9.64 274.68 0.31
-0.9 15 28.50 0.02 0.22 0.54 3.44 6.36 284.59 0.50
-0.5 15 28.50 0.12 0.17 0.53 2.92 6.80 281.51 0.50

0 15 28.50 0.21 0.11 0.56 2.06 7.62 279.02 0.50
0.5 15 28.50 0.29 0.05 0.61 1.07 8.58 276.81 0.50
0.9 15 28.50 0.35 0.00 0.65 0.08 9.55 274.75 0.50
-0.9 14 27.75 0.00 0.27 0.47 4.15 5.68 273.78 0.69
-0.5 14 27.75 0.04 0.24 0.49 3.80 6.02 273.43 0.69

0 14 28.00 0.10 0.21 0.48 3.57 6.18 273.15 0.69
0.5 14 28.00 0.16 0.15 0.55 2.57 7.18 273.15 0.69
0.9 14 28.00 0.25 0.06 0.63 1.27 8.49 273.15 0.69
-0.9 13 26.00 0.00 0.16 0.68 2.46 7.49 258.65 0.84
-0.5 13 26.00 0.00 0.15 0.69 2.41 7.54 258.65 0.84

0 13 26.00 0.03 0.13 0.71 2.13 7.82 258.65 0.84
0.5 13 26.00 0.06 0.10 0.75 1.62 8.33 258.65 0.84
0.9 13 26.00 0.12 0.04 0.80 0.82 9.13 258.65 0.84

Table 9 Fixed p1 and p2 (µ1 = µ2 = 15, σ1 = σ2 = 2,Q1 = Q2 = 10)

addition, column 4 reports the probability of no purchase when both products are available,
and column 10 reports the probability of purchase when only one of the products is available.
The way the correlation coefficient impacts the optimal bundle price and the optimal expected
revenues depends on the individual product prices (see Figure 2 for the impact of correlation
coefficient on the optimal bundle price). When the individual product prices are high, most
customers would not buy the products individually if the bundle option is not offered (Note
that the probability of no purchase α0 is high). In this case, the retailer offers a bundle price
that will trigger non-buyers to buy the bundle. This can be done best if the variance of
the bundle reservation price is smallest. This way, the retailer can improve sales by small
reductions in the bundle price. As the correlation coefficient decreases, the variance of the
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Figure 2 Optimal bundle price with fixed p1 and p2 (µ1 = µ2 = 15, σ1 = σ2 = 2,Q1 = Q2 = 10)

bundle reservation price decreases. Hence, the optimal expected revenue and the optimal
bundle price are decreasing functions of the correlation coefficient for high individual product
prices. When the individual product prices are low (i.e., p1 = p2 = 14), most customers would
buy one of the products even if the bundle option is not offered (Note that the probability of no
purchase α0 is low). In this case, the retailer would like to move some of these customers from
buying individual products to buying the bundle. When the customers that already intend
to buy one of the products value the other product highly as well (positive correlation), the
retailer does not have to offer a deep discount on the bundle price to attract these customers.
Hence, the optimal bundle price is an increasing function of the correlation coefficient for
low individual product prices. An extreme case is when the individual product prices are
extremely low (i.e., p1 = p2 = 13). In this case, the retailer does not offer any discount on the
bundle. When the individual product prices are moderate, both of the effects above cancels
each other and we do not observe any impact of the correlation coefficient on the bundle
price.

Table 10 shows the impact of initial inventory levels on the optimal bundle prices and the
optimal expected revenues when p1 = p2 = 15. Clearly, the retailer’s expected revenue is an
increasing function of the initial inventory levels. In the case of limited supply, the retailer
sets higher bundle prices (targeting customers with higher reservation prices) and maintains
a significant number of individual product purchases. Note that the bundling is least effective
in the case of limited supply. In the case of excess supply, the retailer sets lower bundle prices
and converts a significant number individual purchases to bundle purchases. Here bundling
becomes most effective and the correlation coefficient also plays an important role in the case
of excess supply.

3.3. Comparison of the Bundling Strategies

We now compare three bundling strategies; mixed bundling, pure bundling and unbundled
sales. We analyze the impact of reservation price distributions and starting inventory levels



