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Abstract

We consider a generalized one-dimensional bin packing model in which the cost of a bin is a

nondecreasing concave function of the utilization of the bin. We show that for any given positive

constant ε, there exists a polynomial-time approximation algorithm with an asymptotic worst-case

performance ratio of no more than 1 + ε.
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1 Introduction

We consider a generalized one-dimensional bin packing problem where the objective is to minimize

a concave cost function of the bin utilization. The problem can be defined as follows: Given a list of

n items L = (a1, a2, . . . , an), where each item has size ai ∈ (0, 1], our goal is to pack these items into

unit-capacity bins so as to minimize the total cost. The cost of each bin, f(x), is a nondecreasing

concave function of the total size x of the items assigned to that bin, where f(0) = 0. Our objective

is to minimize the total cost of all the nonempty bins in the packing. We assume that a1, a2, . . . , an

are rational numbers. This problem has applications in packing of goods for mixed truckload and

less-than-truckload services, and in production scheduling with learning effects [8].

Li and Chen [8] have considered four heuristics for this problem: First Fit (FF), Best Fit (BF),

First Fit Decreasing (FFD), and Best Fit Decreasing (BFD). They show that FF and BF obey an

absolute worst-case bound of 2, while FFD and BFD obey an absolute worst-case bound of 1.5. Both

bounds are the best possible. In addition, they conduct some computational experiments to test the

performance of these heuristics. Their results show that FFD and BFD perform much better than

FF and BF, BF performs slightly better than FF, while FFD and BFD perform almost identically.

In this note, we consider the asymptotic worst-case performance ratio, rather than the absolute

worst-case performance ratio. We show that for any ε > 0, there exists a polynomial-time algorithm

Aε with an asymptotic worst-case performance ratio of 1 + ε, that is, Z(Aε) ≤ (1+ ε)Z∗ + Kε, where

Z(Aε) is the total cost of the solution generated by the algorithm, Z∗ is the total cost of the optimal

solution, and Kε is a constant depending only on ε.

Our problem is a generalization of the classical bin packing problem. The classical bin packing

problem has been studied extensively; see, for example, the survey paper by Coffman et al. [2] as well

as the more recent developments in [1, 3, 6, 9]. Fernandez de la Vega and Lueker [4] have shown that

classical bin packing can be solved asymptotically within 1 + ε in linear time. As we shall see later,

our result is an adaptation of the framework of Fernandez de la Vega and Lueker’s approximation
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scheme, but with a new bin assignment method and a new lower bound on the optimal solution

value.

2 The Main Result

We first state an important property of the concave-cost bin packing problem.

Property 1 (i) f(x+∆)+f(y−∆) ≤ f(x)+f(y), for any ∆ > 0 and any x, y such that x ≥ y ≥ 0.

(ii) Z∗ ≥
∑n

i=1 ai ·f(1).

Proof: See Lemmas 1 and 2 of [8].

Note that Property 1(i) can be interpreted as follows: Suppose Bin 1 currently has a fill-level

of x and Bin 2 currently has a fill-level of y, where x ≥ y. Then, increasing the fill-level of Bin 1

while simultaneously decreasing the fill-level of Bin 2 by the same amount will not increase the total

cost of the solution. This implies the following: Suppose we need to add a new item to the existing

packing. Then, it is optimal to assign it to the bin with the highest fill-level (among those bins into

which it will fit).

For any given list Λ, let S(Λ) denote the total size of all the items in the list. Let ε > 0 be a given

constant. Let ε1 < min{ε, 1} be a positive constant with the exact value defined later. We divide

the list L into two sublists, namely L1 = (b1, b2, . . . , bn1
) and L2 = (c1, c2, . . . , cn2

), where each item

in L1 has size less than ε1 and each item in L2 has size greater than or equal to ε1. We consider two

cases: “S(L) ≥ n2” and “S(L) < n2.”

We first consider Case 1: S(L) ≥ n2. In this case we first assign the items in L2, with one item

per bin. This will take n2 bins. We then assign the items in L1 in a first-fit manner, that is, we

assign the items according to their indices, and we always assign an item to the first (lowest indexed)

bin into which it will fit. Let α be the number of nonempty bins in the resulting packing. Note

that α ≥ n2. The total cost of this packing, denoted Z(Aε), is at most α·f(1). Furthermore, in this
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packing, every bin, except the last one, has a fill-level of at least 1 − ε1. Thus, the total size of the

items must be at least (α− 1)(1− ε1). By Property 1(ii), Z∗ ≥ (α− 1)(1− ε1)f(1). Therefore, if we

select ε1 in such a way that ε1 ≤ ε/(1 + ε), then

Z(Aε) ≤ (α − 1)f(1) + f(1)

≤
Z∗

1 − ε1
+ f(1)

≤ (1 + ε)Z∗ + f(1).

