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a b s t r a c t

Two heuristics for the 0–1 multidimensional knapsack problem (MKP) are presented. The first one uses
surrogate relaxation, and the relaxed problem is solved via a modified dynamic-programming algorithm.
The heuristics provides a feasible solution for (MKP). The second one combines a limited-branch-and-cut-
procedure with the previous approach, and tries to improve the bound obtained by exploring some nodes
that have been rejected by the modified dynamic-programming algorithm. Computational experiences
show that our approaches give better results than the existing heuristics, and thus permit one to obtain
a smaller gap between the solution provided and an optimal solution.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The NP-hard multidimensional knapsack problem (MKP) (see
[10,13,20]) arises in several practical problems such as capital bud-
geting, cargo loading, cutting stock problem and processors alloca-
tion in huge distributed systems. It can be defined as

ðMKPÞ

max
P
j2N

pj � xj;

subject to
P
j2N

wi;j � xj 6 ci; 8i 2 M;

xj 2 f0;1g; 8j 2 N;

8>>><>>>: ð1Þ

where

– N ¼ f1;2; . . . ;ng and M ¼ f1;2; . . . ;mg,
– n is the number of items,
– m is the number of constraints,
– pj P 0 is the profit of the jth item,
– wi;j P 0, for i 2 M, are the weights of the jth item,
– and ci P 0, for i 2 M, are the capacities of the knapsack.

In the sequel, we shall use the following notation: given a prob-
lem ðPÞ, its optimal value will be denoted by vðPÞ.

To avoid any trivial solution, we assume that

– 8j 2 N and 8i 2 M, wi;j 6 ci.
– 8i 2 M,

Pn
j¼1wi;j > ci.

A specific case of (MKP) is the classical knapsack problem with
m = 1. The unique knapsack problem (UKP) has been given consid-
erable attention in the literature though it is not, in fact, as difficult
as (MKP), more precisely, it can be solved in a pseudo-polynomial
time (see [2,3,6,11,12]). We have then tried to transform the origi-
nal (MKP) into a (UKP) (see also [15,17]). In this purpose, we have
used a relaxation technique, that is to say, surrogate relaxation.
The surrogate relaxation of (MKP) can be defined as follows:

ðSðuÞÞ

max
P
j2N

pj � xj;

subject to
P
i2M

ui �
P
j2N

wi;j � xj 6
P
i2M

ui � ci;

xj 2 f0;1g; 8j 2 N;

8>>><>>>: ð2Þ

where uT ¼ ðu1; . . . ;umÞP 0.
Since ðSðuÞÞ is a relaxation of (MKP), we have vðSðuÞÞP vðMKPÞ,

and the optimal multiplier vector, u�, is defined as

vðSðu�ÞÞ ¼min
uP0
fvðSðuÞÞg: ð3Þ

Several heuristics have been proposed in order to find out good
surrogate multipliers (see in particular [14,15,17]). In practice, it is
not important to obtain the optimal multiplier vector, since in the
general case we have no guarantee that vðSðu�ÞÞ ¼ vðMKPÞ. Solving
ðSðuÞÞwill give an upper bound of (MKP). In the sequel, we propose
efficient algorithms based on dynamic-programming in order to
find a good lower bound of (MKP) by solving ðSðuÞÞ.

The basic algorithmic scheme can be presented as follow:
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We have studied first a heuristics based on dynamic-programming
and surrogate relaxation of (MKP). We remarked that some of the
states eliminated by the heuristics could be further explored in order
to improve the bound. Thus, we designed a new heuristics which is
based on a limited-branch-and-cut-procedure and that is added to first
heuristics. In this last case, the following 2 phases can be considered:

– Phase 1: Surrogate relaxation + Hybrid-dynamic-program-
ming.
– Phase 2: Limited-branch-and-cut.

The sole Phase 1 and the combination of the two phases repre-
sent the two heuristics proposed in this article. The first phase pro-
vides a lower bound of (MKP) and a list of states that will be
treated in the second phase in order to improve the bound.

Solutions obtained with the above heuristics are compared with
results given by heuristics from the literature such as:

– AGNES of Freville and Plateau [7].
– ADP-based heuristics approach of Bertsimas and Demir [8].
– Simple Multistage Algorithm (SMA) of Hanafi, Freville and El
Abdellaoui [9].