Bulut, Gürler, and Şen: Bundle Pricing of Inventories with Stochastic Demand
20

Q1 = Q2 ρ p∗b α1 = α2 αb E(n1) = E(n2) E(nb) E(R) α
′
1 = α

′
2

5 -0.9 29.75 0.40 0.13 4.01 0.96 148.73 0.50
5 -0.5 30.00 0.33 0.17 3.63 1.33 148.71 0.50
5 0 30.25 0.27 0.20 3.22 1.73 148.83 0.50
5 0.5 30.50 0.21 0.24 2.73 2.20 149.03 0.50
5 0.9 30.50 0.12 0.33 1.73 3.20 149.37 0.50
8 -0.9 29.00 0.30 0.37 4.03 3.84 232.25 0.50
8 -0.5 29.00 0.23 0.40 3.35 4.49 230.70 0.50
8 0 29.25 0.18 0.41 2.85 4.93 229.63 0.50
8 0.5 29.25 0.10 0.48 1.77 6.01 228.83 0.50
8 0.9 29.50 0.03 0.52 0.69 7.03 227.98 0.50
10 -0.9 28.50 0.22 0.54 3.44 6.36 284.59 0.50
10 -0.5 28.50 0.17 0.53 2.92 6.80 281.51 0.50
10 0 28.50 0.11 0.56 2.06 7.62 279.02 0.50
10 0.5 28.50 0.05 0.61 1.07 8.58 276.81 0.50
10 0.9 28.50 0.00 0.65 0.08 9.55 274.75 0.50
12 -0.9 28.25 0.19 0.61 3.27 8.36 334.03 0.50
12 -0.5 28.00 0.13 0.65 2.36 9.23 329.01 0.50
12 0 28.00 0.08 0.66 1.59 9.88 324.41 0.50
12 0.5 27.75 0.02 0.71 0.55 10.95 320.36 0.50
12 0.9 27.75 0.00 0.72 0.01 11.42 317.13 0.50
15 -0.9 27.75 0.13 0.74 2.52 11.67 399.66 0.50
15 -0.5 27.25 0.07 0.80 1.49 12.75 392.29 0.50
15 0 27.00 0.03 0.81 0.76 13.37 383.85 0.50
15 0.5 26.75 0.01 0.82 0.16 13.88 376.18 0.50
15 0.9 26.75 0.00 0.80 0.00 13.86 370.83 0.50

Table 10 Fixed p1 and p2 – Impact of starting inventory levels, p1 = p2 = 15

on the performances of these strategies and explore the conditions under which bundling is
most useful. Before we discuss our numerical results, we note that mixed bundling is always
(weakly) better than pure bundling and unbundling strategies if there are no costs involved.
Any pricing policy in unbundled sales strategy can be replicated in mixed bundling strategy
by charging a sufficiently high price for the bundle. Likewise, any pricing policy in pure
bundling strategy can be replicated in mixed bundling strategy by charging sufficiently high
prices for the individual products.

First, we analyze the results obtained under our base setting. These results are available
in Table 11. Note that for the unbundling strategy, even though the retailer does not offer
the bundle, he provides the opportunity of purchasing both products for a price equal to
p∗1+p∗2. Therefore E(nb) and αb for the unbundling strategy in Table 11 refer to the expected
number of customers that purchase the two products together and the corresponding purchase
probability. For all correlation values, the retailer makes the most profit with mixed bundling;
followed by pure bundling and then unbundling.

Table 11 also shows the percent deviations of expected revenues of the pure and unbundling
strategies from mixed bundling strategy calculated as

%deviationi = [(Emix(R)−Ei(R))/Ei(R)]× 100 i∈ {pure, unbundling}

We first note that since most of the products are sold in bundled form in mixed bundling
strategy in our base setting, the difference between expected revenues of mixed bundling
and pure bundling strategies is very small (maximum percentage deviation between mixed
and pure bundling is 0.42%). On the other hand, the expected revenues obtained from the
unbundled sales deviate from that of mixed bundling as much as 5.43%. Mixed bundling
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Mixed bundling
ρ (p∗1 = p∗2 , p∗b ) d E(n1) = E(n2) E(nb) α1 = α2 αb E(R)

-0.9 (25.75, 29.25) 22.25 0.00 9.92 0.00 0.80 290.10
-0.5 (16.00, 28.75) 3.25 1.48 8.21 0.08 0.63 283.57

0 (15.50, 28.50) 2.50 1.23 8.47 0.06 0.63 279.64
0.5 (15.25, 28.50) 2.00 0.72 8.94 0.03 0.63 276.84
0.9 (14.75, 28.50) 1.00 0.27 9.36 0.01 0.64 274.83

Pure bundling
ρ p∗b E(nb) αb E(R) %

-0.9 29.00 9.96 0.87 288.89 0.42
-0.5 29.00 9.76 0.69 282.91 0.23

0 28.75 9.70 0.67 278.93 0.25
0.5 28.50 9.69 0.67 276.25 0.21
0.9 28.50 9.64 0.65 274.68 0.05

Unbundled sales
ρ p∗1 = p∗2 E(n1) = E(n2) E(nb) α1 = α2 αb E(R) %

-0.9 14.25 5.68 3.94 0.35 0.30 274.34 5.43
-0.5 14.25 4.93 4.70 0.30 0.35 274.34 3.26

0 14.25 3.93 5.70 0.23 0.42 274.34 1.90
0.5 14.25 2.80 6.83 0.15 0.49 274.34 0.90
0.9 14.25 1.36 8.26 0.07 0.58 274.34 0.18

Table 11 Comparison of bundling strategies – Base case

strategy allows the retailer to charge higher prices to customers that value only one of the
products highly, while he is still able to capture significant demand through the bundle. The
difference between the expected revenues of mixed bundling and unbundled sales strategies is
largest when the correlation coefficient is negative, i.e., when the customers are more likely to
have different valuations of two products (which allows the retailer to charge high prices for
the individual products) and when the bundle price has the smallest variance (which allows
the retailer to charge high prices for the bundle).

