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Abstract

The aim of this paper is to propose a new heuristic for the Periodic Vehicle
Routing Problem (PVRP) without time windows. The PVRP extends the
classical Vehicle Routing Problem to a planning horizon of several days. Fach
customer requires a certain number of visits within this time horizon while
there is some flexibility on the exact days of the visits. Hence, one has to
choose the visit days for each customer and to solve a VRP for each day. Our
method is based on Variable Neighborhood Search (VNS). Computational
results are presented, that show that our approach is competitive and even
outperforms existing solution procedures proposed in the literature. Also
considered is the special case of a single vehicle, i.e. the Periodic Traveling
Salesman Problem (PTSP). It is shown that slight changes of the proposed
VNS procedure is also competitive for the PTSP.

Keywords: Periodic Vehicle Routing Problem, Periodic Traveling Sales-
man Problem, Metaheuristics, Variable Neighborhood Search

1 Introduction

Vehicle Routing Problems (VRPs) have received considerable attention both in the-

oretical research and in real world applications. Forming the basis of many routing
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models, they have been extended in various directions. In this paper we focus on
the Periodic Vehicle Routing Problem (PVRP) in which a planning period of sev-
eral days is considered and customers must be visited more than once. Different
customers usually require different numbers of visits in a certain time horizon. Cus-
tomers with larger demands or smaller storage capacities require more visits than
customers with smaller demands or larger storage capacities. This type of problem
occurs e.g. in grocery distribution (Carter et al., 1996), soft drink industry (Golden
and Wasil, 1987), waste collection (Beltrami and Bodin, 1974, Russel and Igo, 1979)
and others.

Early heuristics for the PVRP are proposed by Beltrami and Bodin (1974)
and by Russel and Igo (1979). Other heuristics are developed by Christofides and
Beasley (1984), Tan and Beasley (1984) and Russel and Gribbin (1991). Gaudioso
and Paletta (1992) present a heuristic for the PVRP with the objective to minimize
the number of vehicles. Chao et al. (1995a) provide a two phase heuristic. To obtain
an initial solution they solve an integer linear program to assign visit day combina-
tions to the customers. In a second phase, they use several improvement operators
while they relax the capacity of the vehicles. When getting stuck, re-initializations
are performed.

Cordeau et al. (1997) propose a tabu search heuristic for the PVRP that can
also be used to solve the Multi-Depot Vehicle Routing Problem and the Periodic
Traveling Salesman Problem. The neighborhood consists of moving a customer from
one route to another route of the same day or assigning a new visit combination to
a customer. Insertions and removals of customers are performed using the GENI
operator (Gendreau et al., 1992). The tabu search algorithm allows for infeasible

solutions during the search process using an adaptive penalty function. Recently a
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scatter search procedure was developed by Alegre et al. (2007) for solving a problem
of periodic pick-up of raw materials for a manufacturer of auto parts. They use a
two-phase approach, that first assigns orders to days and then constructs the routes
of each day. Finally Drummond et al. (2001) proposed parallel genetic algorithms.

Furthermore special implementations for real-world problems were provided by
Hadjiconstantinou and Baldacci (1998) who propose a heuristic for a Multi-Depot
Period Vehicle Routing Problem that arises in the utility sector. Angelelli and
Speranza (2002) suggest a tabu search for a special application, a periodic vehicle
routing problem with intermediate facilities, where vehicles can replenish their ca-
pacity at intermediate facilities. Blakeley et al. (2003) developed an optimization
system relying on several algorithms for planning the maintenance of escalators and
elevators.

The PTSP is a special case of the PVRP where only one vehicle is available every
day and tour length or duration constraints are not considered. A mathematical for-
mulation of the PVRP and the PTSP can be found in Cordeau et al. (1997). Heuris-
tics for the PTSP are provided by Christofides and Beasley (1984), Paletta (1992).

These earlier solution techniques are outperformed by more recent metaheuristic
approaches. Chao et al. (1995b) start from an initial solution and exchange visit
day combinations by using the record-to-record approach of Dueck (1993). New
solutions are accepted if their cost is below a specified threshold, being the cost of
the best solution found plus a certain deviation. Local Search and re-initializations
are performed afterwards. Cordeau et al. (1997) develop a tabu search method
based on the GENI operator (Gendreau et al., 1992). They apply their method also
to the Periodic Vehicle Routing Problem (PVRP) and to the multi depot vehicle

routing problem. Paletta (2002) proposes an improvement procedure within a tour
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construction procedure and a new version of the improvement procedure is proposed

by Bertazzi et al. (2004).

We develop another metaheuristic solution approach for the PVRP and the
PTSP that is based on Variable Neighborhood Search (VNS). VNS is a local search
based metaheuristic first proposed by Mladenovié¢ (1995), Mladenovi¢ and Hansen (1997),
Hansen and Mladenovi¢ (1997). The VNS approach has already been successfully
applied to other variants of the VRPs (see e.g. Braysy, 2003, Polacek et al., 2004,
2005). However, to the best of our knowledge VNS has not been applied to periodic
routing problems so far.

The paper has two main contributions. First, from a technical point of view, it
presents the first application of a VNS to periodic routing problems. Second, from
a problem oriented point of view the computational results show that the approach
is competitive with the existing techniques. The developed algorithm is simple,
flexible and accurate and yields several new best solutions.

The remainder of the paper is organized as follows. In Section 2 we describe
the proposed algorithm for the PVRP and in section 3 we discuss the appropriate
adaptations for applying it to the PTSP. In Section 4, we present a computational
study that analyzes the proposed solution approach and compares it to state of the

art metaheuristics. Finally, Section 5, concludes the paper.

2 Solution Procedure for the PVRP

We first describe our VNS algorithm for the PVRP. In section 3 we will propose
minor adaptations of this method in order to be used for solving the PTSP. The

basic idea of VNS is a systematic change of neighborhoods within a local search
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procedure. Starting from any initial solution, a so called shaking step is performed
by randomly selecting a solution from the first neighborhood. This is followed by
applying an iterative improvement algorithm. This procedure is repeated as long as
a new incumbent solution is found. If not, one switches to the next neighborhood
(which is typically larger) and performs a shaking step followed by the iterative
improvement. If a new incumbent solution is found one start with the first neigh-
borhood; otherwise one proceeds with the next neighborhood, etc. The steps of the
basic VNS are shown in Figure 1, where N, (k = 1,..., Kmae) is the set of neighbor-
hoods. The stopping condition can be a limit on CPU time, a limit on the number
of iterations, or a limit on the number of iterations between two improvements. See
Mladenovi¢ and Hansen (1997) and Hansen and Mladenovi¢ (2000, 2001) for a more
thorough description of VNS.