Note that AGNES combines different greedy methods based on
surrogate relaxation and the solutions provided are improved by
a neighborhood search (a neighborhood is defined around a solu-
tion and is explored to find out a better solution). The ADP-based
heuristics uses a diversification method, a taboo algorithm, com-
pleted too by a neighborhood search. The Simple Multistage Algo-
rithm is an approximate dynamic-programming approach.

The first phase of our method can be seen as a diversification
method which provides a family of feasible solutions for (MKP),
and we try to improve the bound by exploring the neighborhood
of these solutions with the second phase. This approach allows
us to make a real cooperation between the two phases.

In the sequel, each steps of our algorithm is described.
The paper is organized as follows. In Section 2, we present the

hybrid-dynamic-programming algorithm (HDP) and in Section 3
a cooperative method: the so-called limited-branch-and-cut meth-
od (LBC). Finally, in Section 4, we provide and analyze some com-
putational results obtained with different instances from the
literature and randomly generated instances. Our heuristics are
also compared with other existing heuristics.

2. The surrogate relaxation

Solving (3) is not easy. As mentioned above, many heuristics ex-
ist and provide good approximations of u�. A reasonable estimation
can be calculated by dropping the integer restrictions in x. In other
words, let

ðLSðuÞÞ

max
P
j2N

pj � xj;

subject to
P
i2M

ui
P
j2N

wi;j � xj 6
P
i2M

ui � ci;

xj 2 ½1�; 8j 2 N:

8>>><>>>: ð4Þ

The best surrogate constraint is then generated by u0, where

vðLSðu0ÞÞ ¼ min
uP0

vðLSðuÞÞ: ð5Þ

In order to calculate the best surrogate constraint we consider
the linear programing ðLPÞ corresponding to (MKP)

ðLPÞ

max
P
j2N

pj � xj;

subject to
P
j2N

wi;j � xj 6 ci; 8i 2 M;

xj 2 ½0;1�; 8j 2 N:

8>>><>>>: ð6Þ

We denote by k0 ¼ ðk0
1; k

0
2; . . . ; k0

mÞP 0 the dual optimal vari-
ables corresponding to the constraintsX
j2N

wi;j � xj 6 ci; i 2 M: ð7Þ

We are now ready to show how to calculate the best surrogate
constraint using the definition (5).

Theorem 1 (see [16, p. 132]). The best surrogate constraint is
generated by u0 ¼ k0.

Then we have the following order relation (see [15,16, p. 130]
and [18]):

vðLPÞ ¼ vðLSðu0ÞÞP vðSðu�ÞÞP vðMKPÞ: ð8Þ

Table 1 gives the bounds obtained with the surrogate relaxation
for a set of instances from the literature.

3. Hybrid-dynamic-programming (HDP)

For simplicity of presentation, we will denote in the sequelP
i2M

ui:wi;j by wj and
P
i2M

ui � ci by c. Then we have

ðSðuÞÞ

max
P
j2N

pj � xj;

subject to
P
j2N

wj � xj 6 c;

xj 2 f0;1g; 8j 2 N:

8>>><>>>: ð9Þ

We apply the dynamic-programming list algorithm to ðSðu0ÞÞ
and we keep only the feasible solutions of (MKP). At each step,
we update a list which is defined as follows:

For k 2 N; Lk ¼ ðw; pÞjw ¼
Xk

j¼1

wj � xj 6 c; p ¼
Xk

j¼1

pj � xj

( )
ð10Þ

The use of the concept of dominated states can permit one to re-
duce drastically the size of lists Lk since dominated states, accord-
ing to Bellman’s optimality principle, can be eliminated from the
list:

Dominated state: Let ðw; pÞ be a couple of weight and profit, i.e.
a state of the problem. If 9ðw0; p0Þ such that w0 6 w and p0 P p, then
ðw; pÞ is dominated by ðw0; p0Þ.

Note that dominated states must be saved in a secondary list
denoted by Lsec since they can nevertheless give rise to an optimal
solution of (MKP).