Table 12 shows the impact of reservation price distribution means on the performance of
bundling strategies. The sum of the means of the reservation price distributions is fixed at
30. Note first that the expected revenue for pure bundling strategy does not depend on µ1

and µ2 individually as long as µ1 +µ2 is constant. But, as explained in Section 3.1, expected
revenue of mixed bundling strategy increases as µ2 − µ1 gets larger. Thus, we see that the
percentage gap of pure bundling strategy also increases in this direction. In contrast, as
µ2−µ1 increases, the percentage gap of unbundling strategy decreases, since the retailer sells
more individual products when one of the products dominate the other and bundling becomes
less instrumental for mixed bundling strategy. A similar observation is made in Schmalensee
(1984).

Table 13 studies the impact of standard deviations of the reservation price distributions. As
expected, mixed bundling strategy is most useful when the standard deviations are high, i.e.,
when the dispersion in customer preferences is high. When this is the case, ability to reduce
the variance through bundling is crucial which explains the superiority of mixed bundling
against unbundling. Higher standard deviations also allow the retailer to charge higher prices
for the individual products, which explains the increased performance of mixed bundling
against pure bundling.

Finally, we study the impact of starting inventory levels on the performance of bundling
strategies. First, in Table 14, we study the case where both products have equal starting



Bulut, Gürler, and Şen: Bundle Pricing of Inventories with Stochastic Demand
22

µ1 = 5, µ2 = 25 µ1 = 10, µ2 = 20 µ1 = 15, µ2 = 15

Mixed bundling Mixed bundling Mixed bundling
ρ (p∗1 , p∗2 , p∗b ) E(R) (p∗1 , p∗2 , p∗b ) E(R) (p∗1 , p∗2 , p∗b ) E(R)

-0.9 (6.75, 26.00, 29.25) 292.14 (11.25, 21.00, 29.00) 290.06 (25.75, 25.75, 29.25) 290.10
-0.5 (6.50, 25.50, 29.00) 285.78 (11.25, 20.75, 28.75) 283.98 (16.00, 16.00, 28.75) 283.57

0 (6.00, 25.00, 28.75) 282.02 (10.75, 20.25, 28.75) 280.10 (15.50, 15.50, 28.50) 279.64
0.5 (5.75, 24.50, 28.75) 279.48 (10.25, 19.75, 28.50) 277.29 (15.25, 15.25, 28.50) 276.84
0.9 (5.25, 24.00, 28.75) 277.98 (10.00, 19.25, 28.50) 275.41 (14.75, 14.75, 28.50) 274.83

Pure bundling Pure bundling Pure bundling
ρ p∗b % p∗b % p∗b %

-0.9 29.00 1.11 29.00 0.40 29.00 0.42
-0.5 29.00 1.01 29.00 0.38 29.00 0.23

0 28.75 1.10 28.75 0.42 28.75 0.25
0.5 28.50 1.16 28.50 0.37 28.50 0.21
0.9 28.50 1.19 28.50 0.27 28.50 0.05

Unbundled sales Unbundled sales Unbundled sales
ρ (p∗1 , p∗2) % (p∗1 , p∗2) % (p∗1 , p∗2) %

-0.9 (5.00, 24.00) 4.88 (9.50, 19.25) 5.21 (14.25, 14.25) 5.43
-0.5 (5.00, 24.00) 2.77 (9.50, 19.25) 3.18 (14.25, 14.25) 3.26

0 (5.00, 24.00) 1.47 (9.50, 19.25) 1.84 (14.25, 14.25) 1.90
0.5 (5.00, 24.00) 0.58 (9.50, 19.25) 0.85 (14.25, 14.25) 0.90
0.9 (5.00, 24.00) 0.04 (9.50, 19.25) 0.17 (14.25, 14.25) 0.18

Table 12 Comparison of bundling strategies for different reservation price means (σ1 = σ2 = 2,Q1 = Q2 = 10)

σ1 = 1, σ2 = 1 σ1 = 2, σ2 = 2 σ1 = 3, σ2 = 3

Mixed bundling Mixed bundling Mixed bundling
ρ (p∗1 = p∗2 , p∗b ) E(R) (p∗1 = p∗2 , p∗b ) E(R) (p∗1 = p∗2 , p∗b ) E(R)

-0.9 (20.25, 29.50) 293.86 (25.75, 29.25) 290.10 (17.00, 29.00) 289.47
-0.5 (20.25, 29.25) 289.35 (16.00, 28.75) 283.57 (16.50, 28.50) 280.85

0 (20.25, 29.00) 286.43 (15.50, 28.50) 279.64 (16.00, 28.50) 275.73
0.5 (15.00, 29.00) 284.58 (15.25, 28.50) 276.84 (15.50, 28.50) 272.02
0.9 (14.75, 29.00) 283.24 (14.75, 28.50) 274.83 (14.75, 28.50) 269.42