Initialization.  Select the set of neighborhood structures Ny (k = 1,. .., Kymaz), that
will be used in the search; find an initial solution z; choose a stopping condition;
Repeat the following until the stopping condition is met:

1. Set k «+ 1;

2. Repeat the following steps until kK = Ky40:

(a) Shaking. Generate a point 2’ at random from ™ neighborhood of

(2 € Nu(2));

(b) Local search. Apply some local search method with 2’ as initial solution;
denote with z” the so obtained local optimum;

(¢) Move or not. If this local optimum z” is better than the incumbent, or
if some acceptance criterion is met, move there (z < z”), and continue
the search with Ny (k < 1); otherwise, set k «— k + 1;

Figure 1: Steps of the VNS (c.f. Hansen and Mladenovi¢, 2001

In the next subsection, we describe the different components of the VNS imple-

mented for the PTSP and the PVRP.
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Apply Clarke And Wright
for each day do
while number of routes > number of vehicles do
shortest_route := find route with fewest number of customers
for each customer € shortest_route do
delete
insert in cheapest position of the remaining routes
end for
end while
end for

Figure 2: Build Initial Solution

2.1 Initial Solution

For obtaining an initial solution each customer is assigned a visit day combination
randomly. Routes are constructed by solving a vehicle routing problem for each day
using the Clarke and Wright savings algorithm (Clarke and Wright, 1964). The
Clarke and Wright savings algorithm terminates when no two routes can feasibly be
merged, i.e., no two routes can be merged without violating the route duration or
capacity constraints. As a result, the number of routes may exceed the number of
available vehicles. In that case, a route with the fewest customers is identified and
the customers in this route are moved to other routes (minimizing the increase in
costs). Note that this may result in routes that no longer satisfy the duration or
capacity constraints. This step is repeated until the number of routes is equal to
the number of vehicles. Since the initial solution may not be feasible the VNS needs

to incorporate techniques that drive the search to a feasible solution.

2.2 Shaking

The set of neighborhoods used for shaking is at the heart of the VNS. Each neigh-

borhood should strike a proper balance between perturbing the incumbent solution
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and retaining the good parts of the incumbent solution.

Two popular and effective neighborhoods for vehicle routing are based on the
move and the cross-exchange operators. A classification of move and cross exchange
can be found in Van Breedam (1994) and Kindervater and Savelsbergh (1997). The
operator move inserts a segment of one route into a different route. For example in
Figure 3 customers x5, and y, are moved from route two to route one. In our algo-
rithm we relocate up to three customers. The CROSS exchange operator exchanges
two segments of different routes. Figure 4 shows that the segment from customer z
to y; of route one is exchanged with the segment x, to y, of route two. We consider
a segment length of up to six customers. The orientation of the segment(s) and
of the route(s) is preserved by the move and cross-exchange operators. The move
and cross-exchange operators are used to define a set of neighborhoods that allow
the exploration of increasingly distant solutions from the incumbent to overcome
local optimality and strive for global optimality. The metric to measure the increas-
ing size of a neighborhood is given by the maximum number of customers in the
route segments used within the operators. The cross- exchange operator is shown
in Figure 4.

For the periodic vehicle routing problem it is essential to also have a neighbor-
hood that changes the visit combinations for customers. We use neighborhoods in
which the visit combinations of a limited number of customers are changed. For each
of these a visit combination is chosen randomly. Here, the metric to measure the
increasing size of a neighborhood is given by the maximum number of customers for
which the visit day combination is changed. Table 1 shows the maximum segment
length considered for each neighborhood &.

In each neighborhood all the possible segment lengths and numbers of customers
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Figure 4: The CROSS Exchange Operator
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Table 1: Set of Neighborhood Structures with K4, = 15

K operator min. customers max. customers
1 change combination 1 1

2 change combination 1 2

3 change combination 1 3

4 change combination 1 4

5 change combination 1 )

6 change combination 1 6

min. segment length max. segment length

7 move 1 min(1, n)

8 move 1 min(2, n)

9 move 1 min(3, n)

10 Cross 1 min(1, n)

11 Cross 1 min(2, n)

12 Cross 1 min(3, n)

13 Cross 1 min(4, n)

14 Cross 1 min(5, n)

15 Cross 1 min(6, n)

are equally likely to be chosen. Hence our choice of neighborhoods is biased toward

smaller changes to focus the search rather close to the incumbent solution.

2.3 Local Search

A solution obtained through shaking is submitted to a local search procedure to
come up with a locally optimal solution. We apply one of the most popular iterative
improvement procedures, namely 3-opt, which was introduced by Lin (1965). This
heuristic tries all shifts of some subsequence to different positions in the same route.
More precisely, three edges are deleted and replaced by three other edges. The tour
is 3-optimal, when it cannot be improved by such a change. In our algorithm 3-opt
without sequence inversion, also often denoted as 3-opt™*, is used. Only individual

routes are improved, so that only the routes that have changed during shaking have
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to be re-optimized. The local search restarts immediately after an improving move

was found.

2.4 Acceptance decision

After the shaking and the local search procedures have been performed, the solution
thus obtained has to be compared to the incumbent solution to be able to decide
whether or not to accept it. The acceptance criterion in the basic VNS is to accept
only improvements. However that way the search can easily get stuck in a local
optimum. Thus in most cases it is essential to also have a strategy of accepting
non-improving solutions under certain conditions. We implement a scheme that is
inspired by Simulated Annealing (SA) (Kirkpatrick et al., 1983). Hence, our method
could be considered a hybrid of VNS and SA. However since the SA part is rather
small we prefer to regard it as a VNS. More specifically, improving solutions are al-
ways accepted and inferior solutions are accepted with a probability expw
where f (x) is the cost of solution z possibly including penalty costs if it is infeasi-
ble. The acceptance of inferior solutions depends on a given temperature T and the
difference between the costs of the new solution and the incumbent solution. The
temperature 7' is linearly decreased in n/k stages during the search process, where 7
represents the total number of iterations executed. Thus, every k iterations T is de-
creased by an amount TT*I“ Different cooling schedules like exponential cooling and
a constant temperature have also been considered but the linear annealing scheme
provided the best results.

An alternative strategy would be the so called Skewed VNS, an extension of the
basic VNS proposed by Hansen and Mladenovi¢ (2000). In this approach a solution

is not only evaluated by its objective value but also by its distance to the incumbent
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solution, favoring more distant solutions. Let the function p(z,2”) measure the
distance between the incumbent solution x and the new solution z”. A new solution
is accepted if f(z") — ap(z,2”) < f(z).

