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Abstract

In distributed computing the recent paradigm shift from centrally-
owned clusters to organizationally distributed computational grids in-
troduces a number of new challenges in resource management and
scheduling. In this work, we study the problem of Selfish Load Bal-

ancing which extends the well-known Load Balancing (LB) problem
to scenarios in which each processor is concerned only with the per-
formance of its local jobs. We propose a simple mathematical model
for such systems and a novel function for computing the cost of the
execution of foreign jobs. Then, we use the game-theoretic framework
to analyze the model in order to compute the expected result of LB
performed in a grid formed by two clusters. We show that, firstly,
LB is a socially-optimal strategy, and secondly, for similarly loaded
clusters, it is sufficient to collaborate during longer time periods in
order to make LB the dominant strategy for each cluster. However,
we show that if we allow clusters to make decisions depending on their
current queue length, LB will never be performed. Then, we propose
a LB algorithm which balances the load more equitably, even in the
presence of overloaded clusters. Our algorithms do not use any ex-
ternal forms of compensation (such as money). The load is balanced
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only by considering the parameters of execution of jobs. This analy-
sis is assessed experimentally by simulation, involving scenarios with
multiple clusters and heterogeneous load.

1 Introduction

Computational grids [15], i.e. large-scale, distributed computing systems,
are expected to provide computing infrastructure required by many areas
of modern science and technology (see e.g. [8] for example applications).
However, the truly decentralized nature of such systems introduces a number
of new problems in fields as diverse as programming models, scheduling and
resource management or security. In resource management, conflicts may
arise in grids formed by resources owned by different organizations [14], which
have different, often contradictory, goals. Consequently, there must be some
kind of motivation for resources’ owners (e.g. a university computational
center) to allow the users coming from the outside (e.g. from a different
university) to access the local resources.

In this paper, we study the problem of resource management in compu-
tational grids by analyzing the problem of selfish Load Balancing (LB). The
computational grid is a collection of independent, but interconnected clus-
ters. LB techniques are classic algorithms that move jobs from overloaded
processors to underloaded ones, in order to spread the load on the system as
evenly as possible. While it is well known that a system with LB performs
better both in terms of sum of jobs’ completion times and maximum com-
pletion time (makespan), LB implicitly requires a centralized control over
the whole system. Processors must share a common goal, that is the op-
timization of the set of jobs submitted to the system. Selfish LB extends
the problem of LB to distributed systems owned by multiple organizations.
Jobs of an organization are submitted to a local cluster. Each organization
is concerned only with the performance of its jobs. We study two result-
ing problems. Firstly, whether the clusters owned by different organizations
should balance their load. Secondly, how to organize LB in order to make
the process profitable for all organizations.

An example computational grid is the CiGri [2] project, connecting clus-
ters owned by 6 academic institutions, among others, by the Department of
Physics and ID-IMAG laboratory. CiGri allows users’ jobs to run on the
whole infrastructure. This functionality completely changes the context of
the load-balancing, as jobs coming from e.g. the Department of Physics can
delay local jobs executed on e.g. ID-IMAG’s cluster, and therefore reduce
the performance experienced by ID-IMAG’s local users. Consequently, there
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must be some kind of motivation for resources’ owners (ID-IMAG) to allow
users coming from the outside (from the Department of Physics) to access to
local resources and to execute their jobs (considered as foreign or grid jobs
by the host).

This paper has several contributions. Firstly, we propose a simple math-
ematical model that describes distributed computing systems owned by mul-
tiple organizations. Along with the model, we propose a cost function for
resource utilization that takes into account the expected delay in the compu-
tation of local jobs. The cost function is not linear with resource utilization
time and depends also on the local load. Then, we show that a system
performing LB is more efficient than the one without, thus LB is socially
profitable. Furthermore, we show that LB becomes the dominating strategy
for each site if clusters are similarly loaded and the period of cooperation is
significantly longer than the average size of jobs. However, we prove that
if individual participants are able to decide on balancing the load based on
their current queue length, cooperation will never appear and thus the grid
will work inefficiently. Finally, we propose a LB algorithm that achieves
acceptable results even if the load is highly heterogeneous. We achieve to
balance the system without introducing any form of external compensation
(such as money) for using foreign resources, only by measuring delays in the
execution of jobs.

The rest of the paper is organized as follows. Section 2 presents related
work in scheduling, grid resource management and game theory. Section 3
presents mathematical models for the grid and the cost function. Section 4
analyzes the proposed model from the game theoretical point of view. Sec-
tion 5 shows how the strategies dependent on the current queue length fail
to promote collaboration in the grid. Section 6 details a LB algorithm that
addresses the problem of heterogeneity in the load of the clusters. Section 7
contains a discussion of the results obtained. Finally, Section 8 provides some
concluding remarks.

2 Related Work

2.1 Scheduling

The mainstream of the current research on scheduling and resource manage-
ment [13] concerns systems in which the performance of all jobs is optimized.
Usually, a common metric (such as the maximum completion time called
makespan and denoted Cmax, or the sum of completion times ΣCi of all jobs)
is optimized and thus all the jobs are treated in a more or less equal man-
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ner (sometimes adding weights to express their relative importance). This
approach is justified by the fact that the system has one owner (an organi-
zation) which is able to enforce policies on local users. Load-balancing can
be achieved in such systems by Work Stealing (WS). Each time a processor
becomes free, it connects to its (loaded) neighbors in order to take off some
of their load. It can be proved that WS delivers good performance (under
some hypotheses) when optimizing Cmax in an on-line system [3].

Nevertheless, the main difference between a grid and a large-scale su-
percomputer is that a grid is, by its definition [14], formed by resources con-
trolled by different administrative entities. In the context of Grid computing,
multi-criteria approaches may be used. Different criteria either express per-
formance of different jobs [27] (centralized scheduling), or different factors,
such as completion time and cost, of one job [22] (broker-based scheduling [6]).
A scheduling algorithm is expected to deliver Pareto-optimal solutions. The
main problem with the first approach is that it requires a centralized control
over all the resources and all the jobs. A user does not have guarantee that
his/her solution is optimal, given the action enforced by the scheduler on
the others. Brokers schedule each job independently of other jobs. In grids
with many users, trying to execute their jobs in parallel, actions of each user
will influence the state of the environment and consequently the parameters
of functions optimized by other users’ brokers. Therefore users might be
tempered to influence the environment in order to create most favorable con-
ditions for their job. Optimization alone is not able to model such feedback
loops.

2.2 Grid Economy

Grid economic approaches [10, 36] analyze the problem of grid resource man-
agement by means of market economy. Each resource has a (monetary) cost
for its usage. Each user has a budget to spend on the execution of his/her
jobs.