Pure bundling Pure bundling Pure bundling
ρ p∗b % p∗b % p∗b %

-0.9 29.50 0.00 29.00 0.42 29.00 0.91
-0.5 29.25 0.00 29.00 0.23 28.75 0.96

0 29.00 0.00 28.75 0.25 28.50 0.80
0.5 29.00 0.01 28.50 0.21 28.50 0.48
0.9 29.00 0.01 28.50 0.05 28.50 0.01

Unbundled sales Unbundled sales Unbundled sales
ρ p∗1 = p∗2 % p∗1 = p∗2 % p∗1 = p∗2 %

-0.9 14.50 3.44 14.25 5.43 14.25 7.15
-0.5 14.50 1.92 14.25 3.26 14.25 4.31

0 14.50 0.90 14.25 1.90 14.25 2.53
0.5 14.50 0.59 14.25 0.90 14.25 1.20
0.9 14.50 0.12 14.25 0.18 14.25 0.25

Table 13 Comparison of bundling strategies for different reservation price standard deviations (µ1 = µ2 = 15,Q1 =
Q2 = 10)

inventory levels. The percentage deviation between mixed bundling and pure bundling strate-
gies decreases when the starting inventory increases. When the retailer has a supply much
larger than the (average) demand, he sets significantly lower prices for the bundle to make
sure that an arriving customer buys both products. As the retailer sells more bundles and less
individual products, the revenues obtained from mixed bundling and pure bundling approach
each other. In contrast, when the starting inventory levels are high, the performance gap
between mixed bundling and unbundling increases. As the retailer has a larger supply, the
retailer needs to offer substantial discounts on the individual products in unbundling case,
while the discounts on the bundle price are not as deep in mixed bundling strategy.
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Q1 = 5,Q2 = 5 Q1 = 10,Q2 = 10 Q1 = 15,Q2 = 15

Mixed bundling Mixed bundling Mixed bundling
ρ (p∗1 = p∗2 , p∗b ) E(R) (p∗1 = p∗2 , p∗b ) E(R) (p∗1 = p∗2 , p∗b ) E(R)

-0.9 (16.00, 30.00) 152.08 (25.75, 29.25) 290.10 (25.75, 28.75) 417.44
-0.5 (16.00, 30.25) 151.35 (16.00, 28.75) 283.57 (25.75, 27.75) 397.02

0 (15.75, 30.50) 150.93 (15.50, 28.50) 279.64 (25.75, 27.25) 384.54
0.5 (15.75, 30.75) 150.58 (15.25, 28.50) 276.84 (25.75, 27.00) 376.06
0.9 (15.50, 30.75) 150.31 (14.75, 28.50) 274.83 (25.75, 26.75) 370.83

Pure bundling Pure bundling Pure bundling
ρ p∗b % p∗b % p∗b %

-0.9 30.00 2.21 29.00 0.42 28.75 0.00
-0.5 30.25 1.73 29.00 0.23 27.75 0.00

0 30.50 1.16 28.75 0.25 27.25 0.00
0.5 30.50 0.60 28.50 0.21 27.00 0.00
0.9 30.75 0.12 28.50 0.05 26.75 0.00

Unbundled Unbundled Unbundled
ρ p∗1 = p∗2 % p∗1 = p∗2 % p∗1 = p∗2 %

-0.9 15.50 1.27 14.25 5.43 13.25 12.96
-0.5 15.50 0.79 14.25 3.26 13.25 7.43

0 15.50 0.52 14.25 1.90 13.25 4.06
0.5 15.50 0.29 14.25 0.90 13.25 1.76
0.9 15.50 0.11 14.25 0.18 13.25 0.34

Table 14 Comparison of bundling strategies for different starting inventory levels (µ1 = µ2 = 15, σ1 = σ2 = 2)

Mixed bundling Pure bundling
(Q1, Q2) ρ (p∗1 , p∗2 , p∗b ) % p∗b %

(5,10) -0.9 (17.50, 15.25, 29.50) 218.76 30.00 32.02
(5,10) -0.5 (17.00, 15.00, 29.50) 216.00 30.25 31.15
(5,10) 0 (16.75, 14.75, 29.50) 214.41 30.50 30.42
(5,10) 0.5 (16.25, 14.50, 29.75) 213.02 30.50 29.73
(5,10) 0.9 (15.50, 14.25, 29.75) 212.24 30.75 29.27
(10,10) -0.9 (16.25, 16.25, 29.00) 289.66 29.00 0.27
(10,10) -0.5 (16.00, 16.00, 28.75) 283.57 29.00 0.23
(10,10) 0 (15.50, 15.50, 28.50) 279.64 28.75 0.25
(10,10) 0.5 (15.25, 15.25, 28.50) 276.84 28.50 0.21
(10,10) 0.9 (14.75, 14.75, 28.50) 274.83 28.50 0.05
(20,10) -0.9 (14.25, 23.00, 28.50) 382.77 29.25 24.21
(20,10) -0.5 (13.75, 22.75, 27.75) 367.61 29.00 23.04
(20,10) 0 (13.25, 22.50, 27.25) 358.88 28.75 22.28
(20,10) 0.5 (13.00, 22.25, 27.25) 352.69 28.50 21.67
(20,10) 0.9 (12.75, 21.75, 27.00) 350.11 28.50 21.54