Another approach to accept non-improving solutions is based on threshold ac-
cepting (TA). A solution yielding an improvement is always accepted. Moreover
ascending moves are accepted after a minimum number of iterations counted from
the last accepted move, but only if the cost increase is below a certain threshold.
We implemented these three possibilities (SA, skewed, TA). In the Skewed VNS
approach we measure the distance p(z,z”) by using the number of customers that
are exchanged in the move and CROSS operator and the number of routes that
are changed in the change combination operator. Our implementation of the TA
approach is based on the one described in Polacek et al. (2004). Computational
experiments show that SA delivers 2.71% better solutions than SVNS and 3.61%
than threshold accepting. In what follows, we will only report results based on the
SA acceptance criterion.

As mentioned at the start of this section, the VNS has to be able to handle
infeasible solutions. Infeasibility occurs if the total capacity or tour duration exceed
the specified limits. We use a weighted, linear penalty function for violations of
this constraint. This penalty function is added to the objective function before
the solution is evaluated for acceptance. The weights are adjusted dynamically. If
the total capacity or tour duration of any tour is exceeded the respective weight is
increased, if it is feasible the weight is decreased. However the weights can only be
adjusted within predefined upper and lower bounds. Hence if a tour is infeasible,
but the weight would exceed the upper bound it will not be increased any more and

vice versa. The weight is initialized with its upper bound in order to lead the search
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toward feasible solutions in the beginning.

3 Solution Procedure for the PTSP

The solution procedure for the PTSP is based on the one for the PVRP. But in order
to solve the PTSP more efficiently some adaptations are appropriate. The algorithm
for the PVRP uses Clarke and Wright savings algorithm (Clarke and Wright, 1964)
for building an initial solution. For the PTSP the savings measure is irrelevant and
best insertion is used to build a starting solution.

In the PVRP algorithm the shaking phase is composed of the operators move,
CROSS and change combination, where move and CROSS are used inter route only,
i.e. customers are exchanged between routes. The shaking phase in the PTSP is
similar, but the operators move and CROSS are now used intra route because there
is only one route for every day.

For the PVRP the local search phase consists of 3-opt. But typically, in the
standard benchmark instances each PTSP tour consists of considerably more cus-
tomers than a PVRP tour. This is why an efficient implementation for the PTSP
should employ a faster local search. In order to save computation time the 2-opt
operator is applied for the PTSP instead of 3-opt as used for the PVRP. 2-opt was
introduced by Croes, 1958. This operator deletes two edges of a tour and reconnects
those paths in the other possible way. The local search restarts immediately after
an improving move was found.

Chao et al. (1995b) imposed the constraint that the traveling salesman has to
visit at least one city each day. Our algorithm handles this by penalizing an empty
day with a constant penalty. The penalty is added to the objective function before

the solution is evaluated.



VNS for Periodic Routing Problems 13

4 Computational Experiments

4.1 Results on PVRP instances
4.1.1 Test Instances

We tested our algorithm on instances taken from the literature. There are two data
sets available. The so called “old data” set contains 32 instances. Instances pl-
pl0 were proposed by Eilon et al. (1971) for the VRP and adapted to the PVRP
by Christofides and Beasley (1984). Russel and Igo (1979) proposed instance pl1.
Instance p12 and p13 are taken from Russel and Gribbin (1991). Instances p14-p32
were introduced by Chao et al., 1995. In the latter data set D = oo , which means
that tour duration is not restricted. The 10 instances of the new data set were
provided by Cordeau et al. (1997). The old data were solved by Christofides and
Beasley (1984) (CB), Tan and Beasley (1984) (TB), Russel and Gribbin (1991) (RG),
Chao et al. (1995a) (CGW), Cordeau et al. (1997) (CGL) and Alegre et al. (2007)
(ALP) and we compare our results with their results. Results from Drummond et
al. (2001) were not taken into account because according to Alegre et al. (2007)
they are not comparable. The algorithms CGL and ALP delivered the best solution
values so far and CGW delivers some ties. Results for the “new data” set were only
given by Cordeau et al. (1997) (CGL). A description of the different instances of
the old data set can be found in Table 2 and for the new data set can be found in

Table 3.

4.1.2 Parameter Settings

Compared to other metaheuristics only few parameters have to be determined and

tuned. In our implementation these are the initial temperature for accepting de-
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Table 2: Instance description of the “old data” set for the PVRP, where n is the
number of customers, m is the number of vehicles that can be used, t is the number
of days in the planning horizon, D is the maximum duration of a route, @) is the
maximum capacity of the vehicles, and f; is the number of customers that must be
visited ¢ times.

Instance n m t D Q service frequencies
f1 2 3 f4 {5 16

v-p01 50 3 2 160 50
v-p02 50 3 5 160 17 26 7
v-p03 50 1 5 160 50
v-p04 7w 2 5 140 75
v-p05 7 6 5 140 30 34 11
v-p06 71 10 140 75
v-p07 100 4 2 200 100
v-p08 100 5 5 200 40 46 14
v-p09 100 1 8 200 100
v-p10 100 4 5 200 40 46 14
v-pll 139 4 5 235 103 22 12 1 1
v-pl2 163 3 5 140 148 8 7
v-pl3d 417 9 7 2000 377 40
v-pl4 20 2 4 20 8 8 4
v-pl15 383 2 4 30 16 16 6
v-pl6 56 2 4 40 24 24 8
v-pl7 40 4 4 20 16 16 8
v-pl8 6 4 4 30 32 32 12
v-p19 112 4 4 40 48 48 16
v-p20 184 4 4 60 80 80 24
v-p21 60 6 4 20 24 24 12
v-p22 114 6 4 30 48 48 18
v-p23 168 6 4 40 72 T2 24
v-p24 51 3 6 20 36 9 6
v-p25 51 3 6 20 36 9 6
v-p26 51 3 6 20 36 9 6
v-p27 102 6 6 20 72 18 12
v-p28 102 6 © 20 72 18 12
v-p29 102 6 © 20 72 18 12
v-p30 153 9 6 20 108 27 18
v-p3l 153 9 6 20 108 27 18
v-p32 153 9 6 20 108 27 18
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Table 3: Instance description of the “new data” set for the PVRP, where n is the
number of customers, m is the number of vehicles that can be used, ¢ is the number
of days in the planning horizon, D is the maximum duration of a route, @) is the
maximum capacity of the vehicles, and f; is the number of customers that must be
visited ¢ times.