The simplest approach to match users and resources is to organize auc-
tions [10] each time a user is looking for resources for the execution of his/her
job. In such an auction resources of a requested type compete for the job.
However, most studies proposing auctions as a way of trading resources leave
too many important questions unanswered. It is not clear how should the
bids be formulated and how should they depend on previous auctions. Ad-
ditionally, the resulting prices are hard to predict. For an user, it is hard to
balance his/her budget between a number of different jobs (although there
is a mechanism of combinatorial auction, in its general form it is computa-
tionally expensive to implement [35]). For an owner, who considers investing
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in the costly infrastructure, it is hard to calculate the expected return of
investment.

Commodity markets for trading the access to the resources [21], similar
to markets for e.g. soybean, seem to be more stable [37], as a large number
of buyers and sellers of homogeneous good is centrally matched. However,
computational power is not a trivial commodity, because both resources and
applications are heterogeneous. Usually, an application needs a certain op-
erating system, libraries, system architecture, size of RAM locally available,
moreover, its performance depends heavily on such parameters like e.g. speed
of interconnection network [20]. Heterogeneity divides the computational
market into many sub-markets, in which one player is able to manipulate the
price. Consequently, market is far from the perfect competition principle, the
fundamental assumption of free-market economy, and its stability cannot be
guaranteed. The other problem is that commodity markets (with derivative
tools, such as futures or options, players’ strategies etc.) are rather complex.
Considering that grids are already one of the most complicated computer
systems ever created, the introduction of another complex system on the top
of them seems to be both risky and, as we will show in this paper, sometimes
not necessarily.

The concept of “money” itself also bears problems. Firstly, it requires a
centralized entity, a form of a grid bank, to keep track of it. Secondly, money
makes people self-oriented and not willing to cooperate [33].

Some semi-market approaches were also proposed. The Network of Fa-
vors, implemented in the OurGrid project [4], implements a kind of barter
trade. A grid job is executed if there are no local jobs, but it is canceled if
a local job appears. This approach thus does not solve the problem whether
to execute a grid job on a machine, only which grid job should be executed.
There are also no guarantees on the finish time of a grid job.

2.3 Game-theoretic approaches

Approaches presented in this section analyze the problem of grid resource
management by means of game theory. Game theory [29] studies the prob-
lems in which players maximize their returns which depend also on actions
of other players.

A number of papers focus on creating rules to avoid the problem of users
who gain from the system without contributing [30, 9, 18, 17]. There were
some theoretical works on this subject, where game theory models were
formed to model users’ behavior. Unfortunately, the models proposed cap-
tured mainly steady-state behavior of the participants, as early P2P systems
were focused on file-sharing. In file-sharing (and similarly, in selfish caching
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problem [12, 24]), it is possible to formulate a static (not time-dependent)
utility function, which can express the gain each user gets from the system
in a closed formula. In the context of distributed resource management, such
a solution is proposed in [34] and focuses on maintaining good relationships
of a node with its neighbors by accepting neighbors’ jobs to be executed on
the node and therefore increasing the probability that the node’s jobs will
be accepted by its neighbors in the future. However, the need for computa-
tional power is usually highly time-dependent with peaks of activity followed
by periods of considerably lower needs. While the ability to use foreign com-
putational power is very valuable when the local demand is high (and, at
the same time, the execution of foreign jobs becomes then very costly), it
becomes almost useless when the local demand drops below some threshold.

[23] proposes a model where individual clusters (placed in e.g. different
departments of a university) are visible as one site in the grid. The model
assumes that a job has been already accepted for the execution by the site.
[23] studies which cluster from that site should eventually execute the job.
Our model concerns that assumption which [23] made a priori, as we are
studying the problem if a site should accept a job coming from another site.

[5, 26] study systems in which selfish jobs compete for community-owned
processors. We consider that our model is better for academic grids, in which
a job is viewed through the organization that has submitted it.

Another related field of research is mechanisms design for the load bal-
ancing problem [19]. Generally, a mechanism can balance the agent’s cost
of invoking an action by a payoff paid to the agent [16]. This enables the
mechanism to control the global behavior of the system. In [19], central
scheduler assigns a fraction of a global job queue to each participating site.
By a mechanism, the sites are encouraged to report their true processing
power, which allows the scheduler to take globally-optimal decisions. The
major disadvantage is that a common “currency” for both the cost and the
payoff is required.

In this paper, we propose a collaboration framework that takes into ac-
count the institutional heterogeneity of the grid. We achieve to balance the
system without introducing external forms of compensations, only by mea-
suring delays in the execution of jobs. Furthermore, our system provides
better Quality-of-Service then the best-effort execution as it is able to guar-
antee the latest finish time of every submitted job in the moment of the job’s
submission.

6



3 Grid Model

3.1 Description

We assume that the computational grid is formed by a set of independent, yet
interconnected, clusters {M1, . . . , Mn}. Each cluster Mi is administratively
owned by an organization Oi, whose members submit their individual jobs Ji,j

locally. Ji,j is the jth job submitted by the members of the ith organization,
and Ji is the set of all jobs submitted by Oi. As each cluster is expected
to prioritize the needs of its organization, the cluster must optimize the
performance of its local jobs Ji. Each cluster measures the sum of flow times
Fi (the difference between the job’s completion time Ci,j and its release date,
or arrival time ri,j) of cluster’s local jobs: Fi =

∑
j (Ci,j − ri,j). We consider

on-line [32], clairvoyant scheduling [7]. A job Ji,j is unknown to the scheduler
before its arrival time ri,j. The size pi,j of job Ji,j is known immediately after
the job has arrived. At a given moment, let the local load Li stand for the
time moment when the computation of the last currently known local job
ends.

For the sake of the theoretical analysis, unless otherwise stated, we assume
that the jobs Ji are produced by a Poisson process with a known mean time
between arrivals λi. The sizes pi,j of the jobs follow exponential distribution
with known µi. Note that those parameters are not needed by the algorithms
presented in the paper.

Jobs follow the divisible load model. Each job can be divided into a large,
but finite, number of fragments, that can be computed in parallel. Every job
can be computed on every cluster. The processing rates of the clusters are
the same. It takes one unit of time to process a unit load.

The clusters are managed by time-sharing resource management systems.
At a given moment, every node of a cluster computes the same job. Once a
job (or its fragment) is finished, another job (or its fragment) can be com-
puted. Local resource management systems queue incoming jobs on First
Come First Served (FCFS) basis.

Although we will discuss several LB algorithms, they all share a com-
mon property of being able to guarantee the latest finish time of every job
submitted to the system, which is announced to the user in the moment of
job submission. We consider that such guarantee, as opposed to best-effort
execution, provides better usage experience for the users (better Quality of
Service) and prevents job starvation.

We can formulate the problem of selfish LB both from the Grid’s (infras-
tructure’s) and from the cluster’s point of view. The grid should provide a
LB algorithm which, firstly, optimizes the performance of the whole system
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and, secondly, satisfies as many clusters as possible. Each cluster, given the
algorithm and the observed behavior of other clusters, must decide whether
to participate in the LB process, or not.