Next, we consider Case 2: S(L) < n2. We first show that we can obtain a (1 + ε)-approximation

in polynomial time when L2 contains only m distinct item sizes, where m is a constant. We then

show that the original problem can be reduced to one in which L2 contains mε distinct item sizes,

where mε is a constant depending only on ε.

2.1 When L2 contains only m distinct item sizes

In this subsection, we consider the situation where the sizes of the elements in L2 have m distinct

values. Since the smallest item in L2 has size greater than or equal to ε1, there are at most a

constant number q of possible bin types (i.e., the multiset of items from L2 that are assigned to a

bin). Consequently, there are at most O(nq
2) possible packings of the elements in L2 (see p. 65 of

[2]). For each packing P , we sort the bins in descending order of their fill-levels. We then treat the

items in L1 as one big “breakable” item of size S(L1), and assign it to the bins as follows: We fill

the level of the first bin with the big item until it is full, and cut the big item at the boundary.

We then fill the level of the second bin with the big item until it is full, and again cut the big item

at the boundary. We repeat this process until the entire big item has been assigned. At the end,

we can evaluate the total cost of the packing. For example, suppose L1 = (0.10, 0.10, 0.20) and

L2 = (0.36, 0.36, 0.42, 0.42), and we consider the packing P depicted in Figure 1(a). In this example,

the big item has size S(L1) = 0.40 and is assigned to bins 1 and 2 as shown in Figure 1(b). The

total cost of this packing is f(1) + f(0.96).
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Among all the O(nq
2) possible packings, we select the one with the lowest total cost (with ties

broken arbitrarily). Let P̂ denote the packing selected. Let Ẑ denote the total cost of packing P̂ ,

and let α be the number of nonempty bins utilized in P̂ . Obviously, P̂ is not a legitimate packing

in that the items of L1 (which form the big item) are not packed legitimately. We now re-pack the

items in L1. This is done by first removing the big item, and then assigning the items in L1 to the

unoccupied space of the bins in a first-fit manner. Let P̄ be the resulting packing, and let β be the

number of nonempty bins utilized in P̄ . Clearly, β ≥ α. For example, suppose the packing depicted

in Figure 1(b) is the selected packing P̂ , with α = 2. Then, the resulting packing P̄ is depicted in

Figure 1(c), with β = 3.

Property 2 Ẑ ≤ Z∗.

Proof: Let δ be the greatest common divisor of a1, a2, . . . , an, 1. Suppose we split each of the items

in L1 into multiple items of size δ (that is, an item of size ai is replaced by ai/δ items of size δ).

Then the total cost of optimal solution of the resulting “relaxation problem” must be a lower bound

of the optimal solution value of the original problem. One way to solve this relaxation problem is

to try all possible packings of the items of L2, and then in each such possible packing, we pack the

remaining δ-sized items optimally. By Property 1(i), the optimal way to pack the remaining items

is to assign them to those bins with the highest fill-levels. Since an item of size δ can fit into any

empty bin space, this method of assigning the δ-sized items will result in the same packing as P̂ .

Therefore, Ẑ must be a lower bound of Z∗.

If β > α, then every bin in P̄ , except the last one, is filled to a level of at least 1 − ε1, and we

can resort to the same argument as in Case 1 to show that the total cost of P̄ is at most Z∗

1−ε1
+f(1).

Thus, we focus on the case in which β = α. Consider the packing P̄ . Let B1 be the set of bins

that either contain some items from L1 or have a fill-level of more than 1 − ε1. Let B2 be the

set of bins that contain only items from L2 and have a fill-level no more than 1 − ε1. We have

α = β = |B1| + |B2|. Let us compare the total cost of the bins in the two packings P̄ and P̂ .
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The total cost of the bins in B2 under the packing P̄ , denoted ZB2
, is the same as that under the

packing P̂ , because these bins do not contain any items from L1 in either of the two packings. On

the other hand, every bin in B1, except the last one, is filled to a level of at least 1 − ε1 under the

packing P̄ . This implies that the total size of the items in those bins is at least (1 − ε1)(|B1| − 1).