Instance n m t D Q service frequencies
f1. 2 3 f4 16
v-pr01 48 2 4 500 200 24 12 12
v-pr02 96 4 4 480 195 48 24 24
v-pr03 144 6 4 460 190 72 36 36
v-pr04 192 8 4 440 185 96 48 48
v-pr05 240 10 4 420 180 120 60 60
v-pr06 288 12 4 400 175 144 72 72
v-pr07 72 3 6 500 200 18 18 18 18
v-prO8 144 6 6 475 190 36 36 36 36
v-pr09 216 9 6 450 180 54 54 54 54
v-prl0 288 12 6 425 170 72 72 72 72

teriorating solutions and the initial values for the penalty terms in the objective
function. Several experiments were made to find a good initial temperature T for
SA. It turned out that the initial temperature should be higher the larger the average
distance between customers is. In order not to have different initial temperatures
for all instances we group the instances into those with large average distances be-
tween customers (p27-p32) and small average distances (all other instances). The
initial temperature is set to 125 in the former case and to 7 in the latter case. The
temperature is decreased every 1000 iterations, in a way that it becomes 0 in the
last 1000 iterations. The weights for penalizing tour length and duration violations
are adjusted dynamically. They are set to a value of 1000 in the beginning and
multiplied by a factor 1.001 if the solution is infeasible or divided by this factor if
the solution is feasible. But these adaptations are only applied if the weights remain

in the interval between 10 and 1000.
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4.1.3 Numerical Results

The algorithm was coded in ANSI C and compiled with the GNU C compiler ver-
sion 3.4.4. Our experiments were performed on a PC with 3.2 GHz. Preliminary
tests were performed in order to verify that all 15 neighborhoods contribute to the
performance of the algorithm. Clearly neighborhoods with lower number found new
incumbent solutions more often since they are used more frequently. However all
neighborhoods found a significant number of new incumbent solutions (see Table 15
below).

Table 4 reports results for the old data set. It shows the objective function
values for CB, TB, RG, CGW, CGL, ALP and our algorithm with 107 iterations
(in Table 7 below we will show that the run times for 107 iterations are comparable
with those of the best benchmark algorithms). The best results are always marked
in bold.

Our algorithm was developed and tuned for solving truly periodic vehicle routing
problems. In the old data set, however there are some degenerate instance that are
not really periodic; e.g. in instances v-pl, v-p3, v-p4, v-p6, v-p7 and v-p9 all orders
have frequency one. Since all customers need to be visited only once and this visit
can take place on any day of the planning period, these instances reduce to simple
VRPs (or more precisely multiple TSPs with given vehicle number). Moreover v-p3,
v-p6 and v-p9 have only one vehicle available. It can be seen that our algorithm
delivers competitive results also on these degenerate instances but outperforms the
other algorithms on instances that have higher visit frequencies, i.e. instances v-
pld—v-p32. Especially for larger instances our algorithm provides very good results.

As the algorithms CGL and ALP provided the best results on the old data set so

far, we report the development of our solution approach in comparison to these two
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algorithms. Table 5 shows average results over 10 runs with 10, 107, 10% and 10°
iterations and compares them to the results delivered by CGL and ALP. The last 2
rows show the average per cent differences between our results and CGL and ALP,
respectively. More precisely, we computed the per cent difference of the average of 10
runs to the benchmark approaches for each instance and reported the average aver
all instances. It is seen that after a very short running time, i.e. 10 iterations, the
VNS is still about 1.5 % worse. When comparing VNS after 107 iterations to CGL
and ALP the solution quality is already —0.17 % and —0.21 % better, respectively.
The results still improve with increasing number of iterations. It should be noted
that these average values also include the results for the degenerate (non-periodic)
instances. If we would omit these or adapt the VNS to these special situations the
average results would be better.

We applied our algorithm also to the new instances. Table 6 shows the results
for the new data after 105, 107, 10% and 10? iterations compared to CGL. We present
average results over 10 runs and we compare it to the results of the CGL (1 run).
Note that these instances were only solved by CGL so far. Applying our algorithm
107 iterations we improved the results by —0.92 %. When applying the algorithm 10°
iterations the improvement is almost —2 %. On some small instances there are only
moderate improvements e.g. instance v-prO7 with 72 customers an improvement
of —0.09 % is possible whereas for instance v-prl0 with 288 customers improved
solutions of —4.83 % were possible. After 10® iterations already for all of the 10
instances improved results were found on average. The results confirm the findings
for the old data. For truly periodic problems and in particular for larger instances
our algorithm performs very well.

Table 7 reports computation times on the instances of the old data set for the so
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far best approaches CGL (Cordeau et al., 1997) and ALP (Alegre et al., 2007) and
run times for 107 iterations of VNS. All run times are given in seconds. If algorithms
are run on different machines, a direct comparison of computation times is always
difficult. To make the results comparable at least to the CGL algorithm we ran the
code of CGL on the same machine as VNS which yielded considerably shorter times
compared to those originally reported by CGL. We are grateful to the authors of
CGL for providing the code to us. Although the results by ALP were published in
2007, they use a rather old machine which is — according to Dongarra (2005) — 7.17
times slower than our machine. The total computation time 44914.6 must therefore
be corrected to 6264.24 seconds, which is still larger than for CGL and our VNS.

Table 8 reports run times for the instances of the new data set of CGL and 107
iterations of VNS. Again both algorithms were run on the same machine. T refers to
the total time used to execute the algorithm and 7™ is the time needed to obtain the
best solution during search process. It shows that the VNS algorithm is competitive
to CGL and is faster in larger instances.

As also done by CGL, we collected all results obtained for different run times
and different parameter settings during the fine tuning phase in order to keep track
of the best solutions found. Our algorithm was able to improve almost all of the
best known results reported in literature as can be seen in Tables 9 and 10. For the
old data set 27 out of 32 instances are improved or equal results were found. For
the new data set 9 out of 10 instances are improved and there is one tie. The best

known results of the new data have been improved by —1.50 %.
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4.2 Results on PTSP instances
4.2.1 Test Instances

Our algorithm was tested with the standard benchmark instances proposed in the
literature. Instances t-pl to t-pl0 were given by Eilon et al. (1971) for the VRP
and adapted to the PTSP by Christofides and Beasley (1984). Instances t-pll to
t-p23 were introduced by Chao et al. (1995b) and instances t-p24 to t-p34 are taken
from Cordeau et al. (1997). Results were given by Christofides and Beasley (1984),
Paletta (1992), Chao et al. (1995b), Cordeau et al. (1997), Paletta (2002) and
Bertazzi et al. (2004). A detailed description of the instances indicating the number

of cities and the planning horizon is given in Table 11.

As in case of the PVRP also some of the PTSP instances are degenerated. More
precisely, in instances t-pl, t-p3, t-p4, t-p6, t-p7 and t-p9, all customers have a visit
frequency of one. Due to the constraint that at least one customer has to be visited
every day, the best solution in these cases is to form a TSP on one day with all the
customers except for T-1 customers, that are close to the depot. Then on each of
the remaining 7-1 days one of these close customers is visited. We report our results
also for these degenerated in instances, but no fine tuning was made to solve these

more efficiently. Our code is designed to solve truly periodic problems.