Table 15 Comparison of mixed and pure bundling strategies for unequal starting inventory levels (µ1 = µ2 = 15, σ1 =
σ2 = 2)

We observe that if the starting inventory levels are equal, the performances of pure bundling
and mixed bundling strategies are quite close, especially when inventory levels are high. How-
ever, in most applications, the starting inventory levels will not be equal. Table 15 presents
the results with unequal initial inventory levels. As expected, mixed bundling strategy clearly
outperforms pure bundling strategy.

3.4. Impact of the Degree of Contingency

In Table 16, we study the impact of the degree of contingency on mixed bundling strategy.
The analysis is based on our base case, i.e., µ1 = µ2 = 15, σ1 = σ2 = 2, λ = 20, T = 1 and
Q1 = Q2 = 10. As discussed in Section 2.5, θ < 0 refers to the case where the products are
substitutable, while θ > 0 refers to the case where the products are complementary. Clearly,
optimal expected revenue is an increasing function of θ for all correlation values. Also as
θ increases, the retailer sells more bundles and less individual products, despite increasing
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θ ρ p∗1 = p∗2 p∗b d E(R) E(n1) = E(n2) E(nb) α1 = α2 αb µb σb

-0.10 -0.9 15.50 26.25 4.75 270.00 4.02 5.54 0.25 0.42 27.00 0.80
-0.5 15.00 26.00 4.00 262.73 4.00 5.48 0.23 0.39 27.00 1.80

0 14.75 25.75 3.75 257.92 3.10 6.46 0.18 0.46 27.00 2.55
0.5 14.25 25.75 2.75 254.15 3.39 6.11 0.20 0.43 27.00 3.12
0.9 14.00 25.75 2.25 251.10 2.65 6.86 0.14 0.47 27.00 3.51

-0.05 -0.9 16.00 27.75 4.25 278.91 2.80 6.81 0.18 0.54 28.50 0.85
-0.5 15.50 27.25 3.75 272.34 2.31 7.36 0.13 0.56 28.50 1.90

0 15.25 27.25 3.25 268.01 1.91 7.69 0.10 0.55 28.50 2.69
0.5 14.75 27.25 2.25 264.72 1.87 7.70 0.10 0.54 28.50 3.29
0.9 14.25 27.25 1.25 262.25 1.79 7.75 0.09 0.53 28.50 3.70

0.00 -0.9 27.25 29.25 22.25 290.10 0.00 9.92 0.00 0.80 30.00 0.89
-0.5 16.00 28.75 3.25 283.57 1.48 8.21 0.08 0.63 30.00 2.00

0 15.50 28.50 2.50 279.64 1.23 8.47 0.06 0.63 30.00 2.83
0.5 15.25 28.50 2.00 276.84 0.72 8.94 0.03 0.63 30.00 3.46
0.9 14.75 28.50 1.00 274.83 0.27 9.36 0.01 0.64 30.00 3.90

0.05 -0.9 25.00 30.75 19.25 304.66 0.00 9.91 0.00 0.79 31.50 0.94
-0.5 22.00 30.25 13.75 297.13 0.00 9.82 0.00 0.72 31.50 2.10

0 19.75 30.25 9.25 292.82 0.00 9.68 0.00 0.66 31.50 2.97
0.5 18.00 30.00 6.00 290.12 0.00 9.67 0.00 0.66 31.50 3.64
0.9 15.75 30.00 1.50 288.44 0.00 9.61 0.00 0.64 31.50 4.09

0.10 -0.9 23.25 32.25 14.25 319.16 0.00 9.90 0.00 0.78 33.00 0.98
-0.5 25.75 31.75 19.75 311.33 0.00 9.81 0.00 0.72 33.00 2.20

0 19.75 31.50 8.00 306.81 0.00 9.74 0.00 0.69 33.00 3.11
0.5 17.75 31.00 4.50 303.03 0.00 9.65 0.00 0.70 33.00 3.81
0.9 15.75 31.50 0.00 302.16 0.00 9.59 0.00 0.64 33.00 4.29

Table 16 Impact of the degree of contingency θ (µ1 = µ2 = 15, σ1 = σ2 = 2,Q1 = Q2 = 15)

bundle prices in this direction. When θ is 0.05 or 0.10, the retailer no longer sells any individual
products as the bundle becomes a very attractive option for the customers. We also see
that the impact of correlation on expected revenues remains the same for non-zero θ values.
Negative correlation reduces the variance of the bundle reservation price and increases the
expected revenues of mixed bundled strategy.