3.1. Dynamic-programming algorithm (DP)

List of states Lkþ1 are generated recursively by the dynamic-
programming list algorithm (see [5] for more details and some
examples). At stage kþ 1 the list Lkþ1 is constructed as follows:

The set of new states generated at stage kþ 1 is given by

L0
kþ1 ¼Lk � ðwkþ1; pkþ1Þ
¼fðwþwkþ1; pþ pkþ1Þjðw; pÞ 2Lk and wþwkþ1 6 cg;
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and we have: Lkþ1 :¼Lk [L0
kþ1 �Dkþ1, where Dkþ1, the set of

dominated pairs at stage kþ 1, is defined as follow:

Dkþ1 ¼ fðw;pÞjðw;pÞ 2Lk [L0
kþ1 and 9ðw0;p0Þ 2Lk [L0

kþ1 with
w0 6 w; p 6 p0 and ðw0;p0Þ–ðw;pÞg:

Initially, we have L0 ¼ fð0;0Þg.
Let ðw; pÞ be a state generated at stage k, we define the subprob-

lem associated with ðw; pÞ by

ðSðuÞÞðw;pÞ

max
Pn

j¼kþ1
pj � xj þ p;

subject to
Pn

j¼kþ1
wj � xj 6 c �w;

xj 2 f0;1g; j 2 fkþ 1; . . . ;ng:

8>>>>>><>>>>>>:
ð11Þ

An upper bound, �vðw;pÞ, of the above problem, is obtained by
solving the linear relaxation of ðSðuÞÞðw;pÞ, i.e. ðLSðuÞÞðw;pÞ, with the
Martello and Toth algorithm (see [4]) and a lower bound, vðw;pÞ, is
obtained with a greedy algorithm on ðSðuÞÞðw;pÞ.

In a list, all the states are sorted by their decreasing upper
bound. As mentioned above, our algorithm consists in applying dy-
namic-programming (DP) to solve Sðu0Þ. At each stage of DP, the
following points are checked when a new state ðw; pÞ is generated:

– Is the state feasible for (MKP) (this will permit one to elimi-
nate the unfeasible solutions)? Then, we try to improve the
lower bound of (MKP), vðMKPÞ, with the value of p.
– Is the state dominated? In this case the state is saved in the
secondary list Lsec.
– Is the upper bound associated with the state ðw; pÞ smaller
than the current lower bound of Sðu0Þ? Then the state is saved
too in the secondary list Lsec.

For each state ðw; pÞ which has not been eliminated or saved in
the secondary list after these tests, we try to improve the lower
bound of ðSðu0ÞÞ, i.e. vðSðu0ÞÞ, by computing a lower bound of the
state with a greedy algorithm.

DP algorithm is described below:

Dynamic-programming algorithm (DP):
Initialisation:

L0 ¼ fð0; 0Þg, Lsec ¼ ;
vðSðu0ÞÞ ¼ vðMKPÞ (where vðMKPÞ is a lower bound of (MKP)
given by a greedy algorithm).

Computing the lists:
For j := 1 to n

L0
j :¼Lj�1 � ðwj; pjÞ

Remove all states ðw; pÞ 2L0
j that are unfeasible for

(MKP)
Lj :¼MergeListsðLj�1;L

0
jÞ

For each state ðw; pÞ 2Lj Compute �vðw;pÞ and vðw;pÞ
Updating the bounds:

pmax :¼ maxfpjðw; pÞ 2Ljg and vmax :¼ maxfvðw;pÞj
ðw; pÞ 2Ljg
vðMKPÞ :¼ maxfvðMKPÞ; pmaxg
vðSðu0ÞÞ :¼ maxfvðSðu0ÞÞ; vmaxg

Updating Lsec:
Dj ¼ fðw; pÞjðw; pÞ is dominated or �vðw;pÞ 6 vðSðu0ÞÞg
Lsec :¼Lsec [Dj and Lj :¼Lj �Dj

End for.
In the end of the algorithm, we obtain a lower bound of (MKP).

In order to improve the lower bound and the efficiency of DP algo-
rithm, we add to the algorithm a reducing-variable procedure,
which is defined as follow:

Reducing-variables rule 1: Let v be a lower bound of (MKP)
and v0

j , v1
j , respectively, be the upper bounds of (MKP) with

xj ¼ 0, xj ¼ 1, respectively. If v > vk
j with k ¼ 0 or 1, then we can

definitively fix xj ¼ 1� k.
These upper bounds are obtained with the Martello and Toth

algorithm on ðSðu0ÞÞ. We use this reducing-variables rule whenever
we improve vðMKPÞduring the dynamic-programming phase. When
a variable is fixed, we have to update all the states of the active list
and to eliminate all the states which do not match the fixed variables
or are unfeasible. The results of DP are presented in Table 2.