4.2.2 Parameter Settings

In order to provide an (almost) generic solution approach, we kept all parameters
for the PTSP same as for the PVRP. So we again set the initial temperature 7" for
Simulated Annealing to 7 for all instances. The temperature is decreased linearly

every 1000 iterations, in a way that it becomes 0 in the last iterations. The penalty
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for an empty day is set to 1000 and the stopping condition is a fixed number of

iterations.

4.2.3 Numerical Results

Table 12 reports the results of our VNS with independent runs of 10, 107 and
108 iterations compared to the best results obtained by the different algorithms of
Chao et al. (1995b) (CGW), Cordeau et al. (1997) (CGL), Paletta (2002) (P) and
Bertazzi et al. (2004) (BPS). The average solution quality is about the same after
108 iterations compared to the best results found by the other authors. Applying
the VNS for 107 iterations the solution quality can be improved by 0.34 %. Note
that this improvement is over the best solution obtained by any of the approaches
mentioned. An individual comparison of our VNS with any of the other approaches
would yield even higher improvements. For longer run times further improvements
are obtained. After 108 iterations the solution quality is 0.52 % better compared
to the best results reported by the other authors. As mentioned in Section 4.2.1
there are some instances, that are no real PTSP instances but rather standard TSP
instances. If these degenerated instances, namely t-pl, t-p3, t-p4, t-p6, t-p7, and
t-p9 are disregarded, and the comparison is only made for the remaining ones, then
we already have an average improvement by our VNS of —0.24 % after 10° iterations
and improvements of —0.40 % and —0.49 % after 107 and 108 iterations, respectively.

Table 13 shows the best known results produced by our algorithm. Best known
solutions means all solutions that were found with different parameter settings. The
results are compared to the best known results given in the literature. New best

results were found for 11 instances and for all the other instances tie were achieved.
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We refrain from reporting detailed run times here since most algorithms did not
solve all instances. But the run times for 10° iterations of the VNS are comparable
or shorter than those of the other metaheuristic approaches also after adjustment

of run times w.r.t. the machine used.

4.3 Analysis of Neighborhood Structure

We also investigated the contribution of all shaking operators to the performance of
the algorithm and the best ordering of the operators. Table 14 reports the number
of times that a neighborhood structure lead to a new incumbent solution after local
search within 10° iterations. Three different orderings of the neighborhood struc-
tures are analyzed: move-CROSS-change combination (cc), CROSS-cc-move and
cc-move-CROSS. From the average deviation to the best solution reported in litera-
ture it can be seen that the cc-move-CROSS ordering delivers the best results. This
can be explained as follows. As VNS starts from the first neighborhood again when
it finds a new incumbent solution (see Fig. 1), earlier neighborhood structures are
used more often, especially in the beginning of the search. The ordering cc-move-
CROSS leads to the best results, because it is important that in the beginning the
most suitable visit day combination is selected. However, according to extensive
tests the later neighborhoods, move and CROSS, also play an essential part for ob-
taining good results. These neighborhood structures become more important in the
later phases of the optimization runs - when already good visit day combinations
are assigned to the customers. Table 14 shows that the number of new incum-
bent solutions found is generally decreasing with the index of the neighborhood if
the ordering of the neighborhoods is correct. If however the cc neighborhoods are

scheduled after move and/or CROSS they can show more improvements than earlier
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neighborhoods. This is an indication that the ordering is not ideal.

While we report detailed tests results for different orderings of the neighbor-
hoods only for the PTSP (similar results are obtained for the PVRP, where some
limited test were performed), we investigated for PVRP and PTSP, whether all 15
neighborhoods are in fact reasonable, i.e., whether all contribute to the performance
of the algorithm. Table 15 shows (for the best ordering of the neighborhood struc-
tures, i.e., cc-move-CROSS), the usage of the neighborhood structures for a different
number of iterations. The reported results are the average over 10 runs, summed
up over all instances. It can be seen that most incumbent solutions are found in an
early phase of the optimization runs. Move and CROSS neighborhoods tend to find

more improvements also in the later stages of the optimization.
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Table 4: Results for PVRP old data, compared to Tan and Beasley (1984) (TB),
Christofides and Beasley (1984) (CB), Russel and Gribbin (1991) (RG), Chao et
al. (1995) (CGW), Cordeau et al. (1997) (CGL) and Alegre et al. (2007) (ALP)

Instance TB CB RG CGW CGL ALP VNS

v-pl - o474 5373 524.6  524.61 531.02 524.61
v-p2 1481.3 1443.1 1355.4 13372 1330.09 1324.74 1332.01

v-p3 - 546.7 - 524.6 524.61 537.37 528.97
v-p4 - 843.9 867.8  860.9 837.93 845.97 847.48
V-pd 21925 2187.3 2141.3 2089 2061.36  2043.75  2059.74
v-pb - 938.2 - 881.1 840.3 840.1 884.69
v-p7 - 839.2  833.6 832 829.37 829.65 829.92
v-p8 2281.8 2151.3 2108.3 2075.1 20549 2052.21  2058.36
v-p9 - 875 - 829.9 829.45 829.65 834.92

v-pl0  1833.7 1674 1638.5 1633.2 1629.96 1621.21 1629.76
v-pll 878.5 8473 820.3 7913 817.56 782.17 791.18

v-pl2 - - 1312 12374 1239.58 1230.95  1258.46
v-pl3 - - 3638.1 3629.8 3602.76 - 3835.9
v-pl4 - - - 954.8 954.81 954.81 954.81
v-pld - - - 1862.6 1862.63 1862.63 1862.63
v-pl6 - - - 2875.2 2875.24 2875.24 2875.24
v-pl7 - - - 1614.4 1597.75 1597.75  1601.75
v-pl8 - - - 3217.7  3159.22 3157 3147.91
v-pl9 - - - 4846.5 4902.64 4846.49 4851.41
v-p20 - - - 8367.4 8367.4 8412.02 8367.4
v-p21 - - - 2216.1  2184.04 2173.58  2180.33
v-p22 - - - 4436.4  4307.19  4330.59  4218.46
v-p23 - - - 6769 6620.5 6813.45 6644.93
v-p24 - - - 3773 3704.11  3702.02 3704.6
v-p25 - - - 3826 3781.38 3781.38 3781.38
v-p26 - - - 3834  3795.32 3795.33 3795.32
v-p27 - - - 23401.6 23017.45 22561.33 22153.31
v-p28 - - - 23105.1  22569.4 22562.44 22418.52
v-p29 - - - 24248.2  24012.92 23752.15 22864.23
v-p30 - - - 80982.1 77179.33 76793.99 75579.23
v-p31 - - - 80279.1 79382.35 T7944.79 77459.14

v-p32 - - - 83838.7 80908.95 81055.52 79487.97
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Table 5: Results for PVRP old data, compared to CGL (Cordeau et al., 1997) and
ALP (Alegre et al., 2007)