Figure 3 shows the impact of degree of contingency on expected revenues when the indi-
vidual product prices are externally set. The dataset is still the same, except that we now
set the individual product prices to 13, 15 and 17. As in the case where all prices are jointly
optimized, the expected revenue is an increasing function of θ for all parameters. When the
individual products are priced higher, bundling is a more attractive option for the customers
and takes a more prominent role in determining retailer revenues. Thus, the impact of θ is
more significant when the individual product prices are higher.

3.5. Bivariate Gamma Reservation Price Distribution

So far, we have assumed bivariate normal distribution for the reservation prices, which is the
most commonly used distribution in this context. In order to observe the effect of the shape
of the reservation price distribution, we now consider a Morgenstern-type bivariate gamma
density for a small experimental set. D’Este (1981) discusses the Morgenstern structure and
calculates the moments and correlation coefficient of the resulting distribution which are used
for our numerical results.

We consider the case where µ1 = µ2=2; σ1 = σ2 =
√

2; θ = 0; and λ = 20 with two different
sets of initial inventories given by Q1 = Q2=10 and Q1 = Q2=20. Three levels of correlation
between reservation prices are considered which the bivariate gamma density allows: ρ=-
0.28125, 0, 0.28125. The results are presented in Table 17.
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Figure 3 Optimal expected revenues as a function of θ (µ1 = µ2 = 15, σ1 = σ2 = 2,Q1 = Q2 = 10)

Q1 = Q2 = 10
ρ Gamma Normal Gamma/PN Normal/PG

(p∗1 , p∗2 , p∗b ) E(R) (p∗1 , p∗2 , p∗b ) E(R) % dev. % dev. % dev.
-0.28125 (2.75,2.75,3.75) 33.76 (2.75,2.75,4.25) 38.24 13.26 5.83 2.24

0 (2.75,2.75,3.75) 32.90 (2.75,2.75,4.25) 37.63 14.38 3.31 3.29
0.28125 (2.75,2.75,4.00) 32.17 (2.50,2.50,4.25) 37.00 15.02 1.89 1.32

Q1 = Q2 = 20
ρ Gamma Normal Gamma/PN Normal/PG

(p∗1 , p∗2 , p∗b ) E(R) (p∗1 , p∗2 , p∗b ) E(R) % dev. % dev. % dev.
-0.28125 (3.00,3.00,3.00) 41.29 (2.75,2.75,3.50) 45.60 10.45 5.62 2.57

0 (3.00,3.00,3.00) 38.68 (2.50,2.50,3.50) 43.84 13.35 4.23 3.89
0.28125 (2.50,2.50,3.25) 36.06 (2.50,2.50,3.50) 42.44 17.70 0.97 1.08

Table 17 Comparison of normal and gamma distributions for the reservation prices.

In Table 17, the second and the third columns present the optimal prices and the corre-
sponding expected revenue when the true distribution is Gamma, and the fourth and fifth
columns display similar results for the normal distribution. The sixth column presents the
difference between the optimal revenues for the two models. The column Gamma/PN presents
the percentage loss in the revenues when the sub-optimal prices of the normal model are used
when in fact the true reservation price distribution is bivariate gamma and the last column
indicates the similar loss when sub-optimal prices from gamma distribution are used when
in fact true model is normal.

We observe that the revenues obtained with the normal distribution are higher than those
with the right skewed gamma distribution and the difference increases with the correlation
coefficient, reaching a maximum of 17.70%. If the optimal prices obtained from normally
distributed reservation prices are used when the actual reservation prices are gamma, the
revenue may decrease up to 5.62%. On the other hand, using the optimal prices of the gamma
reservation prices when the actual distribution is normal results in up to 3.89% revenue
decrease. This indicates that normal distribution is more robust to deviations from normality,
whereas if the actual distribution is a skewed gamma and if this is ignored by employing a
normal distribution, there may be significant revenue losses.
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4. Multi-Period Problem
The single period analysis of Section 2 can be extended easily to a case where the retailer
updates the prices of the bundle and individual products on a periodic basis. Let there be K

such periods. At the beginning of period j, the retailer can update the price of the bundle
and the individual products based on the remaining inventory levels of the two products.
These periods can be different in terms of their lengths Tj, customer arrival rates λj, joint
reservation price distributions and the degrees of contingency.

Let pj = (pj1, pj2, pjb) denote the vector of prices charged for product 1, 2 and the bundle
in period j. Let Vj(Qj1,Qj2) be the optimal total expected revenue of the retailer for periods
j through K, if she starts period j with Qj1 units of inventory of product 1 and Qj2 units
of inventory of product 2. Let Pj(n1, n2, nb;pj) denote the sales probability of n1 units of
product 1, n2 units of product 2, and nb units of the bundle in period j. These probabilities
depend on the prices that are charged in period j (pj) as well as the specific parameters of
the period j. We can formulate the problem using a dynamic programming approach. The
backward recursion can be written as:

Vj(Qj1,Qj2) =

max
pj

∑
n1,n2,nb

Pj(n1, n2, nb;pj)
(

pj1n1 + pj2n2 + pjbnb + Vj+1(Qj1−n1−nb,Qj2−n2−nb)
)

(2)

where the boundary conditions are

VK(QK1,QK2) = max
pK

∑
n1,n2,nb

PK(n1, n2, nb;pK)
(

pK1n1 + pK2n2 + pKbnb

)

Vj(0,0) = 0, ∀j.