3.2 Discussion

Time-sharing resource management systems, used in our model, emphasize
the cost of accepting foreign jobs. In space-sharing, an alternative approach,
parts of clusters, defined by a certain number of nodes, execute in parallel
different jobs. In space-sharing, there is a fairly common situation when
a small number of free nodes cannot be utilized by any waiting local job.
Accepting small foreign jobs which fit in the schedule by filling such gaps
does not slow down the execution of local jobs. We decided not to follow
that model because we want to stress out the negative effects of non-local
jobs on the local jobs’ performance. The results of our model are an upper
approximation (the worst case) for the space-sharing resources.

3.3 Cost Model

A number of approaches to grid resource management assume that the cost of
running a job on a resource is set externally (it is an input to the model). But
what is the real cost of running a job during a certain amount of time? One
possible approach might consider that a job should participate in cluster’s
running cost, such as the cost of the electricity consumed, or the cost of the
staff. However, if no jobs are executed, those costs remain constant. The
clusters are not switched off, nor the staff is dismissed. On the other hand, in
space-sharing systems, a small (and therefore cheap) job can block resources
required by a large job, which would pay more.

We can alternatively suppose that the cost of accepting foreign load Φi is
determined by the delay in the computation of the “next” local job Ji,n, un-
known at the moment of decision. Such a measure expresses the “irritation”
of a local user who experiences his/her job being delayed because of a foreign
load being executed (see see Fig. 1). Note that if Φi is accepted, the arrival
of Ji,n cannot interrupt Φi’s scheduled or ongoing execution, because such
interruption could break the announced finish times for jobs which fragments
belong to Φi. It would essentially turn our system into best-effort one.

More formally, we can formulate a function g(r, Li, Φi) which expresses
the delay in the computation of Ji,n in function of known local load Li, size of
the foreign load Φi, and Ji,n’s arrival time r = ri,n > 0. We assume that the
decision whether to accept a foreign load Φi is made at time t = 0. We also
do not consider the impact of the following local jobs nor LB which might
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Figure 1: A dilemma (a) faced by a cluster Mi accepting a foreign load.
Accepting it (b) can delay the execution of the next local job by Φi, if the
local job arrives before Li + Φi.

occur in the future. Using this notation,

g(r, Li, Φi)=





Φi if r ∈ (0, Li),
−r + Li + Φi if r ∈ (Li, Li + Φi),
0 if r ∈ (Li + Φi, +∞).

If Ji,n arrives before the foreign load is started, it is delayed by Φi, i.e. the
size of the foreign load (first row). If Ji,n arrives after the foreign load is
finished, it is not delayed (last row). Finally, during computation of Φi, the
delay linearly decreases with r (second row).

Knowing that r is a random variable with distribution f(r), we can com-
pute the expected value of g(r, Li, Φi) as

EG(Li, Φi) =
∫ +∞

−∞
g(r, Li, Φi)f(r)dr =

=
∫ Li

0
Φif(r)dr +

∫ Li+Φi

Li

(−r + Li + Φi)f(r)dr. (1)

If the local jobs arrive according to a Poisson process with known intensity
λi, then the delays between the jobs follow the exponential distribution, thus
f(r) = λi · exp(−λir) for r > 0. After computing the integrals, we get the
following formula:

EG(Li, Φi) = Φi +
e−λiLi

λi

(
e−λiΦi − 1

)
.

This function is plotted on Fig. 2.a. It should be noted that, firstly, the
expected delay EG(Li, Φi) is not linear with foreign load Φi. This suggests
that the basic approach to calculate the cost of execution of a job on a
cluster, cost = coefficient · jobsize [1], may miss some important phenomena.
Secondly, Φi−EG (Li, Φi) > 0 for all possible (positive) values of Φi and Li.
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Figure 2: The expected delay in the execution of the next local job EG(Li, Φi)
plotted against local load Li and the accepted foreign load Φi (a) and the
social outcome Φi−EG(Li, Φi), i.e. the difference between the sender’s gain
Φi and the expected delay (b). All variables are measured in time units.
λ = 0.2.

4 Game Theoretical Analysis

4.1 A Basic Two-Player Game

We present now how the foregoing cost function EG(Li, Φi) can be used to
analyze the expected result of LB performed in a grid formed by two clusters.

Let us define a load balancing game with two players (clusters). The
heavier loaded cluster MH , called the sender, has two strategies: send part
of its load ΦL to the other cluster or compute everything locally. The less
loaded cluster ML, called the receiver, can either accept the foreign load
coming, or reject it. Table 1.a shows the structure of payoffs in such a game.

The pair of strategies corresponding to LB (send and accept) is the global
optimum regarding the sum of players’ payoffs. If the sender sends and the
receiver accepts the load, the receiver expects that its local jobs will be
delayed by EG(LL, ΦL). As it will affect ML’s criterion FL, ML’s payoff will
be always negative. However, sender’s jobs are finished faster by at least
ΦL (assuming that the sender’s load after sending ends at time LL + ΦL or
later, otherwise ΦL should be reduced). Therefore, the sender’s payoff is at
least ΦL. As Φi − EG (Li, Φi) > 0, the sum of payoffs of both players, or
the social outcome (plotted on Fig. 2.b) is always positive. LB is globally-
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Table 1: The structure of payoffs in the basic game (a) and when clusters
cooperate during longer period (b). The row player’s payoff is in the top left
corner, the column player’s in the bottom right corner.

a b
compute

receive reject cooperate locally
send Φi, 0, cooperate 1

2
(Φi − EG (Li, Φi)), 0,

−EG(Li, Φi) 0 1

2
(Φi − EG (Li, Φi)) 0

compute 0, 0, compute 0, 0,
locally 0 0 locally 0 0

optimal, thus it the best solution from the infrastructure’s point of view. The
social outcome reaches the maximum for small local load Li and large foreign
load Φi as limΦi→∞ Φi−EG(0, Φi) = 1

λi
. Social outcome diminishes with the

increase of Li, because the risk of delaying the next local job becomes greater,
yet the gain of the sender is the same.

The main issue is that, for the receiver, the action accept is dominated by
reject, as it always leads to a lower payoff (−EG(LL, ΦL) if the heavier loaded
cluster sends, 0 otherwise). Thus, even if LB leads to the social optimum,
it is always inefficient for the receiver, and the receiver will never choose the
action accept.