3.2. Improvement of the lower bound (ILB)

We present now a procedure that allows us to improve signifi-
cantly the lower bound given by DP algorithm. More precisely, we
try to obtain better lower bounds for the states saved in the sec-
ondary list. Before calculating these bounds, we eliminate all the
states that have become unfeasible or which are uncompatible
with the variables that have been yet reduced or that have an
upper bound smaller than the current lower bound of (MKP), i.e.
vðMKPÞ.

For a state ðw; pÞ, let J be the index set of free variables and
I ¼ N � J the set of fixed variables. If the states have been generated
at the kth stage of DP Algorithm, J ¼ fkþ 1; . . . ;ng, w ¼

Pj¼1
k wj � xj

and p ¼
Pk

j¼1pj � xj, where xj, j 2 I denote here the values of the
component of vector x which have been already compute during
the k first step of the dynamic-programming list method. Then
we define the new subproblem:

Table 1
Surrogate relaxation on some instances from the literature

Name of the instance n�m vðMKPÞ vðLPÞ vðLSðu0ÞÞ vðSðu0ÞÞ

Petersen 1 6� 10 3800 4134.07 4134.07 3800
Petersen 2 10� 10 87,061 92,977.70 92,977.70 91,779
Petersen 3 15� 10 4015 4127.89 4127.89 4105
Petersen 4 20� 10 6120 6155.33 6155.33 6120
Petersen 5 28� 10 12,400 12,462.10 12462.10 12,440
Petersen 6 39� 5 10,618 10,672.35 10,672.35 10,662
Petersen 7 50� 5 16,537 16,612.82 16,612.82 16,599
Hansen and Plateau 1 28� 4 3418 3472.35 3472.35 3462
Hansen and Plateau 2 35� 4 3186 3261.82 3261.82 3248
Weingartner 1 28� 2 141,278 14,2019.00 142,019.00 141,548
Weingartner 2 28� 2 130,083 13,1637.47 131,637.47 130,883
Weingartner 3 28� 2 95,677 99,647.08 99,647.08 97,906
Weingartner 4 28� 2 119,337 122,505.25 122,505.25 121,087
Weingartner 5 28� 2 98,796 100,433.16 100,433.16 98,796
Weingartner 6 28� 2 130,623 131,335.00 131,335.00 130,733
Weingartner 7 105� 2 1,095,445 1,095,721.25 1,095,721.25 1,095,591
Weingartner 8 105� 2 624,319 628,773.69 628,773.69 627,976

660 V. Boyer et al. / European Journal of Operational Research 199 (2009) 658–664
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ðMKPÞðw;pÞ

max
P
j2J

pj � xj þ p;

subject to
P
j2J

wi;j � xj 6 �ci; 8i 2 M;

xj 2 f0;1g; 8j 2 J;

8>>><>>>: ð12Þ

where �ci ¼ ci �
P

j2Iwi;j � xj, 8i 2 M.
Two methods are used in order to evaluate the lower bound of

the above problem:

– A greedy algorithm.
– An enumerative method when the number n0 ¼ n� k of vari-
ables of the subproblem is sufficiently small (given by the
parameter a: n0 6 a).

When all the states have been treated the process stops. The de-
tail of the algorithm is given in what follows:

Procedure ILB:

Assign to vðMKPÞ the value of the lower bound returned by DP
algorithm.
For each state ðw; pÞ 2Lsec

Compute vðw;pÞ a lower bound of ðMKPÞðw;pÞ
Endfor.

vmax :¼maxfvðw;pÞjðw; pÞ 2Lsecg:
vðMKPÞ :¼maxfvðMKPÞ; vmaxg:

The improvement given by ILB (with low cost in term of pro-
cessing time) can be clearly seen from the comparison of Tables
2 and 3. Empirically, the value a ¼ 10 has given the better results.

4. Limited-branch-and-cut (LBC)

In this section we present the last part of our algorithm, it per-
mits one to improve the lower bound provided by the (ILB) proce-
dure. As mentioned above, the states in the secondary list Lsec can
give rise to better results for (MKP). We propose an algorithm
based on a branch-and-cut method in order to explore a neighbor-
hood of the states in Lsec.