The recursion in (2) states that in any given period j, the retailer is maximizing his
expected revenues in the immediate period j and the remainder of the horizon. If he sells
n1, n2, nb units of product 1, product 2 and the bundle in period j, she collects a revenue of
pj1n1 + pj2n2 + pjbnb in period j and ends the period with Qj1 − n1 − nb and Qj2 − n2 − nb

units of inventory of product 1 and product 2. The first boundary condition states that the
last period problem is a single period problem as modeled in Section 2. The second boundary
condition states that future revenues are zero if both products run out of stock at any given
period.

The retailer solves the problem V1(Q11,Q12) if the starting inventory levels are Q11 and
Q12 for product 1 and product 2 at the start of planning horizon. The result is an optimal
price for period 1 and optimal pricing policies (these policies are based on starting inventory
levels) for periods 2,3, ..,K.

An example

We use the base case that is used in Section 3 as an example for the case with two periods.
The season starts with initial inventories Q11 = 10 and Q12 = 10. The season of length T = 1
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is split into two equal periods, T1 = 0.5 and T2 = 0.5. We use the case where the prices of the
individual products are fixed at p1 = p2 = 15 throughout the season. The retailer decides an
initial price for the bundle in the first period and has an opportunity to change this price
at the beginning of the second period. We assume that the arrival rate λ is fixed at 20. The
reservation price distribution parameters µ1 = µ2 = 15 and σ1 = σ2 = 2 are valid for both
periods. The degree of contingency is zero for the entire season. The results are reported in
Table 18 for different correlation values. We report the optimal expected revenue, optimal

Two periods Single period
ρ E(R) p∗1b E(p∗2b) E(R) p∗b

-0.9 285.57 28.75 28.56 284.59 28.50
-0.5 282.90 28.75 28.37 281.51 28.50

0 280.78 28.75 28.38 279.02 28.50
0.5 279.00 29.00 28.36 276.81 28.50
0.9 277.50 29.25 28.27 274.75 28.50

Table 18 Comparison of two periods and single period problems

price of the bundle in the first period and expected price of the bundle in the second period
(given that there remains positive inventory of both products) for the two period problem in
columns 2,3, and 4 respectively. As before, expected revenues are higher when the correlation
is smaller. The first period optimal price is always higher than the expected second period
price, showing that the retailer would like to test a higher price initially given that she has
an opportunity to mark the price down later in the season. Table 18 also reports the solution
of the single period problem (the season is a single period with T = 1) which are already
discussed in Table 9. Clearly, expected revenues of the two period case are higher than the
expected revenues of the single period case. We see that a second pricing opportunity has
more value when the reservation prices are positively correlated. This is expected since the
reservation price of the bundle has higher variance in this case and a second period gives
the retailer a second chance after resolving some uncertainty regarding the arrival process
and the reservation prices. This is in contrast to the case where the reservation prices are
negatively correlated. In this case, the bundle reservation price has a very small variance,
and the second period helps only to resolve a portion of the uncertainty regarding the arrival
process. Also note that the first period bundle price in two period problem is always higher
than the bundle price in the single period problem. One interesting case is when ρ =−0.9.
In this case, the (expected) bundle prices in two periods are higher than the bundle price of
the single period problem.

In order to see what really happens in the second period, we report in Table 19 the pricing
policy for the second period for ρ = 0. Note that in this case, the retailer charges 28.75 in the
first period. The second period price depends on what was actually sold in the first period
(or what is left for second period). Clearly, the second period price is a decreasing function
of the second period starting inventory levels. It is possible that the retailer can even apply
a mark–up in the second period, if the sales were strong in the first period and very little
inventory is left.
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(Q21,Q22) 1 2 3 4 5 6 7 8 9 10

1 30.00 30.00 29.75 29.00 28.25 28.00 27.50 27.50 27.25 27.25
2 30.00 30.00 29.50 29.00 28.50 28.00 27.75 27.50 27.25 27.25
3 29.75 29.50 29.25 28.75 28.25 28.00 27.50 27.50 27.25 27.25
4 29.00 29.00 28.75 28.50 28.25 27.75 27.50 27.25 27.25 27.00
5 28.25 28.50 28.25 28.25 28.00 27.75 27.50 27.25 27.00 27.00
6 28.00 28.00 28.00 27.75 27.75 27.50 27.25 27.00 26.75 26.75
7 27.50 27.75 27.50 27.50 27.50 27.25 27.00 26.75 26.50 26.50
8 27.50 27.50 27.50 27.25 27.25 27.00 26.75 26.75 26.50 26.25
9 27.25 27.25 27.25 27.25 27.00 26.75 26.50 26.50 26.25 26.25
10 27.25 27.25 27.25 27.00 27.00 26.75 26.50 26.25 26.25 26.00

Table 19 Optimal bundle prices in the second period as a function of remaining inventory, ρ=0