However, the probability of being the receiver is similar to that of be-
ing the sender, if the clusters are similarly loaded and the system forces
the clusters to commit to their decisions for some period, instead of let-
ting them cooperate only instantly. Consequently, both clusters should gain
from cooperation. Table 1.b informally shows the idea. In such a game, as
Φi−EG (Li, Φi) > 0, the action cooperate dominates the local computation.
The transition from the basic game to the cooperation game can be viewed
as a transition from an one-shot game to a repeated game with players com-
mitting to their strategies. Actions which are dominated in a simple game
became feasible when the game is repeated. There is, however, an important
difference between repeating the simple game and the cooperation game. The
simple game is asymmetric, so in order to obtain payoffs from Table 1.b, each
player must alternate between being the sender and the receiver.

4.2 Cooperation Game

Since it is hard to extend the theoretical results to cases with more than
two players and more than one next job, we decided to validate the proposed
model empirically by constructing a grid simulator with learning participants.
In the simulator each cluster measures the performance of its local jobs and
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accordingly adjust its willingness to join the LB coalition.
A coalition C is formed by a subset of clusters. Clusters belonging to

the coalition balance their load by a centralized, averaging LB algorithm.
Periodically, each cluster decides whether to join the coalition for the next
time period T ≫ pi,j. A cluster cannot leave, nor enter, the coalition until the
next decision moment. This decision is made locally, and it depends only on
the performance of local jobs Ji. There are no outside, administrative rules
that would enforce clusters to join the coalition. However, once a cluster is in
the coalition, it must obey the results of the LB algorithm. Clusters outside
the coalition compute all the locally produced jobs and no foreign jobs.

If a cluster Mi participating in C has been assigned some foreign load
Φi, Mi must execute Φi immediately after time Li, i.e. immediately after
finishing the last local job known at the moment of the execution of the algo-
rithm. As both local and foreign jobs are never postponed, we can guarantee
that a job Ji,j will start no later than max(Li, L

′
i + Φi) (where L′

i is the local
load known at the moment of executing the last LB procedure before ri,j).
The job can be finished faster if the next LB is performed before the job’s
scheduled finish time.

The decision taken by each cluster whether to join the coalition is mod-
elled by two pure strategies (corresponding to the ones from Table 1.b): s1

– join the coalition; and s2 – do not join the coalition. In this game, each
cluster uses mixed strategy σi, which specifies probability pi that the cluster
Mi will join the coalition (i.e. the probability of using strategy s1).

4.2.1 Description of Algorithms

Here, we will describe the LB algorithm used to balance the load in the
coalition and the algorithm that the clusters execute to adjust the probability
of participation in the coalition.

The LB algorithm is executed periodically, and it balances the load by
moving jobs or their fragments between clusters. The algorithm starts by
computing the mean load Lmean = 1

|C|

∑
Li from the loads of clusters in the

coalition. Then, the clusters with load greater than the mean send fractions
of their load to the ones with the load lower than the mean. We assume no
priorities in the load. Every job which parts were load balanced is completed
in exactly the same time moment Lmean. Consequently, after LB, the load
of all clusters in the coalition finishes exactly at Lmean. The next iteration
of LB is performed at Lmean.

Cluster Mi that participated in the coalition adjusts its strategy σi at the
moment of deciding whether to join the coalition for the next time period.
σi is based on the observed sum of flow times Fi of local jobs submitted
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during the last time period. Mi computes what would have been the sum
of flow times F̃i of local jobs if the cluster had not joined the coalition. By
comparing Fi and F̃i, the cluster can measure if LB was profitable, and adjust
pi accordingly. More specifically, each cluster Mi that was participating in
the coalition computes the ratio Ri = Fi

F̃i

. In order to limit the maximum

possible changes, we bound the ratio (by 1
2

and 2). If Ri > 1, LB worsened
the performance of local jobs, so δ = −1. Otherwise, δ = +1 and the ratio
is inverted (Ri ←

1
Ri

), in order that the impact of Ri = a
b

and Ri = b
a

is the
same. Then, the cluster computes the one-round desire to join the coalition
qi, which depends linearly on Ri: qi = 1

2
+ δ

(
Ri

2
− 1

2

)
. The value of pi is then

adjusted by the value of qi: pi = (1− σ)pi + σqi, where σ is a small number
expressing the learning coefficient.

A cluster that remained outside of the coalition cannot compute the rel-
ative performance. In this case pi does not change. As initially clusters are
indifferent to the coalition, the starting value of pi is 1

2
.

4.2.2 Experimental Analysis

We simulated the grid environment with m = 10 clusters participating in the
previously described game using a custom-built discrete event simulator.

Unless otherwise stated, we assume that the clusters are similarly loaded.
The expected delay between two consecutive jobs is the same 1

λ
, λ = 0.2.

Jobs’ sizes follow the gamma distribution with parameters (α, β), α = 2,
β = 2. The period of cooperation in coalition is T = 1000. We repeated
each experiment 50 times. The results obtained in each repetition were very
similar to each other and the same phenomena could be observed.

In algorithm adjusting pi, when computing F̃i and Fi, we took into ac-
count only jobs submitted between tprev +0.2T and tprev +0.8T (where tprev is
the time at which the previous decision was taken), in order to avoid transi-
tory effects and to capture the performance of the system in the steady-state.

Fig. 3.a depicts a typical course of a simple cooperation game with identically-
loaded clusters. After a short period of adjustment, the probability of joining
the coalition oscillates between 0.8 and 0.9 with a few bigger peaks. We see
that joining the coalition is, in general, more profitable than computing the
whole load locally. Otherwise, pi values would drop below 0.5. The prob-
abilities do not, however, converge to 1.0. This suggests that it was quite
common that LB delayed the execution of local jobs. We have also varied
the number of clusters m from 2 to 30. We observed similar results, although
the more clusters, the higher final value of pi was observed.

The speed-up experienced by a cluster Mi can be defined as Mi’s score
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Figure 3: The probability of joining the load-balancing coalition pi plotted
against the round number in the homogeneous case (a) and when one of the
clusters (its pi is represented by a thick black line) is overloaded (b). pi values
for individual clusters are depicted by different styles of lines.

Si = F̃i

Fi
− 1, if FI < F̃i (LB was better for Mi than local computation) and

Si = −(Fi

F̃i

− 1) otherwise. If Si = 1, Mi’s jobs’ flow time when LB was

used was reduced by a half comparing to local computation, if Si = −1, Mi’s
jobs’ flow time was twice as much. Si expresses how well the LB algorithm
performed.

In order to measure the score, we fixed pi = 1.0 for all the clusters, and
performed N = 1000 rounds of the game without using the pi’s adjustment
algorithm described in the previous section. Table 2 presents the aggregated
results. As scores for individual clusters were similar, for brevity we present
only the average score (computed as an average from individual clusters’
scores, which, in turn, are averages over 1000 runs), the actual range in
which individual clusters’ scores belonged, and the average standard devi-
ation, computed as the average from standard deviations of score for each
cluster, again with the actual range.