4.1. Classic branch-and-cut

Let ðw; pÞ be the first state of Lsec (the states are sorted accord-
ing to their decreasing upper bounds).

An upper bound of ðMKPÞðw;pÞ, �vðw;pÞ, is obtained by solving
its linear relaxation, using a simplex algorithm, and a
lower bound, vðw;pÞ, is obtained with a greedy algorithm on
ðMKPÞðw;pÞ.

We propose the following branching strategy:
Branching rule: Let ðw; pÞ be a state of the problem (MKP), J the

index of the free variables and fXJ ¼ fexj jj 2 Jg an optimal solution of
the linear relaxation of ðMKPÞðw;pÞ. Then the branching variable xk,
k 2 J, is such that k ¼ arg minj2Jfjexj � 0:5jg.

Whenever we evaluate an upper bound, we use the following
reducing-variable method:

Reducing-variables rule 2 (see [19]): Let v be a lower bound of
(MKP). Let ev be the optimal bound and eX ¼ fexj jj 2 Ng an optimal
solution of the linear relaxation of (MKP). Then we denote byeP ¼ f epj jj 2 Ng, the reduced profits. For j 2 N, if exj ¼ 0, exj ¼ 1,
respectively, and ev � jepjj 6 v, then there exists an optimal solution
for (MKP) with xj ¼ 0, xj ¼ 1, respectively.

This last rule permits one to reduce significantly the processing
time by reducing the number of states to explore.

4.2. Limited-branch-and-cut (LBC)

We propose a method, based on the branch-and-cut
technique described above, to explore quickly the states
saved in the secondary list. Indeed, at each step of the algo-
rithm, we enforce the value of the variables in order to limit
the processing time. We use the following heuristics to fix
variables:

Reducing-variables rule 3: Let ~v be the optimal bound andeX ¼ fexj jj 2 Ng an optimal solution of the linear relaxation of
(MKP). For j 2 N, if ~xj ¼ 0, ~xj ¼ 1, respectively, then xj is fixed to
0, 1, respectively.

In order to limit the exploration, we consider only 50% of the
secondary list, that is to say, we decide to consider only half the
states in Lsec with the best upper bounds.

Procedure LBC:

Assign to vðMKPÞ the value of the lower bound returned by ILB
algorithm.
While Lsec–;

Let ðw; pÞ be the first state in Lsec

Lsec :¼Lsec � ðw; pÞ
Compute �vðw;pÞ an upper bound of ðMKPÞðw;pÞ
If �vðw;pÞ > vðMKPÞ

Fix variables according to reducing-variables rule 3 and
update p
Compute vðw;pÞ a lower bound of ðMKPÞðw;pÞ
If vðw;pÞ > vðMKPÞ then vðMKPÞ :¼ vðw;pÞ Endif
Chose the branching variable and branch on it
Insert the two resulting states in Lsec if they are feasible

Endif
Endwhile.

Table 2
Lower bounds given by DP

Name of the instance n�m vðMKPÞ vðMKPÞ Gap (%)

Petersen 1 6� 10 3800 3700 2.63
Petersen 2 10� 10 87,061 83,369 4.24
Petersen 3 15� 10 4015 3245 19.18
Petersen 4 20� 10 6120 6010 1.80
Petersen 5 28� 10 12,400 11,930 3.79
Petersen 6 39� 5 10,618 10,313 2.87
Petersen 7 50� 5 16,537 16,449 0.53
Hansen and Plateau 1 28� 4 3418 3347 2.08
Hansen and Plateau 2 35� 4 3186 3098 2.76
Weingartner 1 28� 2 141,278 140,477 0.57
Weingartner 2 28� 2 130,083 130,723 0.12
Weingartner 3 28� 2 95,677 95,627 0.05
Weingartner 4 28� 2 119,337 104,799 12.18
Weingartner 5 28� 2 98,796 98,796 0.00
Weingartner 6 28� 2 130,623 130,233 0.30
Weingartner 7 105� 2 1,095,445 1,094,757 0.06
Weingartner 8 105� 2 624,319 619,101 0.84

Table 3
Lower bounds with ILB, a ¼ 10

Name of the instance n�m vðMKPÞ vðMKPÞ Gap (%)