Next, we conducted the following study in order to understand how effective bundling is in
a dynamic pricing setting. In the first period, the product prices are set to 15 and no bundles
are offered. In the second period, the retailer acts according to one of the three scenarios.
In the first scenario, the retailer still does not offer any bundle in the second period, but
optimizes the individual product prices based on the realization of demand in the first period.
This is a simple pricing scenario where the products are individually priced. In the second
scenario, the retailer offers the bundle and prices it optimally, but does not change the prices
of the individual products. This is a scenario in which the retailer is perhaps offering a price
guarantee (or a price promise) and is reluctant to change the prices of individual products.
Such price guarantees dictate the retailer to reimburse his customer the price difference, if
he reduces the price after the purchase. Price guarantees are often used by retailers to stop
strategic behavior among customers and to encourage them to purchase early. Examples of
companies offering price guarantees include the low cost airline EasyJet (The Daily Telegraph
2005) and the cruise line Norwegian Coastal Voyage (Travel Trade Gazette 2005). In the third
scenario, the retailer has the flexibility to offer the bundle as well as change the prices of the
individual products in the second period. The results are presented in Table 20. Expected
revenue in each scenario denotes the total expected revenue obtained in two periods.

No Bundles Product Prices Fixed All Prices Optimized
ρ E(R) E(p∗21) = E(p∗22) E(R) E(p∗2b) E(R) E(p∗21) = E(p∗22) E(p∗2b)

-0.9 272.360 14.028 279.263 26.355 280.672 20.000 27.016
-0.5 273.069 14.043 278.363 26.212 279.768 19.563 26.155

0 273.755 14.038 277.253 26.262 278.652 19.211 24.990
0.5 274.379 14.036 276.219 26.414 277.614 18.635 24.002
0.9 275.199 14.039 275.707 26.620 277.099 18.200 23.563

Table 20 Effectiveness of bundling in dynamic pricing

The results for this particular problem show that offering the bundle in the second period
is more effective in generating revenue than updating the individual product prices. The
difference can be significant when the product reservation prices are negatively correlated.
Obviously, the flexibility of changing the individual product prices in addition to offering a
bundle option further increases revenues. However, the additional benefits are smaller. We
conclude that offering price bundles can be an important alternative to dynamic pricing of
individual products, especially in industries where the consumers may be acting strategically
and hold back their purchases in anticipation of future price declines.
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5. Conclusion
In this study, we consider the optimal bundle pricing policy of a retailer with two perishable
products with the objective of maximizing the revenue. We assume that the retailer adopts
a mixed bundling strategy where the two products can be sold separately or as a bundle.
The two products are available in limited quantities and there is no replenishment oppor-
tunity during the planning horizon. Customers arrive to the retailer according to a Poisson
Process and their purchase probabilities are governed by the reservation prices. The bundle
reservation price can be additive, subadditive or superadditive, the last two of which reflect
the substitutability and complementarity of the products respectively. An exact expression
is derived for the expected profit of the selling horizon and is maximized with respect to the
prices of the products and the bundle using numerical methods. An extensive numerical study
is conducted to investigate the impact of the initial inventory levels, means, variances and
the covariance of the reservation prices, substitutability and complementarity on the optimal
prices and the resulting optimal revenues. Furthermore, the comparison among unbundling,
mixed and pure bundling strategies are also provided.

Our numerical results indicate that the performances of the policies heavily depend on the
parameters of the demand process and the initial inventory levels. Bundling is observed to be
most effective with negatively correlated reservation prices and when the supply quantities
are large. It is also observed that the mixed bundling and pure bundling strategies perform
very close when the supply quantities are large and equal; however the mixed bundling
strategy provides significant savings over the pure bundling when the supply quantities are
unequal. Our numerical results also show that bundling becomes more effective as the degree
of contingency increases (products become less substitutable and more complementary). By
employing a bivariate gamma distribution for the reservation prices, we also show that the
shape of this distribution is important and using the sub-optimal prices resulting from normal
reservation prices, when in fact bivariate gamma better fits the actual distribution may result
in significant losses especially for negatively correlated reservation prices. This observation
seems to have important managerial implications and is worthwhile to be further studied.
Based on our analysis with constant product and bundle prices throughout the selling season,
we also provided an extension of our model to allow for price changes in a multi–period
setting using a dynamic programming formulation. Using a two–period numerical example, it
is shown that offering price bundles mid–season could be an effective alternative to updating
individual product prices.

A worthy but a complex extension of our work could be the integration of actions of the
competitors in the pricing decisions. In this study, we do not consider any cost component.
However, the comparative performances may change in case of charging a cost for bundling
the products. One may also consider a price change at a time when one of the products
depletes. In this case, a cost for price changes could also be considered. In addition, our
assumption of no replenishment can be converted to one in which the retailer is allowed to
replenish product inventories at the beginning of each period. Instead of insisting on the
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mixed bundling strategy, the retailer may prefer to use pure or unbundling strategies in one
or more of the periods during the season.
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