We can see that, on the average, if the clusters were similarly loaded and
their load was high (α = β = 2.0 with λ = 0.2 gives average load of 80%),
jobs were speeded up from 50% to 237%. The more clusters in the grid, the
better the results. This is because if there are more clusters, more clusters
can actually send their load and profit from the LB. In the underloaded case
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Table 2: Mean score and standard deviation achieved by individual clusters
in 1000 rounds of the simple cooperation game. λ = 0.2

score / standard deviation
no. of clusters parameters typical overloaded

homogeneous configuration

2 α = β = 2.0 0.50 ± 0.00 / 0.65 ± 0.00
5 α = β = 2.0 1.25 ± 0.06 / 1.29 ± 0.10
10 α = β = 2.0 1.76 ± 0.12 / 1.64 ± 0.11
30 α = β = 2.0 2.37 ± 0.11 / 2.06 ± 0.20
2 α = β = 1.0 0.13 ± 0.00 / 0.06 ± 0.005
5 α = β = 1.0 0.23 ± 0.00 / 0.10 ± 0.00
10 α = β = 1.0 0.28 ± 0.01 / 0.11 ± 0.01
30 α = β = 1.0 0.30 ± 0.01 / 0.12 ± 0.01

heterogeneous configuration, α1 = β1 = 3
2 α = β = 2.0 -7.13 ± 0.00 / 3.66 ± 0.00 0.93 / 0.24
5 α = β = 2.0 -1.98 ± 0.06 / 1.53 ± 0.04 5.11 / 2.05
10 α = β = 2.0 -0.14 ± 0.03 / 0.93 ± 0.04 14.23 / 5.53
30 α = β = 2.0 1.55 ± 0.11 / 1.57 ± 1.17 36.99 / 9.29
2 α = β = 1.0 -24.21 ± 0.00 /12.29 ± 0.00 4.45 / 2.14
5 α = β = 1.0 -0.55 ± 0.01 / 0.27 ± 0.01 62.42 /11.92
10 α = β = 1.0 0.01 ± 0.00 / 0.10 ± 0.01 98.67 /18.96
30 α = β = 1.0 0.23 ± 0.01 / 0.11 ± 0.01 131.99 /25.42

(α = β = 1.0, which gives average load of 20%), the algorithm was not as
efficient, because there were not as many jobs to be load-balanced. However,
performance varied heavily, as standard deviations are high.

However, one overloaded cluster, for instance M1 in Fig. 3.b (with α1 = 3,
β1 = 3), is able to hinder others from cooperating. p1 of such a cluster quickly
reaches a value slightly higher than in the previous experiment. The rest of
the clusters does not want to collaborate with M1, so their probabilities os-
cillate around 0.1. There are sharp increases, when LB gets profitable for
an underloaded cluster. After such an increase we usually observe a gradual
downfall, meaning that the cluster constantly looses performance in com-
parison to individual computing. Such an overloaded cluster has also enor-
mous impact on the mean score achieved by other clusters. While the score
achieved by M1 is high, other clusters are constantly loosing by cooperat-
ing with this cluster. Only in largest grids (30 participants in the normally
loaded case, 10 and 30 participants in underloaded case) others clusters gain,
although this gain is much smaller comparing to the homogeneous case.
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5 Strategies Dependent on the Current Queue

Length

Both effects observed in the previous section suggest that, although LB is
indeed profitable, clusters should perhaps make their decisions on a finer
level. However, it will be shown in this section that if each cluster is able to
decide about participating in the load-balancing process based on its current
queue length, cooperation will never appear, and therefore the grid will work
inefficiently.

Let us assume that a grid is composed of two clusters, M1 and M2, that
participate in an averaging LB algorithm. The cluster with larger load sends
a half of the difference in load to the less loaded cluster. The amount of load
si sent by cluster Mi is:

si(Li, Lj) =
Li − Lj

2
.

If si > 0, cluster Mi sends a fraction of its load to cluster Mj , if si < 0 cluster
Mi receives a fraction of cluster Mj ’s load.

Given cluster’s Mi current load Li and its expectations about the dis-
tribution of load in the other cluster, Mi can compute the expected result
of LB process. Let us assume that clusters are identically loaded and they
know their average arrival rate λ and the average service rate µ. Let’s de-
note γ = µ − λ and ρ = λ

µ
. Then, for each cluster, its queue length Li has

a mixed distribution having an impulse at Li = 0 and being exponential for
Li > 0 [25]. For our analysis, this distribution can be approximated by the
following continuous distribution:

f(Li) =

{
0 for Li < 0
(1− ρ)δ(Li) + ργe−γLi for Li ≥ 0

,

where δ(Li) is Dirac delta function. Knowing this, Mi can compute the
expected value of si(Li, Lj) as:

ESi(Li) =E
(Li − Lj

2

)
=

1

2

(
Li − ELj

)
=

=
1

2

{
Li −

(
0 · (1− ρ) +

+
∫ ∞

0
ργLie

−γLidLi

)}
=

1

2

(
Li −

ρ

γ

)
.

Consequently, cluster Mi expects that it will send its jobs only if its
current queue is longer than the expected queue length of Mj ,

ρ
γ
. Only in
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this case LB is profitable for Mi. Cluster Mj , however, is capable of the same
analysis. If Mj ’s current queue length Lj is less than the average ρ

γ
, Mj will

not participate in LB process. In order to carry out the LB, we need two
clusters willing to participate. Consequently, if Mi wants to participate, it
must know that if Mj participates (and the LB occurs), Mj ’s queue length
will be longer than ρ

γ
. This modifies the probability distribution function

(pdf) of Mj ’s queue length. Following the general formula for conditional

probability Pr(A|B) = Pr(A and B)
Pr(B)

the pdf of Mj ’s queue length, given that

Lj > ρ
γ

can be expressed as:

f ∗(Lj|Lj >
ρ

γ
) =





f(Lj)

1−F ( ρ

γ
)

if Lj ≥
ρ
γ

0 if Lj < ρ

γ

,

where f(Lj) is the original pdf and F (Lj) = 1 − ρe−γLj is its cumulative
distribution function. Then, the expected value of s becomes:

ESi(Li|Lj >
1

γ
)=

1

2

{
Li −

−
( ∫ ∞

ρ

γ

ργLie
−γLi

1− (1− ρe−γ
ρ

γ )
dLi

)}

=
1

2

(
Li −

ρ + 1

γ

)
.

Consequently, LB becomes profitable for cluster Mi only if its queue length is
longer than ρ+1

γ
. We can, however, iterate this reasoning further. Generally,

the following formula holds:

ESi(Li|Lj >
ρ + k

γ
) =

1

2

(
Li −

ρ + k + 1

γ

)
.

It makes the one-step LB analogous to the beauty contest game [11]. The
more iterations of the above reasoning the players make, the longer the mini-
mum queue length which makes LB profitable. As the players are completely
rational, the minimum profitable queue length increases indefinitely. The LB
will thus never occur.