Instance CGL ALP 106 107 108 10°
v-pl 524.61 531.02 532.69 524.61 524.61 524.61
v-p2 1330.09 1324.74 1339.23 1332.01 1328.98 1327.09
v-p3 524.61 537.37 545.87 528.97 524.61 524.61
v-p4 837.93 845.97 860.95 847.48 840.76 836.03
v-pb 2061.36  2043.75 2091.48 2059.74 2048.91 2037.86
v-pb 840.3 840.1 982.92 884.69 850.76 839.51
v-p7 829.37 829.65 833.82 829.92 828.74 827.64
v-p8& 2054.9 2052.21 2068.85 2058.36 2045.54 2041.55
v-p9 829.45 829.65 842.74 834.92 830.15 828.34
v-pl0 1629.96 1621.21 1651.45 1629.76 1615.73 1606.03
v-pll 817.56 782.17 807.32 791.18 784.01 781.51
v-pl2 1239.58 1230.95 1278.37 1258.46 1238.01 1220.48
v-pl3 3602.76 - 4066.8 3835.9 3692.72 3574.63
v-pl4 954.81 954.81 954.81 954.81 954.81 954.81
v-pld 1862.63 1862.63 1862.63 1862.63 1862.63 1862.63
v-pl6 2875.24 2875.24 2875.24 2875.24 2875.24 2875.24
v-pl7 1597.75 1597.75 1610.21 1601.75 1597.75 1597.75
v-pl8 3159.22 3157 3179.58 3147.91 3146.61 3144.96
v-pl19 4902.64  4846.49 4846.49 4851.41 4846.49 4845.28
v-p20 8367.4 8412.02 8367.4 8367.4 8367.4 8367.4
v-p21 2184.04  2173.58 2198.58 2180.33 2181.2 2173.08
v-p22 4307.19  4330.59 4279.61 4218.46 4213.75 4210.38
v-p23 6620.5 6813.45 6716.54 6644.93 6530.21 6478.72
v-p24 3704.11 3702.02 3719.16 3704.6 3695.69 3692.84
v-p25 3781.38  3781.38 3781.38 3781.38 3781.16 3780.8
v-p26 3795.32 3795.33 3834.35 3795.32 3795.32 3795.32
v-p27 23017.45 22561.33 22391.34 22153.31 22067.46 22001.28
v-p28 22569.4 22562.44 22554.72 22418.52 22381.97 22341.66
v-p29 24012.92 23752.15 23243.92 22864.23 22712.61 22665.19
v-p30 77179.33 76793.99 77703.13 75579.23 T74915.72 7T74764.59
v-p3l 79382.35 77944.79 78852.79 77459.14 76814.6 76630.67
v-p32 80908.95 81055.52 81887.26  T79487.97 T8488.16 T78337.91

VNS-CGL 1.40 -0.17 -0.85 -1.20
VNS-ALP 1.21 -0.21 -0.78 -1.04
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Table 6: Results PVRP new data, development of solution quality by increasing the
number of iterations, averaged over 10 runs
Instance  CGL 106 107 108 10°

v-pr01  2234.23 2211.71 -1.01 2209.11 -1.12 2209.02 -1.13 2209.02 -1.13
v-pr02  3836.49 3810.48 -0.68 3787.51 -1.28 3781.28 -1.44 3778.49 -1.51
v-pr03  5277.62 5305.04 0.52 5243.09 -0.65 5228.92 -0.92 5210.37 -1.27
v-pr04  6072.67 6103.66 0.51 6011.39 -1.01 5961.18 -1.84 5930.43 -2.34
v-pr05 6769.8 6968.5  2.94 6778 0.12 6697.76 -1.06 6741.94 -0.41
v-pr06  8462.37 8678.13 2.55 8461.45 -0.01 8351.49 -1.31 8269.92 -2.27
v-pr07 50009 501342 0.25  5007.01 0.12 4998.18 -0.05 4996.34 -0.09
v-pr08  7183.39 7234.89 0.72 7119.61 -0.89 7063.46 -1.67 7026.84 -2.18
v-pr09 10507.34 105404 0.31 10259.09 -2.36 10183.56 -3.08 10119.09 -3.70
v-prl0  13629.25 13894.99 1.95 13342.41 -2.10 13157.95 -3.46 12969.70 -4.83

0.81 -0.92 -1.60 -1.99
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Table 7: PVRP Old data — Reported run times in seconds executed on a Pentium

I11 600 MHz (ALG), and on a 3.2 GHz PC (CGL and VNS)

T T*

Instance  ALP CGL VNS CGL VNS
v-p01 268 29.4 98.3 6.6 49.6
v-p02 494 35.4 81.6 11.4 47.6
v-p03 45 32.4 100.5 13.2 62.3
v-p04 1426 46.8 67.2 24 49.7
v-p05 1280 52.8 68 324 57
v-p06 1797 57 76 51.6 67.8
v-p07 199 76.8 183.2 15 148
v-p08 3584 123.6 142.9 1194 126.5
v-p09 970 95.4 193.1 34.2 162.1
v-pl0 9467 123.6 170 111.6  154.3
v-pll 6492 2064  253.7 182.4  251.3
v-pl2 515 236.4 354.7 184.2  353.6
v-pl3 1491.6 127.6 97.2 126.9
v-pl4 5 9.6 37.4 0 0
v-plb 1 23.4 93.9 1.2 0
v-pl6 2 41.4 217.7 9.6 0.1
v-pl7 96 22.2 56.7 12.6 21.6
v-pl8 401 64.2 142.5 46.8 101.4
v-p19 20 135.6  258.3 79.2 119.6
v-p20 60 232.2  8R89.1 91.8 362.3
v-p21 373 33 72.5 21.6 49.7
v-p22 528 132 169.6 91.8 158.4
v-p23 42.09 342 341.4 306 310.3
v-p24 114.31 31.8 52.2 18.6 18.4
v-p25 69 31.2 46.9 5.4 13
v-p26 7.53 31.2 45.2 7.8 8.9
v-p27 219 82.8 66 82.8 64.3
v-p28 435 80.4 64.6 39 64.1
v-p29 19 76.2 59.3 27 57.2
v-p30 19.712 171 78 161.4 76.9
v-p31 7650 160.8 77.1 144.6 75.1
v-p32 8316 145.8 70.4 69 67.8
Total  44914.6 4454.4 4755.6 2099.4 3225.8
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Table 8: PVRP New data — Run times in seconds, both algorithms executed on a
PC with 3.2 GHz
T T*