Petersen 1 6� 10 3800 3800 0.00
Petersen 2 10� 10 87,061 87,061 0.00
Petersen 3 15� 10 4015 4015 0.00
Petersen 4 20� 10 6120 6120 0.00
Petersen 5 28� 10 12,400 12,400 0.00
Petersen 6 39� 5 10,618 10,618 0.00
Petersen 7 50� 5 16,537 16,508 0.18
Hansen and Plateau 1 28� 4 3418 3418 0.00
Hansen and Plateau 2 35� 4 3186 3148 1.19
Weingartner 1 28� 2 141,278 141,278 0.00
Weingartner 2 28� 2 130,083 130,083 0.00
Weingartner 3 28� 2 95,677 95,677 0.00
Weingartner 4 28� 2 119,337 119,337 0.00
Weingartner 5 28� 2 98,796 98,796 0.00
Weingartner 6 28� 2 130,623 130,623 0.00
Weingartner 7 105� 2 1,095,445 1,095,445 0.00
Weingartner 8 105� 2 624,319 624,319 0.00
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5. Computational experiences

Our heuristics were programmed in C and compiled with GNU’s
GCC. Computational experiences were carried out using an Intel
Pentium M Processor 725. We compare our heuristics to the fol-
lowing heuristics of the literature:

– AGNES of Freville and Plateau [7].
– ADP-based heuristic approach of Bertsimas and Demir [8].
– Simple Multistage Algorithm (SMA) of Hanafi, Freville and El
Abdellaoui [9].

Our tests were made on the following instances:

– small instances from the literature of Petersen, Weingartner,
Hansen and Plateau, Freville and Plateau, Fleisher and Sent ([1]).
– Large instances from the literature of Chu and Beasley ([1]).
– Randomly generated instances:

ðMKPÞ

max
P
j2N

pj � xj;

subject to
P
j2N

wi;j � xj 6 �:
P
j2N

wi;j; 8i 2 M;

xj 2 f0;1g; 8j 2 N;

8>>><>>>: ð13Þ

where N ¼ f1;2; . . . ; ng, M ¼ f1;2; . . . ; � n2 ½g, pj 2 ½0;1000� for all
j 2 N, wi;j 2 ½0;1000�, for all i 2 M, j 2 N and � 2�0;1½.

Note that, for the instances randomly generated and from Chu
and Beasley, the bounds provided by the heuristics are compared
with the optimal solution of the corresponding linear relaxation
(see (6)).

5.1. HDP heuristics

5.1.1. Instances from the literature
From Tables 4 and 5, we note that the lower bound given by

HDP is better than the others. It is difficult to compare processing
time with the small instances since it takes less than 1 second to
solve all at once. In Table 5, we could remark that for the seven first

sets we have a competiting processing time compared with other
heuristics.

Table 4
Small instances from the literature

Name of the instance Number of instances Average gap to optimality (%)

HDP SMA ADP AGNES

Petersen 7 0.02 8.24 1.62 1.05
Hansen and Plateau 2 0.45 8.34 7.28 1.44
Weingartner 8 0.01 4.67 4.05 3.37
Freville and Plateau 6 0.44 12.85 6.86 1.91
Fleisher 1 0.00 12.16 0.00 3.60
Sent 2 0.00 1.65 0.35 0.20

Table 5
Large instances from the literature

Name of the instance Number of instances Size n�m Average gap (%) Average processing time (s)

HDP SMA ADP AGNES HDP SMA ADP AGNES

Chu and Beasley 1 30 100� 5 0.69 2.68 1.72 0.88 <0.001 0.03 0.03 <0.001
Chu and Beasley 2 30 250� 5 0.22 1.17 0.58 0.29 0.10 0.57 0.07 <0.001
Chu and Beasley 3 30 500� 5 0.08 0.59 0.26 0.12 0.53 4.57 0.30 0.10
Chu and Beasley 4 30 100� 10 1.22 3.60 1.97 1.54 0.03 0.03 0.03 <0.001
Chu and Beasley 5 30 250� 10 0.46 1.60 0.76 0.57 0.17 0.70 0.10 0.03
Chu and Beasley 6 30 500� 10 0.21 0.80 0.38 0.26 0.83 5.70 0.43 0.13
Chu and Beasley 7 30 100� 30 2.04 5.13 2.70 3.22 1.67 0.10 0.07 0.03
Chu and Beasley 8 30 250� 30 0.89 2.60 1.18 1.41 9.87 1.40 0.37 0.10
Chu and Beasley 9 30 500� 30 0.48 1.45 0.58 0.72 26.37 11.93 1.20 0.30

Fig. 1. Average performances with � ¼ 0:5.