Obviously, in the longer time period, Mi’s queue length will also follow
the same distribution as Mj’s. The expected result of LB (computed as
ESi = 1

2
(ELi − ELj)) becomes then zero. Each cluster can expect that it

will send, on average, as much load as it will receive. In the analysis in
Section 3.3 we have shown that the cost EG of accepting a fraction of load
of size Φ is always less than Φ, the profit the sender gets from sending it.
Therefore the LB process is indeed profitable.
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6 Bounded, Iterative Load Balancing

In Section 4 we have shown that, although cooperation is profitable, one
overloaded cluster is able to make the LB unprofitable for the rest of the
clusters. In Section 5 we have demonstrated that it is impossible to formulate
globally-optimal strategies based on the current queue length. Consequently,
the only part of the system that can be improved is the LB algorithm. In
this section we will propose Bounded, Iterative Load Balancing algorithm
(BILB) that balances the load in a more equitable way. The algorithm uses
two mechanisms: iterative LB, in which firstly the least-loaded clusters are
balanced, then the following clusters are iteratively added in the order of their
local load; and bounded LB, in which no cluster is forced to accept foreign
load which would increase its local queue too much. The former technique
favors underloaded clusters, the latter directly uses conclusions from the cost
model presented in Section 3.3, where we have shown that accepting foreign
load is much cheaper when local queue is short.

6.1 Algorithm Description

BILB allows each cluster to control the maximum foreign load it will receive.
Each cluster, once every T time units, instead of declaring whether it par-
ticipates to the coalition or not, announces its declared participation level li.
li value is expressed in the same units as jobs’ length. The algorithm guar-
antees that, after BILB finishes, if a cluster has been assigned some foreign
load Φi, the cluster’s queue length will not extend li. On the other hand,
in order to prevent that clusters declare li = 0, an overloaded cluster will
not be able to send more of his load than li. Let us denote as Ψi the total
load that cluster Mi sends as a result of BILB. Using this notation, Ψi < li.
By li, a cluster can control the risk of taking part in LB. Lower values mean
lower risk, but also smaller load to be sent if the cluster is overloaded. Higher
values enable the cluster to send much load, if it is overloaded, but also could
force it to accept much foreign load.

BILB balances the load of a cluster with clusters that have smaller loads.
The algorithm starts by collecting the loads Li, and the declarations of maxi-
mum participation li from the clusters. Firstly, the clusters are sorted accord-
ing to the increasing queue lengths. Let us assume that L1 ≤ L2 ≤ . . . ≤ Ln.
Then, for each cluster Mk, its load is balanced with {M1, . . . , Mk−1}. Those
clusters have their load already balanced, with mean queue length Lk−1. The
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algorithm computes the current mean queue length:

Lk =
(k − 1)Lk−1 + Lk

k
=

1

k

k∑

i=1

Li

The maximum load Mk will send, Ψ∗
k, is bounded by the average Lk − Lk

and Mk’s announced participation lk, Ψ∗
k = max(Lk − Lk, lk). Ψ∗

k is then
divided onto {M1, . . . , Mk−1}. On each receiver Mi, the space available for
Ψ∗

k is bounded by the delay to the average (Li +Φi−Lk) and by the declared
participation li−Li−Φi+Ψi (Φi is the total load already received by Mi, Ψi is
the total load sent by Mi). Receivers are sorted by increasing space available
for Mk load. Then, for each receiver Mi, the load Φi,k actually received
is bounded by the space available and the number of remaining receivers
Φi,k =

Ψ∗

k

k−i
. In other words, if Mi receives anything, Li + Φi −Ψi ≤ li. Note

that after such a bounding, the actual load Ψk =
∑k−1

i=1 Φi,k that the cluster
Mk sends can be lower than Ψ∗

k.
The computational complexity of BILB is in O(n2).

6.2 Algorithm Analysis

The two mechanisms used by the algorithm are difficult to analyze theoreti-
cally together, however we will show that they both contribute to the desired
effects.

Firstly, iterative LB achieves more equitable solutions than averaging LB.
Let us assume that L1 ≤ . . . ≤ Lk ≤ . . . ≤ Ln. As the load sk sent in the
averaging LB is a function of the average load sk = Lk − L, cluster Mk will
profit from averaging LB only if its load is greater than the average load L.
Otherwise it will be just receiving foreign load. However, in iterative LB, Mk

sends a fraction Ψk = Lk − Lk. Since the cluster balances its load with less
loaded clusters, L1 ≤ . . . ≤ Lk, the average is smaller than the cluster’s load
Lk ≤ Lk, so the load send Ψk ≥ 0. Only the least loaded cluster will not send
its jobs. Iterative LB is also profitable for the heavier loaded clusters. In
fact, for each cluster Mk, Lk ≤ L, so Ψk ≥ sk (and this becomes an equality
only for the heaviest loaded cluster). Each cluster sends at least the same
amount of load as in averaging LB.

Additionally, iterative LB makes jobs finish earlier. Cluster Mk finishes
all its jobs that are known in the moment of LB until the time Lk, whereas
in averaging LB jobs are finished later (L ≥ Lk). Only the jobs of the most
loaded cluster Mn are not accelerated in comparison with averaging LB.

Bounding the load that a receiver may accept has two goals. Firstly,
through the parameter li a cluster can control its participation in the algo-
rithm on a finer level, as it is able to balance the risk of getting a load of
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size li (which would induce the cost EG(Li, li)), and the gain from sending
its job of size li. Secondly, this mechanism uses the observation that the
longer is the cluster’s queue, the more expensive is to execute a foreign job.
In fact, the longer the queue, the more probable that the next job will arrive
before the queue’s end, and therefore it will be delayed by the foreign load.
When a cluster is heavily loaded, it should not receive any foreign load, as it
is almost certain that another local job would arrive before the foreign load
would have been finished.

6.3 Experimental Analysis

We simulated the BILB algorithm in a system similar to the one described in
Section 4.2. The parameters of the system were the same as in the previous
experiments. For the plots of optimum participation level, we have repeated
each experiment 10 times and observed no significant differences between
individual runs. Each cluster modified its value of declared participation li
according to the following formula:

li = li + σliδ(Ri − 1),

where σ ∈ (0, 1] is the learning coefficient, Ri and δ have the same meanings
as in Section 4.2.2. Similarly to the previous adjustment algorithm, this func-
tion also guarantees that the change of li is proportional to the performance
achieved.

When clusters are similarly loaded, LB is highly profitable as the declared
levels of cooperation li quickly reach the upper bound (Fig. 4). As such a
bound is strongly greater than observed queue lengths, a cluster, by declaring
li = 1000, essentially turns off the bounding mechanism and declares that it
will accept everything.