Instance CGL VNS CGL VNS

v-pr01 34.2 180.3 22.8 59.4
v-pr02 97.2 283.3  84.6 238.2
v-pr03  210.6 278.2 163.2 255.9
v-pr04  331.2 3149 2844 2953
v-pr05  576.6  264.9 519 248.9
v-pr06  1090.2 3244 1031.4 318.5
v-pr07 94.8 246.7  82.2 164.7
v-pr08  260.4  338.6 234 2974
v-pr09  802.2 4239 733.2 4173
v-prl0  2023.8 376.1 2013.6 375.1

Total  5521.2 3031.3 5168.4 2670.7
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Table 9: Best known results for PVRP old data, found with different parameter

settings
Instance  CB TB RG CGW CGL ALP VNS
v-pl 547.4 537.3 524.6 524.61 531.02 524.61
v-p2 1443.1 1481.3 13554 1322.9 1322.87 1324.74 1322.87
v-p3 546.7 524.6 524.61 537.37 524.61
v-p4 843.9 867.8  840.2 835.43 845.97 835.26
V-po 2187.3 21925 2141.3 2046.20 2027.99 2043.75 2028.02
v-pb 938.2 847.2 836.37 840.1 835.45
v-p7 839.2 833.6 831.1 826.14 829.65 827.39
v-p8 2151.3 2281.8 2108.3 2042.0 2034.15 2052.21 2034.15
v-p9 875 828.3 826.14 829.65 827.39
v-pl0 1674 1833.7 1638.5 1611.9 1595.84 1621.21 1593.45
v-pll 847.3 8785  820.3 785.7 779.29 782.17 779.06
v-pl2 1312 1219.6 1195.88 1230.95 1201.79
v-pl3 3638.1 3538 3511.62 3513.69
v-pl4 954.8 954.81 954.81 954.81
v-pld 1862.6 1862.63 1862.63 1862.63
v-pl6 2875.2 2875.24 2875.24 2875.24
v-pl7 1614.4 1597.75 1597.75 1597.75
v-pl8 3217.7  3147.24 3157 3136.69
v-pl19 4846.5 4834.34 4846.49 4834.34
v-p20 8367.4 8367.4 8412.02 8367.4
v-p21 2216.1 2184.04  2173.58 2170.61
v-p22 4436.4  4271.11  4330.59  4193.95
v-p23 6769 6602.59  6813.45 6420.71
v-p24 3773 3687.46 3702.02 3687.46
v-p25 3826 3777.15 3781.38 3777.15
v-p26 3834 3795.33  3795.33 3795.32
v-p27 23401.6 21956.46 22561.33 21956
v-p28 23105.1 22934.71 22562.44 22305.34
v-p29 24248.2  22909.36 23752.15 22639.85
v-p30 80982.1 75016.58 76793.99 74464.26
v-p31 80279.1 78179.89 7T7944.79 176552.25
v-p32 83838.7 80479.2 81055.52 T780T72.88
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Table 10: Best known results for PVRP new data, found with different parameter

settings
Instance  CGL VNS %
v-pr01  2209.02 2209.02 0.00
v-pr02 3799.28 3774.09 -0.66
v-pr03 5218.13 5175.15 -0.82
v-pr04 6012.79 5914.93 -1.63
v-pr05 6769.8 6618.95 -2.23
v-pr06  8422.64 8258.08 -1.95
v-pr07 4997 .41 4996.14 -0.03
v-pr08 7094.52 6989.81 -1.48
v-pr09  10370.45 10075.4 -2.85
v-pr10  13370.04 12924.66 -3.33

-1.50
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Table 11: Description of the PTSP test instances. The notation is the same as for

the PVRP instances.

Instance n t service frequencies
f1 2 3 f4 {5 16
t-pl 50 2 50
t-p2 50 5 17 26 7
t-p3 50 5 50
t-p4 2 75
t-pd 75 30 34 11
t-p6 7 10 75
t-p7 100 2 100
t-p8 100 5 40 46 14
t-p9 100 8 100
t-p10 100 5 40 46 14
t-pl1 66 4 48 12 5)
t-p12 87 4 64 16 7
t-p13 109 4 80 20 9
t-pl4 131 4 96 24 11
t-p1b 153 4 112 28 13
t-p16 48 4 32 16
t-pl7 66 4 44 22
t-p18 84 4 56 28
t-p19 102 4 68 34
t-p20 120 4 80 40
t-p21 T 4 56 14 7
t-p22 154 4 112 28 14
t-p23 231 4 168 42 21
t-p24 48 4 24 12 12
t-p25 9% 4 48 24 24
t-p26 144 4 72 36 36
t-p27 192 4 96 48 48
t-p28 240 4 120 60 60
t-p29 288 4 144 T2 72
t-p30 72 6 18 18 18 18
t-p31 144 6 36 36 36 36
t-p32 216 6 54 54 H4 54
t-p33 288 6 72 T2 72 72
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Table 12: Results for the PTSP with 10°, 10" and 10® iterations compared to the
best solution values of the algorithms of Chao et al. (1995b), Cordeau et al. (1997),
Paletta (2002) and Bertazzi et al. (2004) with a recommended value of parameters.