Applying Property 1(ii) to these items, we know that in the packing P̂ , the total cost of the bins

in B1 must be at least (1 − ε1)(|B1| − 1)f(1). Hence, the total cost of the packing P̄ is at most

ZB2
+ |B1|f(1) ≤ 1

1−ε1

[

ZB2
+ (1− ε1)(|B1| − 1)f(1)

]

+ f(1) ≤ 1
1−ε1

Ẑ + f(1) ≤ 1
1−ε1

Z∗ + f(1), where

the last inequality follows from Property 2.

2.2 Reducing the original problem to the one where L2 has mε distinct item sizes

We now turn our attention to the reduction of our original problem to the one in which L2 has

mε distinct item sizes. Recall that L2 = (c1, c2, . . . , cn2
). We reindex the items in such a way that

c1 ≤ c2 ≤ · · · ≤ cn2
. Let m = dε−2

1 e + 1. Let n2 = mh + r, where h = bn2/mc and 0 ≤ r ≤ m − 1.

Consider the list

L′

2 = (c1, . . . , c1; ch+1, . . . , ch+1; c2h+1, . . . , c2h+1; . . . ; c(m−1)h+1, . . . , c(m−1)h+1; cmh+1, cmh+2, . . . , cn2
),

which consists of h copies of c1, followed by h copies of ch+1, followed by h copies of c2h+1, and so

on. Finally, it has h copies of c(m−1)h+1, followed by the last r elements of L2. We also consider the

list

L′′

2 = (ch+1, . . . , ch+1; c2h+1, . . . , c2h+1; . . . ; c(m−1)h+1, . . . , c(m−1)h+1; 1, . . . , 1; cmh+1, cmh+2, . . . , cn2
),

which consists of h copies of ch+1, followed by h copies of c2h+1, and so on. Finally, it has h copies

of c(m−1)h+1, followed by h unit-sized items, plus the last r elements of L2. Clearly, the i-th item

of L′

2 is no larger than the i-th item of L2, which in turn is no larger than the i-th item of L′′

2, for

i = 1, 2, . . . , n2. Thus, the optimal packing of L1 ∪ L′

2 has total cost no higher than that of L1 ∪ L2,

and the optimal packing of L1 ∪ L2 has total cost no higher than that of L1 ∪ L′′

2. In other words,

Z ′ ≤ Z∗ ≤ Z ′′, (1)
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where Z ′ and Z ′′ denote the total costs in the optimal packings of L1 ∪L′

2 and L1 ∪L′′

2, respectively.

For example, suppose m = 4 and

L2 = (0.11, 0.13, 0.17, 0.21, 0.25, 0.28, 0.32, 0.36, 0.45, 0.52, 0.63, 0.67, 0.72, 0.77, 0.81),

where n2 = 15. Then h = bn2/mc = 3. The list

L′

2 = (0.11, 0.11, 0.11, 0.21, 0.21, 0.21, 0.32, 0.32, 0.32, 0.52, 0.52, 0.52, 0.72, 0.77, 0.81)

consists of three copies of c1 = 0.11, three copies of c4 = 0.21, three copies of c7 = 0.32, three copies

of c10 = 0.52, followed by c13 = 0.72, c14 = 0.77, and c15 = 0.81. The list

L′′

2 = (0.21, 0.21, 0.21, 0.32, 0.32, 0.32, 0.52, 0.52, 0.52, 1, 1, 1, 0.72, 0.77, 0.81)

consists of three copies of c4 = 0.21, three copies of c7 = 0.32, three copies of c10 = 0.52, three copies

of 1, followed by c13 = 0.72, c14 = 0.77, and c15 = 0.81.

Note that the two lists L′

2 and L′′

2 differ only in that, when going from L′

2 to L′′

2, we change h

items of size c1 to h items of size 1. Hence, given a packing of L1∪L′

2, we can easily obtain a packing

of L1 ∪ L′′

2 by using no more than h additional bins. This implies that Z ′′ ≤ Z ′ + h·f(1). Because

the total size of the items in L′

2 is at least mhε1, we have Z ′ ≥ mhε1f(1) ≥ h·f(1)/ε1. Thus,

Z ′′ ≤ (1 + ε1)Z
′. (2)

Now, we can solve the original problem as follows: Solve the problem using the item sizes given

by L1 ∪ L′′

2, and restore the sizes of the items in L′′

2 with their original item sizes. The total cost of

this solution, Z(Aε), satisfies the following:

Z(Aε) ≤
1

1− ε1
Z ′′ + f(1)

≤
1 + ε1
1− ε1

Z ′ + f(1) (by (2))

≤
1 + ε1
1− ε1

Z∗ + f(1) (by (1)).