When clusters’ loads differ, both mechanism used in BILB are needed
depending on the number of overloaded clusters in the system. Firstly, in
smaller grids composed of 2 clusters, the underloaded cluster M2 declares its
participation level l2 less than 1.5 (Fig. 5.a), which is rounded to 1.0 by the
algorithm. This is a consequence of the discrete nature of our simulator, as
the first job after LB may come at earliest in the next time unit. Clearly, if
LB was performed before job submission, l2 would be equal to 0. This result
shows, however, that the algorithm used for li modification works correctly:
M2 cannot gain by load-balancing its jobs (as M1’s queue is almost always
longer), but it can accept foreign load of size 1, since it will not delay its
local jobs.

Secondly, in larger grids, the declared participation level of all clusters
eventually reaches the upper bound (Fig. 5.b). This result is justified by
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Figure 4: The declarations of maximum participation of each cluster li plot-
ted against the round number in the homogeneous case of two clusters (a)
and of ten clusters (b). α = β = 2, λ = 0.2, li values for individual clusters
are depicted by different styles of lines.

the “iterativeness” of the LB algorithm. As clusters with smaller loads are
balanced firstly, they are able to gain from the process, without being flooded
by overloaded cluster’s jobs.

In order to measure the score (computed as in Section 4.2.2), we fixed
the declared level of participation li and performed N = 1000 rounds of the
game without using the li’s adjustment algorithm described in the previous
section.

Firstly, we tested different levels of participation li in order to assess the
quality of the adjustment algorithm. Tables 3 and 4 present the example
results for grids composed of 2 and 10 clusters aggregated in the same way
as in Section 4.2.2 (each row is an average over 1000 runs with the same
settings). In homogeneous cases, all clusters fixed their values of li to the
same value. In heterogeneous cases, the overloaded cluster M1 declared li =
1000, because it almost never receives any load and it is profitable that it
sends as much as possible. The rest of the clusters declared the same li,
shown in the different rows of the table.

In the homogeneous case (Tables 3), we can see that, indeed the maximum
participation leads to best performance, although the score achieved is similar
as for li = 4. What is, however, important, is that for lower participation
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Figure 5: The declarations of maximum participation of each cluster li plot-
ted against the round number in the heterogeneous case of two clusters (a)
and of ten clusters (b). For M1, plotted in thick, black line, α1 = β1 = 3,
whereas for the other clusters α = β = 2. li values for individual clusters are
depicted by different styles of lines. λ = 0.2

Table 3: Mean score and standard deviation achieved by individual clus-
ters in 1000 rounds of the BILB in function of different levels of declared
participation li. 2 and 10 clusters with λ = 0.2, α = β = 2.

two clusters ten clusters

li score ± std dev ± score ± std dev ±

1 0.125 0.006 0.123 0.014 0.076 0.006 0.055 0.006
2 0.258 0.003 0.251 0.012 0.261 0.016 0.190 0.016
3 0.387 0.01 0.364 0.001 0.710 0.043 0.515 0.039
4 0.48 0.006 0.467 0.004 1.429 0.072 1.059 0.131
5 0.574 0.006 0.568 0.008 2.148 0.092 1.541 0.153
6 0.587 0.018 0.587 0.021 2.334 0.085 1.701 0.054
7 0.609 0.013 0.642 0.033 2.518 0.124 1.878 0.150
8 0.606 0.017 0.639 0.019 2.661 0.095 1.999 0.174
9 0.608 0.011 0.617 0.007 2.793 0.114 2.095 0.184
10 0.592 0.017 0.648 0.026 2.912 0.083 2.197 0.155
20 0.613 0.007 0.713 0.019 3.116 0.140 2.413 0.195
50 0.623 0.004 0.737 0.031 3.134 0.230 2.372 0.253
100 0.636 0.039 0.774 0.035 3.135 0.153 2.427 0.169
1000 0.628 0.011 0.729 0.006 3.123 0.139 2.393 0.212
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Table 4: Mean score and standard deviation achieved by individual clusters
in 1000 rounds of the BILB in function of different levels of declared partic-
ipation li. Heterogeneous grid, one overloaded cluster M1 has α1 = β1 = 3,
the rest α = β = 2. λ = 0.2. The overloaded cluster’s declared participation
level is fixed to l1 = 1000.

two clusters ten clusters

typical overloaded typical overloaded
li score std dev score std dev score ± std dev ± score std dev

1 0.003 0.017 0.034 0.022 0.079 0.006 0.057 0.006 0.003 0.004
2 -0.005 0.047 0.074 0.046 0.267 0.014 0.196 0.021 0.019 0.017
3 -0.03 0.058 0.12 0.078 0.687 0.033 0.510 0.050 0.097 0.069
4 -0.062 0.062 0.152 0.106 1.290 0.055 0.946 0.084 0.382 0.251
5 -0.098 0.081 0.185 0.146 1.807 0.058 1.343 0.098 1.116 0.855
6 -0.138 0.101 0.194 0.144 1.748 0.069 1.370 0.152 1.921 1.737
7 -0.167 0.116 0.192 0.141 1.696 0.066 1.375 0.098 3.086 2.823
8 -0.202 0.128 0.195 0.133 1.605 0.049 1.363 0.088 4.201 3.845
9 -0.233 0.152 0.202 0.159 1.545 0.086 1.315 0.128 5.664 5.116
10 -0.278 0.167 0.203 0.149 1.448 0.071 1.290 0.108 6.651 5.938
20 -0.661 0.353 0.232 0.166 0.887 0.059 1.181 0.081 13.635 10.712
50 -1.822 0.903 0.316 0.189 0.607 0.026 1.226 0.126 20.841 10.551
100 -3.753 2.005 0.501 0.272 0.591 0.057 1.226 0.089 21.845 9.602
1000 -7.054 3.641 0.949 0.253 0.609 0.104 1.229 0.161 22.018 9.423

levels, the standard deviation is also lower, which means a smaller risk for
the individual clusters.

In the heterogeneous case (Table 4) with two clusters, the minimum par-
ticipation of the least loaded cluster, which was proposed by the adjustment
algorithm, indeed leads to the best performance of this cluster. Nevertheless,
in heterogeneous grid composed of 10 clusters, less loaded clusters achieve
better performance for li = 5, than for li = 1000, proposed by the adjust-
ment algorithm. It should be noted that, with λ = 0.2, 5 is the average
time between two jobs are released. If the cluster accepts a foreign load
which extends its queue length to 5, in average half of the local jobs will
be delayed. We conclude that the adjustment algorithm is too straightfor-
ward, thus the clusters should use more sophisticated techniques for learning
their optimal participation level, similar to ones used in other games with
incomplete information, such as [31] or genetic algorithms [28].