Instance min VNS 106 VNS 107 VNS 108

t-pl 436.50 433.18 -0.76 432.1 -1.01 432.1 -1.01
t-p2 1106.70  1105.81 -0.08 1106.84 0.01 1105.81 -0.08
t-p3 469.16 470.77 0.34 467.42 -0.37 466.71 -0.52
t-p4 554.20 556.68 0.45 552.39 -0.33 549.05 -0.93
t-pd 1384.75  1388.35 0.26 1384.58 -0.01 1384.05 -0.05
t-p6 643.59 666.16 3.51  652.65 141 645.65 0.32
t-p7 646.65 661.82 235  649.17 039 644.53 -0.33
t-p8 1633.92 1618.91 -0.92 1615.51 -1.13 1614.39 -1.20
t-p9 733.13 TAT7.74 1.99 729.33 -0.52 723.08 -1.37
t-p10 1240.01 124737 0.9 1237.72 -0.18 1235.01 -0.40
t-pl1 490.97  490.97 0.00 490.97 0.00 490.97 0.00
t-p12 664.10 664.1 0.00 664.1 0.00 664.1 0.00
t-p13 830.80 830.8 0.00 830.8 0.00 830.8 0.00
t-pl4 994.60 994.6 0.00 994.6 0.00 994.6 0.00
t-p15  1157.07 1157.09 0.00 1157.07 0.00 1157.07 0.00
t-p16 660.12 660.52 0.06 660.12 0.00 660.12  0.00
t-pl7 776.43 778.82 031 77671 0.04 776.43 0.00
t-p18 873.70 879.8 0.70  875.82 0.24 874.42 0.08
t-p19 958.51 964.61 0.64 965.54 0.73 960.69 0.23
t-p20  1033.58 1045.45 1.15 1035.51 0.19 1035.27  0.16
t-p21 1375.07 1375.08 0.00 1375.07 0.00 1375.07 0.00
t-p22 4319.72 4312.33 -0.17 4312.31 -0.17 4312.31 -0.17
t-p23 8390.53  8384.88 -0.07 8349.26 -0.49 8315.45 -0.89
t-p24  2064.84 2065.03 0.01 2064.84 0.00 2064.84 0.00
t-p25 3231.50 3211.93 -0.61 3208.49 -0.71 3207.88 -0.73
t-p26 4084.75 4041.66 -1.05 4045.73 -0.96 4033.36 -1.26
t-p27 4621.36  4554.13 -1.45 4547.77 -1.59 4545.29 -1.65
t-p28 4682.54  4635.26 -1.01 4628.24 -1.16 4622.16 -1.29
t-p29 0595.45 5542.09 -0.95 5529.68 -1.18 5527.39 -1.22
t-p30 4453.15  4443.23 -0.22 4436.31 -0.38 4435.39 -0.40
t-p31 5405.40 5375.4 -0.56 5370.59 -0.64 5368.45 -0.68
t-p32 7346.32  7259.14 -1.19 7244.02 -1.39 7238.45 -1.47
t-p33 8394.52  8242.78 -1.81 8216.48 -2.12 8208.38 -2.22

average 0.05 -0.34 -0.52
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Table 13: Best known solutions for PTSP instances, found with different parameter

settings

Instance BKS PTSP BKS VNS %

t-pl 432.1 432.10 0.00

t-p2 1105.81 1105.81 0.00
t-p03 466.71 466.71 0.00

t-p4 549.05 549.05 0.00

t-pd 1382.33 1382.33 0.00

t-p6 643.5 643.50 0.00

t-p7 643.8 643.80 0.00

t-p8 1613.42 1611.96 -0.09

£-p9 721.24 720.72  -0.07
t-p10 1237.77 1233.53 -0.34
t-pll 490.97 490.97 0.00
t-pl12 664.1 664.10 0.00
t-pl13 830.8 830.80 0.00
t-pl4 994.6 994.60 0.00
t-pld 1157.07 1157.07 0.00
t-pl6 660.12 660.12 0.00
t-p17 776.43 776.43 0.00
t-pl8 873.73 873.73 0.00
t-p19 958.51 958.51 0.00
t-p20 1033.58 1033.58 0.00
t-p21 1375.07 1375.07 0.00
t-p22 4312.31 4312.31 0.00
t-p23 8308.51 8308.48 0.00
t-pro1 2064.84 2064.84 0.00
t-pr02 3207.44 3205.94 -0.05
t-pr03 4030.54 4027.71 -0.07
t-pr04 4558.94 4538.19 -0.46
t-pr05 4628.89 4613.58 -0.33
t-pr06 5534.94 5521.24 -0.25
t-pr07 4435.39 4435.39 0.00
t-pr08 5376.11 5366.53 -0.18
t-pr09 7282.39 7234.35 -0.66
t-prl10 8280.07 8199.55 -0.97
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Table 14: Use of different neighborhoods with different ordering of neighborhood
structures

N, move-CROSS-cc CROSS-cc-move  cc-move-CROSS
1 m 1551 cr 1688 cc 1845
2 m 942 cr 936 cc 1249
3 m 622 cr 532 cc 820
4 cr 421 cr 311 cc 539
5 cr 276 cr 195 cc 363
6 cr 174 cr 121 cc 260
7 cr 113 cc 703 m 155
8 cr 77 cc 506 m 107
9 cr b4 cc 345 m 71
10 cc 523 cc 254 cr 54
11 cc 396 ccl82 cr 36
12 cc 276 cc 132 cr 25
13 cc 198 m 20 cr 17
14 cc 138 m 17 cr 15
15 cc 115 m 11 cr 9
avg. dev.

to best solution 3.64 0.98 0.05
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Table 15: Use of different neighborhoods with cc-move-cross for PVRP and PTSP

PVRP PTSP
N, 10° 107 108 106 107 108
13006 3389 3673 1845 1734 1915
2 1962 2167 2442 1249 1221 1281
3 1429 1623 1746 820 801 833
4 1062 1195 1334 539 520 928
5 835 947 1039 363 361 368
6 665 770 847 260 257 259
7 395 456 012 155 170 177
8 296 337 389 107 122 123
9 259 296 336 71 79 81
10 314 365 451 o4 26 60
11 235 260 320 36 42 41
12 189 219 261 25 28 28
13 167 178 227 17 16 18
14 147 168 204 15 13 15
15 145 160 188 9 10 6
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5 Conclusion

We presented an (almost) generic Variable Neighborhood Search heuristic for the
Periodic Vehicle Routing Problem and the Periodic Traveling Salesman Problem
that is competitive or even outperforms the existing methods. The main features
of this algorithm are a simple and flexible local search as well as an acceptance
criterion for neighboring solutions inspired by Simulated Annealing. We show the
robustness of our approach by applying the identical basic algorithm to both prob-
lem classes. The only difference between the implementations for PVRP and PTSP
is the choice of the local search. We also made no special efforts to adapt the algo-
rithm to degenerated problem instances (i.e. those without any periodic aspects).
Nevertheless, the results obtained through an extensive numerical analysis showed
that the algorithm is competitive to other state of the art approaches applied to
these problem classes. Considering the best solutions found our algorithm for the
PVRP outperforms the existing techniques by finding 24 new best solutions and 13
ties. In detail, we improved 9 test instances of the 10 instances of the new data
and 15 test instances out of the 32 instances of the old data. The strength of our
algorithm is that on average it provides better results than the existing techniques
especially when the problem size increases. Another important aspect with respect
to runtime is that the algorithm scales quite well. The increase in runtime is much
lower when the problem size increases compared to the other algorithms in the lit-
erature. For the PTSP our VNS finds 11 new best results on the existing instances
in the literature. Moreover also the average results resemble or even outperform the
results published in the literature within a comparable runtime.

For future research we will extend our algorithm to be applicable to Inventory

Routing Problems. This algorithm will then be applied to the periodic delivery of
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blood products to hospitals (see Hemmelmayr et al., 2006).
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