Hence, if we select ε1 in such a way that ε1 ≤ ε
2+ε , then we get Z(Aε) ≤ (1 + ε)Z∗ + f(1).
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2.3 Summary

Summarizing the above analysis, we conclude that if we select ε1 = min
{

ε
2+ε , 1

}

, then in both Cases

1 and 2, we have Z(Aε) ≤ (1 + ε)Z∗ + f(1). In Case 2 of the above procedure, evaluating the total

cost of each possible packing P requires O(n logn) time. List L′′

2 contains items with only mε distinct

values and each bin can fill at most 1/ε1 items from L′′

2. Thus, there are O(m
1/ε1
ε ) possible ways a

bin can fill those items from L′′

2. Hence, there are at most O
(

nm
1/ε1
ε

)

possible packing P . Therefore,

the running time of our algorithm is polynomial in n.

3 Concluding Remarks

We have presented an asymptotic polynomial-time approximation scheme for the bin packing problem

with concave costs of bin utilization. However, the time bound of our approximation scheme is a “high

order polynomial.” Fernandez de la Vega and Lueker [4] have developed a linear time asymptotic

approximation scheme for the classical bin packing problem. It is an interesting open question

whether a similar “low order polynomial” approximation scheme can be developed for the bin packing

problem with concave costs of bin utilization. Karmarkar and Karp [7] have presented an asymptotic

fully polynomial-time approximation scheme for the classical bin packing problem (see also [5]). It is

also a challenging open question whether an asymptotic fully polynomial-time approximation scheme

exists for our problem.

Acknowledgments

This research was supported in part by the Research Grants Council of Hong Kong under grant

PolyU5312/04E. The work of the first author was supported in part by the National Science Foun-

dation under grants DMI-0300156 and DMI-0556010.

7



References

[1] C. Alves, J.M. Valerio de Carvalho, Accelerating column generation for variable sized bin-

packing problems, European Journal of Operational Research, 183 (2007) 1333–1352.

[2] E.G. Coffman, Jr., M.R. Garey, D.S. Johnson, Approximation algorithms for bin packing: A

survey, in D.S. Hochbaum (ed.), Approximation Algorithms for NP-hard Problems, PWS Pub-

lishing, Boston, MA, 1997, pp. 46–93.

[3] T.G. Crainic, G. Perboli, M. Pezzuto, R. Tadei, Computing the asymptotic worst-case of bin

packing lower bounds, European Journal of Operational Research, 183 (2007) 1295–1303.

[4] W. Fernandez de la Vega, G.S. Lueker, Bin packing can be solved within 1 + ε in linear time,

Combinatorica, 1 (1981) 349–355.

[5] D.S. Hochbaum, Various notions of approximations: Good, better, best, and more, in

D.S. Hochbaum (ed.), Approximation Algorithms for NP-hard Problems, PWS Publishing,

Boston, MA, 1997, pp. 346–398.

[6] J. Kang, S. Park, Algorithms for the variable sized bin packing problem, European Journal of

Operational Research, 147 (2003) 365–372.

[7] N. Karmarkar, R.M. Karp, An efficient approximation scheme for the one-dimensional bin-

packing problem, Proceedings of the 23rd Annual Symposium on Foundations of Computer

Science, 1982, pp. 312–320.

[8] C.-L. Li, Z.-L. Chen, Bin-packing problem with concave costs of bin utilization, Naval Research

Logistics, 53 (2006) 298–308.

[9] J. Yang, J.Y.-T. Leung, The ordered open-end bin packing problem, Operations Research, 51

(2003) 759–770.

8



 
 
 
 
 
 
 
 
 
 
 

(a) Packing P  of items in list 2L  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Packing P  with the assignment of the big item (i.e., packing P̂ ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Packing P  after the re-packing of the big item (i.e., packing P ) 
 
 

Figure 1. A numerical example 
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