In order to compare scores achieved by clusters under BILB with the
simple algorithm (Table 2), we set li values which maximized the average
score in Table 4. The results are shown in Table 5. We see that, firstly,
BILB provides better results in the homogeneous setting, and secondly, it
allows positive gains for all the clusters even when one of the clusters is
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Table 5: Mean score and standard deviation achieved by individual clusters
in 1000 rounds of the BILB. λ = 0.2. In heterogeneous configurations, the
overloaded cluster declared l1 = 1000.

score / standard deviation
no. of clusters parameters typical overloaded

homogeneous configuration

2 α = β = 2.0, l = 1000 0.65 ± 0.00 / 0.73 ± 0.010
5 α = β = 2.0, l = 1000 2.00 ± 0.10 / 1.72 ± 0.14
10 α = β = 2.0, l = 1000 3.15 ± 0.17 / 2.45 ± 0.22
30 α = β = 2.0, l = 1000 4.56 ± 0.30 / 3.36 ± 0.24
2 α = β = 1.0, l = 1000 0.64 ± 0.02 / 0.79 ± 0.01
5 α = β = 1.0, l = 1000 1.65 ± 0.07 / 1.64 ± 0.12
10 α = β = 1.0, l = 1000 3.15 ± 0.01 / 2.41 ± 0.14
30 α = β = 1.0, l = 1000 4.55 ± 0.40 / 3.32 ± 0.60

heterogeneous configuration, α1 = β1 = 3
2 α = β = 2.0, l = 1 0.03 ± 0.02 / 0.00 ± 0.00 0.02 / 0.00
5 α = β = 2.0, l = 3 0.11 ± 0.07 / 0.56 ± 0.02 0.44 / 0.03
10 α = β = 2.0, l = 5 1.12 ± 0.82 / 1.80 ± 0.10 1.33 / 0.15
30 α = β = 2.0, l = 10 29.77 ± 8.73 / 3.40 ± 0.15 2.52 / 0.23
2 α = β = 1.0, l = 1 0.18 ± 0.05 / 0.00 ± 0.00 0.00 / 0.00
5 α = β = 1.0, l = 3 1.90 ± 1.14 / 0.14 ± 0.00 0.07 / 0.00
10 α = β = 1.0, l = 5 8.75 ± 4.55 / 0.21 ± 0.01 0.10 / 0.00
30 α = β = 1.0, l = 10 40.36 ± 10.87 / 0.31 ± 0.02 0.12 / 0.03

overloaded. BILB is especially profitable in heterogeneous configurations
with many clusters.

7 Discussion

The proposed solutions are simple, yet distributed systems applying them
manage to avoid some common pitfalls. Firstly, every job submitted to the
system has guaranteed completion time. This is a clear advantage over the
best-effort mode used commonly for grid jobs.

Typical free-riding is impossible. By participating in the coalition, clus-
ters will share their resources, as long as they are underloaded. If the cluster
is heavily loaded, it does not impede others from LB, it just uses the resources
which are free after the less loaded clusters have balanced their load.

There are several ways in which clusters can attempt to cheat the algo-
rithm in order to obtain better gain. Firstly, cluster can delay the execution
of foreign load. However, other clusters can immediately detect such behav-
ior, because of the guarantees on the completion time. As we have shown,
generally, LB is profitable for each cluster. Therefore, by declaring that such
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delayers will be penalized by temporal or permanent exclusion, community is
able to impose the desired behavior on every cluster. This is a consequence
of folk theorem in repeated games.

Secondly, clusters may be tempted to overstate their queue length in or-
der to reduce, or even suppress the load assigned to them by the algorithm.
However, such behavior may reduce cluster’s performance when the BILB al-
gorithm is used. As the algorithm sorts clusters by increasing queue lengths,
a cluster which declares larger local load can be overtaken by another clus-
ter, which, in turn, can fill the queues of less loaded clusters with its jobs,
leaving no space for the cheater’s jobs. Only the least-loaded cluster will
profit from overstating its actual load. In the general case, this problem is,
unfortunately, similar to the n-player repeated Prisoner’s Dilemma [29]. In
two-player, one-shot Prisoner’s Dilemma (PD in short), each player has two
strategies: Cooperate or Defect. For a player, the payoff when both players
Cooperate is lower than the payoff when the player Defect, leaving the other
one Cooperating. However, the payoff when both players Defect is the lowest.
Although mutual Cooperation is socially-optimal, the Nash equilibrium (the
pair of strategies in which no unilateral deviation is profitable for any player)
is mutual Defection. In our game, a cluster Mi Defects when it declares its
queue length L̃i equal to the declared participation level li (L̃i = li) (higher
declarations are dominated by this action), although the true queue Li is
shorter Li < L̃i. Additionally, other clusters cannot observe the true Li,
and therefore can guess the action undertaken by Mi only by the observed
result of the LB algorithm. We think that, similarly to other real-world PD
occurrences, the only way to prevent such situations is an out-of-game ver-
ification of clusters. Such control can be performed e.g. by sporadic test of
a cluster’s true queue length. Each organization must provide an account,
indistinguishable from other accounts of that organization. Using this ac-
count, an auditor is able to observe the current queue length by submitting
his/her job of a known length.

One of the drawbacks of the proposed solutions is the centralization of the
load balancing algorithm. This, however, should not be a problem in typical
grid systems, composed of tens (rather than thousands) clusters. Recall that
the computational complexity of the algorithm is small (O(n2)). In larger
systems, the load could be balanced in a more distributed fashion, with a
number of instances of BILB running on overlapping fragments of the system.
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8 Concluding Remarks

In this paper, we have proposed a novel method for resource management in
decentralized systems owned by multiple parties. Game-theoretic approach
allowed us to model organizational heterogeneity of grids. We presented a
new cost function, in which the cost of execution depends both on the size of
a job and on the local load. Then, using game-theoretical approach, we have
demonstrated that cooperation in the LB process is profitable, although it
may be hard to achieve when players are myopic. We have overcome this
issue by forcing players to commit to their decisions for longer periods of
time. When clusters were similarly loaded, even a simple queue-averaging
load balancing algorithm was acceptable for all the players. Then we have
proved that if clusters choose their actions according to their current queue
length, cooperation will never occur. Finally, we have addressed the issue of
load heterogeneity by designing Bounded Iterative Load Balancing algorithm
(BILB). BILB delivers more equitable solutions by employing two techniques:
bounding the foreign load assigned for execution on a cluster by limiting the
maximum length of the queue; and load balancing the least-loaded clusters
first, so that they could also gain from the process. The algorithm delivers
better results than the previous algorithm in all configurations considered.
Moreover, it is able to improve performance of also the less-loaded clusters.
Additionally, our system provides basic Quality of Service parameters for
every submitted job, as it is capable of determining the job’s worst-case
finish time in the moment of the submission of the job.

Our future work is twofold. Firstly, we want to further enhance our
algorithm in order to reduce the dispersion of the results observed in the
experiments. Secondly, we would like to port this solution to real-world
grids, by adding the implementation of our algorithm to CiGri software.
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