Fig. 2. Average performances with � ¼ 0:9.
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5.1.2. Randomly generated instances
We have compared processing time in function of the number n

of variables of (MKP) and �. For a given number n of variables we
have generated randomly 25 instances in order to compute aver-
age performance of our heuristics.

The average performance is represented in Figs. 1 and 2, respec-
tively for � ¼ 0:5 and � ¼ 0:9. Computational experiences show that
we have obtained better bounds than other heuristics, but with
� ¼ 0:5, processing time tends to be important. That is not surpris-
ing as HDP is constructed with a dynamic-programming algorithm.

5.2. HDP + LBC heuristic

Adding LBC procedure leads to greater computing time but per-
mits one to have a better approximation of the optimal bound. In
this section we will compare the bounds provided by HDP + LBC
with those given by HDP alone.

5.2.1. Instances from the literature
Table 6 shows that for the instances of Freville and Plateau, LBC

improves significantly the lower bounds. For the other instances, as
the bound provided by HDP is very close to the optimal one, it is
hard to improve it. Processing time to solve all these instances at
once is about 1 seconds. For the large instances presented in Table
7, HDP + LBC improves in all cases the bound provided by HDP.
Note that, in order to limit the processing time, we stop LBC if
the time spend in this procedure exceeds the one of HDP.

5.2.2. Randomly generated instances
According to the results presented in Figs. 3 and 4, we can see

that the improvement of the lower bounds is better for instances
with a small capacity. Then, when � is close to 0.9, we cannot use
LBC procedure, but sometimes it permits one to reduce the gap
with the optimal solution. As the bound provided by HDP is close
to the optimal one, it is not easy to improve it, then, in some cases,
the LBC procedure could not give a better approximation. Although
processing time seems to be important, we have on average 3
times less time than an exact method with a good approximation
of the optimal solution.

Table 6
Small instances from the literature

Name of the instance Number of instances Average gap to optimality (%)

HDP HDP + LBC

Petersen 7 0.02 0.02
Hansen and Plateau 2 0.45 0.45
Weingartner 8 0.01 0.00
Freville and Plateau 6 0.44 0.20
Fleisher 1 0.00 0.00
Sent 2 0.00 0.00

Table 7
Large instances from the literature

Name of the instance Number of instances Size n�m Average gap (%) Average processing time (s)

HDP HDP + LBC HDP HDP + LBC

Chu and Beasley 1 30 100� 5 0.69 0.57 <0.001 0.60
Chu and Beasley 2 30 250� 5 0.22 0.16 0.10 1.00
Chu and Beasley 3 30 500� 5 0.08 0.07 0.53 1.13
Chu and Beasley 4 30 100� 10 1.22 0.95 0.03 1.00
Chu and Beasley 5 30 250� 10 0.46 0.32 0.17 0.97
Chu and Beasley 6 30 500� 10 0.21 0.16 0.83 4.03
Chu and Beasley 7 30 100� 30 2.04 1.81 1.67 3.97
Chu and Beasley 8 30 250� 30 0.89 0.77 9.87 21.20
Chu and Beasley 9 30 500� 30 0.48 0.42 26.37 93.37

Fig. 3. Average performances with � ¼ 0:5.

Fig. 4. Average performances with � ¼ 0:9.
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6. Conclusion

The main idea of HDP is to obtain a processing time similar to
the one of dynamic-programming algorithm applied to a classical
(UKP) while having good performance in terms of gap. Removing
the improvement procedure could sometimes diminish the pro-
cessing time by two but deteriorates significantly the lower bound.
Nevertheless HDP seems to be a good heuristics as it gives a better
solution than the existing ones with a quite good processing time.

Using a procedure like LBC improves the lower bound obtained
by HDP with a smaller computing time than an exact method.
Computing results with instances from the literature show that
we increase the occurrence of obtaining the optimal solution from
76% up to 84%. Then using HDP + LBC permits one to have a good
approximation of the optimal bound.

A work on the robustness of the algorithm has to be done, by
studying a good preprocessing procedure for example in order to
reduce the processing time.
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